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ON THE MEASURE OF PRODUCTS FROM THE MIDDLE-THIRD
CANTOR SET

LUCA MARCHESE

Abstract. We prove upper and lower bounds for the Lebesgue measure of the set of
products xy with x and y in the middle-third Cantor set. Our method is inspired by
Athreya, Reznick and Tyson, but a different subdivision of the Cantor set provides a more
rapidly converging approximation formula.

1. Introduction

The middle-third Cantor set is the well-known set K ⊂ [0, 1] of points of the form

x =
∞∑
k=1

αk

3k
, where αk ∈ {0, 2} for k ≥ 1.

Define P : R2 → R by P (x, y) := xy and consider P (K ×K), that is the set of products xy
with x, y ∈ K, which is a closed set because P is continuous and K is compact. Denote L
the Lebesgue measure on R. The main result of this paper is Theorem 1.1 below.

Theorem 1.1. We have ∣∣∣∣L(P (K ×K)
)
− 91782451

113374080

∣∣∣∣ ≤ 1

106
.

In [2], Athreya, Reznick and Tyson prove the bounds 17/21 < L
(
P (K×K)

)
< 5/6. Then,

running a computer program, the authors of [2] get

(1.1) L
(
P (K ×K)

)
= 0, 80955358± 10−8.

After, in [4], Gu, Jiang, Xi, Zhao can run a different computer program which confirms the
same first 5 digits in (1.1). Theorem 1.1 confirms such first 5 digits by a rigorous proof.

Other arithmetic operations with x, y ∈ K are considered in [2], which describes the
structure of quotients y/x with x 6= 0 and proves that [0, 1] is covered by products x2y, so
that in particular any element of [0, 1] is the product of 3 factors in K. In [5] it is proved
that sums x21 + x22 + x23 + x24 with xi ∈ K for i = 1, 2, 3, 4 cover [0, 4], which was conjectured
in [2]. In [6] is described a general condition on maps f : R2 → R such that f(K × K) has
non-empty interior, where such condition is obviously satisfied by the arithmetic operation
mentioned above. For the image under affine maps, and in particular for S(x, y) := x+ y, a
much larger class of Cantor sets and other fractals have been studied. Specific gap conditions
guarantee that the image is an interval. A first use of gap conditions appears in [7] and a
more recent application in [3]. A gap condition is used for the product of Cantor sets in [10],
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and for Lipschitz perturbations of S(·, ·) in Theorem 1.12 in [1]. Related ideas inspired by [2]
are used also in this paper. Other techniques appear in [8] and [9].

1.1. Approximation formula. For E ⊂ R and c > 0 set c ·E := {cx : x ∈ E}. It is helpful
to consider only products xy with x, y ∈ [2/3, 1]. For this reason we consider the right half
R := K ∩ [2/3, 1] of K. From K = {0} ∪

⋃∞
k=0 3−k · R we get

P (K ×K) = {0} ∪
∞⋃
k=0

3−k · P (R×R).

The union above is disjoint, because P (R×R) ⊂ [4/9, 1] and 1/3 < 4/9. Therefore

(1.2) L
(
P (K ×K)

)
=
∞∑
k=0

3−kL
(
P (R×R)

)
=

3

2
L
(
P (R×R)

)
.

A natural way to estimate the measure of P (R×R), and thus of P (K×K) by (1.2) above,
is to consider the iterative construction of the Cantor set R and estimate how the measure
of the product set of the n-th step of the iteration converge to a limit. In order to do so, we
introduce the following terminology. A subdivision for R is a nested family of compact sets
R0 ⊃ · · · ⊃ Rn ⊃ Rn+1 . . . such that R =

⋂∞
n=0Rn, where any Rn+1 is obtained removing

from Rn some open intervals (finitely or countably many). The standard subdivision Rn for
R is obtained setting R0 := [2/3, 1] and iteratively

Rn := Rn−1 \
3n⋃

j=2·3n−1+1

(
3(j − 1) + 1

3n+1
,
3(j − 1) + 2

3n+1

)
for n ≥ 1.

Remark 8 in [2] gives

(1.3) 0 ≤ L
(
P (Rn ×Rn)

)
− L

(
P (R×R)

)
≤ 1

63

(
2

9

)n

.

The bound 17/21 < L
(
P (K × K)

)
< 5/6 in [2] follows from L

(
P (R0 × R0)

)
= 5/9 and

(1.2), applying (1.3) with n = 0. Then (1.1) follows applying (1.3) with n = 11, where
of course the estimate of the measure of P (R11 × R11) can only be done by a computer.
In [4], approximation formulae like (1.3) are used in different applications. Our main tool
to prove Theorem 1.1 is an approximation formula analogous to (1.3), where we replace
the standard subdivision (Rn)n≥0 by the fast subdivision (Dn)n≥0 for R, which is obtained
by removing not just the middle third of each interval in each step, but rather countably
many intervals simultaneously (the definition of Dn is given in the next § 2.2). According
to Proposition 1.2 below, the fast subdivision provides a sequence of approximations for the
measure of P (R×R) which converges more rapidly than (1.3).

Proposition 1.2. Let (Dn)n≥0 be the subdivision in (2.3). For any n ≥ 0 we have

0 ≤ L
(
P (Dn ×Dn)

)
− L

(
P (R×R)

)
≤ 1

63

(
1

36

)n

.
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1.2. Proof of main Theorem 1.1. Theorem 1.1 follows directly applying (1.2), Proposi-
tion 1.2 with n = 3, and the next Proposition 1.3, which is proved in § 3 below. For the
error observe that

3

2

( 1

64 · 96
+

1

63 · 363

)
=

11

7 · 16 · 311
<

1

106
.

Proposition 1.3. We have∣∣∣∣L(P (D3 ×D3)
)
− 91782451

170061120

∣∣∣∣ ≤ 1

64 · 96
.

Structure of this paper. § 2 is devoted to the proof of Proposition 1.2. In § 2.2 we
introduce the fast subdivision (Dn)n≥0. The n-th generation product set P (Dn×Dn) differs
from P (R × R) because further subdivisions create gaps in P (Dn × Dn), that is intervals
G with G ⊂ P (Dn × Dn) \ P (Dn+1 × Dn+1). According to Lemma 2.2, the new gaps only
appear in product sets of the form P (I× I) for a given interval I of Dn. In § 2.3 we describe
such new gaps for an interval I which undergoes a single step of the fast subdivision. § 2.3
contains the technical notation and definitions which are used in the rest of the paper. The
proof of Proposition 1.2 is completed in § 2.4.
§ 3 is devoted to the proof of Proposition 1.3. The analysis from § 2.3 only provides a local

information, but some gaps G in P (I × I) generated by the subdivision of I may be covered
by other regions of P (R×R), that is G ⊂ P

(
(R×R)\ (I×I)

)
. Such gaps are called covered

gaps, and they don’t give negative contribution to the measure of P (R × R). A precise
estimate of the measure of P (D3×D3) requires detecting as many covered gaps as possible.
The main tool is an arithmetic characterization of covered gaps, which is provided by (3.2)
and by (3.3). According to Lemma 3.1, we have an exact description of all covered gaps of
P (D2×D2), and the exact value of its measure follows from (3.7). On the other hand, some
covered gaps of P (D3×D3) arise because of configurations not treated by Lemma 3.1. Such
configurations are considered in Lemma 3.2 and Lemma 3.3, but we don’t have an exact
characterization of all covered gaps that they produce. For this reason we can only give an
approximation for the measure of P (D3 × D3). This is done in § 3.4, which completes the
proof of Proposition 1.3. A more detailed outline of the proof of such estimate is given in
§ 3.1.

Acknowledgements. The author is grateful to the anonymous referee.

2. The fast subdivision: proof of Proposition 1.2

For a closed interval I = [a, b] set |I| := |b− a| and let AI : [0, 1]→ I be the unique affine
orientation preserving bijection between [0, 1] and I, that is

AI(x) := a+ (b− a)x = AI(0) + |I|x.

For a set S ⊂ [0, 1] which is the union of countably many points and countably many
intervals, define

E(S) := {I : I is a connected component of S with non-empty interior}.

that is the family of intervals of S.
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2.1. Product sets along and outside the diagonal. The set R is constructed by repeat-
edly removing the middle third of certain intervals. Therefore it is important to understand
what happens to the product set P (I×J) when we remove the middle third of some intervals
I, J ⊂ [2/3, 1]. We consider two cases separately: when I = J , that is along the diagonal,
and when I ∩ J = ∅, that is outside the diagonal.

For any closed interval I ⊂ [2/3, 1] write I = [a, a + 3t] with 2/3 ≤ a < a + 3t ≤ 1, then
set

Ï := [a, a+ t] ∪ [a+ 2t, a+ 3t].

Since (a+ t)2 > a(a+ 2t) and (a+ t)(a+ 3t) = (a+ 2t)2 − t2 < (a+ 2t)2, then

(2.1) P (I × I) \ P (Ï × Ï) =
(
(a+ 2t)2 − t2, (a+ 2t)2

)
,

that is the interval
(
(a + 2t)2 − t2, (a + 2t)2

)
is a gap in the product set P (Ï × Ï) with size

|I|2/9. On the other hand, consider intervals I, J ⊂ [2/3, 1] with I ∩ J = ∅ and assume that
they have the same length |I| = |J |. Lemma 11 in [2] gives

(2.2) P (Ï × J̈) = P (I × J),

that is the product set P (Ï × J̈) has no gap. The elementary proof follows computing the
extremal values of P (·, ·) over the four connected components of Ï× J̈ and checking that the
images overlap. The next Lemma 2.1 is a standard argument, which is left to the reader.

Lemma 2.1. Let f : R2 → R be a continuous function and (Cn)n≥0 be a sequence of compact
sets of R2 with Cn+1 ⊂ Cn for any n ≥ 0. Then

f(C) =
⋂
n≥0

f(Cn) where C :=
⋂
n≥0

Cn.

Recall that K ⊂ [0, 1] denotes the middle-third Cantor set.

Lemma 2.2. Consider intervals I, J ⊂ [2/3, 1] with the same length |I| = |J | and assume
that I ∩ J = ∅. Then we have

P
(
AI(K)× AJ(K)

)
= P (I × J).

Proof. Set I0 := I and J0 := J and for n ≥ 1 define inductively the compact sets

In :=
⋃

E∈E(In−1)

Ë and Jn :=
⋃

F∈E(Jn−1)

F̈ ,

where In ⊂ In−1 and Jn ⊂ Jn−1. We have AI(K) =
⋂∞

n=0 In and AJ(K) =
⋂∞

n=0 Jn. For any
n ≥ 0, any two intervals (E,F ) with E ∈ E(In) and F ∈ E(Jn) satisfy the same assumption
as the pair (I, J) in the statement. Then (2.2) implies

P (In+1 × Jn+1) =
⋃

E∈E(In),F∈E(Jn)

P (Ë × F̈ ) =
⋃

E∈E(In),F∈E(Jn)

P (E × F ) = P (In × Jn).

This implies P (In × Jn) = P (I × J) for any n ≥ 0. Lemma 2.1 gives

P
(
AI(K)× AJ(K)

)
=
⋂
n≥0

P (In × Jn) = P (I × J).

�
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2.2. Definition of the fast subdivision. Consider the compact set D below

D :=
[
0, 1
]
\

((⋃
k≥1

(
1

3k+1
,

2

3k+1

))
∪
(

1

3
,
2

3

)
∪
(⋃

k≥1

(
3k+1 − 2

3k+1
,
3k+1 − 1

3k+1

)))
,

which is the union of countably many intervals, together with the points {0} and {1}. Recall
that for S ⊂ [0, 1] which is the union of countably many points and countably many intervals,
we denote E(S) the family of intervals of S. Define the fast subdivision (Dn)n≥0 of R setting
D0 := [2/3, 1] and iteratively

(2.3) Dn :=
⋃

I∈E(Dn−1)

AI(D) for n ≥ 1,

where we observe that such notation gives D1 := A[2/3,1](D). Elementary arguments which
are left to the reader easily give the next Lemma 2.3.

Lemma 2.3. (2.3) defines a subdivision for R.

Observe that for any n ≥ 1 we have∑
I∈E(Dn)

|I|2 =
∑

J∈E(Dn−1)

( ∑
I∈E(J∩Dn)

|I|2
)

=
∑

J∈E(Dn−1)

(
|J |2

∑
Ĩ∈E(D)

∣∣Ĩ∣∣2)

=
∑

J∈E(Dn−1)

(
|J |2 · 2

∞∑
k=2

( 1

3k

)2)
=

1

36

∑
J∈E(Dn−1)

|J |2 =

∣∣∣∣[2

3
, 1
]∣∣∣∣2 · ( 1

36

)n
,

where the second equality holds because for any J ∈ E(Dn−1)) the intervals I ∈ E(J ∩ Dn)

are the images of the intervals Ĩ ∈ E(D) under AJ , which is affine with dAJ(t)/dt = |J | for
any t ∈ [0, 1]. Hence we get

(2.4)
∑

I∈E(Dn)

|I|2 =
1

9

( 1

36

)n
,

which we will use in the next § 2.4.

2.3. Gaps in the product set for a single step. In this paragraph we study in detail a
single step of the fast subdivision in (2.3), that is we consider any interval I ⊂ [2/3, 1] and
we describe the infinitely many gaps in the product set P

(
AI(D) × AI(D)

)
generated by

the subdivision of I. If I is an interval in Dn, this describes the gaps appearing in P (I × I)
when I is subdivided. According to the next Proposition 2.6, these gaps form the family
GI defined in (2.5) below. All the notation used in the rest of the paper is introduced in
this paragraph, before Remark 2.5. Figure 1 represents the gaps in the products set, and
provides a guide to such notation.

Fix an interval I ⊂ [2/3, 1]. Consider the map AI : [0, 1]→ I and for 0 ≤ x < y ≤ 1 set

I(x, y) :=
[
AI(x), AI(y)

]
.

For k ≥ 0 define the intervals

P(I,k,−) := P
(
I(2/3k+1, 1/3k)× I(0, 1/3k+1)

)
P(I,k,+) := P

(
I(1− 1/3k+1, 1)× I(1− 1/3k, 1− 2/3k+1)

)
,

5



where P(I,0,−) = P(I,0,+) = P
(
I(2/3, 1)× I(0, 1/3)

)
. Intervals P(I,k,±) correspond to product

sets arising from the light grey regions in Figure 1.

Lemma 2.4. For any I ⊂ [2/3, 1] and any k ≥ 0 we have

P(I,k,−),P(I,k,+) ⊂ P
(
AI(K)× AI(K)

)
.

Proof. We have AI(0,1/3)(K) ⊂ AI(K) and AI(2/3,1)(K) ⊂ AI(K). The statement follows for
P(I,0,−) = P(I,0,+) because Lemma 2.2 gives

P
(
I(2/3, 1)× I(0, 1/3)

)
= P

(
AI(2/3,1)(K)× AI(0,1/3)(K)

)
.

The same argument applies to P(I,k,−) and P(I,k,+) for k ≥ 1. �

For k ≥ 0 set I(k,−) := I(0, 1/3k) and I(k,+) := I(1 − 1/3k, 1), where I(0,−) = I(0,+) = I.
Recall (2.1) and for k ≥ 0 define the open intervals

G(I,k,−) := P (I(k,−) × I(k,−)) \ P (Ï(k,−) × Ï(k,−))
G(I,k,+) := P (I(k,+) × I(k,−)) \ P (Ï(k,+) × Ï(k,+)).

Observe that G(I,0,−) = G(I,0,+) = P (I × I) \ P (Ï × Ï). Referring to Figure 1, the intervals
G(I,k,±) correspond to product sets arising from the white regions spanned by hyperbolas not
intersecting AI(D)× AI(D). Set

(2.5) GI :=
( ∞⋃

k=1

G(I,k,−)
)
∪ G(I,0,−) ∪

( ∞⋃
k=1

G(I,k,+)

)
.

Finally for k ≥ 1 denote the elements of E
(
AI(D)

)
by

D(I,k,−) := I(2/3k+1, 1/3k) and D(I,k,+) := I(1− 1/3k, 1− 2/3k+1)

and define the intervals

Q
(I,k,−)

:= P (D(I,k,−) ×D(I,k,−)) and Q
(I,k,+)

:= P (D(I,k,+) ×D(I,k,+)).

The intervals Q(I,k,±) correspond to product sets arising from the black squares along the
diagonal in Figure 1.

In order to describe the structure of P
(
AI(D)× AI(D)

)
we compute the endpoints of its

subsets P(I,k,±), G(I,k,±) and Q(I,k,±). These endpoints are given by products AI(x)AI(y),
where x, y are endpoints of intervals in D, and their reciprocal position is described in the
next Remark 2.5. The Remark applies 8 times the next (2.6), and at each time the values
for x, y, z, t to be plugged in (2.6) are given by the above definitions of the subsets P(I,k,±),
G(I,k,±) and Q(I,k,±). Alternatively, the correct values of x, y, z, t can be easily deduced from
Figure 1.

Remark 2.5. Fix I. For simplicity write A = AI . It is easy to check that for x, y, z, t ∈ R
we have

(2.6) A(x)A(y) > A(z)A(t) ⇔ zt− xy < A(0)

|I|
(x+ y − z − t).

6



P(I,0,±)

G(I,0,±)P(I,1,−)
Q(I,1,−)

Q(I,1,+)

G(I,1,−)

P(I,1,+)

G(I,1,+)

Figure 1. The big square represents I × I, and the union of the black rect-
angles in the picture is AI(D)×AI(D). By Lemma 2.2, each dark grey square
has the same P (·, ·)-image as its intersection with AI(D)×AI(D), represented
in black. Such images are the intervals P(I,k,±), k ≥ 0. White regions of hyper-
bolas not intersecting AI(D) × AI(D) correspond to the gaps G(I,k,±), k ≥ 0.
The intervals Q(I,k,±), k ≥ 1 are the images of the black squares J × J along

the diagonal, where J ∈ E
(
AI(D)

)
. The superposition between such black

squares and the light grey regions generates covered gaps (see § 3.1) at the
next subdivision.

Using (2.6), and observing that A(0)/|I| ≥ 2 for intervals I ⊂ [2/3, 1], it is easy to verify
that for for any k ≥ 0 we have

supG(I,k+1,−) = infQ(I,k+1,−) < inf P(I,k,−) ⇔ A(2/3k+2)2 < A(0)A(2/3k+1)

inf P(I,k,−) < supQ(I,k+1,−) ⇔ A(0)A(2/3k+1) < A(1/3k+1)2

supQ(I,k+1,−) < supP(I,k,−) ⇔ A(1/3k+1)2 < A(1/3k)A(1/3k+1)

supP(I,k,−) = inf G(I,k,−) < supG(I,k,−) ≤ supG(I,k,+) = infQ(I,k+1,+)

and for any k ≥ 1 we have

infQ(I,k,+) < inf P(I,k,+) ⇔ A(1− 1/3k)2 < A(1− 1/3k+1)A(1− 1/3k)

inf P(I,k,+) < supQ(I,k,+) ⇔ A(1− 1/3k+1)A(1− 1/3k) < A(1− 2/3k+1)2

supQ(I,k,+) < supP(I,k,+) ⇔ A(1− 2/3k+1)2 < A(1)A(1− 2/3k+1)

supP(I,k,+) = inf G(I,k,+) < supG(I,k,+) = infQ(I,k+1,+).

All the equalities above are immediate consequence of the definitions of P(I,k,±), G(I,k,±) and
Q(I,k,±). See Figure 1.

Remark 2.5 implies that GI is a disjoint union. Then (2.1) implies

(2.7) L(GI) = L(G(I,0,−)) +
∞∑
k=1

L(G(I,k,−)) + L(G(I,k,−)) =
|I2|
32

+ 2
∞∑
k=1

|I|2

32k+2
=

5

36
|I|2.
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Proposition 2.6. Fix an interval I ⊂ [2/3, 1]. We have

(2.8) P (I × I) \ P
(
AI(D)× AI(D)

)
= GI .

Proof. Write E2 := E × E for sets E ⊂ [0, 1]. It is also convenient to write DI := AI(D).
The set D2

I ∩ {(x, y) ∈ R2 : y ≤ x} is contained in the union over k ≥ 0 of the sets

D2
(I,k+1,−) ∪D2

(I,k+1,+)∪(
I(2/3k+1, 1/3k)× I(k+1,−)

)
∪
(
I(k+1,+) × I(1− 1/3k, 1− 2/3k+1)

)
.

This implies

(2.9) P (D2
I ) ⊂

( ⋃
k≥0

P(I,k,−) ∪ P(I,k,+)

)
∪
( ⋃

k≥1

Q(I,k,−) ∪Q(I,k,+)

)
.

On the other hand AI(K) ⊂ DI by Lemma 2.3. Hence Lemma 2.4 implies that P (D2
I )

contains P(I,k,−) and P(I,k,+) for k ≥ 0. Obviously P (D2
I ) also contains Q(I,k,−) and Q(I,k,+)

for any k ≥ 1. Therefore the inclusion in (2.9) is indeed an equality between sets. The
intervals in GI fill the gaps in P (D2

I ) by Remark 2.5. This proves (2.8). �

2.4. End of the proof of Proposition 1.2. Fix n ≥ 1 and consider two intervals J1, J2
in E(Dn) with J1 6= J2. Without loss of generality assume sup J2 < inf J1. Let m ≤ n − 1
be maximal such that there exists I ∈ E(Dm) with Ji ⊂ I for i = 1, 2. Maximality implies
that J1 and J2 are included into different connected components of AI(D). If J1 ⊂ D(I,k,−)
for some k ≥ 1, then Lemma 2.4 implies

P (J1 × J2) ⊂ P
(
I(2/3k+1, 1/3k)× I(0, 1/3k+1)

)
= P(I,k,−) ⊂ P (R×R),

where we recall that AI(K) ⊂ R by Lemma 2.3. Otherwise there exists l ≥ 0 with

J1 × J2 ⊂ I(1− 1/3l+1, 1)× I(1− 1/3l, 1− 2/3l+1)

and we get again P (J1 × J2) ⊂ P(I,l,+) ⊂ P (R×R) by Lemma 2.4. Both inclusions cannot
be derived directly from (2.2) because, a priori, J1 and J2 have different sizes. Thus

P
(

(Dn ×Dn) \
⋃

I∈E(Dn)

I × I
)
⊂ P (R×R) for any n ≥ 0.

Since P (R×R) ⊂ P (Dn ×Dn) for any n ≥ 0, then (2.3) and (2.8) give

P (Dn ×Dn) \ P (Dn+1 ×Dn+1) ⊂⋃
I∈E(Dn)

P (I × I) \ P (Dn+1 ×Dn+1) ⊂⋃
I∈E(Dn)

P (I × I) \ P
(
AI(D)× AI(D)

)
=

⋃
I∈E(Dn)

GI .

Therefore (2.7) and (2.4) give

L
(
P (Dn ×Dn)

)
− L

(
P (Dn+1 ×Dn+1)

)
≤

∑
I∈E(Dn)

L(GI) =
5

36

∑
I∈E(Dn)

|I|2 =
5

9 · 36n+1
.
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For any n ≥ 0 and m ≥ n+ 1 a telescopic argument gives

0 ≤ L
(
P (Dn ×Dn)

)
− L

(
P (Dm ×Dm)

)
≤

m∑
k=n+1

5/9

36k
≤

∞∑
k=n+1

5/9

36k
=

1

63 · 36n
.

We have L
(
P (Dm ×Dm)

)
→ L

(
P (R×R)

)
as m→∞. Proposition 1.2 is proved.

3. Covered gaps: proof of Proposition 1.3

In this section we use the notation introduced in § 2.3.

3.1. Definition of covered gaps and structure of the proof. If E is an interval of
some Dm, its subdivision at time m + 1 generates a family GE of gaps in P (E × E), which
is described by Proposition 2.6. A gap G ∈ E(GE) is covered if G ⊂ P (R × R). Such gap
G doesn’t give negative contribution to the measure of P (R×R). The next § 3.2 describes
qualitatively the geometric configuration which produces covered gaps.

In § 3.3, we give an arithmetic characterization of covered gaps. More precisely we fix n
and an interval I of Dn, and we consider the two consecutive subdivisions of I at generations
n + 1 and n + 2. Intervals E in I ∩ Dn+1 are labelled by an integer k, and for any such
E a second integer l labels the gaps in P

(
(E ∩ Dn+2) × (E ∩ Dn+2)

)
, which we can denote

here by G(k,l) (a more precise notation is used in § 3.3). Equation (3.2) (or its analogous
(3.3)) gives a condition on k and l so that the corresponding gap G(k,l) is covered. A relevant
aspect of (3.2) (and of (3.3)) is that the same arithmetic condition determines the same
inequality both for inf G(k,l) and for supG(k,l), that is a gap G(k,l) is either covered, or disjoint

from P
(
(I ∩R)× (I ∩R)

)
. This is resumed by Lemma 3.1.

Finally in § 3.4 we obtain the estimate for the measure of P (D3×D3). A first observation
is that Lemma 3.1 gives the complete description of all covered gaps for P (D2×D2), so that
by (3.7) we obtain the exact value of the measure of P (D2 × D2). For any interval E of
D1, the 3-rd generation gaps G arising from E with G ⊂ P

(
(E ∩ R) × (E ∩ R)

)
are again

described completely by Lemma 3.1. The main technical problem is that there exist 3-rd
generation gaps G arising from E with G ∩P

(
(E ∩R)× (E ∩R)

)
= ∅ but at the same time

G ∩ P
(
(R×R) \ (E × E)

)
6= ∅. These G are considered in Lemma 3.2 and Lemma 3.3.

3.2. How covered gaps appear. In this paragraph we describe qualitatively the geometric
configuration which produces covered gaps. This is also represented in Figure 1.

Fix n ≥ 0 and I ∈ E(Dn). For k ≥ 1 consider E := D(I,k,−), which is an element of

E
(
AI(D)

)
, and Q(I,k,−) = P (E×E). We have inf P(I,k−1,−) < supP (E×E) by Remark 2.5.

See also Figure 1. Recalling Lemma 2.4, for l� 1 we get

G(E,l,+) ⊂ P(I,k−1,−) ⊂ P (R×R).

Hence the subdivision of E (at step n+ 2, after the subdivision of I, at step n+ 1) generates
a tail of covered gaps G(E,l,+). We also have inf P (E × E) = supG(i,k,−) < inf P(I,k,−), which
follows again from Remark 2.5. Hence for l� 1 we have

G(E,l,−) ∩ P
((
AI(D)× AI(D)

)
\ (E × E)

)
= ∅,

that is
G(E,l,−) ⊂ P

(
(I ∩ Dn+1)× (I ∩ Dn+1)

)
\ P
(
(I ∩ Dn+2)× (I ∩ Dn+2)

)
.
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The same holds for F := D(I,k,+) with k ≥ 1, indeed supG(I,k−1,+) = infQ(I,k,+) and
inf P(I,k,+) < supQ(I,k,+) by Remark 2.5. Thus for l� 1 we have

G(F,l,+) ⊂ P(I,k,+) ⊂ P (R×R)

and

G(F,l,−) ∩ P
((
AI(D)× AI(D)

)
\ (F × F )

)
= ∅,

that is
G(F,l,+) ⊂ P

(
(I ∩ Dn+1)× (I ∩ Dn+1)

)
\ P
(
(I ∩ Dn+2)× (I ∩ Dn+2)

)
.

3.3. Arithmetic condition for covered gaps. Fix n ≥ 0 and I ∈ E(Dn). The main result
in this paragraph is Lemma 3.1, which considers the two consecutive subdivisions of I at
generations n+1 and n+2. The Lemma determines arithmetically the gaps from generation
n+2 which are contained in P

(
(I∩R)×(I∩R)

)
, that is are covered. The Lemma also proves

that all other gaps arising from I at generation n+ 2 are disjoint from P
(
(I ∩R)× (I ∩R)

)
.

These gaps may or may not be covered by some other part of P (R×R \ I × I), but this is
not determined by Lemma 3.1, which is a local result.

For k ≥ 1 consider E := D(I,k,−), that is E = I(2/3k+1, 1/3k). Consider the affine maps
AI : [0, 1]→ I and AE : [0, 1]→ E. For x ∈ R we have

AI(x) = AE

(
AI(x)− AE(0)

|E|

)
= AE

(
3k+1

|I|

(
x− 2

3k+1

)
|I|
)

= AE(3k+1x− 2).

We have inf P(I,k−1,−) = AI(0)AI(2/3
k) = AE(−2)AE(4). From the definition of D in § 2.2,

it is clear that for l ≥ 0 we have

(3.1) inf G(E,l,+) = AE(1)AE

(
1− 2

3l+1

)
and supG(E,l,+) = AE

(
1− 1

3l+1

)2
.

Finally AE(0)/|E| = 3k+1AI(0)|I|+ 2. Hence (2.6) gives

AE(−2)AE(4) < AE(1)AE

(
1− 2

3l+1

)
⇔ −8− 1 +

2

3l+1
< −AE(0)

|E|
2

3l+1
⇔

− 9 +
2

3l+1
< −

(
3k+1AI(0)

|I|
+ 2
) 2

3l+1
⇔ 3l+2 > 2 · 3kAI(0)

|I|
+ 2.

AE(−2)AE(4) < AE

(
1− 1

3l+1

)2
⇔ −8−

(3l+1 − 1

3l+1

)2
< −AE(0)

|E|
2

3l+1
⇔

3l+3 +
1

3l+1
> 2 · 3k+1AI(0)

|I|
+ 6⇔ 3l+2 > 2 · 3kAI(0)

|I|
+ 2,

where the last equivalence holds because AI(0)/|I| is integer (this can be seen by induction
on n) and therefore we always have 3l+3 6= 2 · 3k+1AI(0)/|I|+ 6. We get

(3.2) inf P(I,k−1,−) < inf G(E,l,+) ⇔ 3l+2 > 2 · 3kAI(0)

|I|
+ 2⇔ inf P(I,k−1,−) < supG(E,l,+).

Similarly, for k ≥ 1 consider F := D(I,k,+), that is F = I(1− 1/3k, 1− 2/3k+1). For x ∈ R
the maps AI : [0, 1]→ I and AF : [0, 1]→ E satisfy

AI(x) = AF

(
3k+1

|I|

(
x− 1 +

1

3k

)
|I|
)

= AF

(
3k+1(x− 1) + 3

)
.
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We have inf P(I,k,+) = AI(1− 1/3k+1)AI(1− 1/3k) = AF (2)AF (0). For l ≥ 0 the expression
of inf G(F,l,+) and supG(F,l,+) in terms of AF is as in (3.1). Thus (2.6) gives

AF (2)AF (0) < AF (1)AF

(
1− 2

3l+1

)
⇔ 2

3l+1
− 1 < −AF (0)

|F |
2

3l+1
⇔

2

3l+1
− 1 < −

(
3k+1

(AI(0)

|I|
+ 1
)
− 3

)
2

3l+1
⇔ 3l+1 > 2 · 3k+1

(AI(0)

|I|
+ 1
)
− 4.

AF (2)AF (0) < AF

(
1− 1

3l+1

)2
⇔ −

(3l+1 − 1

3l+1

)2
< −AF (0)

|F |
2

3l+1
⇔

3l+1 +
1

3l+1
> 2 · 3k+1

(AI(0)

|I|
+ 1
)
− 4⇔ 3l+1 > 2 · 3k+1

(AI(0)

|I|
+ 1
)
− 4,

where again the last equivalence holds because AI(0)/|I| is integer and therefore we always
have 3l+1 6= 2 · 3k+1

(
AI(0)/|I|+ 1

)
− 4. We get

(3.3) inf P(I,k,+) < inf G(F,l,+) ⇔ 3l+1 > 2 · 3k+1
(AI(0)

|I|
+ 1
)
− 4⇔ inf P(I,k,+) < supG(F,l,+).

Lemma 3.1. Fix n ≥ 0, I ∈ E(Dn) and k ≥ 1. The following holds

(1) We have L(k) := min{l ≥ 0 : (3.2) holds } ≥ k + 2n. For E := D(I,k,−) and for any

l ≥ L(k) we have G(E,l,+) ⊂ P
(
(I ∩R)× (I ∩R)

)
. On the other hand

(3.4)
( ⋃

0≤l≤L(k)−1

G(E,l,+) ∪
∞⋃
l=1

G(E,l,−)

)
∩ P

(
(I ∩ Dn+2)× (I ∩ Dn+2)

)
= ∅.

(2) We have R(k) := min{l ≥ 0 : (3.3) holds } ≥ k + 2n. For F := D(I,k,+) and for any

l ≥ R(k) we have G(F,l,+) ⊂ P
(
(I ∩R)× (I ∩R)

)
. On the other hand

(3.5)
( ⋃

0≤l≤R(k)−1

G(F,l,+) ∪
∞⋃
l=1

G(F,l,−)
)
∩ P

(
(I ∩ Dn+2)× (I ∩ Dn+2)

)
= ∅.

Proof. We have AI(0)/|I| ≥ 2 · 9n for any n ≥ 0 and any I ∈ E(Dn). This can be easily
proved by induction on n, observing that AI(0)/|I| = 2 for I = [2/3, 1] = D0. Therefore
(3.2) and (3.3) give L(k) ≥ k + 2n and R(k) ≥ k + 2n. Moreover (3.2) implies

G(E,L(k),+) ⊂ P(I,k−1,−) ⊂ P
(
(I ∩R)× (I ∩R)

)
and

G(E,L(k)−1,+) ∩ P
((
AI(D)× AI(D)

)
\ (E × E)

)
= ∅.

The order between gaps established by Remark 2.5 gives

G(E,l,+) ⊂ P
(
(I ∩R)× (I ∩R)

)
for l ≥ L(k)

and ( ⋃
0≤l≤L(k)−1

G(E,l,+) ∪
⋃

0≤l<∞

G(E,l,−)

)
∩ P

((
AI(D)× AI(D)

)
\ (E × E)

)
= ∅.

According to Proposition 2.6, all gaps G(E,l,±) are removed from P (E × E) at generation
n+ 2, thus (3.4) follows. Part (1) is proved. Part (2) follows by a similar argument. �
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In the notation of Lemma 3.1, gaps G(E,l,+) with l ≥ L(k) and gaps G(F,l,+) with l ≥ R(k)

don’t give negative contribution to the measure of P
(
(I ∩Dn+2)× (I ∩Dn+2)

)
. For a sharp

measure estimate we cannot take into account the measure of these gaps. Therefore, for a
generic interval J and and integer N ≥ 1, we replace (2.7) by

(3.6) L
( ⋃

0≤l≤N−1

G(J,l,+) ∪
⋃

1≤l<∞

G(J,l,−)
)

=
∑

0≤l≤N−1

|J |2

9l+1
+
∑

1≤l≤∞

|J |2

9l+1
=
|J |2

8

(10

9
− 1

9N

)
.

We apply (3.6) with J := E and N := L(k) if we are as in Part (1) of Lemma 3.1, while we
set J := F and N := R(k) if we are as in Part (2) of Lemma 3.1.

3.4. End of the proof of Proposition 1.3. Set I := [2/3, 1]. We have AI(0)/|I| = 2. For
any n ≥ 1 define

µn := L
(
P (I × I) \ P (Dn ×Dn)

)
.

According to (2.3) we have D1 = A[2/3,1](D), thus (2.8) and (2.7) give

µ1 = L(G[2/3,1]) =
5

36

∣∣[2/3, 1]
∣∣2 =

5

4 · 81
.

For k ≥ 1 consider Ek := I(2/3k+1, 1/3k) and Fk := I(1 − 1/3k, 1 − 2/3k+1). We have
|Ek| = |Fk| = |I|/3k+1 = 1/3k+2. We apply Lemma 3.1 with n = 0 and I = [2/3, 1], and
since AI(0)/|I| = 2, it is easy to see that we get L(k) = k and R(k) = k+2. Thus Lemma 3.1
and (3.6) give

(3.7) µ2 − µ1 =
∞∑
k=1

|Ek|2

8

(10

9
− 1

9k

)
+
∞∑
k=1

|Fk|2

8

(10

9
− 1

9k+2

)
=

859

94 · 5 · 64
.

Fix k ≥ 1 and F = Fk. For m ≥ 1 let D(m,±) := D(F,m,±) be the intervals arising from the
subdivision of F at the 2-nd step. At the 3-rd step any D = D(m,±) generates gaps G(D,l,±)
with l ≥ 0. These gaps appear in the product sets Q(F,m,±) ⊂ P (D2 ×D2), where we recall

that in our notation Q(F,m,±) = P
(
D(m,±) × D(m,±)

)
. We have AF (0)/|F | = 3k+2 − 3.

Thus (3.2) and (3.3) give

G(D(m,−),l,+)) ⊂ P(F,m−1,−) ⇔ 3l+2 > 2 · 3m(3k+2 − 3) + 2⇔ l ≥ m+ k + 1.

G(D(m,+),l,+)) ⊂ P(F,m,+) ⇔ 3l+1 > 2 · 3m+1(3k+2 − 2)− 4⇔ l ≥ m+ k + 3.

The two conditions above determine those gaps G(D,l,±) with

G(D,l,±) ∩ P
(
(F ∩R)× (F ∩R)

)
= ∅.

But such gaps are subsets of the product setsQ(F,m,±), which can have non-empty intersection

with P
(
(R × R) \ (F × F )

)
. Therefore in the family of non-covered 3-rd generation gaps

arising from F = Fk some values of m are excluded because of a configuration which is not
treated by Lemma 3.1. The next Lemma 3.2 determines the relevant values of m.

Lemma 3.2. The following holds.

(1) For any m ≥ k + 3 we have

Q(F,m,+) ⊂ P(I,k,+).
12



(2) On the other hand( ∞⋃
m=1

Q(F,m,−) ∪
k+2⋃
m=1

Q(F,m,+)

)
∩ P

(
(R×R) \ (F × F )

)
= ∅.

Proof. Part (1) follows because R(k) = k + 2, so that for m ≥ k + 3 we have

inf G(F,k+1,+) < inf P(I,k,+) < inf G(F,k+2,+) < infQ(F,k+3,+) ≤ infQ(F,m,+),

where the second to last inequality follows from Remark 2.5. In order to prove Part (2), we
observe that Q(F,k+2,+) ∩ P(I,k,+) = ∅, indeed using (2.6) as in § 3.3 we get

supQ(F,k+2,+) < inf P(I,k,+) ⇔ AF (2)AF (0) > AF

(
1− 2

3k+3

)2
⇔(3k+3 − 2

3k+3

)2
<
AF (0)

|F |
4

3k+3
⇔ 8 +

4

3k+3
< 3k+2,

which is true for any k ≥ 1. Part (2) follows because for any m ≥ 1 we have

supP(I,k−1,+) < inf P (F × F ) < infQ(F,m,−) < supQ(F,k+2,+).

�

Let βk be the total measure of non-covered gaps generated by intervals D(m,±) ∈ E(DF ),
where F = Fk and m ≥ 1. The discussion above and (3.6) imply

βk =
∞∑

m=1

|D(m,−)|2

8

(10

9
− 1

9m+k+1

)
+

k+2∑
m=1

|D(m,+)|2

8

(10

9
− 1

9m+k+3

)
=

1

8

∞∑
m=1

1

9k+m+3

(10

9
− 1

9m+k+1

)
+

1

8

k+2∑
m=1

1

9k+m+3

(10

9
− 1

9m+k+3

)
=

1

64

( 20

9k+4
− 91/5

92k+6
+

1/10

94k+10

)
.

Now fix k ≥ 1 and E = Ek. For m ≥ 1 let D(m,±) := D(E,m,±) be the intervals arising
from the subdivision of E at the 2-nd step. At the 3-rd step any D = D(m,±) generates
gaps G(D,l,±) with l ≥ 0. We have AE(0)/|E| = 2 · 3k+1 + 2. Thus (3.2) and (3.3) give

G(D(m,−),l,+)) ⊂ P(F,m−1,−) ⇔ 3l+2 > 2 · 3m(2 · 3k+1 + 2) + 2⇔ l ≥ m+ k + 1.

G(D(m,+),l,+)) ⊂ P(F,m,+) ⇔ 3l+1 > 2 · 3m+1(2 · 3k+1 + 3)− 4⇔ l ≥ m+ k + 3.

The two conditions above determine those gaps G(D,l,±) with

G(D,l,±) ∩ P
(
(E ∩R)× (E ∩R)

)
= ∅.

But such gaps are subsets of the product setsQ(E,m,±), which can have non-empty intersection

with P
(
(R × R) \ (E × E)

)
. Therefore in the family of non-covered 3-rd generation gaps

arising from E = Ek some values of m are excluded, because of a configuration which is not
treated by Lemma 3.1. The next Lemma 3.3 determines the relevant values of m.

Lemma 3.3. The following holds.

(1) For any m ≥ k + 1 we have

Q(E,m,+) ⊂ P(I,k−1,−),
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(2) For m = k we have

Q(E,k,+) ∩ P(I,k−1,−) = ∅ if k ≥ 2

Q(E,k,+) ∩ P(I,k−1,−) 6= ∅ if k = 1.

(3) Finally( ∞⋃
m=1

Q(E,m,−) ∪
k−1⋃
m=1

Q(E,m,+)

)
∩ P

((
(I ∩R)× (I ∩R)

)
\ E × E

)
= ∅,

where of course
⋃k−1

m=1Q(E,m,+) = ∅ for k = 1.

Proof. Part (1) follows because L(k) = k, so that for m ≥ k + 1 we have

inf G(E,k−1,+) < inf P(I,k−1,−) < inf G(E,k,+) < infQ(E,k+1,+) ≤ infQ(E,m,+),

where the second to last inequality follows from Remark 2.5. Part (3) follows because for
any m ≥ 1 we have

supP(I,k,−) < inf P (E × E) < infQ(E,m,−) < supQ(E,k−1,+) < infQ(E,k,+) < inf P(I,k−1,−),

where the last inequality follows observing that applying (2.6) as in § 3.3 we get

infQ(E,k,+) < inf P(I,k−1,−) ⇔ AE(−2)AE(4) > AE

(
1− 1

3k

)2
⇔(3k − 1

3k

)2
+ 8 <

AE(0)

|E|
2

3k
⇔ 1

3k
< 3k+1 + 6,

which is true for any k ≥ 1. In order to prove Part (2) we apply again (2.6) as above and
we get

supQ(E,k,+) < inf P(I,k−1,−) ⇔ AE(−2)AE(4) > AE

(
1− 2

3k+1

)2
⇔(3k+1 − 2

3k+1

)2
+ 8 <

AE(0)

|E|
4

3k+1
⇔ 3k+1 +

4

3k+1
< 12,

which is true for k = 1 and false for k ≥ 2. �

Recall that in our notation E = Ek and E(DE) = {D(m,±) = D(E,m,±) : m ≥ 1}. In
particular D(k,+) = D(Ek,k,+) ⊂ Ek. Let αk be the total measure of non covered gaps
generated by intervals D(m,±) ∈ E(DE) \ {D(k,+)}. The discussion above and (3.6) give

αk =
∞∑

m=1

|D(m,−)|2

8

(10

9
− 1

9m+k+1

)
+

k−1∑
m=1

|D(m,+)|2

8

(10

9
− 1

9m+k+3

)
= βk −

k+2∑
m=k

|D(m,+)|2

8

(10

9
− 1

9m+k+3

)
= βk −

1

8

∑
j=3,4,5

1

92k+j

(10

9
− 1

92k+j

)
.

Let γk be the total measure of non covered gaps generated only by D(k,+). For k = 1 we
have Q(E,1,+) ∩ P(I,0,−) = ∅. Then applying (3.6) with N = k +m+ 3 for m = k = 1 we get

γ1 =
|D(1,+)|2

8

(10

9
− 1

92+3

)
=

5

4 · 96
− 1

8 · 910
.
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Conversely Q(E,k,+) ∩ P(I,k−1,−) 6= ∅ for k ≥ 2. Thus P(I,k−1,−) cover some gaps arising from
D(k,+) and we can only give an upper bound on γk using (2.7). We obtain

0 ≤ µ3 −
(
µ2 + γ1 +

∑
k≥1

(βk + αk)
)
≤
∑
k≥2

γk ≤
∑
k≥2

L(GD(k,+))

=
∑
k≥2

5

36

1

92k+3
=

1

64 · 96
.

We have∑
k≥1

βk + αk =
1

8

∞∑
k=1

5

9k+4
− 910

92k+6
− 91/20

92k+6
+

1/40

94k+10
+

6643

94k+10
=

157

32 · 96
− ε

where

ε :=
1

8

∑
k≥1

91/20

92k+6
− 1/40

94k+10
− 6643

94k+10
∈
(

0,
1

128 · 96

)
.

Set M := µ2 + γ1 + 157/(32 · 96), so that

5

9
−M =

5

9
−
( 5

4 · 81
+

859

94 · 5 · 64
+

5

4 · 96
− 1

8 · 910
+

157

32 · 96

)
=

91782451

170061120
+

1

8 · 910
.

We have L(P (D3 ×D3)) = 5/9− µ3. Therefore

−1

64 · 96
<
−1

64 · 96
+

1

8 · 910
+ ε ≤ L

(
P (D3 ×D3)

)
− 91782451

170061120
≤ 1

8 · 910
+ ε <

1

64 · 96
.

Proposition 1.3 is proved.
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