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ABSTRACT

One of the main objectives of many high-throughput studies is to obtain a relatively low-dimensional set of observables -
a signature - for sample classification purposes (diagnosis, prognosis, stratification). We propose DNetPRO, Discriminant
Analysis with Network PROcessing, a supervised network-based signature identification method as extension of the classical
kTSP, k-Top Scoring Pairs, algorithm for the gene expression classification. The algorithm is easily scalable, allowing efficient
computing for high number of observables (103–105). We show applications on real high-throughput genomic datasets in which
our method outperforms existing results or compares to them. but with a smaller number of selected features. Moreover, the
geometrical simplicity of the resulting class-separation surfaces allows a clearer interpretation of the obtained signatures in
comparison to nonlinear classification models.
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Supp. Fig. 1. Example of DNetPRO pipeline with a single cross validation step. This highlights the independence of each
fold. This scheme shows a possible distribution of the jobs on a multi-threading architecture or for a distributed computing
architecture. The second case allows further parallelization scheme (hidden in the graph) for each internal step (e.g. the
evaluation of each pair of genes).

The DNetPRO algorithm is defined by a series of independent computational processes given by the variable pairs evaluation.
This characteristic guarantees an easy parallelization (embarassingly parallel) of the process to increase its speed performances.
Therefore, we developed a multi-core parallelized version of the algorithm, with shared memory architecture, splitting the
analysis across several threads.

To improve the scalability of our algorithm, we implemented the pipeline scheme using Snakemake1 rules (Python codes)
and the computation of discriminant networks (the most time expensive step) was performed in C++ with the OpenMP
multi-threading support. The computational scheme of the proposed pipeline for a single cross-validation step is shown in supp.
Fig. 1.

Using Snakemake we can easily distribute our pipeline on several machines via a master-slave parallelization scheme. In



this case each step of supp. Fig. 1 can be performed by a different computer unit, preserving the multi-threading steps, with a
maximum scalability and the possibility to enlarge the problem size and the number of variables.

We tested our implementation on a dedicated HPC server (128 GB RAM memory and 2 CPU E5-2620, with 8 cores each),
comparing its scalability to a common laptop (8 GB RAM memory and 1 CPU i7-6500U, with 2 cores), using the same dataset
(20 530 probes and 150 samples, with a total of more than 2×108 combination of variables). Both the tests were performed
with the hyper-threading enabled and considering the time performances for the full combination analysis and pairs reordering,
i.e., step 1 and 2 of the DNetPRO algorithm. The pairs evaluation took around 1 minute on the server machine and 10 minutes
on the laptop, showing a good scalability of the code on the available threads. We want to remark that the loading of the
data (included in the time evaluation) was always performed in single thread. Moreover, the sorting algorithms are drastically
affected by the CPU cache size, giving a huge advantage to the server machine for this kind of analysis.

We implemented also an MPI (Message Passing Interface) version of the algorithm to face analyses of larger datasets, with
a greater number of variables. We did not need to use a such parallelization scheme in our simulations, since the multi-threading
version on a bioinformatics server was fast enough for our applications.

Supp. Fig. 2. Scalability of DNetPRO algorithm implementation across various number of threads, using a dataset composed
by 90 samples and 90 variables. We compare the computational time performances of our Cython version of the DNetPRO
algorithm against a parallel pure-Python one (with the support of Numpy and Scipy modules). The oscillatory trend of the
Cython times is due to an unbalanced partition of the tasks related to the number of samples provided.

The developed combinatorial algorithm has been also wrapped in Python via Cython2 to allow a good integration with
other common machine learning tools and the most used Python libraries such as scikit-learn package3. We also tested our
Cython implementation against a parallel Python (with Numpy+Scipy+multiprocessing packages) implementation, monitoring
its scalability across different dataset sizes and number of available threads (ref. supp. Fig. 2). Equal to dataset sizes, the
provided DNetPRO implementation is more than 104 faster than the Python one, allowing the processing of datasets with higher
number of variables.supp. Fig. 2 shows sub-optimal results in terms of scalability, probably due to a non-optimal scheduling in
the parallel section: the jobs are not equally distributed across the available threads, penalizing the code efficiency, and creating
a bottleneck related to the slowest thread. We perform all the simulations considering a number of features equal to 90 and,
thus, the parallel section distributes the 8100 (N ×N) iterations across the available threads: when the number of iterations is
proportional to the number of threads used (12, 20 and 30 in our case), we have a maximization of the time performances.

The discussed pipeline and the entire set of codes developed in this work are publicly available at DNetPRO-pipeline Github
repository.

Ranked pairs analysis and signature characterization
The analysis of variable pairs can easily lead to very large number of combinations (e.g., 108 pairs with gene expression
microarrays containing about 2×104 probes). In this configuration, multiple pairs could achieve the same performance score
(ref. supp. Fig. 3a): the classification metrics have the same cardinality as integer numbers, corresponding to the number
of available samples (102–103 in many omics cases). Therefore, the ranking according to performances is characterized by
multiple “plateaus”, and the selection of variable pairs, based on a hard thresholding procedure, is highly influenced by this
behavior. As in other cases of ranked values4, we can fit these ranking distributions with a combination of power-law functions
(ref. supp. Fig. 3b).
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Supp. Fig. 3. Analysis of ranked pairs distributions according to the performance score obtained in the training step. (a) The
distribution of plateau lengths is approximately exponential. (b) Average number of pairs with the same score value: this
behavior is typical in ranking distribution and it can be fitted by the relation f (x) = A(M+1− r)b/ra as shown in4, where r is
the rank value, M its maximum value, A a normalization constant and (a, b) two fitting exponents.

We observed that star-networks frequently appear in signatures generated by this procedure, with one center variable highly
connected to the others (pendant nodes). This happens when a variable has a strong discriminating power, to which other,
possibly less relevant, variables get linked due to noise fluctuations.

As stated in our work, we suggest that these variables (pendant nodes in the star-network) can be removed from the
signature without affecting significantly its performance. The procedure can be applied for one single step (removing pendant
nodes from the star configuration) or it can be applied recursively, until the signature becomes constituted only by the 2-core
networks (i.e., with all nodes having degree ≥ 2).

Empirical analysis performed on real data has shown that the removal of these variables does not affect significantly the
signature performance, allowing a significant reduction of its dimension. Since there is no clear theoretical explanation of this
behavior, we suggest introducing this step only optionally in the DNetPRO workflow, since it is not easy to quantify the risk of
losing relevant information from the removed variables.

The underlying idea is that the more connected the nodes are, the more the variables in the signature “work well” together, a
plausible hypothesis given the linear sample separation surface provided by the Discriminant classifier. Moreover, the network
structure of the signature suggests that additional measurements can be used for estimating the relevance of a variable as a
function of its role in the network (e.g., node centrality such as degree or betweenness centrality) and therefore would be
additional options for signature dimensional reduction (e.g., considering only the most central nodes). This approach has no
theoretical foundation, and it has not been tested extensively in our study, even if some positive results have been found5.

Description of the Synapse dataset
TCGA (The Cancer Genome Atlas) core sets of data used are available at the Synapse homepage (accession number syn300013,
doi:10.7303/syn300013) created by Yuan et al.6, and are composed of four tumor datasets: kidney renal clear cell carcinoma
(KIRC), glioblastoma multiforme (GBM), ovarian serous cystadenocarcinoma (OV) and lung squamous cell carcinoma (LUSC).

The summary description of the datasets used in this work is reported in supp. Tab. 1.

Characterization of signatures overlap
In our applications, we divided the datasets into a training-test subdivisions and the signatures were extracted along a 10-fold
cross-validation over the training sets. This kind of setup could, in the worst case, extract up to 10 totally different signatures
(one for each split).
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Number
Cancer mRNA miRNA Protein of samples
GBM AgilentG4502A H-miRNA_8x15k RPPA

17 814 533 a 210
KIRC HiseV2 GA+Hiseq RPPA

20 530 1 045 166 243
OV AgilentG4502A H-miRNA_8x15k RPPA

17 814 798 165 379
LUSC HiseqV2 GA+Hiseq RPPA

20 530 1 045 174 121

Supp. Tab. 1. Description of the benchmark dataset used in the paper. The type of cancer, the platform with the number of
probes and the number of samples per tumor type are shown.
a Missing data.

Starting from this large number of signatures, we evaluated the robustness of the DNetPRO algorithm in the feature
identification, studying the overlap between them. From a statistical point-of-view, it is quite unlikely that the same set of
features would be included into all the extracted signatures, especially on this application in which features represent gene
expressions. On the other hand, the overlap of these signatures could highlight a statistical significance of some features, and
thus genes related to the associated tumor.

For each fold we evaluated the average dimension of the signatures, and we computed the distribution of these dimensions
for each cancer type. The global distributions of signature dimensions extracted by the DNetPRO algorithm on the four cancer
types of the Synapse dataset are shown in supp. Fig. 4.

In supp. Fig. 5 the gene distributions obtained by the three methods (DNetPRO, K-best, and null models) are shown.
We performed a deeper analysis on the signatures of KIRC, looking for the overlaps between them. We analyzed the full

list of genes included into the signatures, counting how many times the same gene appears. The total number of genes included
into the signatures list is a subset (2790) of the full list of probes in the dataset (20530). Despite the discrepancy between the
signature dimensions, we had a core of 111 genes included in at least the 80% of the signatures. Looking for a more strict
condition, we found a core of 74 genes in at least the 90% of the signatures and 20 of them are common in the 100%. For
completeness, we mapped the list of 74 genes in the KEGG database to extract the associated pathways known in literature (ref.
supp. Tab. 3). The list of genes also present in the KEGG database (65/74) is reported in supp. Tab. 2,in which we highlight
the 15 out of 20 genes included in the 100% of the signatures with a †. We would remark that the overlap of the extracted
signatures has a pure statistical meaning, since in our work we did not include any prior clinical/biological information in the
algorithm, but it is useful to test the robustness of our method in identifying the same information across different simulations.

The low number of genes identified in the signatures allow us to map them on tumors-genes databases like the TISIDB7.
The TISIDB stores all the known links between genes and tumors interactions using literature mining and high-throughput data
analysis. We used the online version of the TISIDB, in which for each tumor type are reported the log-rank test values between
the overall survival across human cancers and genes. We filtered out the genes which do not appear in the top-4 ranking list.
We mapped only the list of 65 genes common to the full set of signatures, since they are the most statistical significant of our
analysis. We found that a significant percentage (48/65, 74%) of the genes extracted by the DNetPRO signatures and common
in at least the 90% of them, is already known in relation with the KIRC tumor by the TISIDB. The list of genes found in relation
to the KIRC tumor is reported with the (*) in supp. Tab. 2.
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Supp. Fig. 4. Distribution of the signature dimensions extracted by the DNetPRO algorithm among the 100 simulations. For
each simulation a total of 10 signatures were extracted and the average dimension was computed. For each cancer type (KIRC,
GBM, LUSC, OV) we highlight the mean and standard deviation of the distribution.

Supp. Fig. 5. Signatures overlap obtained in the KIRC mRNA datasets. Gene occurrences of the 1 000 DNetPRO signatures
extracted from the Synapse pipeline (blue). Gene occurrences of the 1 000 K-best variables extracted from the Synapse pipeline
(red): the number of genes (K) is the same of the corresponding DNetPRO signature. Gene occurrences of 1 000 random
signatures (yellow).

5/8



Gene Symbol Gene ID Official Full Name

TROAP*† hsa:10024 trophinin associated protein
CDK4* hsa:1019 cyclin dependent kinase 4
SLC25A29* hsa:123096 solute carrier family 25 member 29
LTB4R*† hsa:1241 leukotriene B4 receptor
ANKLE1* hsa:126549 ankyrin repeat and LEM domain containing 1
ATXN7L2* hsa:127002 ataxin 7 like 2
UROC1 hsa:131669 urocanate hydratase 1
HRNBP3* hsa:146713 RNA binding fox-1 homolog 3
EME1* hsa:146956 essential meiotic structure-specific endonucle...
NCRNA00085 hsa:147650 sperm acrosome associated 6
RTKN2* hsa:219790 rhotekin 2
SKA1* hsa:220134 spindle and kinetochore associated complex sub...
GOLGA8A* hsa:23015 golgin A8 family member A
GABBR1* hsa:2550 gamma-aminobutyric acid type B receptor subunit 1
MYADML2 hsa:255275 myeloid associated differentiation marker like 2
BACE2*† hsa:25825 beta-secretase 2
TAS2R20* hsa:259295 taste 2 receptor member 20
WSB1* hsa:26118 WD repeat and SOCS box containing 1
KAT2A*† hsa:2648 lysine acetyltransferase 2A
KIF4B hsa:285643 kinesin family member 4B
KRT73 hsa:319101 keratin 73
HOXC4 hsa:3221 homeobox C4
HOXC5* hsa:3222 homeobox C5
BIRC5* hsa:332 baculoviral IAP repeat containing 5
C8ORFK29† hsa:340393 transmembrane protein 249
SLC16A12* hsa:387700 solute carrier family 16 member 12
RNF207* hsa:388591 ring finger protein 207
C1orf53*† hsa:388722 chromosome 1 open reading frame 53
OR52D1 hsa:390066 olfactory receptor family 52 subfamily D member 1
ASNS*† hsa:440 asparagine synthetase (glutamine-hydrolyzing)
NPPA hsa:4878 natriuretic peptide A
GOLT1B* hsa:51026 golgi transport 1B
ANAPC5*† hsa:51433 anaphase promoting complex subunit 5
PTX3* hsa:5309 paired like homeodomain 3
NUDT11* hsa:55190 nudix hydrolase 11
HJURP* hsa:55355 Holliday junction recognition protein
PRH1* hsa:5554 proline rich protein HaeIII subfamily 1
ZNF692* hsa:55657 zinc finger protein 692
LTB4R2 hsa:56413 leukotriene B4 receptor 2
PSMD2 hsa:5708 proteasome 26S subunit, non-ATPase 2
RARRES2* hsa:5919 retinoic acid receptor responder 2
CHTF18* hsa:63922 chromosome transmission fidelity factor 18
SGCB*† hsa:6443 sarcoglycan beta
METT11D1 hsa:64745 methyltransferase like 17
THBS3* hsa:7059 thrombospondin 3
ZNF26*† hsa:7574 zinc finger protein 26
PABPC1L*† hsa:80336 poly(A) binding protein cytoplasmic 1 like
KIAA1683 hsa:80726 IQ motif containing N
FGF23† hsa:8074 fibroblast growth factor 23
CCNL2*† hsa:81669 cyclin L2
CDCA3* hsa:83461 cell division cycle associated 3
NUF2* hsa:83540 NUF2 component of NDC80 kinetochore complex
ATAD3B*† hsa:83858 ATPase family AAA domain containing 3B
MYCBPAP hsa:84073 MYCBP associated protein
PPFIA4* hsa:8497 PTPRF interacting protein alpha 4
NPFF* hsa:8620 neuropeptide FF-amide peptide precursor
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Gene Symbol Gene ID Official Full Name

STX16* hsa:8675 syntaxin 16
CCNA2* hsa:890 cyclin A2
GYG2*† hsa:8908 glycogenin 2
TIMELESS* hsa:8914 timeless circadian regulator
CCNF* hsa:899 cyclin F
LASS5 hsa:91012 ceramide synthase 5
EXO1 hsa:9156 exonuclease 1
NUMBL* hsa:9253 NUMB like endocytic adaptor protein
KIF23* hsa:9493 kinesin family member 23

Supp. Tab. 2. List of the genes included in at least the 90% of the signatures extracted by the DNetPRO algorithm along the
100 simulations on the KIRC dataset. The full list of 74 genes was mapped on the KEGG database to extract the gene
information and only the successful matches (65/74) is reported in the table. We mark with † the genes included in the 100% of
the DNetPRO signatures. We mark with (*) the genes for which we found a correspondence in the TISIDB with KIRC tumor
(in the top-4 ranking). Only SGCB and SLC16A12 are associated with long term of survival, while all the other genes are
associated to short terms.

KEGG Pathway Pathway Occurrences

hsa:05166 Human T-cell leukemia virus 1 infection 4
hsa:05200 Pathways in cancer 4
hsa:04080 Neuroactive ligand-receptor interaction 4
hsa:04110 Cell cycle 3
hsa:04151 PI3K-Akt signaling pathway 3
hsa:05165 Human papillomavirus infection 3
hsa:05169 Epstein-Barr virus infection 3
hsa:05203 Viral carcinogenesis 3
hsa:01100 Metabolic pathways 3

Supp. Tab. 3. List of pathways associated to the genes reported in supp. Tab.2. For each pathway we report the number of
occurrences along the gene list. The pathways are sorted by the occurrence values.
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