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Abstract: Natural frequencies have always been one of the most intuitive and widely used features
for damage identification in civil structures. Even with the recent rapid technological and theoretical
developments, frequency-based identification methods are of great interest for applications through
low-cost sensing systems. Although most techniques for frequency identification assume a linear
structural behavior, in real applications, variations in the amplitude of input excitation can lead
to short-term frequency fluctuations due to the inherent nonlinearities of civil structures. This
paper proposes a procedure for damage detection in nonlinear systems based on instantaneous
resonant frequency and amplitude estimates. A statistical model was fitted to identified data,
and a synthetic indicator was proposed to obtain robust damage detection, even when frequency
shifts due to variations in the input excitation are comparable to those due to actual damage. The
proposed method was applied to a dataset recorded from a reinforced concrete building with strongly
nonlinear behavior.
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1. Introduction

The growing diffusion of structural health monitoring (SHM) highlights practical
challenges that need to be addressed through new solutions and technologies. Besides
structures with strategic and monumental importance, recent developments in this field
made SHM applicable to minor buildings and infrastructures [1–4].

Modal parameters (especially natural frequencies and mode shapes) are among the
most used for damage identification due to their direct physical interpretation [5–7]. A vari-
ation in indicators based on such parameters may denote a variation in the structural
dynamic behavior and is often associated with ongoing damage.

Recently, sensing solutions were proposed based on Micro-Electro-Mechanical Systems
(MEMS) combined with low-cost microcontrollers and wireless transmission modules, with
less visual and economic impacts compared to the traditional configurations based on
wired high-performance devices [8]. Moreover, thanks to the computational capacity
of microcontrollers, part of processing activities can be performed in a decentralized
fashion onboard the sensing nodes [9]. Energy consumption, which is strictly related to
the number of wireless transmissions, is one of the most critical challenges for low-cost
wireless solutions [10,11]. Moreover, because of the lack of a centralized time reference, data
synchronization is a critical issue when dealing with complex monitoring networks [12].

Frequency-based identification methods are particularly suitable for decentralized
monitoring systems, as natural frequencies can be estimated even using one individual
sensor without requiring any synchronization of acquired data.

Structures in nature typically have a nonlinear behavior [13]. In civil engineering, non-
linearity can stem from several sources, including material properties (constitutive laws),
geometry (when displacement magnitudes influence structural response), and boundary
conditions [14,15]. Additionally, studies indicate that nonlinearities tend to increase in
damaged structures where cracks or loose connections may occur [15].
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In vibration-based SHM, classical modal analysis methods typically require the as-
sumption of “linearity”. Thus, nonlinearities are often ignored during operational modal
analysis, as their effects are only noticeable under high-energy excitation, and ambient
vibrations are typically modest [5]. Traditional modal identification principles for linear
systems, such as the superposition principle, may not be applicable in the presence of
nonlinearities. This means that modal responses cannot be analyzed by separating time
and space information, and the concept of “vibration modes” is invalid. Rosenberg [16]
was the first to extend this idea by defining a “nonlinear normal mode” as a synchronous
periodic oscillation where all material points reach their extreme values and pass through
zero simultaneously. This definition can also be applied to weakly damped systems and
allows for the description of nonlinear structures using a nonlinear modal curve in the
configuration space. In this case, however, the direct comparison of modal parameters
(e.g., natural frequencies) identified in different time intervals may be misleading for the
identification of damage, as the differences in estimated parameters could also be due to a
variation in the exciting input.

In the last decades, several techniques have been proposed for removing environmen-
tal effects from damage-sensitive features (DSFs) [17–19]. Also, some studies investigated
the effects of nonlinearities [20,21]. However, most structural identification methods pro-
posed in this field are computationally expensive and require large datasets, making them
unsuitable for decentralized low-cost monitoring systems.

This study proposes a DSF that is easily implementable onboard wireless sensing
systems, which also consider structural nonlinearities. The proposed DSF is based on the
instantaneous frequency and amplitude of a selected modal response extracted using an
algorithm presented in a previous paper [9]. The procedure is also suitable for applications
with nonstationary input excitation and does not require preliminary identification of
nonlinearity sources.

The method proposed in this study was applied to the acceleration data collected
during an experimental campaign conducted on a full-scale, seven-story slice of a reinforced
concrete building, which was tested with different excitation levels and in progressively
induced damage conditions [22–24].

2. Proposed Procedure

This paper proposes a method to detect differences in natural frequencies due to
structural damage while also accounting for their dependence on excitation amplitude,
which may affect damage detection in nonlinear structures.

The first step of the proposed procedure consists of identifying instantaneous resonant
frequencies and amplitudes from the vibration response of a structure. The identification
algorithm used in this study is described in [9], where the reader can find all the relevant
technical aspects. Therefore, the method is only summarized herein. The algorithm
involves preliminary construction of a wavelet filter bank to decompose the acquired signal
into different modal responses and a real-time processing phase, where instantaneous
frequencies and amplitudes are identified using the Teager energy operator (TEO). If the
structure behaves linearly, the ratio between identified modal amplitudes can be interpreted
as mode shapes [9]. On the other hand, for nonlinear systems, instantaneous amplitude
ratios can be seen as a representation of nonlinear normal modes in time [25].

Instantaneous frequencies and the relevant amplitudes of the decoupled modal re-
sponses are then memorized. If the method is implemented on embedded systems, the
storage space dedicated to identified instantaneous parameters should be minimized due
to the limited capacity of low-cost electronic devices. However, the monitoring process
should keep in its memory the parameters identified in a wide set of previous conditions
(i.e., for different amplitudes of the structural response). It is thus necessary to use a model
described by a few parameters that represent the structural behavior in different conditions,
even those that occurred a long time before. For this reason, a criterion is proposed herein
to recursively select identified parameters while keeping a constant storage size over time.
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2.1. Data Selection Process

Consider one single modal response extracted using the algorithm proposed in [9].
First, at time instant t = 0, consider two zero-valued sequences ϕ0[n] and ψ0[n] with
1 < n < N. Up to time instant t = N, replace ϕ0[t] = a[t] and ψ0[t] = f [t], where a[t] and
f [t] are the instantaneous amplitude and frequency values, respectively, estimated through
the identification algorithm. Both sequences are then reordered according to the amplitude
values (i.e., such that ϕ0[n] < ϕ0[n + 1]), thus obtaining ϕt[n] and ψt[n].

At time instant t = N + 1, replace the terms ϕt[p] = a[t] and ψt[p] = f [t] with p
such that:

|ϕt[p]− a[t]| ≤ |ϕt[n]− a[t]| ∀n ∈ [1, N] (1)

In this way, each couple of instantaneous parameters ( f , a)[t] replaces the terms with
more similar amplitudes in ϕt[n] and ψt[n]. In this way, if the signal has nonstationary
amplitude, a large part of the data sequences is updated. On the other hand, if the signal
is stationary, a small portion of the data is updated without losing the parts related to
different amplitude ranges.

2.2. Model Identification

After updating the frequency–amplitude data according to Section 2.1, the ordered
sequence ψτ [n] can be processed through a median filter at user-defined time intervals
τ = r∆t with r ∈ N, in order to limit the fluctuations of instantaneous estimates, thus
obtaining the filtered sequence ψτ [n]. The couples

(
ϕτ , ψτ

)
[n] are then fitted using the least

-squares method to a model described by the following equation:

y(x) =
mτ

ω
√

2π
e−

(x−ξ)2

2ω2

∫ α
ω (x−ξ)

−∞

1√
2π

e−
t2
2 dt (2)

representing a skew-normal distribution [26] with a multiplication factor mτ/2, where mτ is
the mean value of ϕτ [n]. In Equation (2), ω, ξ, and α are the parameters of the skew–normal
model identified through fitting.

The identification of model parameters (i.e., ω, ξ, and α) is thus carried out at each
update of the frequency–amplitude sequences (or at periodic user-defined intervals). Using
these model parameters, the mean (µ), variance (σ2), and skewness (γ) of the identified
model can be calculated as follows:

µ = ξ + ωδ

√
π

2
(3)

σ2 = ω2
(

1− 2δ2

π

)
(4)

γ =
4− π

2

(
δ
√

2/π
)3

(1− 2δ2/π)
3/2 (5)

where δ is defined for notational convenience as:

δ =
α√

1 + α2
(6)

A synthetic DSF m0[τ] can thus be calculated as:

m0[τ] =
(

µ− σγ

2

)∣∣∣
τ

(7)

This parameter can be interpreted as an approximation of the mode of the identified
skew–normal distribution [26] fitted to the data sequences obtained at the time instant τ.
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A variation in m0[τ] with respect to a baseline value m0 obtained at the beginning
of the monitoring process can thus be associated with a modification of the structural
dynamic behavior and may be related to ongoing damage. In this work, the damage index
is expressed as a percentage variation in m0[τ] with respect to m0:

d[τ] =
m0[τ]−m0

m0
·100 (8)

It should be noted that, because of the data selection criterion, the algorithm is suit-
able even for non-persistently excited systems, and its effectiveness depends on sensor
performance. If vibration amplitude is low (yet, larger than the sensitivity and noise floor
of the sensing devices), identified frequencies refer to the quasi-linear behavior of the struc-
ture [23], with a distribution that is nearly normal. The equations used in this paper for
skew–normal distributions are still applicable for normal distributions. If damage occurs
and vibration amplitude is still low, the distribution shifts, which involves a variation in its
mode value (i.e., the damage index). This case coincides with the “traditional” approach of
monitoring frequency variations, assuming that the structure behaves linearly.

If the excitation level increases, and the structure behaves nonlinearly, the data points
with high amplitude populate the remaining parts of the sequence ψτ [n] and contribute
to a more accurate definition of the mode of the skew–normal distribution. Therefore, the
proposed method is an extension of the traditional approach to also account for structural
nonlinearities which may be visible during events that generate high-amplitude vibration.

Moreover, since the instantaneous identification of frequencies and amplitudes can be
performed onboard each sensing node, data transmissions can be limited to cases where the
DSF exceeds a given threshold (i.e., when damage is detected). Detection robustness can be
improved by considering the results obtained from different devices operating individually.

3. Applications

The case study of this paper is a full-scale slice of a seven-story reinforced concrete
building with cantilever structural walls acting as the lateral-force-resisting system, which
was tested on a shaking table at the University of California, San Diego, through the George
E. Brown Jr. Network for Earthquake Engineering Simulation program [22–24]. The test
structure (Figure 1) is about 20 m high overall, consisting of two perpendicular walls in
elevation (web and flange wall) and a concrete slab at each level. The structure also has
an auxiliary post-tensioned column, which provides torsional stability, and four gravity
columns that support the slabs at the corners. Geometric details are provided in Figure 2.

The shaking table tests were designed to progressively damage the building by simu-
lating four historical earthquakes of increasing intensity recorded in Southern California.

Before and after each test with seismic excitation, the structural response of the build-
ing was recorded during a white noise excitation of 0.03 g root mean square (RMS) with an
amplitude for 8 min and a low amplitude ambient vibration for 3 min. In this study, only
the acceleration collected in these “inspection” intervals of 11 min was used and merged
into a single dataset with a total duration of 3300 s. Specifically, the first 11 min refer to
a reference “undamaged” condition, after which the first seismic excitation (EQ1, i.e., the
longitudinal component of the San Fernando earthquake of 1971 recorded at the Van Nuys
station) was applied. Subsequently, three intervals of the same length were recorded before
and after two medium-intensity earthquakes (EQ2 and EQ3, i.e., the transverse component
of the San Fernando earthquake recorded at the Van Nuys station in 1971, and the longitu-
dinal component of the Northridge earthquake recorded at the Woodland Hills Oxnard
Boulevard station in 1994, respectively). After EQ3, the bracing system between the slabs
of the building and the post-tensioned column was stiffened. The last inspection interval
was recorded after a high-intensity 360◦ excitation (EQ4, i.e., the Northridge earthquake of
1994, recorded at the Sylmar Olive View Med).

During the first three EQs, minor yet increasing damage was observed at the first
two levels [23]. During EQ4, flexure (horizontal) and flexure–shear (inclined) cracks were



Buildings 2023, 13, 639 5 of 12

observed at the first story of the web wall. Moreover, a failure of the lap splice was observed
in the web wall on the west side at the bottom of the second story. This failure involved
debonding of the longitudinal steel reinforcement bars and the surrounding concrete.
For this damage scenario, Moaveni et al. [23] also identified damage at the fourth level
experimentally by using different data series.
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The structure was instrumented with 45 accelerometer channels: 29 in the longitudinal
direction (three on each floor slab, one on the web wall at mid-height of each story, and
one on the pedestal base), 14 in the transversal direction (2 on each floor slab), and 2 in the
vertical direction (at the base, on the pedestal). The original data were sampled at 240 Hz.
All the datasets are freely available on the DesignSafe online repository [24,28].

In this study, only seven acceleration channels were used (i.e., the longitudinal chan-
nels on each floor slab, as reported in Figure 2), which were downsampled to 100 Hz.

The initialization step of the identification process was applied to a signal window
consisting of the first 60 s of the dataset collected in the undamaged condition. The Fejér–
Korovkin 14 wavelet function and a decomposition order of six were selected to analyze the
signal. All the channels were considered in the MAC-based clustering procedure, with a
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threshold of 0.8, and assigning only consecutive components to the same cluster (see [9] for
more details). In Figure 3, the filter bank obtained at the end of this process was reported in
the frequency domain and superimposed with the frequency spectra of all the channels of
the signal used for initialization. Due to its high energy (represented as a solid black circle),
only the first mode was selected for further analysis.
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Figure 3. Filter bank for the extraction of the first modal response.

Then, the entire dataset (i.e., the acceleration response collected at all the instrumented
locations before and after each earthquake) was processed through convolution with the
selected bandpass filter to extract only the first modal component from the structural
response. The instantaneous frequency and amplitude of the filtered signal were thus
evaluated by means of TEO. In this study, the analyses were performed offline. However,
the algorithm allows for estimating these quantities onboard each sensor in real-time as
new acceleration data is available.

Figure 4 shows an average of the instantaneous frequency of the first vibration mode
of the structure computed at all nodes, which was weighted with the relevant instantaneous
amplitudes. All seven accelerometers represented in Figure 2 were considered to obtain
this estimate. The overall amplitude, intended as the sum of instantaneous amplitudes
evaluated while considering the filtered signal of all nodes, is represented using the color
scale (normalized values).
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The dashed vertical lines in Figure 4 represent the occurrence of the four earthquakes
described earlier. Each interval delimited by two seismic events is also divided into two
parts: The response to 0.03 g of RMS white noise excitation was analyzed in the first 8 min,
while low-amplitude ambient vibration was analyzed in the remaining part. This fact is
also evident from the plot color, which is typically darker for larger response amplitude
values (i.e., in the initial part of each damage scenario).
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Figure 4 shows that the identified instantaneous frequency was quite noisy and
strongly dependent on amplitude variations, thus presenting abrupt alterations when
moving from high to low-amplitude excitation. The dependence of natural frequencies
on signal amplitude clearly indicates nonlinear structural behavior [29]. Figure 4 also
shows that changes due to amplitude variations are often more significant than those due
to different damage scenarios. This fact makes instantaneous frequency unusable as the
only parameter for damage identification.

A computational algorithm was written that simulates online processing in order to
apply the procedure proposed in Section 2, i.e., using a small subset of 2000 couples of
frequency–amplitude parameters at a time. The dataset was then updated every 10 s by
replacing 1000 frequency–amplitude couples with new incoming identified parameters, as
explained in Section 2.1.

Figure 5 shows the identified instantaneous frequencies and amplitudes of the first
modal response evaluated at the 7th floor of the test structure, which are represented as
dots in a 2D plane. Here, normalized time is represented as a color bar next to each figure.
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In Figure 5a, the data is represented as extracted, i.e., without any selection criterion.
It is possible to observe that some time intervals corresponding to the ambient vibration
data sets were only characterized by low-amplitude values. In these parts, the model fitting
would be based on a restricted range of amplitudes, which are not representative of the
complete structural behavior. In Figure 5b, the selection criterion proposed in this paper
were applied and, indeed, each data set (ϕτ , ψτ)[n] included samples with a comprehensive
set of amplitudes. In Figure 5c, amplitude-based data sorting was performed, and a median
filter of 51 samples was applied, obtaining a

(
ϕτ , ψτ

)
[n] dataset at instant τ. This step

was performed to de-noise the frequency–amplitude distribution and prepare it for model
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fitting. Figure 5d shows the model described in Equation (2), fitted to
(

ϕτ , ψτ

)
[n] datasets

reported in Figure 5c. It is worth noting that the mode values of these distributions shifted
in the frequency axis as the damage scenario changed. Therefore, it can be considered a
suitable damage-sensitive feature.

Overall, Figure 5 shows that, in the analyzed case study, the structural behavior in the
undamaged configuration was almost linear, as the instantaneous frequencies formed a
nearly normal distribution. On the other hand, as the structure experienced damage, lower
instantaneous frequencies were identified at high-amplitude instants, which highlighted
a softening behavior of the structure. An increasing level on nonlinearity is typically
related with damage [23,30]. Defining the damage index as the mode of the skew–normal
distribution makes it possible to take this concept into account.

Figure 6 shows the mean, variance, and skewness of the models identified on the
seventh floor of the test structure, together with the DSF proposed in Equation (7). The
mean values of the identified distributions were sensitive to damage and insensitive to
amplitude variations. Moreover, variance and skewness indicate the spread and asymmetry
of the distribution and are thus linked to structural nonlinearity [31]. As for variance, the
identified value grew with the progressive structural damage and was not dependent on
the amplitude level, while skewness showed a sharp increase in the last scenario when
the damage level was maximum. The main difference between the feature represented in
Figure 6 (proposed approach) and instantaneous frequencies reported in Figure 4 (repre-
sentative of the traditional approach) is that the former was insensitive to the frequency
shift due to nonlinearities. In each damage scenario, the DSF was nearly constant, except
for a transition interval at the occurrence of earthquakes. This gradual transition was due
to updating the frequency–amplitude couples, and its length depended on the number of
couples considered for model fitting.
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Figure 7 shows the variation of the DSF evaluated at each level of the case study. In this
figure, it is possible to observe that the damage index increased with time, except for the
scenario after EQ3, in which the impact of retrofit interventions (i.e., stiffening the bracing
system) was stronger than the effect of damage. Also, Figure 8 reports the cumulative
amount of detected “positives” (with respect to the initial baseline) over time. The variation
reported in Figure 7 is expressed as the percentage variation shown in Equation (8). The
threshold for damage detection was chosen as three times the standard deviation of the
baseline set, excluding the outliers (intended as the values exceeding three times the median
absolute deviation).

Some inaccuracies (i.e., false positives/negatives) in damage detection were observed
for both the undamaged and the damaged conditions and became more frequent at the
lower levels of the building.
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A study about damage detection accuracy was also conducted: Figure 9 shows the
percentage of true/false negatives/positives for each damage scenario and each level of
the test structure. On the top floors, damage detection was more accurate. As for levels
6 and 7 (indicated in the figure as LV6 and LV7, respectively), 100% of the tests performed
in the undamaged scenario resulted as “negative”, and 100% of the tests performed in all
the damage scenarios resulted as “positive”. On the other hand, from levels 2 to 5, the
positives were correctly detected at 100%, while some “false positives” were identified in
the undamaged scenario. At level 1, a considerable percentage of “false negatives” was
detected, making the estimation unreliable. This fact may be due to the low amplitude of
the structural response collected at the lower floors, which were affected mainly by noise.
However, by analyzing the results from all levels, as is performed in Figure 8, correct damage
detection could be achieved for all scenarios by setting 50% of “positives” as a threshold.
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After a centralized initialization for the construction of the analysis filter, the possibility
of evaluating the DSF individually at each level brings a considerable advantage for energy
efficiency. Indeed, the amount of wirelessly transmitted data can be minimized and
only consist of a “positive” notification transmitted when the DSF exceeds the selected
threshold. Therefore, the probability that the structure is actually damaged increases when
a substantial number of positives are collected at the central monitoring base.

The cumulative number of positives identified depends on the threshold of the damage
index. In this application, the threshold was fixed based on the baseline dataset. Therefore,
all the following scenarios were identified as “damaged”. It is also possible to initialize the
threshold periodically to detect evolving damage. For instance, in this application, Figure 7
shows that even by updating the threshold after every earthquake, variations in the damage
index would have been detected for all scenarios. Specifically, after EQ3, a (negative)
variation of the damage index was clearly visible, thus reflecting the retrofit intervention.

4. Conclusions

This paper presented an algorithm to identify a damage-sensitive feature based on
instantaneous resonant frequencies and amplitudes of the vibration response of a nonlinear
elastic structure. The proposed method was tested on a reinforced concrete building with
nonlinear behavior, in which frequency shifts comparable to those experienced after earth-
quakes were due to different excitation amplitudes. The proposed damage index proved
accurate and robust to variations in the excitation amplitude. The identification accuracy
was higher for sensors placed at the upper levels of the benchmark structure. Nevertheless,
using all the nodes to compute a synthetic indicator consisting of the cumulative number
of positives led to a more robust detection of damage.

Due to the limited wireless transmission rate required by the procedure, the proposed
solution can be implemented on low-cost battery-based sensing systems for early damage
detection, which are also usable for minor buildings.
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