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1 Introduction
Research in the analysis and geometry of simply connected nilpotent Lie groups has spread into several
directions, especially in the last decade. Carnot groups, or stratified groups equipped with a homogeneous
left invariant distance, are an important class of these nilpotent groups, which are metrically different from
Euclidean spaces or Riemannian manifolds, still maintaining a rich algebraic and metric structure.

Our aim is to compute the area of submanifolds in the Heisenberg groupℍn, which represents the sim-
plest model of a noncommutative stratified group. For different classes of C1, smooth submanifolds area
formulas are available; see [31] and the references therein. The question has new difficulties when we con-
sider “intrinsic regular submanifolds” ofℍn that need neither be C1 smooth nor Lipschitz with respect to the
Euclidean distance [22].

On the other hand, they are suitable level sets of continuously differentiable functions fromℍn toℝk. The
differentiability here is understood with respect to the group operation and dilations, i.e. the so-called Pansu
differentiability. Precisely, these level sets are definedwhen1 ≤ k ≤ n and the differential of the defining func-
tion is surjective. Theyare calledℍ-regular surfaces of lowcodimension inℍn (Definition2.19). These special
submanifolds inℍn and their characterizations have been studied under different perspectives. Wemention,
for instance, the papers [2, 6–8, 14], along with the lecture notes [35] and the references therein. An implicit
function theorem, proved in [14], states that everyℍ-regular surface can be locally seen as an intrinsic graph
with respect to a special semidirect factorization (Definition 2.7). Although the parametrizing mapping of
theℍ-regular surface is not Lipschitz continuous in the Euclidean sense, in [6] Arena and Serapioni proved
that it is uniformly intrinsically differentiable (Definition 2.15). Indeed, uniform intrinsic differentiability for

*Corresponding author: Valentino Magnani, Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127,
Pisa, Italy, e-mail: valentino.magnani@unipi.it
Francesca Corni, Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato, 5, 40126, Bologna, Italy,
e-mail: francesca.corni3@unibo.it



2 | F. Corni and V. Magnani, Area formula in Heisenberg groups

maps acting between suitable factorizing homogeneous subgroups has been largely studied, also in a broader
framework and from the viewpoint of nonlinear first order systems of PDEs [3, 4, 9, 12, 23].

We consider a vertical subgroup 𝕎 and a horizontal subgroup 𝕍 (Definition 2.2). We assume that
ℍn =𝕎 ⋊𝕍 (Definition 2.3) and we fix a parametrized ℍ-regular surface Σ with respect to (𝕎,𝕍), param-
etrized by ϕ and with defining function f (Definition 2.23). The following measure μ can be associated to Σ:
For every Borel set B ⊂ Σ, we have

μ(B) = ‖V ∧ N‖g ∫
Φ−1(B) JH f(Φ(n))J𝕍f(Φ(n)) dH2n+1−k

E (n), (1.1)

where the Jacobians JH f and J𝕍f are defined in (2.9) and (2.10), respectively,Φ(n) = nϕ(n) is the graphmap
associated to ϕ andH2n+1−k

E is the Euclidean Hausdorff measure. The factor ‖V ∧ N‖g takes into account the
“angle” between the multivectors N and V, which are associated with the domain and the codomain of the
implicit mapping, respectively.

The measure in (1.1) was introduced in [14], where Franchi, Serapioni and Serra Cassano proved that
it is equal to the centered Hausdorff measure restricted to Σ. Precisely, [14, Theorem 4.1] has been revised
in [35, Theorem 4.50], using a metric area formula for the centered Hausdorff measure [16]. The question
of finding an area formula for the spherical measure of a low codimensional ℍ-regular surface remained
unanswered. The present paper settles this question, proving an area formula for the spherical measure of Σ
in terms of the measure μ.

Let d be a fixed homogeneous distance in ℍn and let us consider the spherical measure S2n+2−k with
respect to d, according to (2.12).We can associate a geometric constant βd(Π) to a p-dimensional subspaceΠ
andadistance d that is called spherical factor.Essentially, it represents themaximal p-dimensional area of the
intersections ofΠwithmetric unit balls whose centers are suitably close to the origin (Definition 2.36). In our
area formula, the spherical factor is computed for the homogeneous tangent cones Tan(Σ, x) of Σ at the points
x ∈ Σ (Definition 2.20). Theorem 3.2 establishes the “upper blow-up” of the measure μ, proving that the
spherical factor of Tan(Σ, x) equals the (2n + 2 − k)-spherical Federer density of μ at x ∈ Σ (Definition 2.34),
namely

θ2n+2−k(μ, x) = βd(Tan(Σ, x)).
The previous equality represents the central technical tool of the paper. Indeed, if we combine Theorem 3.2
and the metric area formula of Theorem 2.35, we immediately obtain our main result, that is, the following
area formula for the spherical measure.

Theorem 1.1 (Area formula). If Σ is a parametrized ℍ-regular surface with respect to (𝕎,𝕍), then for every
Borel set B ⊂ Σ we have

μ(B) = ∫
B

βd(Tan(Σ, x)) dS2k+2−k(x), (1.2)

where the measure μ is defined in (1.1).

The previous integral formula also shows that themeasure μ does not depend on the factorization𝕎 ⋊𝕍 and
on the defining function f appearing in (1.1). In fact, when the factors𝕎 and 𝕍 of the semidirect product
of ℍn are orthogonal, then [9, Theorem 6.1] proves that the integrand in (1.1) can be written in terms of
intrinsic partial derivatives of the parametrization ϕ of Σ, namely the defining function f disappears. Thus,
the area formula takes the following form.

Theorem 1.2. Let Σ be a parametrized ℍ-regular surface with respect to (𝕎,𝕍). Let ϕ be the parametriza-
tion of Σ with respect to (𝕎,𝕍), according to Definition 2.23. If Φ(n) = nϕ(n) is the graph mapping and𝕎 is
orthogonal to𝕍, then for every Borel set B ⊂ Σ we have

∫
Φ−1(B) Jϕϕ(w) dH2n+1−k

E (w) = ∫
B

βd(Tan(Σ, x)) dS2k+2−k(x), (1.3)

where Jϕϕ is the natural intrinsic Jacobian of ϕ (Definition 2.30).
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At this point, it is worth giving some ideas about the proof of our main technical tool, that is, the “upper
blow-up” of Theorem 3.2. This type of blow-up appeared in codimension one, to compute the spherical Fed-
erer density of the perimeter measure [30]. In our higher codimensional framework, the proof of the upper
blow-up involves some new features. Three key aspects must be emphasized. First, rather unexpectedly, we
realize that the intrinsic differentiability of the parametrizing map ϕ (Theorem 2.27) is crucial to establish
the limit of the set (3.7). Second, we prove an “intrinsic chain rule" (Theorem 2.18) that permits us to con-
nect the kernel of Df with the intrinsic differential of ϕ, according to (3.9). However, to make our chain rule
work we have slightly modified the well-known notion of intrinsic differentiability associated to a factoriza-
tion, introducing the extrinsic differentiability (Definition 2.16). We will pay more attention to this notion of
differentiability and its associated chain rule in future investigations, since they may have an independent
interest. Third, we establish a delicate algebraic lemma for computing the Jacobian of projections between
two vertical subgroups that are complementary to the same horizontal subgroup (Lemma 3.1).

The area formulas (1.2) and (1.3) take a simple form when the homogeneous distance d is invariant
under suitable classes of symmetries. We refer to p-vertically symmetric distances (Definition 2.37) andmul-
tiradial distances (Definition 2.40). For instance, the Cygan–Korányi distance [10], the distances constructed
in [18, Theorem 2] and the distance d∞ of [14, Section 2.1] are examples of multiradial distances. Further-
more, the sub-Riemannian distance in the first Heisenberg group is 2-vertically symmetric. By combining
Theorem 1.1, Theorem 2.38 and Proposition 2.41, a simpler version of (1.2) can be immediately established.

Theorem 1.3. Let d be either a (2n + 1 − k)-vertically symmetric distance or amultiradial distance ofℍn. Let Σ
be a parametrizedℍ-regular surface with respect to (𝕎,𝕍) and let μ be defined as in (1.1). We have that

μ = ωd(2n + 1 − k)S2k+2−k Σ,

where ωd(2n + 1 − k) is the constant spherical factor introduced in Definition 2.39. Therefore, setting

S2n+2−kd = ωd(2n + 1 − k)S2n+1−k ,
we have

S2n+2−kd Σ = μ = ‖V ∧ N‖gΦ♯( JH fJ𝕍f ∘ Φ)H2n+1−k
E 𝕎. (1.4)

In the assumptions of the previous theorem, assuming in addition that𝕎 and𝕍 are orthogonal, formula (1.4)
can be rewritten as follows:

S2n+2−kd Σ(B) = ∫
Φ−1(B) Jϕϕ(w) dH2n+1−k

E (w) (1.5)

for any Borel set B ⊂ ℍn, where Jϕϕ is the intrinsic Jacobian of ϕ (Definition 2.30). The form of formula (1.5)
clearly reminds of the Euclidean area formula. Indeed, the Euclidean Hausdorff measure H2n+1−k

E can be
replaced by the Lebesgue measure L2n+1−k.

Some additional applications of our results concern the relationship between the spherical measure
and the centered Hausdorff measure. This study is treated in Section 4, where the main result is the equal-
ity between spherical measure and centered Hausdorff measure, assuming that the metric unit ball of the
homogeneous distance is convex (Theorem 4.2).

Concerning the more recent literature, a general form of the area formula can be written for suitably
“C1 smooth" intrinsic graphs in stratified groups [20, Theorem 1.1], using the Hausdorff measure or the
spherical measure. The proof mainly relies on a suitable application of measure theoretic area formulas [29]
(see also the developments of [24]). The upper blow-up of the Hausdorff (or spherical) measure of an intrinsic
graph leads to a natural notion of “area factor" [20, Lemma 3.2], which formally represents the Jacobian of
the graph mapping and extends the notions of Jacobian introduced in [1, 21, 25]. The approach of [20] can
be suitably adapted to obtain area formulas involving the centered Hausdorff measures, and hence using
suitable “centered area factors". Then an area formula for the centered Hausdorff measure of graphs of
intrinsic Lipschitz mappings can be obtained [5, Theorem 1.3], under the assumption on their a.e. intrinsic
differentiability.
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On the other hand, whenever a metric-algebraic notion of differentiability is available for the param-
etrization, it is reasonable to connect the measure of its image with its “suitable differential” by an explicit
formula for the Jacobian, getting a full area formula. Connecting the Jacobianwith the differential, and hence
allowing for an effective computation of the Hausdorff (or spherical) measure of a set, has been completely
achieved for intrinsic regular hypersurfaces in stratified groups. This result stems from the contribution of
many authors; see [4] for the last version of this one-codimensional area formula, along with the full list of
references. For one-codimensional intrinsic Lipschitz graphs, area formulas for the spherical measure are
obtained in [11] for stratified groups of step two; see also the references therein.

Parametrized intrinsic ℍ-regular submanifolds in Heisenberg groups essentially represent the first
higher codimensional case where the differential of the parametrization is connected to the measure of the
submanifold. For the centered Hausdorff measure, we refer to the works [9, 35]. The case of the spherical
measure is more delicate and relies on the techniques described above, which lead to the upper blow-up of
Theorem3.2. Although the problem of computing the “area factor" does not seem an easy task, due to the low
regularity of intrinsic graphs, we believe however that our scheme for the area formula in Heisenberg groups
has actually a wider scope of applications. For this reason, we have left such developments for subsequent
investigations.

Finally, we wish to mention that, by combining Theorem 1.1 and the deep Rademacher’s theorem for
intrinsic Lipschitz mappings in Heisenberg groups [36, Theorem 1.1], our area formula extends to intrin-
sic Lipschitz graphs [36, Theorem 1.3]. A similar extension is not automatic in general, since an interesting
example of a nowhere intrinsically differentiable Lipschitz graph can be constructed [19].

2 Definitions and preliminary results
The next sections will introduce notions, notations and basic tools that will be used throughout the paper.

2.1 Coordinates in Heisenberg groups

The purpose of this section is to introduce (2n + 1)-dimensional Heisenberg groups, along with the special
coordinates that allow us to identifyℍn withℝ2n+1. The Heisenberg groupℍn can be represented as a direct
sum of two linear subspaces

ℍn = H1 ⊕ H2

with dim(H1)= 2n and dim(H2)= 1, endowed with a symplectic form ω on H1 and a fixed nonvanishing
element e2n+1 of H2. We denote by πH1 and πH2 the canonical projections on H1 and H2, which are associated
with the direct sum.

We can give toℍn a structure of Lie algebra by setting

[p, q] = ω(πH1 (p), πH1 (q))e2n+1.
Then the Baker–Campbell–Hausdorff formula ensures that

pq = p + q + [p, q]2
defines a Lie group operation onℍn. For t > 0, the linear mapping δt : ℍn → ℍn such that

δt(w) = tkw if w ∈ Hk , k = 1, 2,

defines intrinsic dilation.
Given p ∈ ℍn, we denote by lp the translation by p. Any left invariant vector field on ℍn is of the form

Xv(p) = dlp(0)(v) for any p ∈ ℍn and some v ∈ ℍn, where we have identified ℍn with T0ℍn. Through the
Baker–Campbell–Hausdorff formula, one can check that the Lie algebra of left invariant vector fields Lie(ℍn)
is isomorphic to the given Lie algebra (ℍn , [ ⋅ , ⋅ ]).
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We fix a symplectic basis (e1, . . . , e2n) of (H1, ω), namely

ω(ei , en+j) = δij , ω(ei , ej) = ω(en+i , en+j) = 0
for every i, j = 1, . . . , n, where δij is the Kronecker delta. Thus, we have obtained a Heisenberg basis

B = (e1, . . . , e2n+1)
that allows us to identifyℍn withℝ2n+1. The associated linear isomorphism is defined by

πB : ℍn → ℝ2n+1, πB(p) = (x1, . . . , x2n+1),
for p = ∑2n+1j=1 xjej. We can read the given Lie product onℝ2n+1 as follows:

[(x1, . . . , x2n+1), (y1, . . . , y2n+1)] = πB([ 2n+1∑
i=1 xiei , 2n+1∑i=1 yiei])

= (0, . . . , 0,
n
∑
i=1(xiyi+n − xi+nyi)).

Then the group product takes the following form onℝ2n+1:
(x1, . . . , x2n+1)(y1, . . . , y2n+1) = (x1 + y1, . . . , x2n+1 + y2n+1 + n

∑
i=1 xiyi+n − xi+nyi2 ).

Taking into account the previous formula, in our coordinates we obtain the following basis of left invariant
vector fields:

Xj(p) = ∂xj −
1
2 xj+n∂x2n+1 , j = 1, . . . , n,

Yj(p) = ∂xn+j +
1
2 xj∂x2n+1 , j = 1, . . . , n,

T(p) = ∂x2n+1 .

They clearly constitute a basis (X1, . . . , X2n+1) of Lie(ℍn) such that Xj(0) = ej for every j = 1, . . . , 2n + 1. Any
linear combination of X1, . . . , X2n is called a left invariant horizontal vector field ofℍn.

2.2 Metric structure

Wefixa scalar product ⟨ ⋅ , ⋅ ⟩ thatmakes ourHeisenberg basisB = (e1, . . . , e2n+1) orthonormal. In the sequel,
any Heisenberg basis will be understood to be orthonormal. We denote by | ⋅ | both the Euclidean metric
on ℝ2n+1 and the norm induced by ⟨ ⋅ , ⋅ ⟩ on ℍn. The symmetries of the Heisenberg group ℍn are detected
through the isometry

J : H1 → H1

that is defined by the Heisenberg basis

J(ei) = en+i and J(en+i) = −ei
for all i = 1, . . . , n. It is then easy to check that

⟨p, q⟩ = ω(p, Jq) and J2 = −I

for all p, q ∈ H1.
A homogeneous distance d onℍn is a function d : ℍn ×ℍn → [0, +∞) such that

d(zx, zy) = d(x, y) and d(δt(x), δt(y)) = td(x, y)
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for every x, y, z ∈ ℍn and t > 0. Any two homogeneous distances are bi-Lipschitz equivalent. We also intro-
duce the homogeneous norm ‖x‖ = d(x, 0), x ∈ ℍn, associated to a homogeneous distance d. Notice that this
norm satisfies

‖xy‖ ≤ ‖x‖ + ‖y‖ and ‖δrx‖ = r‖x‖

for x, y ∈ ℍn and r > 0.
By identifying T0ℍn withℍn and by left translating the fixed scalar product ⟨ ⋅ , ⋅ ⟩ onℍn, we obtain a left

invariant Riemannian metric g onℍn. Its associated Riemannian norm is denoted by ‖ ⋅ ‖g. We may restrict
the identification of T0ℍn withℍn to the so-called horizontal subspace, by identifying H1 with

H0ℍn ⊂ T0ℍn .

Then thehorizontal fiber at p ∈ ℍn isHpℍn = dlp(0)(H0ℍn). The collectionof all horizontal fibers constitutes
the so-called horizontal subbundle Hℍn. If we restrict the left invariant metric g to the horizontal subbundle
Hℍn, we obtain a scalar product on each horizontal fiber, that is, the sub-Riemannian metric. This leads in
a standard way to the so-called Carnot–Carathéodory distance, or sub-Riemannian distance [17], which is an
example of homogeneous distance.

2.3 Differentiability and factorizations

We have different notions of differentiability in ℍn and general Carnot groups, starting from the notion of
Pansu differentiability [33]. Throughout the paper, we fix a homogeneous distance d. Let Ω ⊂ ℍn be an open
set, let f : Ω → ℝk, x ∈ Ω and v ∈ H1. If there exists

lim
t→0 f(x(tv)) − f(x)t

∈ ℝk ,

thenwe say that it is the horizontal partial derivative at x along Xv, that is, the unique left invariant vector field
such that Xv(0) = v. The above limit is denoted by Xv f(x). Notice that Xv is precisely a left invariant horizontal
vector field. We say that f ∈ C1h(Ω,ℝ

k) if for every x ∈ Ω and every horizontal vector field X ∈ Lie(ℍn) the
horizontal derivative Xf(x) exists and is continuous with respect to x ∈ Ω.

A linear mapping L : ℍn → ℝk that is homogeneous, i.e. tL(v) = L(δtv) for all t > 0 and v ∈ ℍn, is an
h-homomorphism, which stands for “homogeneous homomorphism”. If there exists an h-homomorphism
L : ℍn → ℝk that satisfies

|f(xw) − f(x) − L(w)| = o(d(w, 0)) as d(w, 0)→ 0,

then it is unique and is called the h-differential, or Pansu differential, of f at x. We denote it by Df(x). Notice
that f ∈ C1h(Ω,ℝ

k) if and only if it is everywhere Pansu differentiable and x → Df(x) is continuous as a map
from Ω to the space of h-homomorphisms; see, for instance, [27, Section 3].

Definition 2.1. Let Ω ⊂ ℍn be an open set and let f ∈ C1h(Ω,ℝ). We call the unique vector ∇H f(x) of H1 such
that Df(x)(z) = ⟨∇H f(x), z⟩ for every z ∈ ℍn the horizontal gradient of f at x ∈ Ω.

When differentiability meets the factorizations of Heisenberg groups, the notion of intrinsic differentiability
comes up naturally; see [35] for more information. Now, we introduce some algebraic properties of factoriza-
tions inℍn in order to define intrinsic differentiability and its basic properties.

Definition 2.2. If a Lie subgroup of ℍn is closed under intrinsic dilations, we call it a homogeneous sub-
group.Homogeneous subgroups ofℍn containing H2 are called vertical subgroups. Homogeneous subgroups
contained in H1 are called horizontal subgroups.

It is easy to realize that any homogeneous subgroup ofℍn is either horizontal or vertical. We also notice that
normal homogeneous subgroups ofℍn coincide with vertical subgroups.

Definition 2.3. Let𝕎 and 𝕍 be a vertical subgroup and a horizontal subgroup of ℍn, respectively. We say
thatℍn is the semidirect product of𝕎 and𝕍 ifℍn =𝕎𝕍 and𝕎 ∩𝕍 = {0}. In symbols,wewriteℍn =𝕎 ⋊𝕍.
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Definition 2.4. Let𝕄,𝕎 and𝕍 be homogeneous subgroups ofℍn such that

ℍn =𝕄 ⋊𝕍 =𝕎 ⋊𝕍. (2.1)

The semidirect product𝕎 ⋊𝕍 automatically yields the unique projections

π𝕎 : ℍn →𝕎 and π𝕍 : ℍn → 𝕍
such that x = π𝕎(x)π𝕍(x) for every x ∈ ℍn. If necessary, to emphasize the dependence on the semidirect
factorization we will also introduce the notations π𝕎,𝕍𝕎 = π𝕎 and π𝕎,𝕍𝕍 = π𝕍. The same holds for𝕄 ⋊𝕍. We
define the following restrictions:

π𝕎,𝕍𝕎,𝕄 = π𝕎,𝕍𝕎 |𝕄:𝕄→𝕎 and π𝕄,𝕍𝕄,𝕎 = π𝕄,𝕍𝕄 |𝕎:𝕎→𝕄.
Remark 2.5. The uniqueness of the factorizations (2.1) implies that both restrictions π𝕎,𝕍𝕎,𝕄 and π𝕄,𝕍𝕄,𝕎 are
invertible and

π𝕎,𝕍𝕎,𝕄 = (π𝕄,𝕍𝕄,𝕎)−1. (2.2)

Ifℍn =𝕎 ⋊𝕍, then, by the local compactness ofℍn, it is immediate to observe that there exists a constant
c0 ∈ (0, 1), possibly depending on𝕎 and𝕍, such that for all w ∈𝕎 and v ∈ 𝕍 the following holds:

c0(‖w‖ + ‖v‖) ≤ ‖wv‖ ≤ ‖w‖ + ‖v‖. (2.3)

Remark 2.6. Whenever two homogeneous subgroups𝕎 and𝕍 ofℍn satisfy

ℍn =𝕎𝕍 and 𝕎 ∩𝕍 = {0},

then one of them must be necessarily vertical and the other one must be horizontal.

Now, we recall some results and definitions about intrinsic graphs of functions between two homogeneous
subgroups. In the sequel,𝕎 and𝕍 denote a vertical subgroup and a horizontal subgroup, respectively, such
thatℍn =𝕎 ⋊𝕍. For more information, see [35].

Definition 2.7. For a nonempty set U ⊂𝕎 and ϕ : U → 𝕍, we define the intrinsic graph of ϕ as the set

graph(ϕ) = {wϕ(w) : w ∈ U}.

We also introduce the graph map Φ : U → Σ of ϕ by Φ(w) = wϕ(w) for all w ∈ U.

Remark 2.8. It is important to observe that the notion of intrinsic graph is invariant with respect to both
translations and dilations.

To study the action of translations on intrinsic graphs, we need the following definition.

Definition 2.9. Let us consider x ∈ ℍn. We define σx :𝕎→𝕎 as follows:

σx(w) = π𝕎(lx(w)) = xw(π𝕍(x))−1
for every w ∈𝕎. Given a set U ⊂𝕎 and a function ϕ : U → 𝕍, the translation of ϕ at x, ϕx : σx(U)→ 𝕍, is
defined by

ϕx(w) = π𝕍(x)ϕ(x−1wπ𝕍(x)) = π𝕍(x)ϕ(σx−1 (w)). (2.4)

Remark 2.10. The map σx is invertible on𝕎:

σx−1 (w) = x−1wπ𝕍(x−1)−1 = x−1wπ𝕍(x) = σ−1x (w).
Then, for w ∈ σx(U), we may also write

ϕx(w) = π𝕍(x)ϕ(σ−1x (w)).
Next, we recall the content of [6, Propositions 3.6].
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Proposition 2.11. Let U ⊂𝕎 be an open set and let ϕ : U → 𝕍 be a function. Then we have

lx(graph(ϕ)) = {wϕx(w) : w ∈ σx(U)}.

Definition 2.12. Let U ⊂𝕎 be an open set and let ϕ : U → 𝕍 be a function. Let us take w̄ ∈ U and define
x = w̄ϕ(w̄). The function ϕ is intrinsically differentiable at w̄ if there exists an h-homomorphism L :𝕎→ 𝕍
such that

d(L(w), ϕx−1 (w)) = o(‖w‖) (2.5)

as w → 0. The function L is called the intrinsic differential of ϕ at w̄, it is uniquely defined and we denote it
by dϕw̄.

Remark 2.13. By virtue of [6, Proposition 3.23], in our setting any intrinsic linear function is actually an
h-homomorphism. We also observe that the assumption w̄ ∈ U implies that 0 ∈ σx−1 (U). In addition, σx−1 (U)
is an open set, and hence the limit (2.5) is entirely justified.

Remark 2.14. By [6, Proposition 3.25], condition (2.5) is equivalent to ask that for all w ∈ U,

‖dϕw̄(w̄−1w)−1ϕ(w̄)−1ϕ(w)‖ = o(‖ϕ(w̄)−1w̄−1wϕ(w̄)‖),
as ‖ϕ(w̄)−1w̄−1wϕ(w̄)‖→ 0.

Definition 2.15. Let U ⊂𝕎 be an open set and let ϕ : U → 𝕍 be a function. The map ϕ is uniformly intrin-
sically differentiable on U if for any point w̄ ∈ U there exists an h-homomorphism dϕw̄ :𝕎→ 𝕍 such that

lim
δ→0 sup‖w̄−1w‖<δ sup

0<‖w‖<δ d(dϕw̄(w), ϕΦ(w)−1 (w))
‖w‖

= 0,

where Φ is the graph map of ϕ.

The following definition is a slight modification of the notion of intrinsic differentiability.

Definition 2.16. Let U ⊂𝕎 be an open set and let F : U → ℝk with u ∈ U. We choose v ∈ 𝕍 and define
x = uv ∈ ℍn and the corresponding translated function

F𝕍x−1 (w) = F(σx(w)) − F(u)
for w ∈ σx−1 (U). We say that F is extrinsically differentiable at u with respect to (𝕍, x) if there exists an
h-homomorphism L :𝕎→ ℝk such that

|F𝕍x−1 (w) − L(w)|
‖w‖

→ 0 as w → 0. (2.6)

The uniqueness of L allows us to denote it by d𝕍x F.
The terminology extrinsic differentiability arises from the fact that the subgroup𝕍 and the point x cannot be
detected from the information we have on F. In a sense, they are “artificially added from outside”.

Remark 2.17. If in the previous definition we embedℝk inℍn, hence replacing it by𝕍, and choose v = F(u),
then x = uF(u) ∈ ℍn and we have the equalities

F𝕍x−1 (w) = F(σx(w)) − v = Fx−1 (w).
Thus, the numerator of (2.6) becomes equivalent to d(Fx−1 (w), L(w)), and the extrinsic differentiability of F
at u with respect to (𝕍, x) coincides with the intrinsic differentiability of F at u.

Extrinsic and intrinsic differentiability compensate each other in the following theorem.

Theorem 2.18 (Chain rule). Let us consider two open sets U ⊂𝕎, Ω ⊂ ℍn and two functions f : Ω → ℝk,
ϕ : U → 𝕍. Assume Φ(U) ⊂ Ω, where Φ is the graph function of ϕ. Let us consider x𝕎 ∈ U and set x = Φ(x𝕎).
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If f and ϕ are h-differentiable at x and intrinsically differentiable at x𝕎, respectively, then the composition
F = f ∘ Φ : U → ℝk, given by

F(u) = f(uϕ(u)) for all u ∈ U,

is extrinsically differentiable at x𝕎 with respect to (𝕍, x). For every w ∈𝕎, the formula

d𝕍x F(w) = Df(x)(wdϕx𝕎 (w)) (2.7)

holds. If in addition f(wϕ(w)) = c for every w ∈ U and some c ∈ ℝ, then we obtain

ker(Df(x)) = graph(dϕx𝕎 ). (2.8)

Proof. Let us first show that F is extrinsically differentiable at x𝕎 with respect to (𝕍, x). We define

L(w) = Df(x)(wdϕx𝕎 (w)) = Df(x)(w) + Df(x)(dϕx𝕎 (w))

for w ∈𝕎, which is an h-homomorphism. For w small enough, we have

|F𝕍x−1 (w) − L(w)|
‖w‖

=
|f(xwx−1𝕍 ϕ(xwx−1𝕍 )) − f(x) − L(w)|

‖w‖

=
|f(xwϕx−1 (w)) − f(x) − Df(x)(wdϕx𝕎 (w))|

‖w‖

≤
|f(xwϕx−1 (w)) − f(x) − Df(x)(wϕx−1 (w))|

‖w‖
+
|Df(x)(wϕx−1 (w)) − Df(x)(wdϕx𝕎 (w))|

‖w‖
.

Let us consider the last two addends separately:

|f(xwϕx−1 (w)) − f(x) − Df(x)(wϕx−1 (w))|
‖w‖

=
|f(xwϕx−1 (w)) − f(x) − Df(x)(wϕx−1 (w))|

‖wϕx−1 (w)‖
‖wϕx−1 (w)‖
‖w‖

→ 0

as ‖w‖→ 0, by the Pansu differentiability of f at x and by the validity of

‖wϕx−1 (w)‖
‖w‖

≤ 1 + ‖ϕx
−1 (w)‖
‖w‖

= 1 +
dϕx𝕎(

w
‖w‖)
 +
‖dϕx𝕎 (w)−1ϕx−1 (w)‖

‖w‖
≤ Cx

for all w ̸= 0 sufficiently small. It is indeed a consequence of the intrinsic differentiability of ϕ at x𝕎. For the
second addend, the previous intrinsic differentiability yields

|Df(x)(dϕx𝕎 (w)−1ϕx−1 (w))|
‖w‖

=
Df(x)(

dϕx𝕎 (w)−1ϕx−1 (w)
‖w‖ )

→ 0

as w → 0. This complete the proof of the first claim and also establishes formula (2.7).
Let us now assume the constancy of w → f(wϕ(w)) on U. Since we have proved that F is extrinsically

differentiable at x𝕎 with respect to (𝕍, x), being in this case F𝕍x−1 identically vanishing, we obtain
d𝕍x F(w) = o(‖w‖)

as w → 0. Therefore, for any u ∈𝕎, we have

‖Df(x)(δtudϕx𝕎 (δtu))‖ = o(t)

as t → 0. Due to the h-linearity, it follows that

Df(x)(udϕx𝕎 (u)) = 0.

We have proved the inclusion graph(dϕx𝕎 ) ⊂ ker(Df(x)) of homogeneous subgroups with the same dimen-
sion, and hence formula (2.8) is established.

The notion ofℍ-regular surface inℍn was first given in [14].
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Definition 2.19. Let Σ ⊂ ℍn be a set and let 1 ≤ k ≤ n. We say that Σ is anℍ-regular surface of low codimen-
sion, or a k-codimensional ℍ-regular surface, if for every x ∈ Σ there exist an open set Ω containing x and
a function f = (f1, . . . , fk) ∈ C1h(Ω,ℝ

k) such that the following conditions hold:
(i) Σ ∩ Ω = {y ∈ Ω : f(y) = 0}.
(ii) ∇H f1(y) ∧ ⋅ ⋅ ⋅ ∧ ∇H fk(y) ̸= 0 for all y ∈ Ω.

We can characterize the metric tangent cone of anℍ-regular surface of codimension k.

Definition 2.20. For A ⊂ ℍn and x ∈ A, the homogeneous tangent cone is the set

Tan(A, x) = {ν ∈ ℍn : ν = lim
h→∞ δrh (x−1xh), rh > 0, xh ∈ A, xh → x}.

From [14, Proposition 3.29], we have the following characterization.

Proposition 2.21. If Σ is anℍ-regular surface of low codimension and f ∈ C1h(Ω,ℝ
k) is as in Definition 2.19,

then
kerDf(x) = Tan(Σ, x)

for all x ∈ Σ ∩ Ω.

Given an open subset Ω ⊂ ℍn, a function f ∈ C1h(Ω,ℝ
k) and x ∈ Ω, we define the horizontal Jacobian

JH f(x) = ‖∇H f1(x) ∧ ⋅ ⋅ ⋅ ∧ ∇H fk(x)‖g , (2.9)

where the norm is given through our fixed left invariant metric g.
If f ∈ C1h(Ω,ℝ) and 𝕍 ⊂ H1 is a k-dimensional subspace, we set ∇𝕍f(x) as the unique vector of 𝕍 such

that Df(x)(z) = ⟨∇𝕍f(x), z⟩ for every z ∈ 𝕍. As a consequence, we can also define the Jacobian with respect
to𝕍, namely

J𝕍f(x) = ‖∇𝕍f1(x) ∧ ⋅ ⋅ ⋅ ∧ ∇𝕍fk(x)‖g . (2.10)

The next implicit function theorem is proved in [14, Theorem 3.27]. Its general version in the framework of
homogeneous groups is given in [28, Theorem 1.3].

Theorem 2.22 (Implicit function theorem). Let Ω ⊂ ℍn be an open set, let f ∈ C1h(Ω,ℝ
k) be a function and

consider a point x0 ∈ Ω such that J𝕍f(x0) > 0. We define the level set

Σ = {x ∈ Ω : f(x) = f(x0)}.

Setting π𝕎(x0) = η0 and π𝕍(x0) = υ0, there exist an open set Ω ⊂ Ω ⊂ ℍn with x0 ∈ Ω, an open set U ⊂𝕎
with η0 ∈ U, and a unique continuous function ϕ : U → 𝕍 such that ϕ(η0) = υ0 and

Σ ∩ Ω = {wϕ(w) : w ∈ U}.
Definition 2.23 (Parametrizedℍ-regular surface). Let Σ be anℍ-regular surface. We assume that there exist
a semidirect factorization ℍn =𝕎 ⋊𝕍, an open set U ⊂𝕎 and a uniformly intrinsically differentiable
ϕ : U → 𝕍 such that

Σ = {uϕ(u) ∈ ℍn : u ∈ U}.

We say that Σ is a parametrized ℍ-regular surface with respect to (𝕎,𝕍), where ϕ is the parametrization
of Σ. If Ω ⊂ ℍn is open, Σ ⊂ Ω and we have f ∈ C1h(Ω,ℝ

k) and x0 ∈ Σ such that f−1(f(x0)) ∩ U𝕍 = Σ and
Df(x) : ℍn → ℝk is surjective for every x ∈ Σ, then we say that f is a defining function of Σ.

Proposition 2.24. Let Ω ⊂ ℍn be open and let f ∈ C1h(Ω,ℝ
k) be such that f−1(f(x0)) = Σ for some x0 ∈ Ω. If

J𝕍f(x) > 0 for all x ∈ Σ, then Σ is a parametrizedℍ-regular surface with respect to (𝕎,𝕍) and f is a defining
function.

Proof. Wemay apply the implicit function theoremof [14, Proposition 3.13] at any point x ∈ Σ. Then locally Σ
is an intrinsic graph, and by the uniqueness of the implicit mapping, we can conclude that Σ actually is
entirely parametrized by a unique graphmapping. The uniform intrinsic differentiability of this parametriza-
tion follows from [6, Theorem 4.2]. As a result, Σ is a parametrizedℍ-regular surface with respect to (𝕎,𝕍)
and f is its defining function.
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A simple application of Theorem 2.18 is the following proposition.

Proposition 2.25. Let U ⊂𝕎 be open and assume that ϕ : U → 𝕍 is everywhere intrinsically differentiable.
Let Σ = {nϕ(n) : n ∈ U} and let Ω ⊂ ℍn be open such that Σ ⊂ Ω. If f : Ω → ℝk is everywhere h-differentiable
with

Σ = f−1(f(x0)) ∩ (U𝕍)
for some x0 ∈ U𝕍 and JH f(x) > 0 for all x ∈ Σ, then J𝕍f(x) > 0 for all x ∈ Σ.
Proof. We consider x = wϕ(w), so by Theorem 2.18 the function F = f ∘ Φ is extrinsically differentiable at w
with respect to (𝕍, x) and

0 = d𝕍x F(v) = Df(x)(vdϕx𝕎 (v)) = D𝕎f(x)(v) + D𝕍f(x)(dϕx𝕎 (v)),
where v ∈𝕎 and DS f(x) = Df(x)|S for any homogeneous subgroup S ofℍn. If by contradiction

D𝕍f(x) : 𝕍→ 𝕍
would not be a isomorphism, then its image T would have linear dimension less than k. Then the previous
equalities would imply that the image of D𝕎f(x) would be contained in T, and hence the same would hold
for the image of Df(x). This conflicts with the fact that Df(x) is surjective.

The following corollary is a straightforward consequence of the previous proposition.

Corollary 2.26. Ifℍn =𝕎 ⋊𝕍 is a semidirect product and f is a defining function of a parametrizedℍ-regular
surface Σ with respect to (𝕎,𝕍), then J𝕍f(x) > 0 for every x ∈ Σ.
We conclude this section by pointing out that the intrinsic graph in the implicit function theorem is suitably
differentiable.

Theorem 2.27 ([6, Theorem 4.2]). In the assumption of Theorem2.22,ϕ is uniformly intrinsically differentiable
on U.

2.4 Intrinsic derivatives

In this section,we recall some results about uniform intrinsic differentiability inHeisenberg groups. Through-
out this section, we assume that ℍn is a semidirect product𝕎 ⋊𝕍 with𝕎 orthogonal to 𝕍. The following
proposition ensures that we can always find a Heisenberg basis which is adapted to this factorization.

Proposition 2.28. We assume that 𝕍 is spanned by an orthonormal basis (v1, . . . , vk). Then k ≤ n and there
exists an orthonormal basis

(vk+1, . . . , vn , w1, . . . , wn , e2n+1)
of𝕎 such that

(v1, . . . , vn , w1, . . . , wn , e2n+1)
is a Heisenberg basis ofℍn.

Proof. Since𝕍 is commutative, an element v = J(w) with v, w ∈ 𝕍 satisfies

|v|2 = ⟨v, J(w)⟩ = −ω(v, w) = 0,

and therefore𝕍 ∩ J(𝕍) = {0}. We set wi = J(vi) ∈𝕎 for i = 1, . . . , k and define the 2k-dimensional subspace

𝕊1 = 𝕍 ⊕ J(𝕍) ⊂ H1.

We notice that dim(𝕊⊥1 ∩ H1) = 2(n − k). If k < n, we pick a vector vk+1 ∈ 𝕊⊥1 ∩ H1 of unit norm and define
wk+1 = Jvk+1. It is easily observed that both wk+1 and vk+1 are orthogonal to 𝕊1, so that

(v1, . . . , vk+1, w1, . . . , wk+1, e2n+1)
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is a Heisenberg basis of
𝕊2 ⊕ span{e2n+1},

where we have defined
𝕊2 = 𝕍 ⊕ span{vk+1} ⊕ J(𝕍 ⊕ span{vk+1}).

Indeed, the previous subspace has the structure of a (2k + 3)-dimensional Heisenberg group. One can iterate
this process until a Heisenberg basis ofℍn is found.

From now on, we assume that (v1, . . . , vn , w1, . . . , wn , e2n+1) is the Heisenberg basis provided by Proposi-
tion 2.28. We can identify𝕍 withℝk and𝕎 withℝ2n+1−k through the following diffeomorphisms:

i𝕍 : 𝕍→ ℝk , i𝕍( k
∑
i=1 xivi) = (x1, . . . , xk),

i𝕎 :𝕎→ ℝ2n+1−k ,
i𝕎(ze2n+1 + n

∑
i=k+1(xivi + yiwi) + k

∑
i=1 ηivi) = (xk+1, . . . , xn , η1, . . . , ηk , yk+1, . . . , yn , z).

We identify any function from an open subset U ⊂𝕎, ϕ : U → 𝕍, with the corresponding function from
an open subset Ũ ⊂ ℝ2n+1−k, ϕ̃ : Ũ → ℝk:

ϕ̃(w) = i𝕍(ϕ(i−1𝕎 (w))) for all w ∈ Ũ = i𝕎(U) ⊂ ℝ2n+1−k .
Any h-homomorphism L :𝕎→ 𝕍 can be identifiedwith the linearmap L̃ : ℝ2n+1−k → ℝk with respect to the
fixed basis. So it can be identified with a k × (2n − k)matrix ML with real coefficients such that

L(w) = MLπ(w)T

for every w ∈ ℝ2n+1−k, where π : ℝ2n+1−k → ℝ2n−k is the canonical projection on the first 2n − k components.
If U ⊂𝕎 is an open set and ϕ : U → 𝕍 is intrinsically differentiable at a point w ∈ U, we denote by

Dϕϕ(w) the matrix associated to dϕw and we call it intrinsic Jacobian matrix of ϕ at w. If U ⊂ ℝ2n+1−k is
an open set and ψ = (ψ1, . . . , ψk) : U→ ℝk is a function, we define the family of 2n − k vector fields:

Wψ
j =
{{{
{{{
{

(i𝕎)∗(Xj+k), j = 1, . . . , n − k
∇ψj−n+k = ∂ηj−n+k + ψj−n+k∂z , j = n − k + 1, . . . , n,
(i𝕎)∗(Yj+k), j = n + 1, . . . , 2n − k.

Definition 2.29 (Intrinsic derivatives). Let U ⊂𝕎 be an open set and let w̄ be a point of U. Let ϕ : U → 𝕍 be
a continuous function. For each j = 1, . . . , 2n − k, we say that ϕ has ∂ϕj -derivative at w̄ if and only if there
exists (α1,j , . . . , αk,j) ∈ ℝk such that for all integral curves γj : (−δ, δ)→ U ofWϕ

j with γj(0) = w̄ the limit

lim
t→0 ϕ(γj(t)) − ϕ(w̄)t

exists and is equal to (α1,j , . . . , αk,j). For all j = 1, . . . , 2n − k, we denote it by

∂ϕjϕ(w̄) =(
∂ϕjϕ1(w̄)

...
∂ϕjϕk(w̄)

) =(

α1,j
...

αk,j .
) .

The existence of continuous intrinsic derivatives actually characterizes the uniform intrinsic differentiability
[9, Theorem 5.7].

Definition 2.30. LetU ⊂𝕎be an open set. Letϕ : U → 𝕍be an intrinsically differentiable function at w̄ ∈ U.
We define the intrinsic Jacobian of ϕ at w̄ by

Jϕϕ(w̄) = √1 +
k
∑ℓ=1 ∑I∈Iℓ(Mϕ

I (w̄))2,
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where we have defined Iℓ as the set of multiindexes

{(i1, . . . , iℓ, j1, . . . , jℓ) ∈ ℕ2l : 1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < iℓ ≤ 2n − k, 1 ≤ j1 < j2 ⋅ ⋅ ⋅ < jℓ ≤ k}.
We have also introduced the minors

Mϕ
I (w̄) = det(

∂ϕi1ϕj1 (w̄) ⋅ ⋅ ⋅ ∂ϕiℓϕj1 (w̄)
...

. . .
...

∂ϕi1ϕjℓ (w̄) ⋅ ⋅ ⋅ ∂ϕiℓϕjℓ (w̄)

) .

2.5 Measures and area formulas

Ifℍn is endowed with a homogeneous distance d, we set

𝔹(x, r) = {y ∈ ℍn : d(x, y) ≤ r},

and for S ⊂ ℍn we set
diam(S) = sup{d(x, y) : x, y ∈ S}.

Notice that diam(𝔹(x, r)) = 2r for all x ∈ ℍn and r > 0.

Definition 2.31 (Carathéodory’s construction). LetF ⊂ P(ℍn) be a nonempty family of closed subsets ofℍn,
equipped with a homogeneous distance d. Let α > 0. If δ > 0 and A ⊂ ℍn, we define

ϕαδ(A) = inf {
∞
∑
j=0 cα diam(Bj)α : A ⊂ ∞⋃j=0 Bj , diam(Bj) ≤ δ, Bj ∈ F}. (2.11)

If F coincides with the family Fb of closed balls with respect to the distance d and we choose cα = 2−α
in (2.11), then

Sα(A) = sup
δ>0 ϕαδ(A) (2.12)

is the α-spherical measure of A ⊂ ℍn.

In the case that F is the family of all closed sets and k ∈ {1, . . . , 2n + 1}, we define

ck =
Lk({x ∈ ℝk : |x| ≤ 1})

2k
,

whereLk denotes the Lebesguemeasure. Then the corresponding k-dimensional Hausdorffmeasure is given
by

Hk
E(A) = sup

δ>0 ϕkδ(A),
where ℍn is equipped with the Euclidean distance induced through the identification with ℝ2n+1. These
measures are Borel regular on subsets ofℍn. For our purposes, it is useful to recall a less known Hausdorff-
typemeasure, first introduced in [34]. Given α ∈ [0,∞) and δ ∈ (0,∞), we define the α-dimensional centered
Hausdorff measure Cα of a set A ⊂ ℍn by

Cα(A) = sup
E⊂A Dα(E),

whereDα(E) = limδ→0+ Cαδ(E), and, in turn, Cαδ(E) = 0 if E = 0, and if E ̸= 0, we have
Cαδ(E) = inf {

∞
∑
i=0 rαi : E ⊂ ∞⋃i=0𝔹(xi , ri), xi ∈ E, diam(𝔹(xi , ri)) ≤ δ}.

Definition 2.32. Let α > 0, let x ∈ ℍn and let μ be a Borel regular measure on ℍn. We define the upper
α-density of μ at x by

Θ∗α(μ, x) = lim sup
r→0 μ(𝔹(x, r))

rα
. (2.13)
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The previous definition and terminology follow [13, 2.10.19].

Theorem 2.33 ([16, Theorem 3.1]). Let α > 0 and let μ be a Borel regular measure on ℍn such that there
exists a countable open covering ofℍn, whose elements have μ-finite measure. Let B ⊂ A ⊂ ℍn be Borel sets.
If Cα(A) <∞ and μ A is absolutely continuous with respect to Cα A, then we have that Θ∗α(μ, ⋅ ) is a Borel
function on A and

μ(B) = ∫
B

Θ∗α(μ, x) dCα(x).
We introduce now a crucial definition of density.

Definition 2.34. LetFb be the family of closed balls with positive radius inℍn endowedwith a homogeneous
distance d. Let α > 0, let x ∈ ℍn and let μ be a Borel regular measure onℍn. We call the real number

θα(μ, x) = inf
ϵ>0 sup{ 2αμ(𝔹)

diam(𝔹)α : x ∈ 𝔹 ∈ Fb , r < ϵ}

the spherical α-Federer density of μ at x.

This density naturally appears in representing a Borel regular measure that is absolutely continuous with
respect to the α-dimensional spherical measure.

Theorem 2.35 ([31, Theorem 7.2]). Let α > 0 and let μ be a Borel regular measure onℍn such that there exists
a countable open covering of ℍn whose elements have μ-finite measure. If B ⊂ A ⊂ ℍn are Borel sets, then
θα(μ, ⋅ ) is a Borel function on A. If in addition Sα(A) <∞ and μ A is absolutely continuous with respect to
Sα A, then

μ(B) = ∫
B

θα(μ, x) dSα(x).

Definition 2.36 (Spherical factor). Let d be a homogeneous distance inℍn. If Π ⊂ ℍn is a linear subspace of
topological dimension p, then the spherical factor of Π with respect to d is

βd(Π) = max
z∈𝔹(0,1)Hp

E(Π ∩ 𝔹(z, 1)).

Whenwe deal with a homogeneous distance d that preserves some symmetries, then the spherical factor can
become a geometric constant. The following definition detects those homogeneous distances giving a con-
stant spherical factor. It extends [30, Definition 6.1] to higher codimension.

Definition 2.37. We refer to the fixed graded scalar product ⟨ ⋅ , ⋅ ⟩ on ℍn and we assume that there exists
a familyF ⊂ O(H1) of isometries such that for any couple of (p − 1)-dimensional subspaces S1, S2 ⊂ H1, there
exists L ∈ F that satisfies the condition

L(S1) = S2.

Let d be a homogeneous distance onℍn and let p = 1, . . . , 2n. We say that d is p-vertically symmetric if p = 1
or p ≥ 2 and the following conditions hold. Taking into account that H1 and H2 are orthogonal, we introduce
the class of isometries

O = {T ∈ O(ℍn) : T|H2= Id|H2 , T|H1∈ F}.

We also assume the following conditions:
∙ πH1 (𝔹(0, 1)) = 𝔹(0, 1) ∩ H1 = {h ∈ H1 : θ(|πH1 (h)|) ≤ r0} for some monotone non-decreasing function

θ : [0, +∞)→ [0, +∞) and r0 > 0.
∙ T(𝔹(0, 1)) = 𝔹(0, 1) for all T ∈ O.

More information on p-vertically symmetric distances can be found in [32]. For instance, the sub-Riemannian
distance in the Heisenberg group is vertically symmetric. Vertically symmetric distances were already intro-
duced in [30].

The next theorem specializes [32, Theorem 1.1] to Heisenberg groups.
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Theorem 2.38. If p = 1, . . . , 2n + 1 and d is a p-vertically symmetric distance onℍn, then the spherical fac-
tor βd(𝕎) is constant on every p-dimensional vertical subgroup𝕎 ⊂ ℍn.

The previous theorem motivates the following definition.

Definition 2.39 (Notation for constant spherical factors). Let Np be the family of all p-dimensional vertical
subgroups ofℍn. We consider a homogeneous distance d. We assume that the spherical factor βd(S) remains
constant as S varies in Np (this means that d is rotationally symmetric with respect to Np). We denote the
constant spherical factor by ωd(p), without indicating the classNp.

Definition 2.40 ([31, Definition 8.5]). Let d be a homogeneous distance onℍn. We say that d ismultiradial if
there exists a function θ : [0, +∞)2 → [0, +∞), which is continuous and monotone non-decreasing on each
single variable, with

d(x, 0) = θ(|πH1 (x)|, |πH2 (x)|).

The function θ is also assumed to be coercive in the sense that θ(x)→ +∞ as |x|→ +∞.

Proposition 2.41. If d : ℍn ×ℍn → [0,∞) is multiradial, then it is also p-vertically symmetric for every
p = 1, . . . , 2n + 1.

Amore general statement can be found in [32]. Onemay also check that both d∞ and the Cygan–Korányi dis-
tance aremultiradial. One can find conditions under which the spherical factor has a simpler representation.
The next theorem is established in [32, Theorem 1.4].

Theorem 2.42. If p = 1, . . . , 2n + 1 and d is a homogeneous distance inℍn whose unit ball 𝔹(0, 1) is convex,
then for every p-dimensional vertical subgroup𝕎 we have

βd(𝕎) = H
p
E(𝕎 ∩ 𝔹(0, 1)).

3 Upper blow-up of low codimensionalH-regular surfaces
In this section, we prove the main technical tool of the paper, that is, the equality between spherical Federer
density and spherical factor, established in Theorem 3.2. The next lemma will be important for the proof
of our technical result. It gives a formula of how the area transforms under a suitable linear isomorphism
between two vertical groups.

Lemma 3.1. We consider two vertical subgroups𝕄,𝕎 ofℍn and a k-dimensional horizontal subgroup𝕍 ⊂ ℍn

such that
ℍn =𝕄 ⋊𝕍 =𝕎 ⋊𝕍.

We introduce the multivectors

V = v1 ∧ ⋅ ⋅ ⋅ ∧ vk , N = w1 ∧ ⋅ ⋅ ⋅ ∧ w2n−k ∧ e2n+1, M = m1 ∧ ⋅ ⋅ ⋅ ∧ m2n−k ∧ e2n+1,
where

(v1, . . . , vk), (w1, . . . , w2n−k , e2n+1), (m1, . . . ,m2n−k , e2n+1)
are orthonormal bases of𝕍,𝕎 and𝕄, respectively. Then for every Borel set B ⊂𝕄, we have

(π𝕄,𝕍𝕄,𝕎)♯H2n+1−k
E (B) = H2n+1−k

E (π𝕎,𝕍𝕎,𝕄(B)) = ‖V ∧M‖g‖V ∧ N‖g
H2n+1−k
E (B),

where the projections π𝕄,𝕍𝕄,𝕎 and π𝕎,𝕍𝕎,𝕄 have been introduced in Definition 2.4. The norms of V ∧M and V ∧ N
are taken with respect to the Hilbert structure of Λ2n+1(ℍn) induced by our scalar product onℍn.
Proof. It is clearly not restrictive to relabel the bases of𝕄 and𝕎 as

wk+1, . . . , w2n , e2n+1 and mk+1, . . . ,m2n , e2n+1,
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respectively. We define the isomorphisms

i𝕎 :𝕎→ ℝ2n+1−k , i𝕎(x2n+1e2n+1 + 2n
∑
i=k+1 xiwi) = (xk+1, . . . , x2n+1),

i𝕄 :𝕄→ ℝ2n+1−k , i𝕄(x2n+1e2n+1 + 2n
∑
i=k+1 ximi) = (xk+1, . . . , x2n+1),

i𝕍 : 𝕍→ ℝk , i𝕍( k
∑
i=i xivi) = (x1, . . . , xk).

We introduce

Ψ1 : ℝ2n+1 → ℍn , Ψ1(x1, . . . , x2n+1) = (x2n+1e2n+1 + 2n
∑
i=k+1 xiwi)( k

∑
j=1 xivi). (3.1)

We now notice that JΨ1(x) = ‖V ∧ N‖g for every x = (x1, . . . , x2n+1) ∈ ℝ2n+1. It suffices to observe that

JΨ1 = ‖∂x1Ψ1 ∧ ⋅ ⋅ ⋅ ∂x2n+1Ψ2n+1‖g
and use the explicit form of (3.1). We define another map

Ψ2 : ℝ2n+1 → ℍn , Ψ2(x1, . . . , x2n+1) = (x2n+1e2n+1 + 2n
∑
i=k+1 ximi)(

k
∑
j=1 xivi),

and we observe in the same way that JΨ2(x) = ‖V ∧M‖g. We introduce the embedding

q : ℝ2n+1−k → ℝ2n+1, q(x1, . . . , x2n+1−k) = (0, . . . , 0, x1, . . . , x2n+1−k),
and the projection

p : ℝ2n+1 → ℝ2n+1−k , p(x1, . . . , x2n+1) = (xk+1, . . . , x2n+1).
For every z ∈ ℍn, we observe that

Ψ−11 (z) = (i𝕍 ∘ π𝕍(z), i𝕎 ∘ π𝕎(z)).
It follows that

i−1𝕎 ∘ p ∘ Ψ−11 = π𝕎.
If we take any m ∈𝕄, then

π𝕎(m) = i−1𝕎 ∘ p ∘ Ψ−11 ∘ Ψ2 ∘ Ψ−12 (m)
= i−1𝕎 ∘ p ∘ Ψ−11 ∘ Ψ2 ∘ q ∘ i𝕄(m)
= π𝕎,𝕍𝕎,𝕄(m). (3.2)

The second equality follows by the identity

Ψ−12 = (i𝕍 ∘ π𝕍, i𝕄 ∘ π𝕄),
and hence Ψ−12 (m) = (0, i𝕄(m)) for all m ∈𝕄. We notice that Ψ−11 ∘ Ψ2 is a polynomial diffeomorphism,
whose Jacobian matrix at x has the following form:

(
I R1 0
0 R2 0
ℓ1(x) ℓ2(x) 1

) ∈ ℝ(2n+1)×(2n+1),
where I ∈ ℝk×k, R1 ∈ ℝk×(2n−k), R2 ∈ ℝ(2n+1−k)×(2n+1−k) and the functions

ℓ1 : ℝ2n+1 → ℝk and ℓ2 : ℝ2n+1 → ℝ2n−k
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are affine. From definitions of q : ℝ2n+1−k → ℝ2n+1 and of p : ℝ2n+1 → ℝ2n+1−k, by explicit computation, it
follows that

J(Ψ−11 ∘ Ψ2)(q(y)) = |det R2| = J(p ∘ Ψ−11 ∘ Ψ2 ∘ q)(y) (3.3)

for every y ∈ ℝ2n+1−k. As a consequence, taking into account (3.2), (3.3) and
‖V ∧M‖g
‖V ∧ N‖g

= J(Ψ−11 ∘ Ψ2),

the following equalities hold:

H2n+1−k
E (B) = L2n+1−k(i𝕄(B))

=
‖V ∧ N‖g
‖V ∧M‖g

L2n+1−k((p ∘ Ψ−11 ∘ Ψ2 ∘ q)(i𝕄(B)))
=
‖V ∧ N‖g
‖V ∧M‖g

H2n+1−k
E ((i−1𝕎 ∘ p ∘ Ψ−11 ∘ Ψ2 ∘ q ∘ i𝕄)(B))

=
‖V ∧ N‖g
‖V ∧M‖g

H2n+1−k
E (π𝕎,𝕍𝕎,𝕄(B))

for every Borel set B ⊂𝕄.

We are now in the position to present our main technical result.

Theorem 3.2 (Upper blow-up). We consider a semidirect factorization ℍn =𝕎 ⋊𝕍, an open set Ω ⊂ ℍn,
a function f ∈ C1h(Ω,ℝ

k) and a homogeneous distance d. We fix x0 ∈ Ω and the level set Σ = f−1(f(x0)), assum-
ing that J𝕍f(x) > 0 for all x ∈ Σ. We choose the orthonormal bases (v1, . . . , vk) of𝕍 and (wk+1, . . . , w2n , e2n+1)
of𝕎, setting

V = v1 ∧ ⋅ ⋅ ⋅ ∧ vk and N = wk+1 ∧ ⋅ ⋅ ⋅ ∧ w2n ∧ e2n+1.
Then the following conditions hold:
(i) Σ is a parametrizedℍ-regular surface with respect to (𝕎,𝕍).
(ii) If we denote by ϕ : U → 𝕍 the parametrization of Σ and introduce the measure

μ(B) = ‖V ∧ N‖g ∫
Φ−1(B) JH f(Φ(n))J𝕍f(Φ(n)) dH2n+1−k

E (n) (3.4)

for every Borel set B ⊂ ℍn, where Φ(n) = nϕ(n), then for every x ∈ Σ we have

θ2n+2−k(μ, x) = βd(Tan(Σ, x)). (3.5)

Proof. The first part of our claim is a consequence of Proposition 2.24. Then our thesis follows once we have
proved (3.5). By formula (3.4), for any y ∈ Ω, taking t > 0 sufficiently small, we can write

μ(𝔹(y, t)) = ‖V ∧ N‖g ∫
Φ−1(𝔹(y,t)) JH f(Φ(n))J𝕍f(Φ(n)) dH2n+1−k

E (n).

We denote by ζ ∈ U the element such that

x = Φ(ζ) = ζϕ(ζ).

We now perform the change of variables

n = σx(Λt(η)) = x(Λtη)(π𝕍(x))−1 = x(Λtη)(ϕ(ζ))−1,
where Λt = δt|𝕎. The Jacobian of Λt is t2n+2−k. It is well known that σx has unit Jacobian (see, for instance,
[15, Lemma 2.20]). Setting α(x) = JH f(x)/J𝕍f(x), we obtain that

μ(𝔹(y, t))
t2n+2−k = ‖V ∧ N‖g ∫

Λ1/t(σ−1x (Φ−1(𝔹(y,t))))(α ∘ Φ)(σx(Λt(η))) dH2n+1−k
E (η).
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By the general definition of spherical Federer density, we obtain that

θ2n+2−k(μ, x) = inf
r>0 sup

y∈𝔹(x,t)
0<t<r μ(𝔹(y, t))

t2n+2−k
= inf
r>0 sup

y∈𝔹(x,t)
0<t<r ‖V ∧ N‖g ∫

Λ1/t(σ−1x (Φ−1(𝔹(y,t))))(α ∘ Φ)(σx(Λt(η))) dH2n+1−k
E (η).

There exists R0 > 0 such that for t > 0 and y ∈ 𝔹(x, t) we have the following inclusion:

Λ1/t(σ−1x (Φ−1(𝔹(y, t)))) ⊂ 𝔹𝕎(0, R0), (3.6)

where the translated function ϕx−1 is defined according to formula (2.4) and we have set

𝔹𝕎(0, R0) = 𝔹(0, R0) ∩𝕎.
To see (3.6), we write more explicitly Λ1/t(σ−1x (Φ−1(𝔹(y, t)))), that is,

{η ∈ Λ1/t(σ−1x (U)) : ‖y−1x(Λtη)ϕ(ζ)−1ϕ(x(Λtη)ϕ(ζ)−1)‖ ≤ t}.
It can be written as follows:

{η ∈ Λ1/t(σ−1x (U)) : (δ1/t(y−1x))η(ϕ(ζ)−1ϕ(x(Λtη)ϕ(ζ)−1)t )
 ≤ 1}.

According to (2.4), the translated function of ϕ at x−1 is
ϕx−1 (η) = π𝕍(x−1)ϕ(xηπ𝕍(x−1)) = ϕ(ζ)−1ϕ(xηϕ(ζ)−1).

We finally get

Λ1/t(σ−1x (Φ−1(𝔹(y, t)))) = {η ∈ Λ1/t(σ−1x (U)) : (δ1/t(y−1x))η(ϕx−1 (Λtη)t )
 ≤ 1}, (3.7)

and hence for η ∈ Λ1/t(σ−1x (Φ−1(𝔹(y, t))), taking into account the previous equality, we have established that
η(ϕx

−1 (Λtη)
t ) ∈ 𝔹(0, 2).

From estimate (2.3), we know that

c0(‖η‖ +

ϕx−1 (Λtη)

t
) ≤
η(

ϕx−1 (Λtη)
t )
 ≤ 2,

and hence the inclusion (3.6) holds with R0 = 2/c0. As a consequence, we have that

θ2n+2−k(μ, x) <∞.
There exist a positive sequence tp converging to zero and yp ∈ 𝔹(x, tp) such that

‖V ∧ N‖g ∫

Λ1/tp (σ−1x (Φ−1(𝔹(yp ,tp))))
JH f(Φ(σx(Λtp (η))
J𝕍f(Φ(σx(Λtp (η))) dH2n+1−k

E (η)→ θ2n+2−k(μ, x)
as p →∞. Up to extracting a subsequence, since yp ∈ 𝔹(x, tp) for every p, there exists z ∈ 𝔹(0, 1) such that

lim
p→∞ δ1/tp (x−1yp) = z.

For the sake of simplicity, we use the notation

𝕄x = kerDf(x).

Using the projection introduced in Definition 2.4, we set

Sz = π𝕎,𝕍𝕎,𝕄x
(𝕄x ∩ 𝔹(z, 1)) ⊂𝕎.
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Claim 1. For each ω ∈𝕎 \ Sz, there exists

lim
p→∞1Λ1/tp (σ−1x (Φ−1(𝔹(yp ,tp))))(ω) = 0.

By contradiction, if we had a subsequence of the integers p such that

(δ1/tp (y−1p x))ω(ϕx−1 (Λtpω)t ) ∈ 𝔹(0, 1),

then, by a slight abuse of notation, we could still denote by tp the sequence such that

(δ1/tp (y−1p x))ωdϕζ (ω)( (dϕζ (Λtpω))−1ϕx−1 (Λtpω)tp
) ∈ 𝔹(0, 1) (3.8)

for all p, where we have used the homogeneity of the intrinsic differential dϕζ of ϕ; see Definition 2.12
for the notion of intrinsic differential. Indeed, by Theorem 2.27, the function ϕ is in particular intrinsically
differentiable at ζ . Due to the intrinsic differentiability, taking into account (3.8) as p →∞, it follows that

ωdϕζ (ω) ∈ 𝔹(z, 1).

It is now interesting to observe that the chain rule of Theorem 2.18 yields

graph(dϕζ ) = ker(Df(x)) =𝕄x . (3.9)

As a consequence, ωdϕζ (ω) ∈ 𝔹(z, 1) ∩𝕄x, and thus

ω = π𝕎,𝕍𝕎,𝕄x
(ωdϕζ (ω)) ∈ π𝕎,𝕍𝕎,𝕄x

(𝕄x ∩ 𝔹(z, 1)) = Sz , (3.10)

which is not possible by our assumption. This concludes the proof of Claim 1.
Now, we introduce the density function

α(t, η) = JH f(Φ(σx(Λt(η)))
J𝕍f(Φ(σx(Λt(η)))

to write
‖V ∧ N‖g ∫

Λ1/tp (σ−1x (Φ−1(𝔹(yp ,tp)))) α(tp , η) dH2n+1−k
E (η) = Ip + Jp .

The sequence Ip, defined as follows, satisfies the estimate

Ip = ‖V ∧ N‖g ∫

Sz∩Λ1/tp (σ−1x (Φ−1(𝔹(yp ,tp)))) α(tp , η) dH2n+1−k
E (η)

≤ ‖V ∧ N‖g ∫
Sz

α(tp , η) dH2n+1−k
E (η).

Analogously for Jp, we find

Jp = ‖V ∧ N‖g ∫

Λ1/tp (σ−1x (Φ−1(𝔹(yp ,tp))))\Sz α(tp , η) dH2n+1−k
E (η)

≤ ‖V ∧ N‖g ∫𝔹𝕎(0,R0)\Sz 1Λ1/tp (σ−1x ((Φ−1(𝔹(yp ,tp))))(η)α(tp , η) dH2n+1−k
E (η).

Claim 1 joined with the dominated convergence theorem proves that Jp → 0 as p →∞, and therefore
Ip → θ2n+2−k(μ, x). To study the asymptotic behavior of Ip, we first observe that

α(tp , η)→
JH f(x)
J𝕍f(x) = c(x)

as p →∞. It follows that

θ2n+2−k(μ, x) = lim
p→∞ Ip ≤ ‖V ∧ N‖gc(x)H2n+1−k

E (Sz). (3.11)
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Claim 2. We set𝕄x = ker(Df(x)) and consider

Nx = mk+1 ∧ ⋅ ⋅ ⋅ ∧ m2n ∧ e2n+1
such that

(mk+1, . . . ,m2n , e2n+1)
is an orthonormal basis of𝕄x. We have that

c(x) = JH f(x)
J𝕍f(x) = 1

‖V ∧ Nx‖g
. (3.12)

Since span{∇H f1(x), . . . , ∇H fk(x)} is orthogonal to𝕄x, it is a standard fact that

mk+1 ∧ ⋅ ⋅ ⋅ ∧ m2n ∧ e2n+1 = ∗(∇H f1(x) ∧ ⋅ ⋅ ⋅ ∧ ∇H fk(x))λ
for some λ ∈ ℝ; see, for instance, [26, Lemma 5.1]. Here we have defined the Hodge operator ∗ in ℍn with
respect to the fixed orientation

e = e1 ∧ . . . e2n ∧ e2n+1
and the fixed scalar product ⟨ ⋅ , ⋅ ⟩. Precisely, we are referring to an orthonormal Heisenberg basis

(e1, . . . , e2n , e2n+1),
according to Sections 2.1 and 2.2. Therefore, ∗η is the unique (2n + 1 − k)-vector such that

ξ ∧ ∗η = ⟨ξ, η⟩e (3.13)

for all k-vectors ξ . Since the Hodge operator is an isometry, we get

|λ| = 1
‖∇H f1(x) ∧ ⋅ ⋅ ⋅ ∧ ∇H fk(x)‖g

. (3.14)

Due to (3.14) and (3.13), we have

‖V ∧ Nx‖g = |λ|‖v1 ∧ ⋅ ⋅ ⋅ ∧ vk ∧ (∗(∇H f1(x) ∧ ⋅ ⋅ ⋅ ∧ ∇H fk(x)))‖g

=
‖⟨v1 ∧ ⋅ ⋅ ⋅ ∧ vk , ∇H f1(x) ∧ ⋅ ⋅ ⋅ ∧ ∇H fk(x)⟩e‖g

‖∇H f1(x) ∧ ⋅ ⋅ ⋅ ∧ ∇H fk(x)‖g

=
|⟨v1 ∧ ⋅ ⋅ ⋅ ∧ vk , ∇H f1(x) ∧ ⋅ ⋅ ⋅ ∧ ∇H fk(x)⟩|
‖∇H f1(x) ∧ ⋅ ⋅ ⋅ ∧ ∇H fk(x)‖g

=
‖∇𝕍f1(x) ∧ ⋅ ⋅ ⋅ ∧ ∇𝕍fk(x)‖g
‖∇H f1(x) ∧ ⋅ ⋅ ⋅ ∧ ∇H fk(x)‖g

=
J𝕍f(x)
JH f(x)

,

and hence establishing Claim 2.
As a result, taking into account (3.11), we have proved that

θ2n+2−k(μ, x) ≤ ‖V ∧ N‖g
‖V ∧ Nx‖g

H2n+1−k
E (Sz).

By Lemma 3.1, for B =𝕄x ∩ 𝔹(z, 1), the following formula holds:

H2n+1−k
E (π𝕎,𝕍𝕎,𝕄x

(𝕄x ∩ 𝔹(z, 1))) =
‖V ∧ Nx‖g
‖V ∧ N‖g

H2n+1−k
E (𝕄x ∩ 𝔹(z, 1)). (3.15)

It follows that
θ2n+2−k(μ, x) ≤ H2n+1−k

E (𝕄x ∩ 𝔹(z, 1)) ≤ βd(𝕄x).

To prove the opposite inequality, we follow the approach of [30, Theorem 3.1]. We choose z0 ∈ 𝔹(0, 1) such
that

βd(𝕄x) = H2n+1−k
E (𝕄x ∩ 𝔹(z0, 1)) (3.16)
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and consider a specific family of points y0t = xδtz0 ∈ 𝔹(x, t). For a fixed λ > 1, we have

sup
0<t<r μ(𝔹(y0t , λt))(λt)2n+2−k ≤ sup

y∈𝔹(x,t),
0<t<λr

μ(𝔹(y, t))
t2n+2−k

for every r > 0 sufficiently small, and therefore

lim sup
t→0+ μ(𝔹(y0t , λt))

(λt)2n+2−k ≤ θ2n+2−k(μ, x). (3.17)

We introduce the set

A0t = Λ1/λt(σ−1x (Φ−1(𝔹(y0t , λt)))
= {η ∈ Λ1/λt(σ−1x (U)) : η(ϕx−1 (Λλtη)λt ) ∈ 𝔹(δ1/λz0, 1)}.

The second equality can be deduced from (3.7). Then we can rewrite

μ(𝔹(y0t , λt))
(λt)2n+2−k = ‖V ∧ N‖g ∫

A0
t

α(λt, η) dH2n+1−k
E (η)

=
‖V ∧ N‖g
λ2n+2−k ∫

δλA0
t

α(λt, δ1/λη) dH2n+1−k
E (η). (3.18)

The domain of integration satisfies

δλA0t = {η ∈ Λ1/t(σ−1x (U)) : η(ϕx−1 (Λtη)t ) ∈ 𝔹(z0, λ)}.

Due to (3.6) and the definition of A0t , we get

δλA0t ⊂ 𝔹𝕎(0, λR0).
Claim 3. For every η ∈ π𝕎,𝕍𝕎,𝕄x

(𝕄x ∩ B(z0, λ)), we have

lim
t→0+ 1δλA0

t
(η) = 1. (3.19)

The intrinsic differentiability of ϕ at ζ shows that

η(ϕx
−1 (Λtη)
t )→ ηdϕζ (η) as t → 0.

Taking into account (2.2) and (3.10), we get

π𝕄x ,𝕍𝕄x ,𝕎(η) = ηdϕζ (η).
Hence, our assumption on η can be written as follows:

d(ηdϕζ (η), z0) < λ.

We conclude that η ∈ δλA0t for any t > 0 sufficiently small. Therefore, the limit (3.19) holds and the proof of
Claim 3 is complete.

By Fatou’s lemma, taking into account (3.17) and (3.18), we get

‖V ∧ N‖g
λ2n+2−k ∫

π𝕎,𝕍
𝕎,𝕄x (𝕄x∩B(z0 ,λ)) lim inf

t→0 (1δλA0
t
(η)α(λt, δ1/λη)) dH2n+1−k

E (η) ≤ θ2n+2−k(μ, x).
Claim 3 joined with (3.12) yields

1
λ2n+2−k ‖V ∧ N‖g‖V ∧ Nx‖g

H2n+1−k
E (π𝕎,𝕍𝕎,𝕄x

(𝕄x ∩ 𝔹(z0, 1))) ≤ θ2n+2−k(μ, x).
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Applying again (3.15), we obtain

1
λ2n+2−kH2n+1−k

E (𝕄x ∩ 𝔹(z0, 1)) ≤ θ2n+2−k(μ, x).
Taking the limit as λ → 1+, considering (3.16) and taking into account Proposition 2.21, the proof of (3.5) is
complete.

The computation of the upper density (2.13) is simpler than computing the spherical Federer density. In
a sense, we have less degrees of freedom, since the center of the ball for this density is fixed. As a byproduct
of our approach, the following theorem can be achieved by some simplifications in the proof of Theorem 3.2,
getting a “centered blow-up”.

Theorem 3.3. In the assumptions of Theorem 3.2, for every x ∈ Σ, we have

Θ∗2n+2−k(μ, x) = H2n+1−k
E (Tan(Σ, x) ∩ 𝔹(0, 1)),

where the metric ball 𝔹(0, 1) refers to the fixed homogeneous distance d.

4 Some special cases for the area formula
In this section, we analyze some consequences of the upper blow-up (Theorem 3.2). We consider two cases:
when the factors 𝕎 and 𝕍 are orthogonal and when the metric unit ball of the homogeneous distance is
convex. In the first case, themeasure μ can be represented by the intrinsic derivatives of the parametrization,
according to Theorem 1.2.

Proof of Theorem 1.2. Since𝕎 and𝕍 are orthogonal, by Proposition 2.28 we can fix a Heisenberg basis

(v1, . . . , vk , vk+1, . . . , vn , w1, . . . w2n , e2n+1)
such that

𝕍 = span{v1, . . . , vk} and 𝕎 = span{vk+1, . . . , vn , wi , . . . , wn , e2n+1}.
Our claim follows by representing the measure μ in terms of the intrinsic partial derivatives of the param-
etrization ϕ of Σ, arguing as in the proof [9, Theorem 6.1]. For the reader’s convenience, we report the main
points of the proof.

By taking into account Theorem 2.27, Σ = Φ(Ω) is the graph of a uniformly intrinsically differentiable
function ϕ. Arguing as in the proofs of [12, Theorem 4.1] or [6, Theorem 4.2], there exist an open set Ω ⊂ ℍn
and a function g ∈ C1h(Ω

,ℝk) such that Σ ⊂ g−1(0) and for every m ∈ U the following holds:

Dg(Φ(m)) =
[[[

[

∇Hg1(Φ(m))
...

∇Hgk(Φ(m))

]]]

]

= [𝕀k −Dϕϕ(m) 0] , (4.1)

where 0 denotes the vanishing column in the previous matrix. By Theorem 1.1, for any Borel set B ⊂ Σ,

μ(B) = ∫
B

βd(Tan(Σ, x)) dS2k+2−k(x) = ∫
Φ−1(B) JHg(Φ(n))J𝕍g(Φ(n)) dH2n+1−k

E (n).

Notice that J𝕍g(Φ(m)) = 1 for every m ∈ U. By Definition 2.30, taking into account the form of Dg(Φ(m))
in (4.1), the proof is achieved.

Combining Theorem 2.33 and Theorem 3.3, we also get the area formula for the centered Hausdorffmeasure.
It is the analogue of Theorem1.1,where the sphericalmeasure is replacedby the centeredHausdorffmeasure.
For the distance d∞, the following theorem coincides with [14, Theorem 4.1].
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Theorem 4.1. In the assumptions of Theorem 3.2, for any Borel set B ⊂ Σ we have

μ(B) = ∫
B

H2n+1−k
E (Tan(Σ, x) ∩ 𝔹(0, 1)) dC2k+2−k(x), (4.2)

where the metric ball 𝔹(0, 1) refers to the fixed homogeneous distance d.

As a consequence, using the previous formula, along with Theorem 1.1 and Theorem 2.42, we can show the
equality between spherical measure and centered Hausdorff measure.

Theorem 4.2. Let d be a homogeneous distance on ℍn such that 𝔹(0, 1) is convex. Let Σ be a parametrized
ℍ-regular surface with respect to (𝕎,𝕍). Then for every x ∈ Σ we obtain Θ∗2n+2−k(μ, x) = θ2n+2−k(μ, x) and,
in particular,

C2n+2−k Σ = S2n+2−k Σ.

Proof. By Theorem 2.42 and Theorem 3.3, for every x ∈ Σ we have

βd(ker(Df(x)) = H2n+1−k(ker(Df(x)) ∩ 𝔹(0, 1)) = Θ∗2n+2−k(μ, x).
Then the area formulas (1.2) and (4.2) conclude the proof.

Funding: The second author was supported by the University of Pisa, Project PRA 2018 49.
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