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Abstract: Background: Microvascular invasion (MVI) is a necessary step in the metastatic evolution
of hepatocellular carcinoma liver tumors. Predicting the onset of MVI in the initial stages of the
tumors could improve patient survival and the quality of life. In this study, the possibility of using
radiomic features to predict the presence/absence of MVI was evaluated. Methods: Multiphase
contrast-enhanced computed tomography (CECT) images were collected from 49 patients, and the
radiomic features were extracted from the tumor region and the zone of transition. The most-relevant
features were selected; the dataset was balanced, and the presence/absence of MVI was classified.
The dataset was split into training and test sets in three ways using cross-validation: the first applied
feature selection and dataset balancing outside cross-validation; the second applied dataset balancing
outside and feature selection inside; the third applied the entire pipeline inside the cross-validation
procedure. Results: The features from the tumor areas on CECT showed both the portal and the
arterial phases to be the most predictive. The three pipelines showed receiver operating characteristic
area under the curve (ROC AUC) scores of 0.89, 0.84, and 0.61, respectively. Conclusions: The
results obtained confirmed the efficiency of multiphase CECT and the ZOT in detecting MVI. The
results showed a significant difference in the performance of the three pipelines, highlighting that a
non-rigorous pipeline design could lead to model performance and generalization capabilities that
are too optimistic.

Keywords: radiomics; artificial intelligence; machine learning; medical imaging; survival

1. Introduction
Hepatocellular carcinoma (HCC) is the most-common primary hepatic malignant

tumor and represents an important global health problem, currently being the third-leading
cause of cancer-related deaths in the general population and the first among cirrhotic
patients [1]. Furthermore, its incidence has continuously increased and since 1980, and
the number of cases has more than tripled. There are several treatment options for HCC;
nevertheless, those that are associated with the highest 5-year survival rate, such as ab-
lation, surgical resection, and liver transplantation (LT), can only be applied in the very
early and the early stages of the disease [2], accounting for fewer than 20% of cases at
presentation [3]. Unfortunately, all these potentially curative treatments are burdened
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by a high rate of recurrence [4], which negatively impacts overall survival [5,6]. For
example, the cumulative tumor recurrence rates of HCCs  3 cm at three years after
ablation in patients in the low-, middle-, and high-risk groups were 68.2%, 100%, and
100%, respectively [7]. Five-year HCC recurrence complicates 35% of cases after LT and
70% of cases after hepatic resection [8–11]. Vascular invasion, both macroinvasion and
microvascular invasion (MVI), has been universally recognized as a predictor of recurrence
and poor overall survival after treatment for HCC [4,12]. For example, vascular inva-
sion is currently considered to be more informative than the Milan Criteria in predicting
the prognosis [5,6,13].

The pre-treatment clinical significance of the two forms of vascular infiltration is clearly
different. Macrovascular infiltration can be correctly diagnosed by imaging in the pre-
treatment phase, thus allowing correctly classifying those patients in the advanced stage and
directing them to the best treatment (systemic therapy) [2]. Conversely, the presence of MVI
can be confirmed only post-operatively by histopathological analysis [13–15]. Therefore, its
utility in the pre-treatment selection of patients to undergo the different types of treatment
is not possible since, even with state-of-the-art treatment, its diagnosis still remains post-
procedural. Moreover, in patients having the same Barcelona clinical liver cancer stage,
such as patients in the very early or the early stages, who are fit for surgery or ablation
and have the same tumor burden, it is important to differentiate those with the MVI of
HCC in order to choose the best treatment for each patient. For example, since MVI has
been proven to be one of the most-relevant prognostic factors for HCC recurrence after
surgical treatment [16,17], in recent years, much effort has been made to identify reliable
imaging findings in order to reach an accurate pre-procedural diagnosis of MVI in HCC
patients [16,18,19]. Unfortunately, to date, these criteria for a preoperative radiological
diagnosis of MVI in HCC have not been widely recognized and have not been reported in
the current guidelines for the management of HCC [2]. In fact, despite its clinical relevance,
the detection of MVI represents one of the most-difficult tasks to achieve in conventional
imaging analysis since it can be obtained only indirectly, in relation to capsule disruption,
irregular tumor margins, peritumoral enhancement, etc. [13].

A possible explanation for failing to evolve towards the pre-treatment radiological
diagnosis of MVI is that it is merely based on direct observation by radiologists who rely
on contrast differences between adjacent tissues; however, these fade in the peritumor,
where the MVI is supposed to most frequently occur [17]. In addition, basic knowledge,
diagnostic experience, and work status are other factors that might potentially further limit
the accuracy of diagnosing MVI.

However, radiological images contain more information than what is visible to the
radiologist’s eye. Texture and, more in general, radiomic analysis of contrast-enhanced
CT (CECT) scans have already been applied by several authors in many medical image
pipelines [18–23], proving their efficiency as a valuable tool in aiding the clinical diagno-
sis [6] and in predicting patient prognosis [5,24].

Radiomics is a form of imaging analysis that uses a series of data mining and machine
learning (ML) algorithms to extract high-throughput information for the quantification of
the predictive and prognostic features associated with clinical outcomes [18,25]. Therefore,
the prediction of MVI on CT scans using radiomic analysis is considered to be an important
research topic, potentially being able to overcome the current radiologically based imaging
diagnosis in favor of the pre-treatment diagnosis of MVI in HCC. In particular, various
papers [18,26] have focused their attention on the peripheral area of HCC called the zone of
transition (ZOT), in which the CECT attenuation is lower than the attenuation of the solid
center of the tumor, but is still higher than the attenuation of the surrounding non-tumoral
tissue. The use of the ZOT in HCC radiomic analysis is motivated by the potential presence
of MVI in the penumbra zone [18,26].

The present study proposed radiomic feature extraction and ML pipelines to predict
MVI in HCC tumor volumes of interest (VOIs). A set of radiomic features was extracted
from the tumor VOI and the ZOT; three different pipelines were used to investigate the
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problem of data contamination. In the first pipeline, data pre-processing was carried
out, namely data balancing and feature selection before the training–test split, i.e., on the
entire dataset at the beginning of the analysis. In the second pipeline, the feature selection
step was moved inside the cross-validation procedure and the dataset balancing outside,
i.e., performing part of the pre-processing on the entire dataset and the other part on
the training set only. In the last pipeline, the pre-processing step was moved inside the
cross-validation procedure, i.e., after the data splitting into the training and test sets [27].
The three pipelines were applied to the radiomic features extracted from the CECT data,
monitoring the difference in model performance. The same pipelines were also applied to
a synthetic radiomic dataset in order to additionally validate the authors’ hypothesis. In
this way, it was verified that the performance observed depended only on the design of the
pipeline and not on specific dataset characteristics.

In the radiomic literature, it is possible to find several examples in which the analysis
has been carried in a way that introduces the cross-contamination between the training
and test datasets. The authors felt that this was a critical point in radiomic research, which
should be addressed in order to produce more reliable and reproducible results. For this
reason, in the present analysis, the importance of considering the data cross-contamination
was stressed.

2. Materials and Methods
2.1. Patient Selection

This study involved 49 patients selected from the Department of Experimental, Di-
agnostic and Speciality Medicine (DIMES) of the IRCCS Policlinic Sant’Orsola Malpighi
Hospital. This single-center retrospective study was approved by the Institutional Review
Board (No. 197/2020/Oss/AOUBo), and the requirement for informed consent was waived.
All procedures involving human participants were performed in accordance with the 1975
Declaration of Helsinki and its subsequent amendments.

The patients included met the following criteria:
(a) HCC diagnosis;
(b) CECT (at least in arterial and portal phases) before resection;
(c) MVI presence/absence confirmed by histological evaluation.

The CECT images were acquired using the following parameters: two different Multi-
Slice CTs (64 slices, GE VCT or PHILIPS Ingenuity), with keV range 100–120, and tube
current modulation with a low-quality index to optimize patient dose (slice thickness range
1–2 mm); the images were reconstructed with high-resolution kernels. The same dataset
was already introduced in the study of Tovoli et al. [28].

Of the patients selected, there were 38 males (77.6%), having an age distribution of
44/65/83 years (min/mean/max). The ages reported were those at the time of the CT scan
and radiological analysis. Six radiologists manually identified and labeled the nodules
using the ImageJ software [29] (accessed on 10 January 2021). An expert radiologist with
more than ten years of experience validated the annotations.

The radiologists identified a total of 55 nodules: 11 with microvascular invasion
(MVI+) and 44 without it (MVI�). The distribution of the nodule size was 0.8/2.0/3.0 mm
(min/mean/max).

The dataset used in this study was a subset of the data already presented by
Renzulli et al. [20].

2.2. Detection of the Zone of Transition
The identification of the ZOT allowed including the peritumoral area and overcoming

the limits of human segmentation. Currently, there is no standard definition of the ZOT;
many studies have used different approaches for its detection [18,20]. Three-dimensional
morphological erosions and dilations with a circular kernel of size 3 ⇥ 3 ⇥ 3 were applied
to the tumor volumes. The difference between the dilated and the eroded VOIs was defined
as the ZOT.
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Management and analyses of the CT scans were carried out using the SimpleITK [30]
python package (data accessed 14 July 2022). All the analyses were carried out using a
64-bit workstation machine (64 GB RAM memory and 1 CPU i9-9900K Intel, with 8 cores,
and a GeForce RTX 2070 SUPER NVIDIA GPU). From a computational point of view, the
extraction of a single ZOT VOI required less than 1 min on the authors’ server-grade ma-
chine.

2.3. Feature Extraction
A set of radiomic features was extracted from the manually identified VOIs and the

ZOT derived. The radiomic features extracted consisted of the 1st-order statistics, 3D shape-
based scores, 3D gray-level co-occurrence matrix statistics, gray-level run length matrix
statistics, gray-level size zone matrix, neighboring gray-tone difference matrix statistics,
and gray-level dependence matrix statistics. The whole set of features was extracted from
the original images and from the transformed images obtained by the application of wavelet
(W) and Laplacian of Gaussian (LoG) transformations. The same set of 1130 features was
extracted from the tumor VOIs and the tumor ZOT on both the arterial and the portal
phases. A set of 4520 features was collected for each nodule.

We used the Pyradiomics [31] python package for the extraction of the radiomic
features (data accessed 14 July 2022). From a computational point of view, the extraction of
radiomic features required fewer than 10 min on the authors’ server-grade machine.

2.4. Pipeline Overview
The MVI prediction can be considered to be a classification problem in which the two

classes are represented by MVI+ and MVI�.
Each radiomic feature was scaled according to the median and the interquartile range

of its distribution of values. Ridge regression was applied by selecting the 15 most-relevant
features according to the absolute values of their coefficient; the minority class (MVI+)
was then oversampled using the synthetic minority oversampling technique (SMOTE) [32],
with the aim of balancing the dataset classes. Finally, a classification was established
using support vector classification (SVC) with a linear kernel on the reduced and balanced
dataset. The choice of the SVC classifier model was determined by analyses carried out
during the preliminary phase of this study. For the sake of brevity, a comparison with other
classifier models was excluded from this study with the aim of focusing the attention on
the comparison of the pipelines developed. Due to the limited number of samples, the
prediction and evaluation were carried out using the leave-one-out (LOO) cross-validation
technique, and the prediction results were used to evaluate the model performance.

Three versions of this pipeline were introduced. In the first one (Pipeline 1), the
pre-processing was applied outside the cross-validation, i.e., on the entire dataset. In the
second one (Pipeline 2), the pre-processing step order was changed. The dataset balancing
was applied to the entire dataset, namely outside the cross-validation, followed by the
feature selection and classification applied after each splitting, i.e., only on the training data.
In the third one (Pipeline 3), the pre-processing part was applied inside the cross-validation
procedure, i.e., only on the training data. The schemes of the three proposed pipelines are
reported in Figure 1.

The three pipelines were tested on a synthetic dataset created using a toy model
generator provided by the scikit-learn package [33]. This was carried out to verify that the
authors’ assumption regarding the effect of data cross-contamination in radiomic analyses
also applied to more general contexts and was not an incidental effect induced by the
limited number of samples in the present dataset. The synthetic data model generator
creates normally distributed clusters of points on a hypercube of arbitrary dimension and
assigns an equal number of clusters to each class (2 in the present case). It introduces
interdependence between features and adds various types of noise to the data. The model
allows setting the number of classes and informative, redundant, and repeated features.
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Figure 1. Scheme of the three pipelines proposed. Starting from the CECT, the manual VOI, and
derived ZOT, the entire set of 4520 features was extracted. (a) Pipeline 1, feature selection and
data oversampling were carried out on the entire radiomic dataset. It was then classified using the
leave-one-out cross-validation, i.e., splitting the dataset into training and test sets, where the test set
consisted of only one sample. (b) Pipeline 2, the second version of the pipeline in which oversampling
was carried out on the entire dataset and feature selection and classification were carried out using
leave-one-out cross-validation, i.e., feature selection classification was carried out only on the training
dataset. (c) Pipeline 3, the third version of the pipeline, in which feature selection, oversampling, and
classification were carried out using leave-one-out cross-validation, i.e., feature selection and data
oversampling were carried out only on the training dataset.

Two-thousand features for 100 samples were randomly generated using the synthetic
data model generator. A number of informative features were used, realistically small as
compared to the noise, i.e., 20 features out of 2000. Eighty samples out of one-hundred
from Class 0 and twenty from Class 1 were generated, introducing an unbalancing between
the classes. In this way, a dataset was created having characteristics similar to a radiomic
dataset, i.e., low number of informative features, strongly correlated features, redundant
features, and a limited number of samples.
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The performance of each pipeline was estimated according to the following metrics:

Sensitivity =
TP

TP + FN
;

Specificity =
TN

TN + FP
;

Precision =
TP

TP + FP
;

Balanced Accuracy =
Sensitivity + Specificity

2
;

AUC = Area Under the Receiver Operative Characteristic (ROC) Curve.

where TP, TN, FP, and FN are the true positive, true negatives, false positives, and false
negative scores, respectively, and the AUC score is evaluated as the area under the ROC
curve, i.e., true positive rate vs. false positive rate.

We used the scikit-learn [33] and imbalanced-learn [34] python packages (accessed on
14 July 2022) for implementing all the ML analyses.

3. Results
MVI Prediction

The radiomic analysis on the features extracted from tumor and ZOT VOIs was carried
out using the schemes of the three proposed pipelines. In Table 1, the classification results
are shown.

Table 1. Evaluation metrics obtained by applying Pipelines 1, 2, and 3 to the radiomic dataset. For
each pipeline, the sensitivity, specificity, precision, balanced accuracy, and ROC AUC scores obtained
on the test sets are reported.

Method Sensitivity Specificity Precision Balanced Accuracy ROC AUC

Pipeline 1 1.00 0.79 0.83 0.90 0.89
Pipeline 2 0.93 0.77 0.80 0.85 0.84
Pipeline 3 0.18 0.79 0.18 0.47 0.61

For all the pipeline schemes, the features selected by the ridge and their importance in
the ridge feature selection were monitored. In Figure 2a, the absolute values of the ridge
coefficient for the 15 selected features are reported. In Figure 2b,c, the mean and standard de-
viation of the absolute value of the most-frequent 15 features selected by Pipelines 2 and 3
are reported. For each fold of the LOO cross-validation paradigm, the 15 most-informative
features were computed. The mean and standard deviation of the absolute values of the
ridge coefficient of the 15 most frequently selected features were computed.

Pipelines 1, 2, and 3 were applied to the synthetic dataset, and the results are reported
in Table 2.

Table 2. Evaluation metrics obtained by the application of Pipelines 1, 2, and 3 on the synthetic
radiomic dataset. The sensitivity, specificity, precision, balanced accuracy, and ROC AUC scores
obtained on the test sets are reported for each pipeline.

Method Sensitivity Specificity Precision Balanced Accuracy ROC AUC

Pipeline 1 0.89 0.79 0.81 0.84 0.89
Pipeline 2 0.89 0.75 0.78 0.82 0.89
Pipeline 3 0.68 0.81 0.46 0.75 0.78
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Figure 2. The importance of the 15 features selected according to the absolute value of the ridge
coefficients. For each feature selected, it is reported whether it belonged to the original image (O),
wavelet (W), or Laplacian of Gaussian (LoG). Moreover, whether they were computed from the CECT
in the arterial (A) or the portal (P) phase is specified as the tumor (VOI) or zone of transition (ZOT)
volumes. The features from the arterial phase, the portal phase, and the ZOT volume are highlighted
in red, blue, and bold, respectively. (a) Absolute values of the ridge coefficients for the 15 selected
features by Pipeline 1, i.e., computed considering the entire dataset. (b) The mean and standard
deviation of the absolute values of the ridge coefficients for the 15 most-frequent features selected by
Pipeline 2. (c) The mean and standard deviation of the absolute values of the ridge coefficient for the
15 most-frequent features selected by Pipeline 3.

4. Discussion
The procedure proposed in Pipeline 3 obtained an ROC AUC score of 0.61. This result

was in agreement with the hypothesis that radiomic features extracted from tumor VOIs
and the ZOT allowed identifying the presence of MVI from CT images. However, the
results obtained were not as good as other state-of-the-art results [18,19,21]. According to
the authors, this limit could have been due to the limited number of samples involved in the
study. This limit was a direct consequence of the single-center nature of the present study,
which reduced the possible heterogeneity of the samples and affected the generalization
capabilities of the pipelines in this study. Novel techniques capable of increasing the
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amount of data based on synthetic image generation have already been proposed in the
literature [35]; however, their use could introduce unpredictable biases in the radiomic
analysis and go beyond the aim of the present study. Furthermore, the dataset used in
this study involved small tumor VOIs, making the radiomic analysis more difficult [20].
Moreover, many studies have considered not only radiomic features, but also clinical
features [18,19,21]. The authors obtained notably better results using the scheme proposed
in Pipelines 1 and 2, achieving an ROC AUC score of 0.89 and 0.84, respectively. These
results are in agreement with the current state-of-the-art results [20,23] obtained with
equivalent pipelines.

The results obtained highlighted the criticality of the pre-processing step inside a
radiomic pipeline. The application of Pipeline 1 led to results 45% higher than Pipeline 3,
by simply excluding the pre-processing steps from the cross-validation procedure. In
fact, Pipeline 1 carried out the feature selection and oversampling using the entire set of
available data, introducing a putative source of cross-contamination of the training and
the test samples. The same behavior was observed when comparing Pipelines 2 and 3.
Pipeline 2 obtained results 37% higher than Pipeline 3, by excluding the oversampling
step from the cross-validation. The pipeline designs that carried out the oversampling
before splitting could show the contamination of the test set with the training data. In
both Pipeline 1 and Pipeline 2, the presence of almost redundant data in both the training
and the test sets introduced the probability of overfitting, producing classification results
that were too optimistic. He et al. and Zhang et al. [19,21] assessed model performance
with configurations equivalent to those presented in this study, i.e., they evaluated the
pipeline performances using both the training and the test datasets. Their results showed
a higher ROC AUC score for the pipeline tested on the training set, i.e., with a design
equivalent to the one presented in Pipelines 1 and 2. This behavior validated the authors’
hypothesis regarding cross-contamination and its effect on evaluating pipeline performance
and generalization capabilities. In this study, the different pipeline designs were presented
for the sake of completeness and a direct comparison of the present results with studies
already published.

Pipelines 1, 2, and 3 were applied to a synthetic dataset, obtaining ROC AUC scores
of 0.89, 0.89, and 0.78, respectively. Notably better results were observed using Pipeline 1
and Pipeline 2. This enforced the results obtained on the real radiomic dataset, confirming
the potential cross-contamination problem in general radiomic studies. The same behavior
observed on a synthetic dataset additionally validated the authors’ hypothesis, confirming
that cross-contamination is a methodology problem.

Pipelines 1, 2, and 3 identified the same set of features as the most relevant. It was
observed that the features extracted from the VOIs (11 out of 15) were prominent, with a
balancing between the portal (6) and the arterial (5) phases, depicting the importance of
multi-phase CECT acquisition, which allowed considering both the arterial and the portal
veins for the evaluation of the MVI lesions. This result confirmed the hypothesis proposed
regarding the stronger predictive value of multi-phase analysis. The pipelines selected
4 out of 15 features from the ZOT volumes; however, their coefficient relevance suggested
that the tumor penumbra could play a valuable role in MVI classification. This result was
in agreement with the biomedical evidence of possible MVI presence in ZOT volumes.

5. Conclusions
In this study, a radiomic pipeline was introduced for the automated identification

of MVI presence/absence using CT images, i.e., avoiding invasive procedures. Features
extracted from CECT scans related to the arterial and the portal phases were used.

The importance of using features from multiple CECT phases to identify the pres-
ence/absence of MVI was shown. The importance of including information from the
peritumoral volumes was highlighted: ZOT features were shown to be relevant for MVI
classification. Introducing radiomic analysis, also of the ZOT volumes, has the poten-
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tial to improve the robustness of the features extracted, providing information regarding
tumor proliferation.

The impact of data pre-processing on the final classification model was also high-
lighted. The application of feature selection and data oversampling on the entire dataset
introduced cross-contamination, leading to over-estimation of the classifier’s performance
and generalization capabilities. The results obtained by these types of pipelines could
be affected by biases, in particular for studies involving a limited number of patients. In
conclusion, more attention should be given to avoiding these possible sources of overfitting
during the design of radiomic pipelines.
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