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Multipolar magnetic phases in correlated insulators represent a great challenge for density functional theory
(DFT) due to the coexistence of intermingled interactions, typically spin-orbit coupling, crystal field and com-
plex noncollinear and high-rank intersite exchange, creating a complected configurational space with multiple
minima. Although the +U correction to DFT allows, in principle, the modeling of such magnetic ground states,
its results strongly depend on the initially symmetry breaking, constraining the nature of order parameter in the
converged DFT + U solution. As a rule, DFT + U calculations starting from a set of initial on-site magnetic
moments result in a conventional dipolar order. A more sophisticated approach is clearly needed in the case of
magnetic multipolar ordering, which is revealed by a null integral of the magnetization density over spheres
centered on magnetic atoms, but with nonzero local contributions. Here we show how such phases can be
efficiently captured using an educated constrained initialization of the on-site density matrix, which is derived
from the multipolar-ordered ground state of an ab initio effective Hamiltonian. Various properties of such exotic
ground states, like their one-electron spectra, become therefore accessible by all-electron DFT + U methods.
We assess the reliability of this procedure on the ferro-octupolar ground state recently predicted in Ba2MOsO6

(M = Ca, Mg, Zn) [Phys. Rev. Lett. 127, 237201 (2021)].
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I. INTRODUCTION

Transition metal oxides (TMOs) with strong spin orbit
coupling effect (SOC) have attracted great attention due to
the realization of unconventional magnetic phases, ranging
from canted antiferromagnetic (AFM) orders observed in
Ba2NaOsO6 [1–3] and Sr2IrO4 [4] to high-rank magnetic
multipoles [5,6]. Remarkable examples of multipolar order-
ings have been reported for URu2Si2 and NpO2, where the
onset of hidden ordered phase transitions have been connected
with possible transitions towards a multipolar magnetic phase
[6,7]. More recently, 5d-based TMOs have attracted consid-
erable interest due to the interplay between an unexpectedly
high electronic correlation and SOC [8], with several reports
providing evidence on the possible formation of multipolar
ground states [9–11]. The majority of these works are based
on microscopic low-energy effective Hamiltonians, solved
by a variety of many-body methods. In fact, the search of
multipolar magnetism by means of DFT electronic struc-
ture schemes with the +U correction inevitably faces the
problem of being trapped in local minima corresponding to
conventional dipolar solutions. In a pioneering paper S.-T.
Pi and coworkers [12] addressed this problem by calculating
exchange interactions through flipping of the expansion coef-
ficients of the on-site matrix expanded in terms of multipolar
tensor components. The change in band energies reflects the
energy cost of the corresponding flipping that can be after-
wards mapped onto the exchange constant via Andersen force

theorem (FT) [13]. However, this method becomes compu-
tationally intensive for multipolar “hidden” order systems,
where the space of possible order parameters is large.

An alternative approach [14] is based on a FT formulated
for the symmetry-unbroken paramagnetic electronic structure.
The latter is obtained within the DFT + DMFT (dynamical
mean-field theory [15,16]) framework using the quasiatomic
Hubbard-I (HI) approximation. Even for complex “hidden-
order” systems, the full magnetic Hamiltonian can be derived
using this FT-HI method from postprocessing of a single
DFT + HI calculation for the paramagnetic state [7,17]. How-
ever, in contrast to DFT + U, the DFT + HI method cannot
directly model the electronic structure of multipolar-ordered
phases, since leading intersite interactions in correlated in-
sulators arising through hybridization of localized electrons
(e.g., superexchange) are neglected in DFT + HI.

In this paper, we develop a framework for calculat-
ing multipolar-ordered phases with the DFT + U method
by initializing those calculations using the output provided
by the FT-HI effective-Hamiltonian method. Within our
scheme we first identify competing multipolar phases from an
ab initio effective Hamiltonian. In this Hamiltonian, the rel-
evant ground-state multiplet (GSM) of low-energy electronic
states is represented by a pseudospin; the intersite interactions
between various moments of this GSM space are calculated
by the FT-HI method [14] from the paramagnetic DFT + HI
electronic structure. The effective Hamiltonian is then solved
either by mean-field or by more sophisticated many-body
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techniques to obtain the transition temperatures and order
parameters for low-temperature phases.

Using explicit (Fock state) representations of the GSM
many-electron states, as calculated by DFT + HI, one may
transform those order parameters into on-site one-electron
density matrices (ODM). Then, the DFT + U + SOC run is
initialized with such ODMs corresponding to a chosen mul-
tipolar order. The selective initialization of the ODM allows
the direct total energy calculations of a specific multipolar
magnetic ground state, thus avoiding the risk of falling in a
metastable dipolar state.

This framework enables the study of materials-specific
electronic and magnetic properties of a genuine multipolar
state in DFT at the atomic scale without adjustable parame-
ters, and allows for a DFT-based analysis of the response of
the multipolar ground state to external stimuli such as local
structural distortions or doping, which are difficult to treat at
DFT + HI level.

We employ the proposed computational protocol to study
the competition between conventional dipolar and magnetic
multipolar order in the cubic 5d2 double perovskites (DPs)
Ba2MOsO6 (M = Ca, Mg, Zn) (BCOO, BMOO, and BZOO
from now on). With a t2

2g configuration exhibiting a S = 1 spin
state and an effective orbital moment l = 1, the low-energy
physics of these spin-orbit coupled systems can be represented
by a total effective momentum (pseudospin) Jeff=2, analogous
to a single d-electron l = 2 level. As a consequence, in a cubic
symmetry, the Je f f =2 level splits due to the remnant crystal
field (RCF) into a lower Eg doublet and a higher-in-energy
T2g triplet. Since the non-Kramers Eg doublet is isomorphic to
a eg doublet, it carries no dipole moment, thus representing
an ideal playground for the realization of high-rank multipole
orders.

For these reasons BMOO DPs have recently been in the
spotlight, but with conflicting experimental data. On one side,
muon spin relaxation and thermodynamic anomalies show a
clear phase transition below T∗ ≈ 30–50 K, with broken time
reversal symmetry and with large antiferromagnetic Curie-
Weiss constant (�CW ≈ 130 K) [18,19], apparently consistent
with a weak Néel spin ordering. On the other side, no
magnetic Bragg peaks were observed in neutron diffraction
experiments, establishing an upper limit for the Os dipolar
magnetic moment of ≈0.1μB [20]. Furthermore, possible
quadrupolar orderings are also ruled out by the absence of
tetragonal distortion as verified by x-ray diffraction measure-
ments, up to ≈0.1% of the volume [20].

To shed some light on this complex scenario a few theo-
retical analyses have been reported providing robust evidence
for the formation of a higher-rank order of the octupolar
type [17,21,22]. We have recently evaluated the effective
many-body Hamiltonian for these compounds using the FT-
HI method [17] and obtained a ferro alignment of the xyz
octupoles as their ground (ferro-octupolar, FO) state [17]. This
FO order is enabled by a large RCF (an order of magnitude
larger than the intersite exchange interaction) suppressing
competing dipolar orders and mediated by superexchange
mechanism through O-p and Ba orbitals. [17]. An antiferro or-
der of quadrupoles active within the eg doublet was identified
in Refs. [17,23] as a competing phase. However, neither the
electronic structure of the FO state nor its competing phases

has been calculated in Ref. [17] due to the above mentioned
limitations of DFT + HI.

In this paper we make use of the previously obtained FT-HI
Hamiltonians and ordered phases to carry out electronic struc-
ture calculations for the d2 DP series using the constrained
DFT + U methodology outlined above. We identify signa-
tures of the multipolar order in one-electron spectrum. We also
show that this DFT + U methodology is able to qualitatively
capture the energetics of multipolar orders; in particular, it
correctly predicts the relative magnitude of ordering energies
along the 5d2 DP series.

II. METHOD

We carried out DFT + U calculations by the Vienna ab
initio Simulation Package (VASP) [24,25] using the general-
ized gradient approximation of Perdew, Burke, and Ernzerhof.
We included the on-site Coulomb repulsion at the Os d
shells using the rotationally-invariant Lichtestein formulation
of DFT + U [26]. The on-site Coulomb vertex is specified
by the Hubbard U and Hund’s rule coupling J; we employed
U = 3.2 eV and J = 0.5 eV, in agreement with previous
papers [17]. The spin-orbit coupling was included in DFT
and we estimated, via exact diagonalization of the atomic
levels in the local Hamiltonian, the resulting SOC strength
λ to be ∼0.3 eV. For both BCOO, BMOO, and BZOO the
experimental lattice structures were used from references [19]
and [18] respectively; the reciprocal space was sampled with
a 6 × 6 × 6 k mesh and an energy cutoff for the plane wave
expansion of 600 eV was applied.

We employ the protocol outlined in the introduction to
construct an appropriate ODM for a given multipolar order.
This ODM is then used as starting guess for the constrained-
ODM implementation of reference [27]. The starting ODM is
derived from the order parameters of a given multipolar phase.
To that end we represent the one-electron ODM corresponding
to a given set of the order parameters in the pseudo-J space as
follows:

ρmm′,α
HI

= Tr
[
ρmm′

MM ′ (J ) ρ̂α (J )
]

(1)

where ρmm′
MM ′ (J ) = 〈JM|c†

mcm′ |JM ′〉 is the mm′ matrix element
of the ODM operator in the GSM basis |JM〉, c†

m, cm′ are the
one electron creation and annihilation operators and ρ̂α (J )
is the many-electron GSM density matrix (DM) at the site
α. The DM ρ̂α (J ) is computed from the ordered moments
at site α for a given phase, ρ̂α (J ) = ∑

KQ ÔQ
K (J )〈ÔQ

K (J )〉α ,

where OQ
K is the spherical Hermitian tensor for given J with

rank K = 1...2J and projection Q [5] and 〈ÔQ
K (J )〉α is its

expectation value at the site α in a given ordered state. For
the d2 DP series we use the FO order parameters 〈ÔQ

K (J )〉
that were obtained in Ref. [17] by solving the correspond-
ing FT-HI effective Hamiltonians for pseudo-spin J = 2. To
evaluate the matrix elements 〈JM|c†

mcm′ |JM ′〉 we employ the
many-electron states of the GSM obtained in DFT + HI cal-
culations [17] of those compounds; these states are expressed
in the ms d-electron Fock basis rendering such evaluation
straightforward.

The many electron DM ρ̂α (J ) contains the nominal number
of correlated electrons included in the effective Hamiltonian.
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ρODM = ρHUBI + [Idt2g × Tr(ρt2g − ρHUBI )/6] + ρeg
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DFT + U + SOC

5

Self-Consistent
DFT + U + SOC

FIG. 1. Scheme of the constrained multipolar ODM protocol: (1)
FT-HI optimization and calculation of the FT-HI ODM ρHUB ; (2)
Preliminary DFT + U (= 0 eV) calculation for the t2g and eg density;
(3) Hybridization correction and initialization of a ρODM consistent
with ρHUB ; (4) ODM-constrained DFT + U + SOC calculation with
the new ρODM ; (5) Full self-consistent DFT + U + SOC run starting
from the pre-converged wavefunction generated in (4) (see SM [29]).

DFT calculations, on the other hand, typically overestimate
this counting because of the strong hybridization between the
d orbitals with the O p states. This enhanced electron counting
is particularly problematic for osmates double perovskites,
where the formal 5d2 occupation is actually ∼6 electrons
in DFT [2,28]. This unbalanced treatment of the ODM in
DFT (ρODM ) is incongruous with the nominal t2

2g configuration
adopted in the FT-HI effective Hamiltonian (ρHI ) and needs to
be corrected in order to have a consistent mapping between
the two models. In our protocol (see Fig. 1) we correct this
problem by quantifying the nominal excess charge from a
preliminary spin-unpolarized DFT calculation (U=0), were
we obtain a reference DFT-ODM (ρDFT ) which is a sum of
the contribution coming from t2g orbitals (ρt2g) and the eg ones
(ρeg) that include both the nominal d2 electrons as well as ad-
ditional electronic charge coming from hybridization effects.

As in VASP the ρDFT is calculated in the global coordinate
system one has to be sure this matches the local reference
frame of the octahedral environment, to avoid mixing contri-
butions from different orbitals. In our unit cells these reference
frames coincide, and such a rotation is not needed. However,
another change of basis was employed in order to move from
the spherical harmonic basis of the ρHUB to the cubic one
defined in VASP (see Supplemental Material (SM) [29]). At
this point the the hybridization contribution can be readily
obtained by splitting the correlated t2g part from the eg one
and defining

ρODM = [ρHI + Idt2g × Tr(ρt2g − ρHI )/6] + ρeg, (2)

where Idt2g is the identity acting on the t2g subspace only and
the division by 6 is due to the spin degeneracy.

With the new ODM that correctly counts the added elec-
trons, we have an educated initial guess on top of which we
were able to run a ODM-constrained calculation at DFT +
U + SOC level, with the requirement of keeping the total
magnetization along the global components as obtained with

TABLE I. Charge on the Os atoms and values of the saturated
multipolar moments for the different compounds in the FO phase,
with 1 is the fully saturated moment.

Compound Tr(ρODM ) Q3z2
Qx2−y2

Txyz

Ba2CaOsO6 6.04 0.15 0.25 0.51
Ba2MgOsO6 6.04 0.14 0.17 0.56
Ba2ZnOsO6 6.34 0.15 0.22 0.58

Tr(SiρODM ), where Si is the dipolar spin operator. As men-
tioned above, the nature of the FO ground state is such that
all these components average to zero and as such have to
be initialised, considering that any other initialization would
act as local magnetic field on the osmium atom, thus push-
ing towards a conventional dipolar solution. After the initial
ODM-constrained calculation, we performed a consistency
safety check to control that the correct number of electrons
is maintained in the ODM, and subsequently performed a full
self-consistent calculation to obtain the FO DFT + U + SOC
solution, starting from the preconverged wavefunctions. A
consistency check is also done at the very end of the self-
consistent in order to check that the Tr(ρODM ) is compatible
with the required initialization.

The interest in the nature of the FO phase concerns the
potential differences with respect to conventional dipolar solu-
tions. To gain a better understanding, we performed a series of
DFT + U + SOC calculations with multiple different dipolar
configurations from FM to AFM (see SM [29]), finding the
type-I AFM-110 as lowest energetic dipolar one. From now
on we will use the AFM-110 solution as measurement of
comparison, where AFM-110 means AFM arrangement of
dipolar magnetic moments along parallel planes in the [001],
with magnetic moments lying along the [110] crystallographic
direction.

III. RESULTS

We start by discussing the FO solution obtained by DFT
using the proposed approach and comparing it with the dipolar
AFM-110 state. After that, we present the DFT estimations of
the intersite exchange couplings and explore the possibility
for tetragonal transition.

A. The Ferro-octupolar phase

To extract useful information from the DFT output we fit
the final DFT-ODM ρODM to the basis of 2-electrons average
of multipolar moments 〈Tm,n(J )〉,

ρODM =
∑

n,m

an
m〈Tm,n(J )〉, (3)

where an
m are the fitting coefficients.

We find indeed that the octupolar Txyz operator remains
nonzero, even if not fully saturated (see Tables I and II),
providing clear evidence of the capability of DFT to model
a genuine multipolar order. Most of the other magnetic
multipoles are almost zero, apart from Qx2−y2

, Q3z2
and hex-

adecapoles, the latter with values that do not impact on the
quality of the fit and are therefore neglected from now on.
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TABLE II. Definition of the nonzero multipolar moments in cu-
bic harmonic basis [5] active in the DFT FO ground-state solution.
The { jx, jy, jz} are angular momentum operators. The bar over sym-
bols represents a sum with respect to all possible permutations.

Moment Symmetry Operator

Quadrupoles �3 Q3z2 = [3 j2
z − j2]/2

Qx2−y2 = √
3/2 ( j

2

x − j2
y )

Octupole �2 Txyz = √
15/6 jx jy jz

The non zero values obtained for quadrupolar Qx2−y2
and Q3z2

terms are a consequence of switching-off all symmetry as
required in VASP-based SOC calculations, and do not imply
any tendency of the system to undergo a cubic-to-tetragonal
transition (we have verified that the systems prefers to pre-
serve the cubic symmetry, see Sec. II C). We further confirmed
the role of symmetry by performing a nonmagnetic DFT
+ SOC calculation from which we extracted the expansion
coefficients finding values of ∼0.30 for Q3z2

and ∼0.43 for
Qx2−y2

, then subtracted from the pure DFT + U + SOC val-
ues to partially compensate the above-mentioned effect (see
Table I for the rescaled values). The final ODM contains also
spurious terms coming from the hybridization between Os and
O atoms, such that only 90% of the total Hilbert space from
which ρODM is constructed can be correctly mapped in our the
tensor fit; this unbalance can be easily adjusted by subtracting
the the nonmagnetic DFT + SOC ODM calculation from the
final ODM. A visual representation of the obtained FO state is
given in Fig. 2 in terms of the magnetization density isosurface

FIG. 2. Color plot of the magnetization density along the z direc-
tion on the Os sites as seen from the [001] crystallographic direction
for the FO (a) and AFM-110 (b) cases. The 3-dimensional plots
are (c) and (d) respectively. The complete plots along the x and y
direction are given in the SM [29].

TABLE III. Energy gap for the different magnetic phases show
how the magnetic and electronic properties are strictly related in
these compounds. An enhancement of the band gap is found in
the multipolar ordered phases, as compared with the conventional
dipolar solution.

Energy gap (eV)

Compound FO AFM-110

Ba2CaOsO6 1.16 0.55
Ba2MgOsO6 1.16 0.52
Ba2ZnOsO6 1.24 0.64

along the crystallographic z direction, showing a FM order of
magnetic octupoles.

After clarifying the basic multipolar character of the FO
order with DFT + U + SOC, we move forward to the analysis
of the differences between the FO and the competing dipolar
AFM-110 solutions in terms of stability, electronic structure
and magnetic properties. Our results show that the FO phase
is lower in energy than the dipolar phase, with a difference
of ≈41, 45, and 43 meV/f.u. for BCOO, BMOO, and BZOO
respectively.

The density of states and the band structure displayed in
in Fig. 3 show an insulating electronic ground state for both
phases with strong qualitative differences in the character of
the unoccupied states: FO-ordered BCOO exhibits one broad
unoccupied t2g band, which is split into three peaks in the
AFM phase. The FO insulating energy gap, 1.16 eV, is sig-
nificantly larger than the corresponding AFM, 0.55 eV (see
Table III). These are well-defined electronic characteristics
that identify a clear difference between these two magnetic
orders, which can be verified experimentally.

From a magnetic point of view, the difference between the
FO and AFM phases become transparent from the ordered
magnetic dipolar moments and the magnetization density. The
dipolar AFM-110 posses a local spin and orbital moment on
the osmium atom of mS ∼ 1.4 μB, mL ∼ 0.7 μB summing up
to mJ ∼ 0.7 μB, while they average to zero in the FO case. The
diversity between the FO and AFM-110 magnetic orderings is
also reflected in the magnetization density along z in Fig. 2.

B. Intersite exchanges

The driving force that couples rank three time-odd multi-
polar operators and stabilizes the multipolar magnetic order in
these compounds is the intersite exchange interaction between
osmium atoms mediated via superexchange mechanism [17].
To further analyze and compare our result to previous theo-
retical findings, we start by mapping total energy differences
obtained with our constrained ODM approach for distinct
multipolar ordered phases, to the following model Hamilto-
nian:

H =
∑

〈i j〉

∑

KQK ′Q′
CQQ′

KK ′ (Ri j )TK,Q(Ri )TK ′,Q′ (R j ), (4)

where TK,Q(Ri ) are the Hermitian cubic tensors [5] for J=2
of the rank K = 1...4, Q = −K, ..., K and the sum runs over
all nearest-neighbor 〈i j〉 Os-Os bonds. This Hamiltonian is
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FIG. 3. Comparison of the electronic properties of BCOO for the two different magnetic phases FO and AFM-110: (a) density of states
and [(b), (c)] corresponding band structures.

a reduced form of the one used in Ref. [17], as the remnant
crystal field is already taken into account self-consistently. In
Ref. [17] the Hamiltonian is further simplified to an effective
pseudospin Hamiltonian acting on the low lying doublet. Here
we follow the same reasoning and rewrite it as

H =
∑

〈i j〉

∑

αβ

Jαβ (Ri j )τα (Ri )τβ (R j ), (5)

where τα is the corresponding pseudospin-1/2 operator
and, for α = y, it coincides with Txyz. To calculate the
value of the intersite exchange interaction Jyy between time-
odd multipoles, we employed the constrained ODM for an
antiferro-octupolar (AFO) configuration, with the Txyz aligned
ferromagnetically in [001] planes and AFM out-of-plane. Our
result shows that the FO phase is still lowest in energy and
that, while the AFO has different signs of the Txyz opera-
tors, all other saturated magnetic multipolar moments keep
their values unchanged, with a difference of ∼12% in the
tensor fit coefficients for Q3z2

and ∼1% for Q3z2
. By as-

suming that these changes are not as significant as the ones
brought by Txyz in the total energy, we calculate the exchange
constant as

Jyy = EFO − EAFO

2
. (6)

Our results, in Table IV, are in qualitative agreement
with FT-HI results but are overestimated by a multiplicative
factor (≈4).This overestimation is attributed to the differ-
ent electron counting that enhances exchange fields when
dipolar/multipolar moments are initialized, as studied in pre-

TABLE IV. Comparison between DFT and FT-HI intersite ex-
change constants for the effective Hamiltonian of Eq. (5).

Jyy (meV/f.u.)

Compound DFT FT-HI [17]

Ba2CaOsO6 –10.70 –2.98
Ba2MgOsO6 –10.10 –2.93
Ba2ZnOsO6 –8.47 –1.71

vious papers [2]. Still, the relative strength of the computed
Jyy in the three compounds is reproduced rather consistently.

C. Tetragonal distortions

We conclude by reporting data on the possibility for these
systems to undergo a cubic-to-tetragonal distortion. Osmate
DPs have been theoretically predicted to host quadrupolar
moments and recently it has been proved that unaxial strain
along the z axis might lead to a suppression of the FO tran-
sition temperature as a consequence of the interplay of a
weakened octupolar exchange interactions and the produced
transverse field [21]. Minuscule tetragonal distortions are ex-
pected to activate transitions between the ground state and
the excited singlet, ultimately detectable in inelastic neutron
spectra measurements [17]. We investigated whether such
distortions might induce a transition towards a competing
favourable solutions by studying the change in energy as a
function of the δ = c/a − 1 by switching the lattice parameter
in steps of 0.01 Å in both positive and negative directions
from the experimental value, while keeping the volume fixed
(we further compared our result with an automated conjugate
gradient minimization algorithm with both fixed and variable
lattice parameters).

The results for BCOO are collected in Fig. 4 (data for
BMOO and BZOO are available in the SM [29]). Our DFT
data clearly highlights no deviation from the cubic symme-
try for both FM and AFM octupolar FO and AFO phases.
In contrast, the AFM-110 phase shows an expansion along
the z axis with change in lattice parameter of the order of
∼1% and the appearance of JT distortions, both of which
would have been detected by x-ray diffraction measurement.
These considerations apply also for BMOO and BZOO. An
important point is the dependence of the magnetic multipoles
on the magnitude of the strain, here analysed for BCOO.
We obtain for the Q3z2

moment a sharp linear dependence as
function of δ in good qualitative agreement with the DFT +
HI results (see Supplemental Material related to Ref. [17]).
We further observe a linear behavior of the Txyz multipole
which suggests a strengthening of the FO phase upon ten-
sile stress, with a possible enhancement of the corresponding
transition temperature (indeed the evaluation of Jyy for the
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FIG. 4. (a) Energy as a function of δ = c/a − 1 for BCOO. The
total energies are scaled to have the zero for the lowest energy value.
(b) Mean values of the Txyz moment as function of δ for BCOO.
(c) Mean values of the Q3z2

moment as function of δ for BCOO.

δ = +0.01 structure gives a value ∼3% larger). For com-
pleteness, we find that the multipolar moment Qx2−y2

remains
constant.

These results suggest that tetragonal distortions might play
a decisive role on the magnetic properties of these compounds
and that further investigations, also via experimental analysis,
might be a worthy research path.

IV. CONCLUSIONS

In conclusion, we have proposed a protocol for obtain-
ing magnetic multipolar ordered phases in DFT + U + SOC
based on the constrain of the occupation density matrix as
obtained from DFT + DMFT within the FT-HI approxima-
tion. We applied this procedure to 5d2 double perovskites,
correctly reproducing the FO ordering of time-odd octupoles.
We proved the FO phase to be the ground state and compared
our results with dipolar AFM-110 configuration, that would be
the “conventional” DFT ground-state solution. We calculated
the intersite exchange interaction constant, finding reasonable
agreement with other theoretical results. Finally, we explored
the possibility for these systems to undergo a tetragonal dis-
tortion, finding no such evidence and revealed the dependence
of the multipolar moments upon strain from purely ab initio
perspective.
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