
TYPE Original Research

PUBLISHED 23 February 2023

DOI 10.3389/fpubh.2022.1069931

OPEN ACCESS

EDITED BY

Wellington Pinheiro dos Santos,

Federal University of Pernambuco, Brazil

REVIEWED BY

Tore Bonsaksen,

Inland Norway University of Applied

Sciences, Norway

Sudip Bhattacharya,

All India Institute of Medical Sciences, Deoghar

(AIIMS Deoghar), India

*CORRESPONDENCE

Daniel Remondini

daniel.remondini@unibo.it

†These authors have contributed equally to this

work and share first authorship

SPECIALTY SECTION

This article was submitted to

Digital Public Health,

a section of the journal

Frontiers in Public Health

RECEIVED 14 October 2022

ACCEPTED 30 December 2022

PUBLISHED 23 February 2023

CITATION

Durazzi F, Pichard F, Remondini D and

Salathé M (2023) Dynamics of social media

behavior before and after SARS-CoV-2

infection. Front. Public Health 10:1069931.

doi: 10.3389/fpubh.2022.1069931

COPYRIGHT

© 2023 Durazzi, Pichard, Remondini and

Salathé. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is

permitted, provided the original author(s) and

the copyright owner(s) are credited and that

the original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Dynamics of social media
behavior before and after
SARS-CoV-2 infection

Francesco Durazzi1†, François Pichard2†, Daniel Remondini1* and

Marcel Salathé2

1Department of Physics and Astronomy (DIFA), University of Bologna, Bologna, Italy, 2Digital

Epidemiology Lab, School of Life Sciences, School of Computer and Communication Sciences, Ecole
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Introduction: Online social media have been both a field of research and a

source of data for research since the beginning of the COVID-19 pandemic. In this

study, we aimed to determine how and whether the content of tweets by Twitter

users reporting SARS-CoV-2 infections changed over time.

Methods: We built a regular expression to detect users reporting being infected,

and we applied several Natural Language Processing methods to assess the

emotions, topics, and self-reports of symptoms present in the timelines of

the users.

Results: Twelve thousand one hundred and twenty-one twitter users matched

the regular expression and were considered in the study. We found that the

proportions of health-related, symptom-containing, and emotionally non-neutral

tweets increased after users had reported their SARS-CoV-2 infection on Twitter.

Our results also show that the number of weeks accounting for the increased

proportion of symptoms was consistent with the duration of the symptoms in

clinically confirmed COVID-19 cases. Furthermore, we observed a high temporal

correlation between self-reports of SARS-CoV-2 infection and o�cially reported

cases of the disease in the largest English-speaking countries.

Discussion: This study confirms that automated methods can be used to find

digital users publicly sharing information about their health status on social media,

and that the associated data analysis may supplement clinical assessments made

in the early phases of the spread of emerging diseases. Such automated methods

may prove particularly useful for newly emerging health conditions that are not

rapidly captured in the traditional health systems, such as the long term sequalae

of SARS-CoV-2 infections.
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1. Introduction

Public healthmonitoring is in themidst of a technological shift enabled by the availability

and pervasiveness of real-time and geo-localized data. Mining, harmonizing, and extracting

information from heterogeneous big data sources is offering unprecedented opportunities

in disease early warning and surveillance (1). Compared with information extracted from

traditional public health channels, digital resources can reduce the timeframe of outbreak

detection and improve our understanding of risk factors at the level of entire populations (2).
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In particular, communicable diseases are currently drawing

the most attention in studies of digital public health surveillance

(3). In the context of the ongoing COVID-19 pandemic, multiple

attempts have beenmade by scientists and public health institutions

to address the challenge raised by the disease spread through

new technologies (4). On the one hand, efforts have been made

to provide practical solutions to the containment of infections

through digital contact tracing (5) and innovative diagnostic and

case management practices (6). On the other hand, digital traces

can be processed to now-cast the number of infections andmonitor

the evolution of patients’ symptoms or public reaction to the

pandemic over time (4). Online social media are certainly one

of the most fruitful sources of data, and even more so since the

beginning of the pandemic that led to an increased use of these web

platforms (14% more users on Twitter from January 2020 to April

2020) (7, 8). The real-time analysis of social media was developed

across several themes, including surveillance of public attitudes,

characterization of infodemics, assessing mental health, detecting

or forecasting COVID-19 cases, and identifying the government

interventions (9).

The heterogeneous nature of the available online data suggests

that social and psychological phenomena beyond the strictly

sanitary context can be observed and studied. Research has largely

focused on large-scale social considerations, which revealed the

increasing polarization of the COVID-19 debate (10) and the

prevalence of negative emotions in messages posted on Twitter,

particularly at the beginning of the outbreak (7, 11). Additionally, it

was shown that the high number of tweets with negative sentiment

was partly due to the high rate of (i) angry tweets in response to

news from authorities and politics, and (ii) sad tweets in response

to news about confirmed cases and deaths (12). Although such

studies allow estimating the prevalence of mental health issues

associated with the pandemic status of COVID-19 at the population

level (7), there has been—to the best of our knowledge—no social

media investigation of behavioral changes in individuals infected

with SARS-CoV-2.

From a medical point of view, it has been highlighted that

the number of self-reports of symptoms displayed a temporal

correlation with the number of confirmed cases (13, 14). The

frequency of symptoms reported on Twitter was shown to be

in good agreement with the prevalence of symptoms following

confirmed infections (15) and allowed to identify patterns revealing

the long-term criticality of the post-acute sequelae of COVID-19

(16). However, in order to carry out these studies, time-consuming

practices of manual annotation and curation had to be employed,

which limited the amount of usable data.

Given the aforementioned gaps, we tried to leverage the

full potential of social media data by using automated methods

for the filtering of very large volumes of tweets as well as the

characterization of a broad set of topics. We were thus able to

investigate the content changes on Twitter for users who publicly

shared that they had tested positive for COVID-19. Our hypothesis

at the early stage of this work was that several features of the content

posted by Twitter users had potentially changed after they reported

their SARS-CoV-2 infection. These changes may concern not

only health statuses, but also emotions, topics, external references

(i.e., websites). Using various Natural Language Processing (NLP)

techniques, we extracted heterogeneous information from the

tweets, and characterized the users’ timelines by designing a pre-

post study to observe content changes after the infection self-

reports (test-positive tweets from now on). We thus verified the

time correlation between test-positive tweets and confirmed cases

in the major English-speaking countries and performed statistical

tests to assess differences between the pre-period and the post-

period with respect to the test-positive date.

2. Materials and methods

2.1. Data

Using the Crowdbreaks platform (17), we collected a stream

of COVID-related tweets through the filtered streaming endpoint

of the Twitter API. This dataset of around 323M original

tweets consists of all the English-language tweets (i) posted from

13/01/2020 to 19/09/2021 and (ii) mentioning COVID-19 related

keywords (“wuhan,” “ncov,” “coronavirus,” “COVID,” “SARS-CoV-

2”). Tweets that were selected were those satisfying the condition

imposed by the following regular expression:

r’/b (?<!/“)(?:I|We) (?: have |/’ve |ve | just |) tested

positive for (?:covid|corona|sars-cov-2)|/b (?<!/”) (?:my|our)

(?:covid|corona|sars-cov-2) test is positive|/b (?<!/“) (?:found

out|turns out|confirms|confirm) I (?:ve|/’ve| have| got|

contracted) (?:covid|corona|sars-cov-2)’.

This regular expression was built via multiple steps of

refinement, as we read random samples of matched tweets and

modified the filter to avoid false positives. Our primary aim was

not to retrieve all users reporting their infection on Twitter; rather,

we were concerned with collecting a sample large enough to run

sound statistical analyses (hence our willingness to accept a lower

sensitivity when prioritizing a high specificity). Still, because of

the rigidity of regular expressions, we may have missed a non-

negligible portion of users reporting the positivity of their test to

COVID-19. For each one of the users having at least onematch with

the regular expression, we downloaded the full publicly available

Twitter timeline from 1/1/2020 to 30/09/2021 calling the Twitter

API v2.0 (18) for Academic research through the Python’s package

Twarc (19). Due to Twitter limitations, we could only retrieve the

last 3,000 tweets written by each user up to 30/09/2021 (day of the

API call). Ethical approval for the use of the data was obtained from

the EPFL Human Research Ethics Committee (054-2022).

2.2. Digital cohort selection

The common point between all users included in the dataset

is that they reported testing positive to COVID-19 on Twitter. For

each user, a pre-period (12 weeks) and a post-period (12 weeks)

were defined with respect to the time of the so-called primary test-

positive tweets, which marks the end of the pre-period and the

start of the post-period. The tweets written by each user during

this observation period were the main focus of our study and were

used in all of the analyses. Some users reported testing positive

to COVID-19 more than once, leading to a set of 268 secondary

test-positive tweets. As our goal was to characterize changes in the

users’ Twitter timelines after their earliest SARS-CoV-2 infection
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online report, our analysis of self-reports of COVID-19 cases was

based on the former set (primary test-positive tweets) only. Twitter

accounts were further filtered according to the time of the primary

test-positive tweets (25/03/2020 - 08/07/2021) and the number of

tweets present in the pre- and the post-periods (at least 30 tweets

per period posted over 5 weeks or more). This way, we were able to

build a digital cohort of 12,121 users, who wrote a total of 5,932,306

tweets during the time of analysis. All subsequent analyses refer to

this set of Twitter users.

2.3. Named Entity Recognition methods for
symptoms and time expressions

Symptom mentions in tweets were extracted with MedCAT,

which is a state-of-the-art Named Entity Recognition (NER)

tool built to recognize and normalize clinical concepts in

electronic health records (20). NER is an information extraction

task carried out by a (statistical) model such that pre-defined

categories are assigned as tags to the entities identified during

the parsing of an unstructured text. MedCAT enabled to associate

each tweet with a particular set of tags (no symptom, one

symptom, or multiple symptoms encountered). However, after

reading some of MedCAT’s output, we realized that this model

was limited due to its inability to recognize figurative uses of

symptoms (e.g., “This situation hurts me,” “I am sick of this

situation”), and we decided not to consider some symptom tags

(“Pain,” “Sickness,” “Tired” and “Ache”) for the remainder of

our analysis.

Since MedCAT was used beyond its original scope (processing

of electronic health records) and applied to tweets, we compared

the respective performances of MedCAT and a lexicon-based

method developed for Twitter data (15). The authors of the

latter study (Sarker et al.) were interested in extracting self-

reports of COVID-19 symptoms from tweets and had manually

reviewed the results of their model so as to obtain high levels

of recall (15). By comparing the two methods we realized

that MedCAT outperformed the lexicon-based approach over

a set of manually annotated symptom-containing tweets, in

particular considering the specificity (0.41 for MedCAT vs.

0.26 for the lexicon; cf. Supplementary material for details).

Furthermore, “fatigue” and “tiredness” are disambiguated with

MedCAT, which is not the case with the lexicon-based approach.

As explained above, tags of tiredness were prone to being false

positives, but this very problem did not occur with “fatigue.”

Therefore, MedCAT enabled us to conduct analyses on self-reports

of fatigue.

While hundreds of different symptom types may be recognized

in our dataset, we decided to limit our analysis to a subset

of symptoms pertaining to COVID-19 and Long COVID (i.e.,

post-acute sequelae of SARS-CoV-2 infection): fatigue, malaise,

dyspnea, chest pain, fever, coughing, headache, sore throat, nausea,

vomiting, dizziness, myalgia (16, 21, 22).

In order to tell apart actual self-reports of symptoms from

generic chatter about symptoms, we used a fine-tuned deep

learning model that aims to classify tweets with symptommentions

as either self-reports, non-personal reports, or news mentions

(model with 3 classes) (23). Tweets with symptom mentions were

retained for the following analysis if and only if their probability for

being a self-report was larger than 0.9.

2.4. Emotion classification

A NER model was applied to determine which emotions were

expressed by individual users as they posted content on Twitter.

The model used (SpanEmo) (24) was a multilabel classifier with

11 possible labels including the eight primary (25) emotions (joy,

trust, fear, surprise, sadness, disgust, anger, anticipation) and three

dyadic emotions (optimism, pessimism, love). If none of these 11

labels was predicted the tweet was considered as neutral.

2.5. Topic classification

Topics present in the tweets were identified using the distilled

version of the BART-Large-MNLI model (26). Nine custom topic

categories were defined for this zero-shot learning classifier,

namely: Business & Industry, Computers & Internet & Electronics,

Education & Reference, Entertainment & Music, Health, Politics

& Government & Law, Science & Mathematics, Society & Culture,

Sport. Themodel returns the probability for a tweet to be associated

with a particular topic. In order to use the aforementioned topics

as categorical features, the indicator function was applied to the

output probabilities (a particular topic is present in a tweet only if

the estimated probability for that topic is above 0.5). If the indicator

function was equal to 0 for all nine classes, the tweet was considered

as an instance of a 10th category called “Other.”

2.6. Individual-level causal impact analyses
on the volume of tweets

The following analysis was conducted for each user separately.

First, user-specific tweets were split into two sets depending on

their temporal position relative to the user’s test-positive tweet

(pre-intervention period or post-intervention period) and the

timelines of all the users were aligned so that all the test-positive

tweets happen to be on day 0. Then, numerical information was

derived for every user by computing the weekly counts of tweets

posted by individual accounts. Based on these user-specific time

series, we were able to treat each user in the dataset separately

and we tested whether the infection event (reflected by a given

user’s test-positive tweet) had a causal impact on the volume

of tweets that were subsequently posted. To do so, we used

the CausalImpact module of the Python package tfcausalimpact

(27) (see Supplementary Figure 1). The statistical effect of the

intervention (self-report of a given user’s test-positive status)

is inferred from the Bayesian one-sided tail-area probability of

obtaining this effect by chance. The outcome of the model was

one of the three following options depending on the effect and

the magnitude of the p-value (statistical significance set at the 0.05

level): (i) the intervention (self-report of a given user’s test-positive

status) did not trigger a change in the user’s posting volume; (ii) the

Frontiers in PublicHealth 03 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1069931
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Durazzi et al. 10.3389/fpubh.2022.1069931

FIGURE 1

Blue bars: weekly counts of COVID-19 self-reports on Twitter data. Green line: cumulative confirmed new cases of COVID-19 in the USA, UK,

Canada, and Australia.

intervention led to an increased activity; (iii) the intervention led to

a decreased activity.

2.7. Paired tests for the change of
proportions in labeled tweets

Using the same individual time series as for the previous

analysis, we determined the average weekly number of tweets

posted in the pre-period and the corresponding value in the post-

period, obtaining a pair of pre-post counts for each user (12,121

pairs). Considering these individual data altogether, we applied

a two-sided Wilcoxon signed-rank test in order to determine

whether the rates in the pre-period and the post-period series were

statistically different from each other. The results were computed

with the R library stats (28). Pre-/post-comparisons of this type

(i.e., Wilcoxon signed-rank test) were also conducted to statistically

analyze the proportions of tweets associated with a particular class

across all selected users. The possible classes correspond to the set

of labels retrieved from the different models applied in this study

(emotion/topic/URL/symptom classifiers). Wilcoxon signed-rank

tests were applied with the false discovery rate controlled at the 0.05

level following the Benjamini-Hochberg post-hoc procedure.

2.8. Time duration of the increase in
symptom reports posted in the post-period

Since the users may have reported symptoms with an increased

prevalence in the post-period relative to the pre-period, we tried to

estimate the duration of this behavioral change, hereafter referred

to as symptom-reporting duration. To do so, we repeated pre-

/post-comparisons for every symptom onmodified timelines where

weekly data from the post-period were iteratively removed until

the increase of symptoms tweets was not significant. The procedure

works as follows:

1. After removing tweets from week 0, we test whether the

pre-/post-increase of symptom prevalence remains statistically

significant for this modified dataset.

2. If the increase is not significant, that means that the symptom-

reporting duration is shorter than 1 week and we consider

the SRMD (i.e., symptom-reporting maximum duration) to be

1 week.

3. If the increase is significant, we additionally remove data from

the next week and repeat the pre-/post-comparison.

This procedure can be applied iteratively to further weeks until

the statistical test indicates nomore significant changes between the

pre-period and the modified post-period. Thus, each symptom can

be associated with a specific SRMD that indicates the maximum

number of weeks in the post-period accounting for the higher

frequency of that particular symptom.

3. Results

3.1. Volume of test-positive tweets over
time

Figure 1 shows the distribution of the primary test-positive

tweets over the observation period of the study (March 2020 to July

2021) for all 12,121 users included in our dataset.

A local maximum of self-reported cases was observed in July

2020, which turns out to be the time at which a second wave of

COVID-19 cases was observed in the United States. The bar plot

reveals another maximum in late 2020 (November and December)

and in early 2021 (January). This period coincides with the third

wave of infections in the United States. Comparing the volume

of case self-reports with the time series of cumulative confirmed

new cases in the four largest countries where English is the

main language (USA, UK, Canada, and Australia), we find a high

correlation (Pearson’s coefficient = 0.96, p < 1E-06), which is even

stronger when delaying the tweets by a week (Pearson’s coefficient

Frontiers in PublicHealth 04 frontiersin.org

https://doi.org/10.3389/fpubh.2022.1069931
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Durazzi et al. 10.3389/fpubh.2022.1069931

FIGURE 2

Ranked flow chart of the monthly counts of primary test-positive tweets, stratified by emotion. For each month, the emotions are sorted from the

most abundant (Top) to the least abundant one (Bottom).

TABLE 1 Relative size of the categories of users grouped according to the

change of their individual activity on Twitter after the respective time of

their primary test-positive tweet.

Pre-/post-change Number of
users

Fraction of
users [%]

None 5,108 42.1

Increase 4,217 34.8

Decrease 2,796 23.1

This assessment is based on the results of causal impact analyses.

= 0.97). A possible explanation is that people acknowledge their

infection state with self-tests before the official PCR test results.

3.2. Emotions in test-positive tweets

After the emotions conveyed by the test-positive tweets were

automatically identified with a state-of-the-art model (24), the

possible classes (i.e., emotion labels) were ordered according

to their frequency in this dataset. It turns out that there was

no predominance of valence-negative emotions over valence-

positive emotions (or vice-versa): for instance, the top four

emotions were sadness, optimism, anticipation, and disgust

(Supplementary Figure 2).

Figure 2 illustrates the relative importance of emotions in the

test-positive tweets based on their monthly prevalence and shows

that sadness and optimism were the most frequent emotions

across the entire time range (March 2020 to July 2021). While

optimism was predominant until July 2020, it was superseded by

sadness between August 2020 and March 2021. This change can

be noticed when comparing the proportion of test-positive tweets

with optimism or sadness in the first and second peaks (July 2020

and December 2020, respectively), as confirmed by a proportion

test (p-value= 0.02).

The above flow chart also shows that ranking variations were

relatively rare over time. Although this holds for most classes,

two changes are worth noting. The relative importance of joy

gradually increased from May 2020 (8th position) until December

2020 (3rd position) and later oscillated between the third and fifth

rank (January 2021 to July 2021). Ranking fluctuations were also

observed with respect to fear, which was the third and fifth most

abundant emotion tag in April 2020 and June 2020, respectively,

but then moved gradually to lower ranks until the end of the

observation period.

3.3. Pre-/post-comparison

Each of the following subsections aims to characterize in greater

detail each user’s online activity before and after primary test-

positive tweets were posted. As explained in the Methods section,

the “pre-period” refers to the 3 months before the primary test-

positive tweet of a user, while the “post-period” refers to the 3

months following the test-positive tweet.

3.3.1. Volume of tweets
Using a causal impact analysis framework for each user

separately, we compared the weekly series of tweets counts posted

during the post-period with the corresponding series in the pre-

period. Table 1 indicates that the tweets count time series were

statistically not different in the pre- and post-periods for 42.1% of

all the 12,121 users, while there was an increase for 34.8% of all users

and a decrease for the remaining 23.1%.

A second test was applied at the collective level: the same

data were analyzed by applying a Wilcoxon signed-rank test on
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FIGURE 3

Pre-/post-comparison for emotion labels. This figure shows the non-parametric confidence intervals and the estimated pseudomedians of the

di�erences between the proportions in the post-period and the ones in the pre-period.

all the pre-/post-pairs (one pair per user), whose result indicates

a statistically significant global increase in the weekly rate of tweets

(p-value < 1E-06) during the post-period.

3.3.2. Emotions
Statistically significant changes between the pre-period and the

post-period were observed for most emotions (see Figure 3 and

Table 2).

Occurrences of anger, anticipation, and disgust were less

frequent in the post-period, but there were also emotions (fear,

joy, love, optimism, pessimism, sadness) displaying an opposite

trend. The proportion of neutral tweets statistically decreased in the

post-period (p-value= 2E-04).

3.3.3. Topics
The above pre-/post-comparison shows that no statistically

significant changes were observed for eight topic labels. The two

remaining classes are the ”Other" category (less abundant after

the primary test-positive tweets) and the “Health” category (more

abundant in the post-period) (see Figure 4 and Table 3).

3.3.4. Symptoms
Figure 5 and Table 4 report the changes observed for a set of

12 symptoms commonly found in people infected with COVID-

19 (16). The most encountered symptoms in the post-period were

headache, fever and coughing, which were present in 39.3%, 33.7%

and 33.4% of the users reporting symptoms in the post-period,

TABLE 2 Emotion tags and pre-/post-comparisons.

Emotion Comparison Adjusted
p-value

Total
number of
occurrences

Anger Decrease 1E-07 1,542,110

Anticipation Decrease 1E-14 1,529,341

Disgust Decrease 9E-3 1,728,880

Fear Increase 1E-08 233,686

Joy Increase 2E-02 2,448,784

Love Increase 3E-16 633,189

Neutrality Decrease 4E-4 613,382

Optimism Increase 1E-10 1,959,469

Pessimism Increase 1E-18 242,033

Sadness Increase 1E-68 628,846

Surprise Unchanged 8.8E-01 94,519

Trust Unchanged 9.8E-01 13,245

“Comparison” and “Adjusted p-value” correspond to the results of the multiple Wilcoxon

signed-rank tests. The total number of occurrences is the number of tweets having the

respective tag in the observation period of all the users.

respectively. All the symptoms were more present in the post-

period, with the exception of the least reported ones (myalgia and

malaise) which had very low counts overall (12 and 38 occurrences

for myalgia and malaise, respectively).

Table 5 outlines the prevalence of the seven most frequent

symptoms according to a medical study of COVID-19 cases
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FIGURE 4

Pre-/post-comparison for the categories of topics. This figure shows the non-parametric confidence intervals and the estimated pseudomedians of

the di�erences between the proportions in the post-period and the ones in the pre-period.

TABLE 3 Pre-/post-comparisons for the possible topics assigned to the

tweets.

Topic Comparison Adjusted
p-value

Total
number of
occurrences

Business and

industry

Unchanged 3.0E-01 21,016

Computers and

internet and

electronics

Unchanged 9.1E-01 2,364

Education and

reference

Unchanged 4.0E-01 4,429

Entertainment

and music

Unchanged 6.0E-01 58,610

Health Increase 3E-93 65,558

Other Decrease 8E-28 5,678,023

Politics and

government and

law

Unchanged 9.3E-01 15,779

Science and

mathematics

Unchanged 6.3E-01 4,052

Society and

culture

Unchanged 8.8E-01 6,867

Sport Unchanged 1.4E-01 91,853

The contents of the two central columns (“Comparison” and “Adjusted p-value”) correspond

to the results of Wilcoxon signed-rank tests.

reported to CDC between January 22, 2020 and May 30, 2020 (21).

This table also provides the results of a study in which Twitter self-

reports of symptoms were manually reviewed for a group of 203

users being infected by SARS-CoV-2 (study by Sarker et al.) (15).

The post-period of our study covered 3months (observation period

of 12 weeks), while Sarker et al. considered all the tweets posted

between February 1, 2020, and May 8, 2020.

According to our data analysis, all twelve selected symptoms

were most reported during the week of the test-positive tweets (see

Supplementary Figure 3), which marked the beginning of the post-

period. To determine whether the frequency increase in the post-

period had a lasting effect, we estimated the symptom-reporting

maximum duration (SRMD) for each symptom, as defined in

the Methods.

Table 6 indicates that the higher prevalence of five symptoms

(dizziness, headache, nausea, sore throat, and vomiting) in the

post-period lasted 1 week. Five other symptoms (chest pain,

coughing, dyspnea, fatigue, and fever) were characterized by a

longer symptom-reporting duration (up to 4 weeks). In particular,

the duration of the increase of dyspnea- and fatigue-related tweets

lasts up to the 3rd and 4th week in the post-period, respectively. The

symptom-reporting durations are partially in line with the duration

of symptoms for mild SARS-CoV-2 infections, which has been

estimated (29) as 31± 26 days for fatigue, 19± 22 days for dyspnea,

14 ± 13 days for coughing, 12 ± 6 days for nausea/vomiting, 11 ±

15 days for headache. On the other hand, the 2-week duration of

fever reporting on Twitter is longer than the 6± 9 days duration of

the symptom, and the 1-week duration of sore throat reporting is

shorter than the 13± 17 days symptom.

4. Discussion

In this work we were interested in gaining insights into the

content changes following self-reports of SARS-CoV-2 infection

on Twitter. We used a large dataset of tweets posted by users
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FIGURE 5

Pre-/post-comparison for symptom tags. This figure shows the non-parametric confidence intervals and the estimated pseudomedians of the

di�erences between the proportions in the post-period and the ones in the pre-period.

TABLE 4 Pre-/post-comparisons for the set of selected symptom tags.

Symptom Comparison Adjusted
p-value

Total number of
occurrences

Percentage of users reporting the
symptom in the post-period [%]

Chest pain Increase 2E-12 403 7.5

Coughing Increase 1E-88 2,177 33.4

Dizziness Increase 4E-4 99 1.9

Dyspnea Increase 4E-18 296 6.2

Fatigue Increase 6E-41 1,028 19.0

Fever Increase 5E-93 2,262 33.7

Headache Increase 2E-39 2,701 39.3

Malaise Unchanged 6.9E-01 38 0.7

Myalgia Unchanged 8.8E-01 12 0.1

Nausea Increase 3E-08 806 12.3

Sore throat Increase 1E-15 464 7.8

Vomiting Increase 4E-02 298 4.9

The contents of the second and third columns (“Comparison,” “Adjusted p-value”) correspond to the results of the multiple Wilcoxon signed-rank tests.

who claimed to be infected between March 2020 and July 2021.

Self-reports of infections were identified with an ad-hoc regular

expression minimizing the presence of false positives, as we

prioritized specificity over sensitivity. The correlation between the

volume of self-reports detected on Twitter with the COVID-19 case

numbers in the major English-speaking countries was high, which

supports our assumption that the thus-identified tweets are indeed

related to confirmed SARS-CoV-2 infections.

A recent study pointed out the predominance of negative

emotions (anxiety, fear and sadness) on Twitter during the onset

of the COVID-19 pandemic (30) with respect to a 2019 baseline

(11). By applying a state-of-the art emotion classifier (24), we found

that sadness was one of the two most represented emotions in

self-reports of SARS-CoV-2 infections over the entire time range

(March 2020 to July 2021). Nevertheless, our dataset also included

a large proportion of tweets conveying optimistic content; this may

reflect the effort of infected people to express positivity and hope

through social media.

The prevalence of five symptoms (coughing, fever, myalgia,

dyspnea, and sore throat) was underestimated in our results

with respect to a CDC report (21), while the respective values

for the prevalence of headache and nausea were consistent with
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TABLE 5 Comparison of the results obtained in the current study with

two external studies: (i) the prevalence of symptoms in COVID-19 cases

according to a medical study of cases reported to CDC between January

22, 2020 and May 30, 2020 (21); (ii) the results of a study based on

manually reviewed Twitter data (15).

Symptom Symptom
prevalence

Percentage of
users reporting

a given
symptom in the
post-period [%]

Percentage
values in
Sarker
et al.

Coughing 50.3 33.4 48.8

Fever 43.1 33.7 55.7

Myalgia 36.1 0.1 4.9

Headache 34.4 39.3 31.5

Dyspnea 28.5 6.2 30.5

Sore throat 20.0 7.8 20.2

Nausea 11.5 12.3 11.1

TABLE 6 SRMDs of SARS-CoV-2 symptoms.

Symptom SRMD (weeks) p-value

Chest pain 2 1.7E-01

Coughing 2 2.3E-01

Dizziness 1 1.8E-01

Dyspnea 3 1.1E-01

Fatigue 4 1.5E-01

Fever 2 2.1E-01

Headache 1 2.3E-01

Nausea 1 3.2E-01

Sore throat 1 7.0E-01

Vomiting 1 8.1E-01

An SRMD of n weeks means that the symptom-reporting duration is estimated to be ≤ n

weeks. The reported p-values are those of the Wilcoxon signed-rank tests which no longer

indicated pre-/post-changes (see Section 2.8). E.g., The SRMD of Chest Pain is 2 weeks

because the increase of Chest Pain reporting was not statistically significant when removing

the first 2 weeks from the post-period.

this same report. In contrast, another study about self-reports of

symptoms by Sarker et al. (15) reported percentage values (see

rightmost column of Table 5) that are well aligned with the actual

values of symptom prevalence found in the medical literature (21),

confirming that Twitter can be valuable data source. Still, the self-

reporting of symptoms in studies based on social media data is

not systematic, which may affect the results. The gap between

our results and these two studies (15, 21) points to a suboptimal

sensitivity of our methodology, which may be a consequence of

our attempt to maximize the specificity of symptom annotations.

Finally, it is worth noting that both Sarker et al.’s study (15)

and the CDC report (21) were produced during the early phase

of the pandemic (between February 2020 and June 2020, that

is, when most tested people were likely to have more severe

symptoms as vaccines were not available yet), whereas our study

was based on symptom reports from March 2020 up to October

2021. The symptom prevalence may have shifted over time due to

changing testing strategies, the effects of the COVID-19 vaccination

campaigns, and the evolving properties of the predominant SARS-

CoV-2 strains.

Furthermore, our analysis shows that 10 out of the 12 analyzed

symptoms were more represented in the post-period as compared

to the pre-period. While half of the increases could be attributed to

more frequent mentions in the very same week of the infection self-

reports (dizziness, headache, nausea, vomiting, and sore throat),

some others were longer-lasting (fatigue, dyspnea, chest pain,

coughing, and fever). The number of weeks characterized by an

increased symptom-reporting prevalence was in good agreement

with the observed duration of clinical symptoms in COVID-19

mild cases (29). Even if we were not able to assess whether the

collected tweets were actually related to SARS-CoV-2 infections, the

significant increase of symptoms self-reports and the consistency

with clinical symptom durations suggest that we captured relevant

information related to confirmed infections. This approach can

be used to automatically gain knowledge about symptomatology

from Twitter data, to improve and inform traditional public health

surveillance and studies.

One of the strengths of our study is that we retrieved the full

public Twitter timeline for each user. This way, we were able to

get an unbiased view on their behavior on Twitter, without the

constraints that could have been induced by keywords-based tweets

collections. Furthermore, we built a pre-infection baseline of tweets

which allowed us to analyze the content changes of infected Twitter

users. A key limitation of the study is that the data are entirely

observational and derived from short-text messages, whichmay not

grasp the full complexity of the symptoms. In addition, our method

only finds a subset of users who were willing to voluntarily disclose

their SARS-CoV-2 infection on Twitter, which may represent a

biased sample. While the number of users sampled with our

method is strongly correlated with official COVID-19 numbers, the

results of the analysismay not be fully representative of the behavior

before and after a SARS-CoV-2 infection in the general population.

We do note, however, that the symptomatic observations from

the sample are broadly in line with reported observations from

clinical studies. Finally, while manually curated approaches seem

to provide more accurate estimates of symptom prevalence, such

methods are practically inapplicable to large volumes of data, but

this tradeoff between data accuracy and volume will be reduced in

the future as NLP methods improve.

Our study shows how social media can be used to aggregate

cohorts of digital users on which to investigate the effects of

infectious diseases. By comparing the content posted by Twitter

users before and after self-reported SARS-CoV-2 infections, we

observed an increase of emotional and health-related content.

Additionally, we observed an increased proportion of symptom-

containing tweets after SARS-CoV-2 infections were reported, and

we found that the number of weeks accounting for the increase

in symptom reports was in line with the duration of COVID-

19 symptoms estimated in clinical studies. We therefore believe

that in the same way that digital public health surveillance can be

useful to detect acute health issues (31), the proposed approachmay

also be useful for slowly emerging long-term health issues such as

post-acute sequelae of COVID-19. In particular, the full spectrum

of symptoms could be searched for with a NER-based pipeline

similar to ours, to identify all the possible symptoms associated
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to an infection. In general, digital health surveillance for novel

phenomena that are slow to be recognized by themedical system (as

was the case for post-acute sequelae of COVID-19) can be a useful

complement to conventional health surveillance systems.
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