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EVOLUTION EQUATIONS WITH NONLOCAL INITIAL CONDITIONS AND

SUPERLINEAR GROWTH

Irene Benedetti

Department of Mathematics and Computer Science
University of Perugia, Italy

Simone Ciani

Department of Mathematics and Informatics ”Ulisse Dini”
University of Florence, Italy

Abstract. We carry out an analysis of the existence of solutions for a class of nonlinear partial differ-
ential equations of parabolic type. The equation is associated to a nonlocal initial condition, written
in general form which includes, as particular cases, the Cauchy multipoint problem, the weighted mean
value problem and the periodic problem. The dynamic is transformed into an abstract setting and by
combining an approximation technique with the Leray-Schauder continuation principle, we prove global
existence results. By the compactness of the semigroup generated by the linear operator, we do not

assume any Lipschitzianity, nor compactness on the nonlinear term or on the nonlocal initial condition.
In addition, the exploited approximation technique coupled to a Hartman-type inequality argument,
allows to treat nonlinearities with superlinear growth. Moreover, regarding the periodic case, we are
able to show the existence of at least one periodic solution on the half line.

1. Introduction

In this paper we consider the following class of nonlinear partial differential equations of parabolic type

ut = ∆u+ h(t, x, u(t, x)) for (t, x) ∈]0, T [×Ω (1.1)

where Ω ⊂ R
k, is a bounded domain with C2-boundary and h : [0, T ]×Ω×R→ R is a given map, under

the following assumptions:

(h1) for every v ∈ R, h(·, ·, v) : [0, T ]× Ω→ R is a measurable function;
(h2) for every t ∈ [0, T ] and x ∈ Ω, h(t, x, ·) : R→ R is continuous;
(h3) there exists m > 0 and ℓ : [0, T ]× Ω→ R+ such that

- ℓ(·, x) ∈ L∞([0, T ];R+) for a.e. x ∈ Ω;
- ℓ(t, ·) ∈ Lq(Ω;R+) for a.e. t ∈ [0, T ];

and such that

|h(t, x, v)| ≤ ℓ(t, x) +m|v|p/q, for every v ∈ R and for a.e. (t, x) ∈ [0, T ]× Ω,

with 2 ≤ q < p <∞ for k ≤ 2 and 2 ≤ q < p <∞,
pq

p− q
>

k

2
, for k > 2;

(h4) v h(t, x, v) ≤ 0, for every v ∈ R and for a.e. (t, x) ∈ [0, T ]× Ω.

The symbol ∆ denotes the usual Laplace operator and we consider Dirichlet boundary conditions on ∂Ω.
A simple example of a map satisfying the required assumptions is

h(t, x, u) = −
sin(u) + 2

t2 + 1
u3, (1.2)
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see Example 6.1. More generally, h can be a cubic polynomial, thus, the reaction diffusion model consid-
ered fits into the general Chafee-Infante class of partial differential equations studied by Henry [13]. In
such a model, the semilinear parabolic equation describes the evolution of the gene frequencies in the dif-
fusion approximation for migration and selection at a multiallelic locus. Henry investigated the problem
of existence of solutions as well as equilibria for two alleles in the case of homogeneous, isotropic migration
(corresponding to the Laplacian). Since then, the problem was extended by many authors, for instance,
Lou and Nagylaki in [26] considered the case of multiple alleles and of arbitrary migration (corresponding
to an arbitrary elliptic operator); Huang and Huang in [17] consider (1.1) with h(t, x, u) = λ(t)(u − u3)
and prove the existence of periodic mild solutions; Viorel in [33] studies (1.1) with Neumann boundary
conditions, combined to an integral-type nonlocal initial condition and proves the existence of global
solutions near asymptotically stable equilibrium points.
We associate to the above equation a general nonlocal initial condition:

u(0, ·) = g(u), (1.3)

where g : C([0, T ];Lp(Ω;R)) → Lp(Ω;R), for 2 ≤ p < ∞, is a continuous function satisfying hypotheses
(g1), (g2) of Section 3. These assumptions allows to consider all the usual examples of nonlocal initial
conditions such as periodic/antiperiodic, multipoint and integral-type initial conditions.
The growing interest for the existence of solutions of (1.1) which satisfy given nonlocal initial conditions
arises with the possibility of these trajectories to capture additional information on the dynamics. In
particular, the study of differential problems with nonlocal initial conditions was started by Byszewski
with his pioneering paper [6], where the initial condition is given by

u(0) + g(t1, . . . , tm, u(·)) = u0 (1.4)

where 0 < t1 < · · · < tm ≤ T . Concrete nonlocal initial-boundary value problems for semilinear parabolic
equations arising in physics (particularly in the mathematical modeling of heat conduction or diffusion
processes) are analyzed in [9], [19]. In particular, in [9] the multipoint initial condition is used to describe
the diffusion phenomenon of a small amount of gas in a transparent tube. In these cases, the condition
(1.4) allows the measurements at t = 0, t1, . . . , tm, rather than just at t = 0. So more information is
available. Subsequently, the abstract problem associated to (1.1) with initial nonlocal conditions has been
extensively studied in the literature. For instance, Boucherif and Precup in [5] consider the multipoint
condition under the assumption of the compactness of the semigroup generated by the linear part. In
the same setting, see also [40] for functional semilinear differential equations and [8] for strong solutions.
Paicu and Vrabie [28] consider a general nonlocal initial condition of type (1.3).
Compared with the existing literature on the argument, the main novelty of our result is that we construct
an abstract theory to solve differential equations that can take into account the superlinear growth of
the Nemytskii operator associated to the function h, as well as the nonlocal initial condition (1.3). This
technique was developed by the first author in [4] for an abstract Cauchy problem. In this paper we
extend it to abstract nonlocal problems. More precisely, the approach in both [4] and here is constructed
in a generic abstract framework, and its application is not limited to partial differential equations in the
form (1.1).
In this abstract setting, to prove the existence of at least one solution, by exploiting the compactness of
the semigroup generated by the Laplacian operator, we do not require that the nonlinearity be neither
locally Lipschitz nor monotone, nor completely continuous, but only that it satisfies a Carathéodory
condition.
We remark that if h(t, x, 0) 6= 0 for some (t, x) ∈ [0, T ] × Ω, or g(0) 6= 0, then we obtain a non-zero
solution of (1.1).
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Regarding the periodic case, we extend the obtained existence result to the half-line. More precisely, we
prove the existence of at least one mild solution of the problem











ut = ∆u+ h(t, x, u), x ∈ Ω, t > 0,

u = 0, x ∈ ∂Ω, t > 0,

u(t, x) = u(t+ T, x), t ≥ 0, x ∈ Ω̄,

(1.5)

for a map h : R+×Ω×R→ R, T -periodic in the first variable and satisfying assumptions (h1)-(h4) with
[0, T ] replaced by R+, see Theorem 7.3.
In relation to the above, in [10], [12], [18], [30] the authors prove existence results for positive classical
solutions of (1.5) under superlinear growth conditions on the nonlinear term, with different type of
restrictions on the exponents p and q, and in [1] for radial solutions. We also refer the reader to the
monograph [31] dedicated to this topic.
Finally, adding the following monotonicity type assumption

(h5) (u− v) (h(t, x, u)− h(t, x, v)) ≤ 0 for every u, v ∈ R and for a.e. (t, x) ∈ [0, T ]× Ω,

we prove the uniqueness of the solution for the equation (1.1) associated to the nonlocal initial condition
(1.3). Simple examples of a maps that satisfy conditions (h5) and (h4) are −uα for each odd α ∈ N.

2. Discussion and results

The usual approach to study the existence of solutions for the equation (1.1) consists in writing it as an
abstract ordinary differential equation in a suitable infinite dimensional framework. More precisely, one
considers the Nemytskii operator f : [0, T ]× Lp(Ω;R)→ Lp(Ω;R), associated to h : [0, T ]× Ω× R → R

and the Laplace operator A : D(A) = W 1,p
0 (Ω;R) ∩W 2,p(Ω;R) ⊂ Lp(Ω;R) → Lp(Ω;R), Aw = ∆w for

every w ∈ D(A). Thus, one obtains the ordinary differential problem
{

u′(t) = Au(t) + f(t, u(t)), for a.e. t ∈ [0, T ],

u(0) = g(u).
(2.1)

The problem of finding mild solutions is then transformed into a suitable fixed point problem.
As stated in the well known Vainberg Theorem, the Nemytskii operator f maps continuously the space
Lp(Ω;R) into itself if and only if h is sublinear.

Theorem 2.1 (Theorem 19.1 in [32]). Let B be a measurable set in a s-dimensional euclidean space and
h : B ×R→ R be a Carathéodory function, i.e. continuous with respect to u ∈ R for almost every x ∈ B
and measurable with respect to x ∈ B for every u ∈ R. Then the Nemytskii operator associated to h,
f(u)(x) = h(x, u(x)), is a continuous and bounded operator from Lp(B;R) into Lq(B;R), p, q ∈ [1,+∞),
if and only if there exist a function a ∈ Lq(B;R) and a constant b ≥ 0 such that for every v ∈ R

|h(x, v)| ≤ a(x) + b|v|p/q.

Therefore, following the described abstract approach the nonlinearity term h is forced to have a sublinear
growth.
We overcome this difficulty by considering the domain and the arrival set of the Nemytskii operator
f two different spaces, namely f : [0, T ] × Lp(Ω;R) → Lq(Ω;R), 2 ≤ q < p < ∞. Then, exploiting
the fact that the semigroup generated by the Laplacian on Lp(Ω;R) can be extended to Lq(Ω;R) with
p > q, by means of an approximation technique developed in [37] (see also [21]) and the Leray-Schauder
continuation principle, we obtain the existence of a mild solution of (1.1) associated to (1.3) localized in
a ball of radius R0 and center 0.
In case of lack of compactness of the semigroup generated by the linear part in (2.1), the usual assumption
is to require that the nonlocal initial condition is compact, condensing or a contraction, e.g. see, among
other papers, [20], [39], [42]. Moreover, we mention also the papers [16] for g depending also on the
derivative of the solution u, [14], [36] for delay equations and [27],[41] for impulsive equations. The
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nonlocal problems studied under these assumptions do not recapture the periodic problem. In [2] and in
[38], the authors overcome this impediment by considering all the assumptions of regularity with respect
to the weak topology. This approach, however, introduces restrictions on which forcing terms can be
considered. In this paper, exploiting the compactness of the semigroup, we avoid these restrictions both
on the nonlocal initial condition and on the forcing term. The idea is to require on the nonlinear term f
only a condition of Carathéodory type and on g a condition slightly stronger than continuity, but weaker
than compactness, see assumption (g1) below. This idea derives from the observation that the nonlocal
initial condition g of type (1.4) is completely determined on [δ, T ] for some small δ > 0, i.e., such a g
ignores t = 0. Liang Liu and Xiao in [24], see also [7], [15] and [37], in the case of compact semigroup,
generalize this idea and formulate a related condition for a general mapping g : C([0, T ];E) → E, with
E a Banach space:

(g∗) g is continuous and there is a δ ∈ (0, T ) such that if u, v ∈ C([0, T ];E) are such that u(s) ≡ v(s)
for every s ∈ [δ, T ] then g(u) = g(v).

Nevertheless, this hypothesis bears a strong requirement on the behaviour of g within a nonzero measure
interval around the starting time, that it is not satisfied by the classical mean value integral-type condition

u(0, x) =
1

T

∫ T

0

u(t, x) dt a.e. on Ω.

In order to consider this nonlocal condition, or more general integral initial conditions, it is possible to
require the following assumption:

(g1) If {un}n∈N ⊂ C([0, T ];E) and un(t) → u(t), for t ∈ (0, T ], with u ∈ C([0, T ];E) then g(un) →
g(u).

To see that this assumption is weaker than the previous one, it is enough to consider a sequence {un}n∈N

in C([0, T ];E) such that un(t) → u(t), for t ∈ (0, T ], with u ∈ C([0, T ];E), and consider the sequence
vn : [0, T ]→ E so defined:

vn(t) =

{

un(δ), t ∈ [0, δ],

un(t), t ∈ (δ, T ].

The sequence {vn}n∈N converges to v : [0, T ]→ E defined as

v(t) =

{

u(δ), t ∈ [0, δ],

u(t), t ∈ (δ, T ].

So that, by assumption (g∗), we obtain the desired condition g(un) = g(vn) → g(v) = g(u). On the
other hand, these conditions are not equivalent. For instance, the map g which identifies the mean value
condition, i.e.

g(u) =
1

T

∫ T

0

u(s) ds

satisfies (g1) but not g∗. To see it, consider δ ∈ (0, T ) and u : [0, T ]→ R defined as

u(t) =











t

δ
t ∈ [0, δ)

1 t ∈ [δ, T ]

and v : [0, T ]→ R, v ≡ 1.
We refer the reader to [3] and [28] for existence results for semilinear differential equations with nonlocal
initial conditions satisfying (g1) and to [25] for a discussion on the assumption g∗ and alternate condition
both to g∗ and (g1). Hypothesis (g1) is general enough to consider a nonlocal initial condition belonging
to one of the following map classes:
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1. periodic/antiperiodic condition:

u(0, x) = u(T, x) / u(0, x) = −u(T, x), for every x ∈ Ω; (2.2)

2. multipoint condition

u(0, x) =

m
∑

i=1

ciγ(u(ti, x)), for every x ∈ Ω, (2.3)

with ci ∈ R, i = 1, . . . ,m, γ : R→ R and 0 < t1 < · · · < tm ≤ T ;
3. integral type condition:

u(0, x) =

∫ T

0

η(t, x, u(t, x)) dt, for every x ∈ Ω, (2.4)

where η : [0, T ]× Ω× R→ R.

Hence, we are able to prove the existence and uniqueness of mild solutions of (1.1), according to Definition
3.2, associated to each one of the above nonlocal initial conditions, as stated in the following theorems.

Theorem 2.2. Consider equation (1.1) under the assumptions (h1) − (h4). Then the equation (1.1)
associated to the nonlocal condition (2.2) admits at least one mild solution u ∈ C([0, T ];Lp(Ω;R)) such
that ‖u(t)‖p < R0, for every t ∈ [0, T ] and for a suitable R0 > 0.
Furthermore, if in addition we assume (h5) and we require that

u(0, x) = u0(x) = u(T, x) for a.e. x ∈ Ω (2.5)

with u0 ∈ Lp(Ω;R), then the mild solution u ∈ C([0, T ];Lp(Ω;R)) of (1.1)-(2.5) is unique.

Theorem 2.3. Consider equation (1.1) under the assumptions (h1)− (h4). Moreover, we assume that

(i1)
m
∑

i=1

ci ≤ 1;

(i2) γ : R→ R is a continuous function such that |γ(v)| ≤ |v| for every v ∈ R.

Then the equation (1.1) associated to the nonlocal condition (2.3) admits at least one mild solution
u ∈ C([0, T ];Lp(Ω;R)) such that ‖u(t)‖p < R0, for every t ∈ [0, T ] and for a suitable R0 > 0.
Furthermore, if, instead of (i2), we assume that

(i′2) - γ : R→ R is Lipschitz continuous with a Lipschitz constant ℓ ∈ (0, 1),
- γ(0) = 0,

then the mild solution u ∈ C([0, T ];Lp(Ω;R)) of (1.1)-(2.3) is unique.

Theorem 2.4. Consider equation (1.1) under the assumptions (h1)− (h4). Moreover, we assume that

(ii1) η : [0, T ]× Ω× R→ R is a Carathéodory function
(ii2) there exists α ∈ L1([0, T ];R) with ‖α‖L1([0,T ]) ≤ 1 such that

|η(t, x, v)| ≤ α(t)|v| for a.e. (t, x) ∈ [0, T ]× Ω and for every v ∈ R.

Then the equation (1.1) associated to the nonlocal condition (2.4) admits at least one mild solution
u ∈ C([0, T ];Lp(Ω;R)) such that ‖u(t)‖p < R0, for every t ∈ [0, T ] and for a suitable R0 > 0.
Furthermore, if instead of (ii2) we assume that

(ii′2) there exists α ∈ L1([0, T ];R) with ‖α‖L1([0,T ]) < 1 such that
- |η(t, x, v) − η(t, x, u)| ≤ α(t)|v − u| for a.e. (t, x) ∈ [0, T ]× Ω and for every u, v ∈ R,
- η(t, x, 0) = 0 for a.e. (t, x) ∈ [0, T ]× Ω,

then the mild solution u ∈ C([0, T ];Lp(Ω;R)) of (1.1)-(2.4) is unique.

Remark 2.5. Notice that assumption (h5) coupled with the hypothesis h(t, x, 0) = 0 for a.e. (t, x) ∈
[0, T ]× x ∈ Ω, implies condition (h4).



EVOLUTION EQUATIONS WITH SUPERLINEAR GROWTH 6

We point out the fact that, exploiting assumption (g1), unlike the cited papers [14], [16], [20], [27], [39],
[41], [42], we are able to recover the periodic or the anti-periodic condition, as well as, unlike [7], [15],
[24], and [37] we can consider the mean value integral condition.

Finally, we will prove the existence and uniqueness of at least one mild solution of (1.5) u ∈
C(R+, L

p(Ω;R)), see Section 7.
To the best of our knowledge, the most general result regarding the restrictions on the growth of h for
the problem (1.5) is the one in [18], where the author assumes that h(t, x, v) = m(t)ϕ(x, v) and

(h3∗) |ϕ(x, v)| ≤ C(1 + |v|p̃) with 1 < p̃ < (k + 2)/(k − 2) if k > 2, and 1 < p̃ <∞ if k ≤ 2.

In comparison to this result, while on one side we find only mild solutions and do not take into account
the sign problem, on the other side the growth condition (h3) is less restrictive than (h3∗). Moreover,
our existence result is not limited to the periodic problem.

The outline of this paper is the following. In Section 3 we present the abstract setting. In Sections 4
and 5 we prove an abstract existence result via the approximation technique. In Section 6 we give the
proof of our main results, i.e. the existence and uniqueness of mild solutions of (1.1) associated to (2.2),
(2.3), or (2.4). Finally in Section 7 we obtain the existence and uniqueness of at least one mild periodic
solution on the half line.

3. Abstract Theory

As stated in the Introduction, we extend to differential problems with nonlocal initial conditions a the-
oretical approach developed in [4] for Cauchy differential problems in a generic abstract framework. For
this reason, we consider the problem (2.1) in the abstract setting determined by two generic real Banach
spaces (E, ‖ · ‖E), (F, ‖ · ‖F ) such that E ⊆ F and assume that E has a strictly convex dual E∗.
We denote with BE,r the ball in E of radius r > 0 and with Qr the ball in C([0, T ];E) of radius r with
the supremum norm, denoted by ‖ · ‖0. For any x, y ∈ E, the normalized upper semi-inner product on E

[u, v]+ = lim
h↓0

[u, v]h,

where for h ∈ R \ {0} we set

[u, v]h :=
1

h
(‖u+ hv‖E − ‖u‖E) ,

is well defined (see Lemma 1.4.1 and Definition 1.4.2 of [34]). Moreover, denoting by 〈·, ·〉 the duality
product between E∗ and E and by JE : E ⊸ E∗ the duality map, i.e.

JE(u) = {u
∗ ∈ E∗ : ‖u∗‖E∗ = ‖u‖E and 〈u∗, u〉 = ‖u‖2E} (3.1)

for every u, v ∈ E, u 6= 0, we have

[u, v]+ =
1

‖u‖E
sup{〈u∗, v〉 : u∗ ∈ JE(u)},

see Lemma 1.4.2 and 1.4.3 in [34].
In particular, since E∗ is strictly convex, J is a single valued map. Thus, we get

[u, v]+ =
1

‖u‖E
〈JE(u), v〉. (3.2)

Moreover, for every λ ∈ R and x ∈ X , it holds

JE(λu) = λJE(u).

We consider the abstract differential problem (2.1) under the following assumptions:

A : D(A) ⊂ E → E is a linear operator such that

(A1) 0 ∈ D(A), generating a compact C0−semigroup of contractions {S(t)}t≥0 in E;
(A2) the semigroup {S(t)}t≥0 can be extended to a semigroup in F , i.e.
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(A2.i) there exists a semigroup {S∗(t)}t≥0 on F generated by A such that for every w ∈ E, it holds
S∗(t)w = S(t)w;

(A2.ii) for every v ∈ F and t > 0, we have S∗(t)v ∈ E;
(A2.iii) there exists a function c ∈ Lr([0, T ];R+), with 1 ≤ r ≤ ∞ such that for any v ∈ F it holds

‖S∗(t)v‖E ≤ c(t)‖v‖F for every t ∈ (0, T ];

the map f : [0, T ]× E → F is specified as follows

(f1) for every v ∈ E the map f(·, v) : [0, T ]→ F is measurable;
(f2) for a.e. t ∈ [0, T ] the map f(t, ·) : E → F is continuous;

(f3) for every bounded subset D ⊂ E there exists a function νD ∈ Lr′([0, T ];R+), with
1
r + 1

r′ = 1
and r′ =∞ if r = 1, such that

‖f(t, v)‖F ≤ νD(t),

for a.e. t ∈ [0, T ] and all v ∈ D;
(f4) there exist constants 0 < r0 < R0 and n0 ∈ N such that for every n > n0

〈JE(v), S
∗

(

1

n

)

f(t, v)〉 ≤ 0,

for a.e. t ∈ [0, T ] and for every v ∈ E such that r0 < ‖v‖E < R0, where JE denotes the duality
map on E;

and finally g : C([0, T ];E)→ E satisfies the conditions

(g1) if {un}n∈N ⊂ C([0, T ];E) and un(t) → u(t), t ∈ (0, T ], with u ∈ C([0, T ];E) for t ∈ (0, T ] then
g(un)→ g(u);

(g2) sup
u∈QR

‖g(u)‖E ≤ R, for r0 < R < R0, where r0, R0 > 0 are given by the transversality condition

(f4) on f above.

Remark 3.1. Because of condition (A2), we can denote the C0-semigroup generated by A, on the space
E or on the space F , by the very same symbol {S(t)}t≥0.
Moreover notice that, being {S(t)}t≥0 a C0-semigroup on the space F , there exists a constant M > 0
such that

‖S(t)‖F ≤M, (3.3)

for every t ∈ [0, T ].

We will prove the existence of at least one mild solution of (2.1), i.e. a function u satisfying the following
definition.

Definition 3.2. By a solution of (2.1) we mean a function u ∈ C([0, T ];E) satisfying the nonlocal initial
condition (1.3) and such that for each t ∈ [0, T ]

u(t) = S(t)g(u) +

∫ t

0

S(t− τ)f(τ, u(τ)) dτ . (3.4)

Now we consider the ball

QR = {q ∈ C([0, T ];E) : ||q(t)||E ≤ R, ∀t ∈ [0, T ]}, R ∈ (r0, R0), (3.5)

where r0 and R0 are from assumption (f4). By a solution on QR we mean a map u ∈ QR satisfying (3.4)
for each t ∈ [0, T ].
Moreover to prove uniqueness of the solution we assume that



EVOLUTION EQUATIONS WITH SUPERLINEAR GROWTH 8

(f5) there exists n0 ∈ N such that for every n > n0

〈JE(u− v), S∗

(

1

n

)

(f(t, u)− f(t, v))〉 ≤ 0,

for a.e. t ∈ [0, T ] and for every u, v ∈ E, where JE denotes the duality map on E;
(g2′) there exists L ∈ (0, 1) such that for every u, v ∈ E

‖g(u)− g(v)‖E ≤ L‖u− v‖0

and

LR+ ‖g(0)‖E ≤ R for r0 < R < R0,

where r0, R0 > 0 are given by the transversality condition (f4) on f above.

Our main abstract result is the following.

Theorem 3.3. Let conditions (A1), (A2), (f1)−(f4)−(g1)−(g2) being satisfied, then the set of solutions
on QR is nonempty and compact in C([0, T ];E).
Moreover, if condition (f5) is satisfied and condition (g2) is replaced by (g2′) the solution is unique.

There are several definitions of solutions of (2.1). In the proof of our main abstract existence result we
make use of the concept of integral solution and of the equivalence between the integral and the mild
solutions in the particular case of linear Cauchy problems. More precisely, consider the linear problem

{

u′(t) = Au(t) + β(t), for a.e. t ∈ [0, T ],

u(0) = ξ ∈ E,
(3.6)

where A : D(A) ⊂ E → E is the infinitesimal generator of a semigroup {S(t)}t≥0 and β ∈ L1([0, T ];E) is
a given map.

Definition 3.4 (Definition 3.5.1 in [22] and Definition 1.7.4 in [34]). A function u : [0, T ]→ E is called
an integral solution of (3.6) on [0, T ] if u ∈ C([0, T ];E) satisfies u(0) = ξ and

‖u(t)− x‖E ≤ ‖u(s)− x‖E +

∫ t

s

[u(τ) − x, β(τ) +Ax]+ dτ

for each x ∈ D(A) and 0 ≤ s ≤ t ≤ T .

From Theorems 1.7.3, 1.7.4 and 1.8.2 in [34] we can deduce the following existence result and the equiv-
alence between the mild and the integral solutions.

Theorem 3.5. For each ξ ∈ E and β ∈ L1([0, T ];E) there exists a unique integral solution u of (3.6)
on [0, T ].

Theorem 3.6. A function u : [0, T ]→ E is a mild solution of (3.6) if and only if u is an integral solution
of (3.6) on [0, T ] satisfying u(0) = ξ.

The following estimate holds for integral solutions of (3.6) and it will be useful to prove the uniqueness
of the mild solutions.

Theorem 3.7 (Theorem 1.7.5 in [34]). Let β1, β2 ∈ L1([0, T ];E) and let u, v ∈ C([0, T ];E) two solutions
of the equation in (3.6) corresponding to β1 and to β2 respectively. Then

‖u(t)− v(t)‖E ≤ ‖u(s)− v(s)‖E +

∫ t

s

[u(τ)− v(τ), β1(τ) − β2(τ)]+ dτ

for each 0 ≤ s ≤ t ≤ T .
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Moreover, the proof of the existence result is based on an approximation technique and on the compactness
result Proposition 3.8 (see [4]).

Given ξ ∈ E and β ∈ Lr′([0, T ];F ), where 1 ≤ r′ < ∞ is such that 1
r + 1

r′ = 1, where 1 ≤ r ≤ ∞ is
defined in (A2), and r′ =∞ if r = 1, we denote by F(ξ, β) : [0, T ]→ E the mild solution of (3.6), that is

F(ξ, β)(t) = S(t)ξ +

∫ t

0

S(t− s)β(s) ds, for every t ∈ [0, T ]. (3.7)

Proposition 3.8 (Proposition 3.4 in [4]). If A : D(A) ⊂ E → E satisfies (A1) and (A2), then for

each bounded subset B of E and each subset H in Lr′([0, T ];F ) such that {‖β‖r
′

F , β ∈ H} is uniformly
integrable, the set F(B ×H) is relatively compact in C([δ, T ];E) for each δ ∈ (0, T ). If, in addition, B
is relatively compact in E, then F(B ×H) is relatively compact in C([0, T ];E).

We transform the problem to find solutions of (2.1) into a fixed point problem and we apply the Leray-
Schauder continuation principle, see e.g. [11] or the original paper [23].

Theorem 3.9. Let Q be a closed subset of a Banach space B and let Σ: Q× [0, 1]→ B be a continuous
map sending bounded subsets of Q× [0, 1] into relatively compact subsets of B. Assume that

(a) Σ(x, 0) = x0 ∈ int(Q), ∀ x ∈ Q;
(b) The fixed point set

F = {x ∈ Q, x = Σ(x, λ), for some λ ∈ [0, 1]}

is bounded and does not meet the boundary ∂Q of Q.

Then the map x 7→ Σ(x, 1) has a fixed point in Q.

4. Approximating problem

The proof of Theorem 3.3 relies on an approximation technique. We introduce a family of approximating
problems: for n ∈ N, we consider the following semilinear problem.

(Pn)

{

u′(t) = Au(t) + S(1/n)f(t, u(t)), for a.e. t ∈ [0, T ],

u(0) = S(1/n)g(u) ∈ E
(4.1)

Lemma 4.1. Let conditions (A1), (A2), (f1)− (f4)− (g1)− (g2) being satisfied, then there exists n0 ∈ N

such that for every R ∈ (r0, R0) and every n > n0 the problem Pn admits a mild solution un ∈ C([0, T ];E)
satisfying ||un(t)||E ≤ R, for every t ∈ [0, T ].

Proof. Our strategy is to show that for every n > n0 it is possible to apply the Leray-Schauder continu-
ation principle to each problem (Pn).
Let n0 from assumption (f4) and let n > n0 be fixed. We define the operator Σn : QR × [0, 1] →
C([0, T ];E) by

Σn(q, λ)(t) = λS(t)S(1/n)g(q) + λ

∫ t

0

S(t− τ)S(1/n)f(τ, q(τ))dτ t ∈ [0, T ]. (4.2)

The operator Σn is well defined because of condition (A2.ii) (see for instance Proposition 3.3 in [4]), and
a mild solution of problem (Pn) is exactly a fixed point of the operator Σn(·, 1).

As a first step we show that the operator Σn is continuous.
Let q ← {qk}k∈N ⊂ QR and λ ← {λk}k∈N ⊂ [0, 1] be two convergent sequences. We observe that by
assumptions (g1) and (g2) on the map g and by the properties of the semigroup {S(t)}t≥0 it follows that

||λkS(t)S(1/n)g(qk)− λS(t)S(1/n)g(q)||E ≤ ||λkS(t)S(1/n)(g(qk)− g(q))||E
+||(λk − λ)S(t)S(1/n)g(q)||E

≤ ||g(qk)− g(q)||E + |λk − λ|‖g(q)‖E
≤ ||g(qk)− g(q)||E +R|λk − λ| → 0, for k →∞.
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Next, by (f2) we have that

‖f(t, qk(t)) − f(t, q(t))‖F → 0 ∀ t ∈ [0, T ],

hence, by (A2.iii) it follows

‖S(t)S

(

1

n

)

(f(t, qk(t)) − f(t, q(t)))‖E ≤ c

(

1

n

)

‖f(t, qk(t)) − f(t, q(t))‖F → 0 ∀ t ∈ [0, T ].

Moreover, by (A2.iii) and (f3) we get

‖S(t)S

(

1

n

)

f(t, qk(t))‖E ≤ c

(

1

n

)

‖f(t, qk(t))‖F ≤ c

(

1

n

)

νBR
(t) for a.e. t ∈ [0, T ].

Thus, by the Lebesgue’s Dominated Convergence Theorem we conclude that for every t ∈ [0, T ]

‖Σn(qk, λk)(t)− Σn(q, λ)(t)‖E ≤ ||λkS(t)S(1/n)g(qk)− λS(t)S(1/n)g(q)||E+

+ |λk − λ|

∫ t

0

∥

∥

∥

∥

S(t− τ)S

(

1

n

)

f(τ, q(τ))

∥

∥

∥

∥

E

dτ+

+ λk

∫ t

0

∥

∥

∥

∥

S(t− τ)S

(

1

n

)

(f(τ, qk(τ)) − f(τ, q(τ)))

∥

∥

∥

∥

E

dτ

≤ ||g(qk)− g(q)||E + |λk − λ|R + |λk − λ|c

(

1

n

)

T
1
r ‖νBR

‖Lr′([0,T ],R+)+

+ λk

∫ T

0

∥

∥

∥

∥

S(t− τ)S

(

1

n

)

(f(τ, qk(τ)) − f(τ, q(τ)))

∥

∥

∥

∥

E

dτ →k→∞ 0

Hence Σn(qk, λk)→ Σn(q, λ) in C([0, T ];E), obtaining the continuity of the operator Σn.

Now, as a second step, we show that for every n ∈ N, the operator Σn sends QR × [0, 1] into a relatively
compact set of C([0, T ];E).
We observe that Σn(QR× [0, 1])(0) is a relatively compact set, since it coincides with [0, 1]×S(1/n)g(QR)
and g(QR) is bounded by (g2), while S(1/n) is a compact operator.
Finally, by (f3) and the boundedness of the semigroup {S(t)}t≥0 in the Banach space F , there exists a

function νBR
∈ Lr′([0, T ];R+) such that
∥

∥

∥

∥

S

(

1

n

)

f (t, q(t))

∥

∥

∥

∥

F

≤MνBR
(t), for a.e. t ∈ [0, T ] and for every q ∈ QR,

where M is defined in (3.3), implying that the set
{

S
(

1
n

)

f (·, q(·)) , q ∈ QR

}

is a family of maps in

Lr′([0, T ], F ) such that
{

∥

∥S
(

1
n

)

f (·, q(·))
∥

∥

r′

F
, q ∈ QR

}

is uniformly integrable. Therefore, observing that

Σn(q, λ) = λF(S(1/n)g(q), S
(

1
n

)

f((·), q(·))) for every (q, λ) ∈ QR × [0, 1] we obtain, by Proposition 3.8,
that the set Σn(QR × [0, 1]) is relatively compact in C([0, T ];E).

To show that Σn(QR × {0}) ⊂ int(QR), it is enough to observe that Σn(QR × {0}) ≡ 0.

Finally we need to prove that the operator Σn(·, λ) has no fixed points on ∂QR for every λ ∈ [0, 1] and
n > n0, where n0 is from (f4).
We argue by contradiction: let us assume that there exists λ ∈ [0, 1], u ∈ QR and t0 ∈ [0, T ] such that

u = Σn(u, λ) and ‖u(t0)‖E = R. Since λ = 0 implies u ≡ 0 and λ = 1, gives the existence of at least one
fixed point u = Σn(u, 1), we may assume λ ∈ (0, 1).
Notice that t0 6= 0. Indeed, if t0 = 0 we have by hypothesis (g2)

R = ‖u(0)‖E = ‖Σn(u, λ)(0)‖E = λ‖S(1/n)g(ū)‖E < R.

Hence, there exists δ > 0 such that r0 < ‖u(t)‖E ≤ R for every t ∈ [t0 − δ, t0] and ‖u(t0 − δ)‖E < R.
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Denoting by fn(t) = S
(

1
n

)

f(t, u(t)), gn = S(1/n)g(u), t ∈ [0, T ], we consider the linear problem
{

u′(t) = Au(t) + fn(t), for a.e. t ∈ [0, T ],

u(0) = gn ∈ E.
(4.3)

By the fact that ‖u(t)‖E ≤ R for every t ∈ [0, T ], by (A2) and (f3), we have that

‖fn(t)‖E =

∥

∥

∥

∥

S

(

1

n

)

f (t, u(t))

∥

∥

∥

∥

E

≤ c

(

1

n

)

νBR
(t) for a.e. t ∈ [0, T ],

obtaining that fn ∈ Lr′([0, T ];E). Let u ∈ C([0, T ];E) be the unique mild solution of (4.3), i.e.

u(t) = S(t)gn +

∫ t

0

S(t− s)fn(s) ds, t ∈ [0, T ].

By Theorem 3.6, we have that u is the unique integral solution of (4.3), i.e.

‖u(t)− x‖E ≤ ‖u(s)− x‖E +

∫ t

s

[u(τ)− x, fn(τ) +Ax]+ dτ

for each x ∈ D(A) and 0 ≤ s ≤ t ≤ T . Since E has a strictly convex dual, bearing in mind that

[x, y]+ =
1

||x||E
〈JE(x), y〉 ,

we have that

‖u(t)− x‖E ≤ ‖u(s)− x‖E +

∫ t

s

1

‖u(τ)− x‖E
〈JE(u(τ) − x), fn(τ) +Ax〉 dτ

for each x ∈ D(A) and 0 ≤ s ≤ t ≤ T . By the definition of the operator Σn(·, λ) and the fact that u is a
fixed point of it, for every t ∈ [0, T ], we obtain

u(t) = S(t)gn +

∫ t

0

S(t− τ)fn(τ) ds = S(t)S

(

1

n

)

g(u) +

∫ t

0

S(t− τ)S

(

1

n

)

f (τ, u(τ)) dτ =
u(t)

λ
.

Now, considering x = 0 ∈ D(A) and observing that ‖u(s)‖E > 0 for every s ∈ [t0 − δ, t0], it follows that

0 <
‖u(t0)‖E − ‖u(t0 − δ)‖E

λ

= ‖u(t0)‖E − ‖u(t0 − δ)‖E ≤

∫ t0

t0−δ

1

‖u(τ)‖E
〈JE(u(τ)), fn(τ)〉 dτ

=

∫ t0

t0−δ

1

‖u(τ)‖E

〈

JE(u(τ)), S

(

1

n

)

f (τ, u(τ))

〉

dτ

=

∫ t0

t0−δ

1

‖u(τ)‖E

〈

JE

(

u(τ)

λ

)

, S

(

1

n

)

f (τ, u(τ))

〉

dτ

=

∫ t0

t0−δ

1

λ ‖u(τ)‖E

〈

JE(u(τ)), S

(

1

n

)

f (τ, u(τ))

〉

dτ,

where the last equality follows from the properties of the duality map. Now, by (f4) for every n > n0 we
get the contradiction

0 <
‖u(t0)‖E − ‖u(t0 − δ)‖E

λ
≤ 0.

By Leray-Schauder continuation principle, for every n > n0, we obtain the existence of a fixed point
u = Σn(u, 1). Thus for every n > n0, we get a mild solution of (Pn). �



EVOLUTION EQUATIONS WITH SUPERLINEAR GROWTH 12

Lemma 4.2. Let conditions (A1), (A2), (f1)− (f5)− (g1)− (g2′) being satisfied, then there exists n0 ∈ N

such that for every R ∈ (r0, R0) and every n > n0 the problem Pn admits a unique mild solution
un ∈ C([0, T ];E) satisfying ||un(t)||E ≤ R, for every t ∈ [0, T ].

Proof. First of all, notice that condition (g2′) implies condition (g2). Indeed

sup
u∈QR

‖g(u)‖E ≤ sup
u∈QR

(‖g(u)− g(0)‖E + ‖g(0)‖E) ≤ sup
u∈QR

(L‖u‖E + ‖g(0)‖E) ≤ LR+ ‖g(0)‖E ≤ R.

Thus, existence follows from Lemma 4.1. Now, assume by contradiction that there exist two mild solutions
u, v ∈ C([0, T ];E) of (Pn) with u 6= v. Hence, in particular, u and v are integral solutions of the
equation in (3.6) corresponding to β1, β2 ∈ L1([0, T ], E) defined as β1(t) = S

(

1
n

)

f(t, u(t)) and β2(t) =

S
(

1
n

)

f(t, v(t)), t ∈ [0, T ] respectively. Let

t0 = inf {t ∈ [0, T ] such that u(t) 6= v(t)} .

By continuity, t0 6= T and there exists δ > 0 such that u(t) 6= v(t) for every t ∈ [t0, t0 + δ].
Firstly, assume t0 6= 0, thus, u(t) = v(t) for every t ∈ [0, t0) and u(t) 6= v(t) for every t ∈ [t0, t0 + δ]. Let
t ∈ (t0, t0 + δ], by Theorem 3.7 and (f5), we have

0 < ‖u(t)− v(t)‖E ≤ ‖u(0)− v(0)‖E +

∫ t

0

[u(τ)− v(τ), β1(τ) − β2(τ)]+ dτ

=

∫ t

t0

[u(τ)− v(τ), β1(τ) − β2(τ)]+ dτ

=

∫ t

t0

1

‖u(τ)− v(τ)‖E
〈JE(u(τ) − v(τ)), S

(

1

n

)

(f(τ, u(τ))− f(τ, v(τ)))〉 dτ ≤ 0

getting a contradiction. In the case t0 = 0, for every t ∈ [0, δ], by Theorem 3.7, (f5) and (g2′) we have

0 < ‖u(t)− v(t)‖E ≤ ‖u(0)− v(0)‖E +

∫ t

0

[u(τ)− v(τ)), β1(τ) − β2(τ)]+ dτ

= ‖g(u)− g(v)‖E

+

∫ t

0

1

‖u(τ)− v(τ)‖E
〈JE(u(τ)− v(τ)), S

(

1

n

)

(f(τ, u(τ)) − f(τ, v(τ)))〉 dτ

≤ L‖u− v‖0

+

∫ t

0

1

‖u(τ)− v(τ)‖E
〈JE(u(τ)− v(τ)), S

(

1

n

)

(f(τ, u(τ)) − f(τ, v(τ)))〉 dτ

≤ L‖u− v‖0.

Thus we have

0 < sup
t∈[0,T ]

‖u(t)− v(t)‖ = ‖u− v‖0 ≤ L‖u− v‖0 < ‖u− v‖0,

getting again a contradiction. As a consequence, we have for every n > n0, the uniqueness of the solution
of Pn. �

5. Proof of Theorem 3.3

By Lemma 4.1, we know that there exists n0 > 0 such that problems (Pn) have at least one mild solution
for every n > n0. We consider now the set of these mild solutions. More precisely, by the characterization
introduced in Lemma 4.1, we consider the set

MR = {un ∈ C([0, T ];E) ∩QR : un = Σn(un, 1), n > n0}.
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Let un ∈MR. By the fact that un ∈ QR, we have that ‖un(t)‖E ≤ R for every t ∈ [0, T ]. Thus, by (f3)

there exist a function νBR
∈ Lr′([0, T ];R+)

∥

∥

∥

∥

S

(

1

n

)

f (t, un(t))

∥

∥

∥

∥

F

≤MνBR
(t), for a.e. t ∈ [0, T ],

implying that the set G =
{

S
(

1
n

)

f (·, un(·)) , n > n0

}

is a family of maps in Lr′([0, T ], F ) such that
{

∥

∥S
(

1
n

)

f (·, un(·))
∥

∥

r′

F
, n > n0

}

is uniformly integrable. Hence, applying Proposition 3.8 with the

bounded set B = {S(1/n)g(MR), n > n0} and G, for each chosen δ > 0 we have the relative com-
pactness of MR in C([δ, T ];E).
Let {un}n∈N be a sequence in MR. By previous considerations, for each δ > 0 chosen, there exists
{uδ

n}n∈N ⊂ {un}n∈N → u∗
δ in C([δ, T ];E). By uniqueness of the limit, when δn < δn−1 then u∗

δn
= u∗

δn−1

in [δn−1, T ]. Consider any sequence of numbers δn ↓ 0 and perform a Cantor diagonal argument to show
that there exists a function u∗ ∈ C((0, T ];E) such that a particular (diagonal) sub-sequence {un

n}n∈N

of each {uδn
n }n∈N converges to u∗ in C((0, T ];E). Moreover, since E is reflexive and {un}n∈N ⊂ QR by

property (g2) there exists u0 ∈ E such that g(un
n) ⇀ u0. Now we define a function ū ∈ C([0, T ];E) by

ū(t) := S(t)u0 +

∫ t

0

S(t− s)f(s, u∗(s)) ds.

We claim that {un
n(t)}n∈N ⇀ ū(t) for each t ∈ [0, T ]. By the continuity of S

(

1
n

)

and of f(t, ·), for every
n ∈ N we obtain

S

(

1

n

)

f (t, un
n(t))

F
→ f(t, u∗(t)), for a.e. t ∈ (0, T ],

moreover, since ‖un
n(t)‖E ≤ R for every t ∈ [0, T ], the convergence is dominated

‖S

(

1

n

)

f (t, un
n(t)) ‖F ≤MνBR

(t) for a.e. t ∈ [0, T ],

Thus we get
∫ t

0

S(t− τ)S

(

1

n

)

f (τ, un(τ)) dτ →

∫ t

0

S(t− τ)f(τ, u∗(τ)) dτ, ∀ t ∈ [0, T ].

Again, by the continuity and linearity of the semigroup we have that

S(t)S

(

1

n

)

g(un
n) ⇀ S(t)S

(

1

n

)

u0

and so the claimed result. By the uniqueness of the limit we have that u∗(t) = ū(t) for every t ∈ (0, T ],
thus {un

n(t)}n∈N → ū(t) for each t ∈ (0, T ], with ū ∈ C([0, T ];E). By property (g1) this means that
g(un

n) → g(ū) in C([0, T ];E), declaring again by uniqueness that g(ū) = u0. In conclusion we get that
for every t ∈ [0, T ]

ū(t) := S(t)g(ū) +

∫ t

0

S(t− s)f(s, ū(s)) ds,

proving that ū is a solution on QR of (2.1).
So the set of solutions on QR

S := F(g(S), f([0, T ],S))

is nonempty, now we prove that it is compact by the very same argument used above for MR. Indeed,
f([0, T ],S) is uniformly integrable by (f3) and g(S) is bounded by g(2), so, by Proposition 3.8, for each
δ > 0 we obtain that F((g(S), f(s,S))) is relatively compact in C([δ, T ];E). Then again by a Cantor
diagonal argument we have that for each sequence {un}n∈N ⊆ S there exists a subsequence {un

n}n∈N

converging to u∗ ∈ C((0, T ];E) and exactly as before we can continuously extend u∗ to [0, T ]. Next,
by (g1) we have that g(un

n) → g(u∗) and so we get that g(S) is relatively compact. Applying again
Proposition 3.8 we obtain that S is a relatively compact set.
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Assuming, in addition, condition (h5) and (g2′) instead of (g2), by Lemma 4.2 we have the existence of a
unique sequence {un}, n > n0, of solutions of the problems (Pn). By the above reasonings we have that
{un}, n > n0 converges to some u solution on QR of (2.1), getting the uniqueness of the solution.

6. Existence and uniqueness results for the problem (1.1)-(1.3)

In this Section we prove the main result of the paper, i.e. the existence of at least one solution u ∈
C([0, T ];Lp(Ω;R)) for the problem (1.1) associated to each one of the nonlocal initial conditions (2.2),
(2.3), (2.4).

To prove such existence results we will apply Theorem 3.3. Indeed, the equation (1.1) associated to one
of the conditions (2.2), (2.3), (2.4), can be rewritten as an abstract evolution equation of the form (2.1)
with E = Lp(Ω;R) and F = Lq(Ω;R), 2 ≤ q < p <∞.
The Laplace operator A : D(A) ⊂ Lp(Ω;R) → Lp(Ω;R) subjected to Dirichlet boundary conditions on
Lp(Ω;R) and defined by

D(A) = W 1,p
0 (Ω;R) ∩W 2,p(Ω;R),

Aw = ∆w,

satisfies conditions (A1) and (A2).
Indeed, A is the generator of a C0-semigroup of contractions {Sp(t)}t≥0 (see e.g. Theorem 4.1.3 and

Remark 4.1.2 of [35]). Moreover, by Lemma 7.2.1 of [35], for each p, q ∈ [1,+∞], each ξ ∈ C(Ω;R) and
each t ≥ 0, we have Sp(t)ξ = Sq(t)ξ. Thus, we can denote the C0−semigroup generated by the Laplace
operator subjected to the Dirichlet boundary conditions on any of the spaces Lp(Ω;R) by the very same
symbol {S(t)}t≥0. By Theorem 7.2.5 of [35], {S(t)}t≥0 is a compact semigroup. Finally, by Theorem
7.2.6 of [35], for each 1 ≤ q ≤ p ≤ ∞, each ξ ∈ Lq(Ω;R), and each t > 0, we have

‖S(t)ξ‖p ≤ (4πt)−
k
2 (

1
q
− 1

p )‖ξ‖q.

Hence, A satisfies (A1) and (A2) with c(t) = (4πt)−
k
2 (

1
q
− 1

p ). Notice that k
2

(

1
q −

1
p

)

< 1, provided

2 ≤ q < p <∞ for k ≤ 2 and 2 ≤ q < p <∞,
pq

p− q
>

k

2
, for k > 2, hence the function c ∈ L1([0, T ],R+).

6.1. Proof of Theorem 2.2. We will prove that all the hypotheses of Theorem 3.3 are satisfied.
By (h1), (h2), (h3) and the Vainberg Theorem (see [32]) we have that the Nemytskii operator f : [0, T ]×
Lp(Ω;R) → Lq(Ω;R) defined as f(t, u)(x) = h(t, x, u(x)) maps the space Lp(Ω;R) into Lq(Ω;R) and is
continuous. Moreover again by (h3), we get

‖f(t, u)‖q =

(
∫

Ω

|h(t, x, u(x))|q dx

)
1
q

≤ C(‖ℓ(t, ·)‖qq +m‖u‖pp),

by Minkovski inequality, where C > 0 is a suitable constant. Hence for every bounded subset D of
Lp(Ω;R), we have that

‖f(t, u)‖q ≤ C(‖ℓ(t, ·)‖qq + C1) := νD(t),

for a.e. t ∈ [0, T ] and for every u ∈ D, with C1 > 0 another suitable constant. So assumption (f3) is
satisfied with νD ∈ L∞([0, T ];R+).
Now, let 0 6= u ∈ Lp(Ω;R) and t ∈ [0, T ]. Denoting by sign(x) the sign function and with

[u > 0] = {x ∈ Ω|u(x) > 0},

[u < 0] = {x ∈ Ω|u(x) < 0},



EVOLUTION EQUATIONS WITH SUPERLINEAR GROWTH 15

we perform the calculation to show that the transversality property (f4) holds. First of all we recall the
definition of the duality map in the space Lp(Ω;R). For every 0 6= u ∈ Lp(Ω;R), we have

〈JLp(Ω;R)(u), v〉 =
1

‖u‖p−2
p

∫

Ω

|u(ξ)|p−2u(ξ)v(ξ) dξ,

see e.g. Example 1.4.4 in [34]. Let N0 ⊂ [0, T ] and Ω0 ⊂ Ω be two sets with Lebesgue measure zero and
let (t, x) ∈ {[0, T ] \N0}× {Ω \Ω0} be such that (h4) is satisfied. Thus, for every u ∈ Lp(Ω;R), ‖u‖p 6= 0
we have

〈JLp(Ω;R)(u),S(1/n)f(t, u)〉 =

1

||u||p−2
p

∫

Ω

|u|p−2uS

(

1

n

)

(h(t, ξ, u(ξ))) dξ

=
1

||u||p−2
p

(
∫

[u>0]

|u|p−1 S

(

1

n

)

h(t, ξ, u(ξ)) dξ −

∫

[u<0]

|u|p−1 S

(

1

n

)

h(t, ξ, u(ξ)) dξ

)

≤ 0.

We explain the last inequality. The semigroup {S(t)} generated by the Laplace operator subjected to the
Dirichlet boundary conditions is a positive semigroup in Lp(Ω;R) when p ≥ 2, i.e. for every w ∈ Lp(Ω;R)
such that w(x) ≥ 0 for a.a. x ∈ Ω

S(t)w(x) ≥ 0 for a.e. x ∈ Ω and for every t ∈ [0, T ],

see [35], Lemma 7.2.3 and moreover by property (h4) we have

h(t, ξ, u(ξ)) ≤ 0, for a.e. ξ ∈ [u > 0]

and the converse inequality in [u < 0].
Finally, if the equation (1.1) is associated to a periodic or anti periodic condition, trivially satisfies
conditions (g1), (g2).
Thus all the assumptions of Theorem 3.3 are satisfied and we get the existence of at least one mild
solution of (1.1)-(2.2).
Now we show that condition (h5) on h implies condition (f5) on the superposition operator f . Indeed,
similarly as above, for every u, v ∈ Lp(Ω;R), ‖u− v‖p 6= 0 we have

〈JLp(Ω;R)(u− v),S(1/n)(f(t, u)− f(t, v))〉 =

1

||u− v||p−2
p

∫

Ω

|u− v|p−2(u− v)S

(

1

n

)

(h(t, ξ, u(ξ))− h(t, ξ, u(ξ))) dξ

=
1

||u− v||p−2
p

(
∫

[(u−v)>0]

|u− v|p−1 S

(

1

n

)

((h(t, ξ, u(ξ)) − h(t, ξ, u(ξ))) dξ

−

∫

[(u−v)<0]

|u− v|p−1 S

(

1

n

)

(h(t, ξ, u(ξ)) − h(t, ξ, u(ξ))) dξ

)

≤ 0.

Finally, since by (2.5), u(0, x) = v(0, x), x ∈ Ω for every u, v solutions of (1.1), we get uniqueness of
mild solutions of (2.1) under conditions (f1)− (f5) and (g1), (g2) and so we get the uniqueness of mild
solution of (1.1)-(2.5). Thus the proof is completed.

6.2. Proof of Theorem 2.3. The only difference with the previous theorem is the nonlocal initial
condition. Thus we have only to prove that conditions (g1), (g2) are satisfied.
In this case the initial datum g : C([0, T ];Lp(Ω;R))→ Lp(Ω;R) is defined as

g(v)(x) =

m
∑

i=1

ciγ(v(ti)(x)).
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Clearly it is a continuous map and we have by (i1), (i2)

sup
v∈QR

‖g(v)‖p ≤ sup
v∈QR

m
∑

i=1

ci‖v(ti)‖p ≤ R,

for r0 < R < R0. Moreover, if we consider {un} ⊂ C([0, T ];E) such that un(t)→ u(t) for every t ∈ (0, T ],
with u ∈ C([0, T ];E) we have that

‖g(un)− g(u)‖pp ≤

m
∑

i=1

ci

∫

Ω

|γ(un(ti)(x)) − γ(u(ti)(x))|
p dx.

Now, as u ∈ C([0, T ];Lp(Ω;R)) the sequence un is equibounded for n big and using (i) joint to the
Dominated Convergence Theorem we obtain that γ(t, x, un(t)(x)) converges to γ(t, x, u(t)(x)) in Lp(Ω;R)
for a.e t ∈ [0, T ] and so that g(un)→ g(u) in Lp(Ω;R) as well.
Furthermore, if we replace (i2) by (i′2) we get

‖g(u)− g(v)‖p ≤
m
∑

i=1

ci

(
∫

Ω

|γ(u(ti)(x)) − γ(v(ti)(x))|
p dx

)1/p

≤

m
∑

i=1

ci

(
∫

Ω

ℓp|(u(ti)(x)) − (v(ti)(x))|
p dx

)1/p

≤ ℓ sup
t∈[0,T ]

‖u(t)− v(t)‖p.

So, g : C([0, T ];Lp(Ω;R)) → Lp(Ω;R) is Lipschitz continuous with Lipschitz constant L = ℓ. Finally,
g(0) = 0 and so trivially LR+ ‖g(0)‖p ≤ R, thus (g2′) is satisfied.
Hence, also in this case all the assumptions of Theorem 3.3 are satisfied and we have the existence and
uniqueness of mild solution for the problem (1.1)-(2.3) on QR.

6.3. Proof of Theorem 2.4. In this case the initial datum g : C([0, T ];Lp(Ω;R))→ Lp(Ω;R) is written
as

g(v)(x) =

∫ T

0

η(t, x, v(t)(x)) dt.

By condition (ii1) and (ii2) we have

sup
v∈QR

‖g(v)‖pp ≤ sup
v∈QR

∫

Ω

∣

∣

∣

∣

∫ T

0

α(t)|v(t)(x)| dt

∣

∣

∣

∣

p

dx

≤ sup
v∈QR

∫

Ω

(

max
[0,T ]
|v(t)(x)|

)p ∣
∣

∣

∣

∫ T

0

α(t) dt

∣

∣

∣

∣

p

dx

≤ Rp‖α‖pL1([0,T ]) ≤ Rp.

for r0 < R < R0.
To verify condition (g1), consider a sequence vn ∈ C([0, T ];Lp(Ω;R)) converging to a function v∗ ∈
C([0, T ];Lp(Ω;R)) for each t > 0. Then, as v∗ ∈ C([0, T ];Lp(Ω;R)) the sequence vn is equibounded for n
big and using (i’) joint to the Dominated Convergence Theorem we obtain that η(t, x, vn(t)(x)) converges
to η(t, x, v∗(t)(x)) in Lp(Ω;R) for a.e t ∈ [0, T ]. Thus, we get

‖g(vn)− g(v∗)‖pp =

∫

Ω

∣

∣

∣

∣

∣

∫ T

0

(η(t, x, vn(t)(x)) − η(t, x, v∗(t)(x))) dt

∣

∣

∣

∣

∣

p

dx

≤ c

∫ T

0

(
∫

Ω

|η(t, x, vn(t)(x)) − η(t, x, v∗(t)(x)))|
p
dx

)

dt

where the last term tends to zero by the convergence of η(t, x, vn(t)(x)) to η(t, x, v∗(t)(x)) in Lp(Ω;R).
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Furthermore, if we replace (ii2) with (ii′2) we get

‖g(u)− g(v)‖p ≤

(

∫

Ω

∣

∣

∣

∣

∫ T

0

α(t)|u(t)(x) − v(t)(x)| dt

∣

∣

∣

∣

p

dx

)1/p

≤

(

∫

Ω

(

max
[0,T ]
|u(t)(x) − v(t)(x)|

)p ∣
∣

∣

∣

∫ T

0

α(t) dt

∣

∣

∣

∣

p

dx

)1/p

≤ ‖α‖L1([0,T ]) sup
t∈[0,T ]

‖u(t)− v(t)‖p.

So, g : C([0, T ];Lp(Ω;R)) → Lp(Ω;R) is Lipschitz continuous with Lipschitz constant L = ‖α‖L1([0,T ]).
Finally, since η(t, x, 0) = 0 for a.e. (t, x) ∈ [0, T ]× Ω we get condition (g2′) as well.
Thus, also in this case all the assumptions of Theorem 3.3 are satisfied and we have the existence and
uniqueness of mild solution for the problem (1.1)-(2.4).

We conclude this study with an example that include the mean value initial condition.

Example 6.1. An example of nonlocal differential problem that satisfies all the requirements is the
following.



















ut = ∆u −
sin(u) + 2

1 + t2
u3, (t, x) ∈ (0, T )× Ω,

u(t, x) = 0 a.e. on (0, T )× ∂Ω,

u(0, x) =
1

T

∫ T

0

α(t)|u(t, x)| dt a.e. on Ω,

where Ω ⊂ R
k, k ≥ 2, is as in (1.1), α ∈ L1([0, T ],R+) is such that ‖α‖1 ≤ 1. Indeed trivially,

h(t, x, u) = − sin(u)+2
1+t2 u3 is a continuous function, assumptions (h2) is satisfied for instance for k

3 < q <∞,
p = 3q, with ℓ ≡ 0 and m = 3. Finally,

uh(t, x, u) = −
sin(u) + 2

1 + t2
u4 ≤ 0 for every u ∈ R.

So, applying Theorem 2.4 we obtain the existence of at least one global mild solution u ∈
C([0, T ];Lp(Ω;R)).

Example 6.2. If we consider a similar equation as in Example 6.1 associated to (2.5) with u0 6= 0 we
get the uniqueness of a non zero mild solution. Consider the problem:







ut = ∆u− u3, (t, x) ∈ (0, T )× Ω,
u(t, x) = 0 a.e. on (0, T )× ∂Ω,
u(0, x) = u0(x) = u(T, x) a.e. on Ω,

where Ω ⊂ R
k, k ≥ 2, is as in (1.1). As in Example 6.1 it is possible to prove that conditions (h1)− (h4)

are satisfied. Moreover for every u, v ∈ R

(u − v)(−u3 + v3) = (u− v)(v − u)(u2 + uv + v2) = −(u− v)2(u2 + uv + v2) ≤ 0,

so, condition (h5) is satisfied as well and we get the existence and uniqueness of a global mild solution
u ∈ C([0, T ];Lp(Ω;R)) by Theorem 2.2.

7. Periodic solutions on the half line

In this Section we prove an existence result for solutions of (1.5). To this aim, we have to consider the
abstract problem (2.1) in the half line. Let T > 0 be fixed and let f : [0,+∞) × Lp(Ω;R) → Lq(Ω;R),
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2 ≤ q < p <∞, be the Nemytskii operator associated to a T -periodic function h : [0,+∞)×Ω×R→ R,
thus obtaining the ordinary differential periodic problem

{

u′(t) = Au(t) + f(t, u(t)), for a.e. t ∈ R+,

u(t+ T ) = u(t), ∀ t ∈ R+

(7.1)

where A is as before the Laplace operator. We consider the abstract differential problem (7.1) under the
same assumptions of previous problem (2.1), with the exception of the following needed adjustments:

(A2∞) the semigroup {S(t)}t≥0 can be extended to a semigroup in F , i.e.
(A2.i) there exists a semigroup {S∗(t)}t≥0 on F generated by A such that for every w ∈ E, it holds

S∗(t)w = S(t)w;
(A2.ii) for every v ∈ F and t > 0, we have S∗(t)v ∈ E;

(A2.iii∞) there exists a function c ∈ Lr
loc
(R+;R+), with 1 ≤ r ≤ ∞ such that for any v ∈ F it holds

‖S∗(t)v‖E ≤ c(t)‖v‖F for every t ∈ (0,+∞);

(f1∞) the map f : R+ × E → F is Carathéodory;
(f2∞) for every z ∈ E the map f(·, z) : [0,+∞)→ E is T -periodic;

(f3∞) for every bounded subset D ⊂ E there exists a function νD ∈ Lr′

loc
(R+;R+), with

1
r + 1

r′ = 1 and
r′ =∞ if r = 1, such that

‖f(t, v)‖F ≤ νD(t), for a.e. t ∈ R+, ∀v ∈ D;

(f4∞) there exist constants 0 < r0 < R0 and n0 ∈ N such that for every n > n0

〈JE(v), S
∗

(

1

n

)

f(t, v)〉 ≤ 0,

for a.e. t ∈ [0, T ] and for every v ∈ E such that r0 < ‖v‖E < R0.
(f5∞) there exists n0 ∈ N such that for everyfor every n > n0

〈JE(v), S
∗

(

1

n

)

(f(t, u)− f(t, v))〉 ≤ 0,

for a.e. t ∈ [0, T ] and for every u, v ∈ E.

Remark 7.1. Notice that by the construction of the solution on the half line (see the proof of Theorem
7.2), we need only to assume (f4∞) for a.e. t ∈ [0, T ] and not, as to be expected, for a.e. t ∈ R+.

We will prove the existence of at least one mild solution of (7.1), i.e. a periodic function u ∈
C(R+, L

p(Ω;R)) such that for each t ∈ R+ it holds (3.4).

Theorem 7.2. Let conditions (A1)-(A2∞) and (f1∞)-(f4∞) being satisfied, then there exists at least
one solution u ∈ C(R+;E) on QR of the periodic problem (7.1).
Moreover if we assume (f5∞) and

u(0) = u0 = u(T ) (7.2)

with u0 ∈ E, then the solution u ∈ C([0, T ];E) of (7.1)-(7.2) is unique.

Proof. By Theorem 3.3, there exists at least one mild solution of (2.1), u : [0, T ] → E, such that
u(0) = u(T ). Now we show how to extend u to R+ in order to obtain a solution of (7.1). For every
t ∈ R+ = ∪m∈N,m≥1[(m − 1)T,mT ], there exists m ∈ N such that t ∈ [(m − 1)T,mT ], so we define the
map u : R+ → E as

u(t) = u(t− (m− 1)T ), m ≥ 1, t ∈ [(m− 1)T,mT ]

and we will prove that u is a periodic map satisfying (3.4) for every t ∈ R+.
Let t ∈ [(m− 1)T,mT ], then t+ T ∈ [(mT, (m+ 1)T ] and so

u(t+ T ) = u(t+ T −mT ) = u(t− (m− 1)T ) = u(t),
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thus obtaining the periodicity of u. Now we proceed by an induction process. For m = 1 is trivial,
since u ≡ u in [0, T ] and u is a mild solution of (2.1). Now, we assume that u satisfies (3.4) for every
t ∈ [(m − 2)T, (m − 1)T ] and we will prove that this is still the case for every t ∈ [(m − 1)T,mT ]. Let
t ∈ R+, and m ∈ N such that t ∈ [(m− 1)T,mT ]. Then t = r + T with r ∈ [(m− 2)T, (m− 1)T ]. So, by
the periodicity of u and the inductive assumption we have that

u(t) = u(r + T ) = u(r) = S(r)u(T ) +

∫ r

0

S(r − s)f(s, u(s)) ds

= S(r)

[

S(T )u(T ) +

∫ T

0

S(T − s)f(s, u(s)) ds

]

+

∫ r

0

S(r − s)f(s, u(s)) ds

= S(r + T )u(T ) +

∫ T

0

S(r + T − s)f(s, u(s)) ds +

∫ r

0

S(r − s)f(s+ T, u(s+ T )) ds

= S(r + T )u(T ) +

∫ T

0

S(r + T − s)f(s, u(s)) ds +

∫ r+T

T

S(r + T − η)f(η, u(η)) dη

= S(t)u(T ) +

∫ t

0

S(t− s)f(s, u(s)) ds.

Hence u is a solution of problem (7.1).
Any two mild solutions u, v ∈ C([0, T ];E) of problem (2.1) with g : C([0, T ];E) → E given by g(u) =
u(T ), satisfying also (7.2), are such that

‖u(0)− v(0)‖E = 0.

So, reasoning as in Theorem 3.3, we obtain a unique mild solution of (2.1) under (f5∞). Extending such
solution as above, gets a unique solution of problem (7.1) associated to (7.2). �

We are now able to prove the existence of a periodic solution for problem (1.5). Consider problem (1.5)
under the following assumptions:

(h1∞) for every v ∈ R, h(·, ·, v) : R+ × Ω→ R is a measurable function;
(h2∞) for every t ∈ R+ and x ∈ Ω, h(t, x, ·) : R→ R is continuous;
(h3∞) there exists m > 0 and ℓ : R+ × Ω→ R+ such that

- ℓ(·, x) ∈ L∞(R+;R+) for a.e. x ∈ Ω;
- ℓ(t, ·) ∈ Lq(Ω;R+) for a.e. t ∈ R+

and such that

|h(t, x, v)| ≤ ℓ(t, x) +m|v|p/q, for every (t, x, v) ∈ R+ × Ω× R,

with 2 ≤ q < p <∞ for k ≤ 2 and 2 ≤ q < p <∞,
pq

p− q
>

k

2
, for k > 2;

(h4∞) v h(t, x, v) ≤ 0 for a.e. t ∈ [0, T ], x ∈ Ω and for every v ∈ R;
(h5∞) for every x ∈ Ω and v ∈ R the map h(·, x, v) : R+ → R is T -periodic;
(h6∞) (u− v) (h(t, x, u)− h(t, x, v)) ≤ 0 for a.e. (t, x) ∈ [0, T ]× Ω and for every u, v ∈ R;

Theorem 7.3. Under the assumptions (h1∞)-(h5∞), the problem (1.5) admits at least one solution
u ∈ C(R+;L

p(Ω;R)) such that ‖u(t)‖p < R0 for every t ≥ 0 for a suitable R0 > 0. Moreover, if (h6∞)
is satisfied we have the uniqueness of mild solutions for the problem (1.5) with the restriction

u(0, x) = u0(x) = u(T, x) for a.e. x ∈ Ω

where u0 ∈ Lp(Ω;R).

Proof. Following the same reasonings as in Section 6 we can write problem (1.5) as the abstract problem
(7.1) with f : R+ × Lp(Ω;R) → Lq(Ω;R) the Nemytskii operator associated to h. As in the proof of
Theorem 2.2 it is possible to prove that f satisfies the assumptions (f1∞),(f3∞), (f4∞) and (f5∞).
Moreover, condition (h5∞) trivially implies the periodicity of f with respect to the first argument. Thus
we get the existence and uniqueness of periodic mild solution applying Theorem 7.2. �
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