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We perform a data-driven dimensionality reduction of the scale-dependent four-point vertex function
characterizing the functional renormalization group (FRG) flow for the widely studied two-dimensional t-t0

Hubbard model on the square lattice. We demonstrate that a deep learning architecture based on a neural
ordinary differential equation solver in a low-dimensional latent space efficiently learns the FRG dynamics
that delineates the various magnetic and d-wave superconducting regimes of the Hubbard model. We
further present a dynamic mode decomposition analysis that confirms that a small number of modes are
indeed sufficient to capture the FRG dynamics. Our Letter demonstrates the possibility of using artificial
intelligence to extract compact representations of the four-point vertex functions for correlated electrons, a
goal of utmost importance for the success of cutting-edge quantum field theoretical methods for tackling
the many-electron problem.
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Introduction.—Interacting electron systems exhibit a
rich variety of distinct phenomena at different energy
and temperature scales. Upon lowering these scales, new
effective degrees of freedom and collective behaviors
emerge, typically including competing spin, charge, and
pairing fluctuations. The difficulties inherent in treating
these competing, scale-dependent phenomena on an equal
footing represent one of the major obstacles to the
numerical solution of theoretical models.
The renormalization group (RG) provides a powerful

approach to these problems [1–5]. The characteristic of the
RG of keeping only the relevant information, as a scale
parameter is reduced, makes it a valuable tool to deal with
interacting fermions. In its exact or functional (“FRG”)
form, the RG is formulated as an exact functional flow
equation which, as a function of a continuously decreasing
energy scale, provides an effective action description of a
microscopic model [6–9].
In quantum condensed matter physics the FRG has been

used to study model systems such as the two-dimensional
(2D) Hubbard model and its extensions [10–18].
Applications of the FRG to real materials have thus far
remained sporadic, requiring considerable numerical effort
to incorporate realistic band dispersions, multiorbital char-
acters, and realistic interactions. Successful applications,
including the study of superconductivity (SC) and

competing phases in iron-based compounds [19–22], cobal-
tates [23], doped and twisted-bilayer graphene [24–26],
buckled Dirac semimetals, doped topological insulators
[27,28], and quantum spin liquid phases in frustrated anti-
ferromagnets [29,30], show the potential of this approach,
but the underlying computational complexity suggests a
simplification of the FRG approach would be desirable.
In the standard RG procedure, say, for a (4 − ϵ)-

dimensional ϕ4 field theory with ϵ expansion [1], the
effective action of the theory takes a simple form para-
metrized by a small number of coupling constants and the
functional flow equations collapse to a small set of coupled
differential equations describing the flow of these coupling
constants. In contrast, the common formulation of the
fermionic FRG keeps track of the entire frequency and
momentum dependence of the interaction vertexes during
the flow [9,13]. Thus, the apparent dimensionality space of
“couplings” is high, although schemes for finding com-
pressed representations have been investigated [16,17,31–
35]. In this Letter we present results from a data-driven
approach indicating that this apparent high dimensionality
of the vertex function can be, in some cases, illusory.
In the context of high-dimensional data, the advent

of machine learning (ML) techniques and data-driven
approaches applied to many body quantum physics has
triggered enormous interest [36]. ML ideas have been
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applied so far to several categories of methods for interact-
ing electron systems, including density functional theory
(DFT) [37–40], the Anderson impurity model [41], quan-
tum-embedding and dynamical mean field theory (DMFT)
[42–44], and the numerical renormalization group (NRG)
[45,46]. Interacting spins models have also been studied
[47]. In fact, the ability of neural networks to approximate
a very large class of functions promoted the use of deep
net architecture as a new numerical tool for solving the
quantum many-body problem.
The essential object in the FRG is the vertex function

Vðk1; k2; k3Þ, whose description, in principle, requires the
computation and storage of a function of three continuous
momentum variables. By studying a particular theoretical
model, the two-dimensional t-t0-U Hubbard model,
believed relevant for cuprates and wide classes of organic
conductors, we show that a lower dimensional represen-
tation can capture the FRG flow of the apparently
high-dimensional vertex functions. To learn this simpler
representation, we use a neural network architecture
known as neural ordinary differential equations (NODEs)
[48]. The latent variable space of the NODEs provides
us with insight into the low-dimensional structure of the
FRG flow. In order to further investigate the reason for
this simplicity, we apply dynamic mode decomposition
(DMD) [49,50], a complementary dimensionality reduc-
tion scheme that is specifically tailored for dynamical
systems.We observe that a small number of modes are able
to approximately capture the FRG dynamics of this model.
In other words, the key to the success of the method is that
the momentum dependence of the vertex can be approxi-
mated by combining a small number of patterns character-
istic of the different competing many-body phases.
Thus our ML approach to the FRG achieves what

reduced order models [51] wish to accomplish. However,
we do not apply predetermined ansätze or make simplifying
approximations, potentially discarding some relevant infor-
mation in the vertex function. Instead, we let data guide the
choice of the lower-dimensional representation.
The FRG ground states of the Hubbard model.—The

microscopic Hamiltonian we consider is

H ¼ −t
X

NN;s

c†i;scj;s − t0
X

NNN;s

c†i;scj;s þU
X

i

ni;↑ni;↓ ð1Þ

with hopping amplitudes t and t0 between nearest neighbors
(NN) and next-nearest neighbors (NNN) on the 2D square
lattice, and onsite Coulomb repulsion U. The two-particle
properties of this model are investigated through the
temperature-flow one-loop FRG scheme [14,15], where
the RG flow of VΛðk1; k2; k3Þ is

dVΛ

dΛ
¼ VΛ∘LΛ∘VΛ ð2Þ

[see Fig. 1(a)], with the RG scale Λ given by the tempe-
rature T, and ∘ defining integration over the internal

degrees of freedom. Comprehensive reviews of the FRG
scheme applied to fermionic problems are found in
Refs. [52,53]; Ref. [54] gives an excellent pedagogical
introduction. In essence, for spin-rotation invariant sys-
tems, the right-hand side of Eq. (2) splits into the sum of
three contributions, which describe the particle-particle,
direct particle-hole, and crossed particle-hole channels [13]
necessary to account on similar footing for the SC and
density-wave instabilities. LΛ is a scale-dependent loop
kernel that contains information on the single-particle
properties of the microscopic model [55].
Neglecting the frequency dependences of the vertex

couplings, which have a negative scaling dimension (irrel-
evant couplings) under the RG flow [56], but keeping a full
momentum description in terms of a discrete set ofNk wave
vectors on the Fermi surface (FS), Eq. (2) is recasted into a
set of N3

k coupled ordinary differential equations (ODEs).
The solution to this problem, with initial conditions
VΛ0ðk1; k2; k3Þ ¼ U when Λ0 ¼ 8t is the bandwidth, yields
the gradual evolution of the two-particle vertex function
VΛðk1; k2; k3Þ as Λ → 0 approaches the FS. For a typical
Nk ¼ 48 FS discretization, as depicted in Fig. 1(b), the
complexity of Eq. (2) already amounts to more than 105

coupled ODEs.
When Eq. (2) is numerically solved at varying t0 for

chemical potential fixed at the van Hove filling (μ ¼ 4t0)
and at weak-coupling U ¼ 3t, the Hubbard model in
Eq. (1) experiences three different regimes [14]: (i) The
first regime is close to half-filling, with t0 > −0.2t and
dominant antiferromagnetic (AFM) scattering processes
between FS regions connected by wave vectors ∼ðπ; πÞ.
These can be seen in Fig. 2(b) (left) as bright features
corresponding to repulsive couplings on the line
k2 − k3 ∼ ðπ; πÞ. (ii) Further decreasing t0, the d-wave
SC takes over, with the dominant dx2−y2 symmetry of
the pairing scattering, as seen from the sign profile of
the diagonal features of Fig. 2(b) (central). (iii) After a
quantum critical point for t0 ∼ −0.33t, scattering processes
with small momentum transfer k2 − k3 ∼ ð0; 0Þ dominate,
see bright features in Fig. 2(b) (right), leading to a change

(b)(a)

FIG. 1. (a) Diagrammatic representation of the one-loop FRG
flow equation for the two-particle vertex function VΛ. (b) Fermi
surface (FS) of the t − t0 tight-binding model for t0 ¼ −0.25t.
The blue points indicate the 48 momenta used to patch the FS.
The black dashed lines are the umklapp surface of perfect
nesting at t0 ¼ 0.
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of ground state from d-wave singlet SC to ferromagnet-
ism (FM).
The deep learning FRG: Results and interpretation.—By

inspecting the Oð105Þ couplings of the two-particle vertex
functions of Fig. 2(b) just before the FRG flow runs to
strong coupling and the one-loop approximation breaks
down, we recognize that many of them either have
remained nearly constant or have become vanishingly
small under the RG flow. Only few of them have grown
positively or negatively (bright features) under the RG
evolution [56]. However, as mentioned before, contrary to
the standard RG procedure for traditional critical phenom-
ena [3], the fermionic FRG does not discard any coupling in
the vertex VΛðk1; k2; k3Þ during the flow. Our approach is
to find a simpler representation in a data-driven manner,
using the power of neural nets to find useful features.
In recent years, there have been many developments in

utilizing neural networks for predicting sequence data.
These range from the conventional recurrent neural

network (RNN), gated RNNs, like long short-term memory
(LSTM), and those using the gated recurrent unit (GRU)
[63], all the way to an encoder-decoder with attention [64].
Since we are interested in finding latent variables whose
dynamics itself is governed by an ODE, the natural
candidate is a flexible dimensionality reduction scheme
based on the parameterized NODE architecture [48,65].
The method, sketched in Fig. 2(a), focuses on three deep
neural networks—the encoder E, the NODE K, and the
decoder D. The complete action of our model is defined by

zΛ0 ¼ Eαðt0;U;μÞ; dzΛ

dΛ
¼KβðzΛÞ; V̂Λ ¼DγðzΛÞ; ð3Þ

where α, β, γ are parameter sets corresponding to each
neural network (details are found in Ref. [57], and our
PyTorch implementation, NeuralFRG, is at Ref. [66]). The
ground truth data are generated by solving the FRG
problem in Eq. (2) for 35 values of t0 in the range 0 ≤
−t0=t < 0.5 (and U ¼ 3t), and storing for each t0 the whole
vertex dynamics, for a total of ∼7000 collected vertices,
each with OðN3

k ∼ 105Þ elements.
The encoder maps the Hubbard model parameters and

the FRG initial condition to a low-dimensional latent
representation zΛ0 of drastically smaller dimension than
N3

k. All the results here are obtained with a latent space
dimension of 32, but are robust against the use of either
smaller or larger values, as we show in Ref. [57]. The
NODE then defines a differential equation propagation rule
for latent variables in Λ. Finally, at each step of the flow, a
decoder network is employed to map the latent represen-
tation zΛ to a reconstructed four-point vertex function
V̂Λðk1; k2; k3Þ. We use a modified version of the mean
squared error (MSE, Ref. [57]) between V̂Λ and VΛ, in
conjunction with a gradient-based optimizer [67]. All three
networks, Eα, Kβ, and Dγ , are optimized simultaneously.
We find that the learned dynamics successfully captures

the final instability for the entire range of next-nearest
neighbor couplings t0. Satisfactory prediction of the quali-
tative features of the vertex data is achieved in the limit
Λ → 0, as presented in Fig. 2(c). More interestingly, Fig. 3
shows that, during the FRG dynamics in the latent space,
three highly statistically correlated latent space representa-
tions z emerge as a learned feature of the NODE neural
network. At Λ ¼ Λ0, a first classification task is performed
by the encoder Eα, which produces highly correlated latent
variables according to the value of t0 [Fig. 3(a)]. The NODE
Kβ takes it over to finite RG time lnΛ0=Λ, and during the
final stages of the FRG evolution in Λ, three markedly
correlated areas appear, as shown in Fig. 3(b).
The boundaries of these three regions roughly coincide

with the values of t0 at which the FRG predicts a change in
the leading two-particle instability [14]. It is also interesting
to notice that while the AFM and d-wave SC areas show
similar normalized z̄ and are thus well aligned in the

(a)

(b)

(c)

FIG. 2. (a) The deep learning architecture defined by Eqs. (3)
and detailed in Ref. [57]. (b) False-color representation of the
amplitude of the vertex function VΛðk1; k2; k3Þ at a late stage of
the renormalization process, for different representative initial
conditions. To represent a function of three momenta we fix the
first outgoing wave vector k3 and present the vertex as a function
of the two independent incoming vectors. Following Ref. [15],
(left) V for t0 ¼ −0.075t with k3 fixed at patch 6; (central) V for
t0 ¼ −0.25t, and k3 is fixed at patch 25 to emphasize the diagonal
features important for the Cooper channel; (right) V for t0 ¼
−0.45t and k3 fixed at patch 6. These choices correspond to
AFM, d-wave SC, and FM instabilities, respectively [14].
(c) Same as (b) but for the predicted data V̂Λðk1; k2; k3Þ. We
highlight that these data belong to the test set.
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latent space (the scalar product kernel ½z̄ðt01Þ · z̄ðt02Þ� ∼ 1),
reflecting their common origin in the dominant spin
fluctuations, the FM region stands on its own, separated
from the other two phases by either a quantum critical
point (in the FRG framework [14]) or a first order
transition (in the Hartree-Fock treatment [68]). The neural
network distinguishes between these three many-body
regimes by learning specific low-dimensional hidden
representations. This is accomplished by activating three
different groups of neurons in Kβ as a function of t0, as
shown in Fig. 4(a). Each instability ground state corre-
sponds indeed to a specific pattern of active neurons. This
is manifestly evident when the neuron activation pattern
of Fig. 4(a) is contrasted to Fig. 4(b), where we show
the dependence on t0 of the most negative eigenvalues
wch
0 ðΛÞ of the FRG channel couplings WΛ;chðk1; k2Þ ¼P
i w

ch
i ðΛÞfchi ðk1Þ�fchi ðk2Þ [53,57], with channels ch ¼

AFM, SC, FM, and fchi ðkÞ lattice harmonics transforming
as an irreducible representation of the symmetry group
of WΛ;chðk1; k2Þ. These leading eigenvalues are the ones

associated with the highest ordering temperature Tc for
their specific channel [53].
The dynamic mode decomposition (DMD).—The success

of the NODE-based neural network in finding a relatively
low-dimensional hidden representation prompts us to
uncover possible simplicity hidden in the collection of
the dynamic trajectories of the vertex functions themselves.
To explore this possibility, we apply conventional DMD
[49], without any specialized kernel [70]. Given a time
series of data, DMD computes a set of modes each of
which is associated with an eigenvalue on the complex
plane, approximating eigenvalues and eigenvectors of the
Koopman operator [50]. Although the mathematical pro-
cedure for identifying the DMD modes and eigenvalues is
purely linear, the dynamic itself can be nonlinear.
For each individual FRG flow for 0 ≤ −t0=t < 0.5, we

collected the four-point vertex functions in the form of a
snapshot sequence VN

0 ¼ fVΛ0 ;VΛ1 ;…;VΛNg. These snap-
shots are assumed to be related via a linear mapping that
defines a linear dynamical system in the Hilbert space of
functions that best approximates the nonlinear dynamics of
the data [71]

VΛiþ1 ¼ AVΛi ; ð4Þ

with the Koopman operator A having the prohibitive
dimension N3

k × N3
k. Eigenvalues and eigenvectors of A

are referred to as the DMD eigenvalues and DMD modes,
respectively. Since a direct eigendecomposition of A is
unfeasible, the problem can be made tractable with the help
of a singular value decomposition (SVD) of VN−1

0 [49,57].
One can select a restricted number NSVD of largest

singular values of VN−1
0 performing a low-rank truncation,

and optimally reconstruct the flow dynamics V̂Λðk1; k2; k3Þ
only using the leadingNSVD DMDmodes (see Ref. [72] for
details about the optimal reconstruction procedure used
here). In Fig. 5(a), for exemplary cases of the three
instability regimes, we show the MSE between the recon-
structed data V̂Λ and the ground truth data VΛ, which
rapidly decays with the number of included DMD modes.
Interestingly, one can also use several different FRG

flows in the same snapshot sequence and perform the DMD
analysis. This way, the DMD modes inherit features from
all included four-point vertex functions. We choose−t0=t ¼
0 (AFM), −0.315 (d-wave SC), −0.475 (FM) in order to
span all three instability regimes, and reconstruct the FRG
flow even on unseen data. Figure 5(b) shows, for instance,
the reconstructed data for −t0=t ¼ 0.17 and NSVD ¼ 8
(right panel) as compared to the FRG ground truth (left
panel). These results suggest also that the four-point vertex
function (in principle a complicated function of three
variables) can indeed be very compactly parametrized by
a small number of basis functions in each of the relevant
two particle regimes. Whether this finding applies more

(a) (b)

FIG. 3. Correlation matrix of the latent vectors zΛ at different t0
values for Λ ¼ Λ0 (a) and Λ → 0 (b), respectively. The corre-
lation matrix is defined as the scalar product kernel ½z̄ðt01Þ · z̄ðt02Þ�
between normalized latent variables z̄, where t01 and t02 are any of
the 0 ≤ −t0=t < 0.5. Red (blue) features correspond to a high
(low) degree of statistical correlation.

(a) (b)

FIG. 4. (a) Three-group K-means clustering [69] of neuron
activation inKβ as a function of t0 for Λ → 0. (b) Evolution of the
three channel leading eigenvalues wch

0 ðΛÞ as a function of t0

before the breaking of the one-loop approximation.
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generally to the vertex functions is an important open
question.
Outlook.—Our Letter presents an application of artificial

intelligence to the FRG, which successfully unveils a
dimensionality reduced dynamics for the Hubbard model
on a square lattice at specific sets of electron filling.
Nonetheless, the relevance of the procedure outlined in
our Letter goes beyond the test bed cases considered. In
particular, the identification of how to extract and manipu-
late relevant information encoded in the four-point (or two-
particle) vertex functions of many-electron problems,
separating it from the nonrelevant ones, represents a goal
of utmost importance for the success of several cutting-
edge quantum field theoretical methods for quantum
materials. The four-point vertex is, in fact, the building
block of advanced approaches based on the solution of
FRG flow equations [52] or resummation of parquet
diagrams [73], including their most recent developments
such as the multiloop extension [74,75] of the FRG, the
merger of the FRG and DMFT [76], and the diagrammatic
extensions [77] of DMFT itself, specifically designed for
computing the most challenging nonperturbative regimes.
In addition, the promising outcome of our deep learning-

based FRG procedure naturally suggests its extension
beyond the van Hove filling illustrated here as well as to
more realistic models including nonlocal electronic inter-
actions. It will be also important to explore whether transfer
learning [78] could mitigate the burden of training deep
nets for similar Hamiltonians on other lattice geometries,
and whether a rich set of learned latent variables allows for
extracting equations from the data (symbolic regression)
[79] and for a resolution increase of the vertex.
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