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Abstract—This article deals with a network of computing
agents aiming to solve an online optimization problem in a
distributed fashion, i.e., by means of local computation and
communication, without any central coordinator. We pro-
pose the gradient tracking with an adaptive momentum es-
timation (GTAdam) distributed algorithm, which combines
a gradient tracking mechanism with first- and second-order
momentum estimates of the gradient. The algorithm is an-
alyzed in the online setting for strongly convex cost func-
tions with Lipschitz continuous gradients. We provide an
upper bound for the dynamic regret given by a term related
to the initial conditions and another term related to the
temporal variations of the objective functions. Moreover, a
linear convergence rate is guaranteed in the static setup.
The algorithm is tested on a time-varying classification
problem, on a (moving) target localization problem, and in
a stochastic optimization setup from image classification.
In these numerical experiments from multiagent learning,
GTAdam outperforms state-of-the-art distributed optimiza-
tion methods.

Index Terms—Distributed optimization, multiagent sys-
tems, networked systems, optimization algorithms.

I. INTRODUCTION

IN THIS article, we deal with online optimization problems
over networks and propose a new distributed algorithm. In

this framework, interconnected computing agents have only
partial knowledge of the problem to solve but can exchange
information with neighbors according to a given communica-
tion graph and without any central unit. In particular, we con-
sider networks represented by a weighted graph G = (V, E ,W),
where V = {1, . . . , N} is the set of agents, E ⊆ V × V is the
set of edges (or communication links), and W ∈ RN×N is the
(weighted) adjacency matrix of the graph. The matrix W is
compliant with the topology described by E , i.e., being wij

the (i, j)-entry of W , then wij > 0 if (i, j) ∈ E and wij = 0
otherwise. We denote Ni = {j ∈ V | (j, i) ∈ E} the set of (in-)
neighbors of agent i.
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The aim of the network is to cooperatively solve the online
optimization problem

min
x∈Rn

N∑
i=1

f ti (x), t ≥ 0 (1)

where each f ti : Rn → R is a local function revealed only to
agent i at time t. In the following, we let f t(x) �

∑N
i=1 f

t
i (x).

This distributed optimization framework captures a variety of
estimation and learning problems over networks, including
distributed data classification and localization in smart sensor
networks (see the recent survey [1] for an overview).

In this article, we address the distributed solution of the
online optimization problem (1) in terms of dynamic regret
(see, e.g., [1]). In particular, let xti be the solution estimate of
the problem at time t maintained by agent i, and let xt� be a
minimizer of

∑N
i=1 f

t
i . Then, the agents want to minimize the

dynamic regret defined as

RT �
T∑

t=1

f t(x̄t)−
T∑

t=1

f t(xt�) (2)

for a finite valueT > 1with x̄t � 1
N

∑N
i=1 x

t
i. Another possible

performance metric is the so-called static regret (see, e.g., [1]).
The dynamic regret (2) is known to be more challenging than
the static one [1] and, for this reason, consistently with the
majority of the recent papers in the literature, this work focuses
on the dynamic regret (2). As it is customary in the distributed
setting, we also complement these measures with the consensus
metric

∑N
i=1 ‖xTi − x̄T ‖2, quantifying how far from consensus

the local decisions are.

Related work: The proposed distributed algorithm com-
bines a gradient tracking mechanism with adaptive estimation
of first- and second-order momenta.

We organize the literature review into the following three main
parts:

1) distributed algorithms for online optimization;
2) gradient tracking distributed schemes (mainly suited for

static optimization);
3) centralized methods for online and stochastic optimiza-

tion based on adaptive momentum estimation.
Online optimization problems, characterized by time-varying

cost functions, have been originally addressed in the centralized
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framework, see, e.g., [2], [3], and references therein, but re-
cently have received significant attention also in the distributed
optimization literature. In [4], an online optimization algorithm
based on a distributed subgradient scheme is proposed. In [5],
an adaptive diffusion algorithm is proposed to address changes
regarding both the cost function and the constraints character-
izing the problem. A class of coordination algorithms that gen-
eralize distributed online subgradient descent and saddle-point
dynamics is proposed in [6] for network scenarios modeled by
jointly connected graphs. An algorithm consisting of a sub-
gradient flow combined with a push-sum consensus is studied
in [7] for time-varying directed graphs. Cost uncertainties and
switching communication topologies are addressed in [8] by
using a distributed algorithm based on dual subgradient aver-
aging. A distributed version of the mirror descent algorithm
is proposed in [9] to address online optimization problems.
In [10], an online algorithm based on the alternating direction
method of multipliers is proposed, and in [11], time-varying
inequality constraints are also considered. Online optimization is
strictly related to stochastic optimization. Regarding distributed
algorithms for stochastic optimization, in [12], Ram et al. in-
vestigate the convergence properties of a distributed algorithm
dealing with subgradients affected by stochastic errors. In [13],
a blockwise method is proposed to deal with high-dimensional
stochastic problems, whereas in [14], a distributed gradient
tracking method is analyzed in a stochastic setup.

The gradient tracking scheme, which we extend in this article,
has been proposed in several variants in recent years and studied
under different problem assumptions [15], [16], [17], [18], [19],
[20], [21], [22]. This algorithm leverages a “signal tracking
action” based on the dynamic average consensus (see [23] and
[24]) in order to let the agents obtain a local estimate of the
gradient of the whole cost function. Recently, in [25], the gradi-
ent tracking algorithm has been applied to online optimization
problems. Finally, in [26], a dynamic gradient tracking update
is combined with a recursive least squares scheme to address
a distributed way the (centralized) personalized optimization
framework introduced in [27].

The other algorithm inspiring our work is Adam, a centralized
method originally proposed in [28]. Adam is an optimization
algorithm based on adaptive estimates of first- and second-order
gradient momenta that have been successfully employed in many
online and stochastic optimization frameworks. Additional in-
sights about Adam are given in [29], [30], and [31], where some
frameworks in which the algorithm is not able to reach the
optimal solution are also shown. This limitation is addressed
in [32], where an effective extension of Adam, namely, AdaShift,
is proposed. In [33], Nazari et al. proposed an enhanced version
of the distributed gradient method with adaptive estimates of
first- and second-order gradient momenta.

Contribution: The main contribution of this article is the
design of a new distributed algorithm to solve online opti-
mization problems for multiagent learning over networks. This
novel scheme builds on the recently proposed gradient tracking
distributed algorithm. Specifically, in the gradient tracking, the
agents update their local solution estimates using a consensus
averaging scheme perturbed with a local variable representing a

descent direction. This variable is concurrently updated using a
dynamic consensus scheme aiming at reconstructing the total
cost function gradient in a distributed way. Inspired by the
centralized Adam algorithm, we accelerate the basic gradient
tracking scheme by enhancing the descent direction resorting
to first- and second-order momenta of the cost function gra-
dient. The use of momenta turned out to be very effective in
the centralized Adam to solve online optimization problems at
a fast rate. Therefore, we design our novel gradient tracking
with an adaptive momentum estimation (GTAdam) distributed
algorithm to solve online optimization problems over networks.
The algorithm relies on local estimators for the two momenta, in
which the total gradient is replaced by a (local) gradient tracker.
Although the intuition behind the construction of GTAdam
is clear and consists of mimicking the centralized Adam in
a distributed setting by using a gradient tracking scheme, its
analysis presents several additional challenges with respect to
both the gradient tracking and Adam. Indeed, being the descent
direction a nonlinear combination of the local states updated
through consensus averaging, the proof approach of the gradient
tracking needs to be carefully reworked. We provide an upper
bound about the dynamic regret for strongly convex online
optimization problems. This bound consists of a constant term,
related to the initial conditions of the algorithm, and another
term depending on the temporal variations of both the optimal
solution of the problem and the gradients of the objective func-
tions. Thus, if the latter variations are sublinear with respect
to time, then our bound about the dynamic regret is sublinear
too. A similar result is also guaranteed for an agent-specific
dynamic regret. Moreover, we show that in the static case, our
algorithm reaches the optimal solution with a linear rate. Finally,
we perform extensive numerical simulations on the following
three application scenarios from distributed machine learning:

1) a classification problem via logistic regression;
2) a source localization problem in smart sensor networks;
3) an image classification task.

We show that GTAdam outperforms in all cases the current
state-of-the-art algorithms in terms of convergence rate.

Organization and Notation: The article is organized as
follows. In Section II, we recall the two algorithms that inspired
the novel distributed algorithm proposed in this article. In Sec-
tion III, GTAdam is presented with its convergence properties
that are proved in Section IV. Finally, Section V shows numerical
examples highlighting the advantages of GTAdam.

The vertical concatenation of the vectors v1 and v2 is
col(v1, v2). We use diag(v) to denote the diagonal matrix with
diagonal elements given by the components of v. The Hadamard
product is denoted with � while the Kronecker product with ⊗.
The identity matrix in Rm×m is Im while 0m is the zero matrix
in Rm×m. The column vector of N ones is denoted by 1N and
we define 1 � 1N ⊗ In. The spectral radius of a square matrix
M is denoted as ρ(M).

II. INSPIRING ALGORITHMS

In this section, we briefly recall two existing algorithms that
represent the building blocks for GTAdam.
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Algorithm 1: Adam.

initialization: x0 arbitrary, m0 = v0 = 0, g0 = ∇f0(x0)
for t = 1, 2 . . . do
mt+1 = β1m

t + (1− β1)g
t

vt+1 = β2v
t + (1− β2)g

t � gt

xt+1 = xt − α
√
1−β2

1−β1

mt+1√
vt+1+ε

gt+1 = ∇f t+1(xt+1)
end for

A. Adam Centralized Algorithm

Adam [28] is an optimization algorithm that solves problems
in the form (1) in a centralized computation framework. It is an
iterative gradientlike procedure in which, at each iteration t, a
solution estimate xt is updated by means of a descent direction,
which is enhanced by a proper use of the gradient history, i.e.,
through estimates of their first- and second-order momenta.
Specifically, the (time-varying) gradient gt = ∇f t(xt) of the
function drives two exponential moving average estimators. The
two estimates, denoted by mt and vt, represent, respectively,
mean and variance (first and second momenta) of the gradient
sequence and are nonlinearly combined to build the descent
direction. A pseudocode of the Adam algorithm is reported
in Algorithm 1 in which α > 0 is the step size, the constant
0 < ε� 1 is introduced to guarantee the numerical robustness
of the scheme while the hyperparameters β1, β2 ∈ (0, 1) control
the exponential-decay rate of the moving average dynamics.

We point out that in the algorithm above, the ratio mt+1√
vt+1+ε

is
meant elementwise. Typical choices for the algorithmic param-
eters are β1 = 0.9, β2 = 0.999, and ε = 10−8.

B. Gradient Tracking Distributed Algorithm

The gradient tracking is a distributed algorithm mainly tai-
lored to static instances of problem (1). Agents in a network
maintain and update two local states xti and sti by iteratively
combining a perturbed average consensus and a dynamic track-
ing mechanism. Consensus is used to enforce agreement among
the local agents’ estimates xti. The agreement is also locally
perturbed in order to steer the local estimates toward a (static)
optimal solution of the problem. The perturbation is obtained by
using a tracking scheme that allows agents to locally reconstruct
a progressively accurate estimate of the whole gradient of the
(static) cost function in a distributed way. A pseudocode of
the gradient tracking distributed algorithm is reported in Algo-
rithm 2, in which Ni denotes the set of (in-)neighbors of agent
i while α > 0 is the step size. The protocol is shown from the
perspective of agent i only.

III. GRADIENT TRACKING WITH ADAPTIVE MOMENTUM

ESTIMATION

In this section, we present the main contribution of this article,
i.e., the GTAdam distributed algorithm. GTAdam is designed to
address in a distributed fashion problem (1), taking inspiration

Algorithm 2: Gradient Tracking (For Agent i).

initialization: x0i arbitrary, s0i = g0i = ∇fi(x0i )
for t = 1, 2 . . . do
xt+1
i =

∑
j∈Ni

wijx
t
j − αsti

gt+1
i = ∇fi(xt+1

i )
st+1
i =

∑
j∈Ni

wijs
t
j + gt+1

i − gti
end for

Algorithm 3: GTAdam (For Agent i).

initialization: x0i arbitrary, s0i =g
0
i =∇f0i (x0i ),

m0
i =v

0
i =0

for t = 1, . . . , T do
mt+1

i = β1m
t
i + (1− β1)s

t
i

vt+1
i = min{β2vti + (1− β2)s

t
i � sti, G}

xt+1
i =

∑
j∈Ni

wijx
t
j − α

mt+1
i√

vt+1
i +ε

gt+1
i = ∇f t+1

i (xt+1
i )

st+1
i =

∑
j∈Ni

wijs
t
j + gt+1

i − gti
end for

both from Adam and from the gradient tracking distributed
algorithm.

Along the evolution of the algorithm, each agent i maintains
the following four local states:

1) a local estimate xti of the current optimal solution xt�;
2) an auxiliary variable sti, whose role is to track the gradient

of the whole cost function;
3) an estimate mt

i of the first momentum of sti;
4) an estimate vti of the second momentum of sti.

The momentum estimates of sti are initialized asm0
i = v0i = 0

while the tracker of the gradient is initialized as s0i = ∇f0i (x0i ).
The algorithm works as follows. At each time instant t, each

agent i performs the following operations:
1) it updates the moving averages mt

i and vti ;
2) it computes a weighted average of the solution estimates

of its neighbors and, starting from this point, it uses the

updated direction mt+1
i√

vt+1
i +ε

to compute the new solution

estimate xt+1
i ;

3) it updates the local gradient tracker sti via a “dynamic
consensus” mechanism.

A pseudocode of GTAdam is reported in Algorithm 3.
Some remarks are in order. The algorithm proposed in this

article is different from [33]. In fact, although they both use a
similar strategy involving first- and second-order momenta, in
that work, only local gradients are considered, without resorting
to any tracking mechanism. Note that a saturation term G� 0
is introduced in the update of vti , where the min operator is to
be intended elementwise. The value of G guarantees a bound
for the scaling factor that multiplies the descent direction. Such
a bound will turn out to be important for analysis purposes. We
suggest to take it proportional to the initial estimates v0i .

We now state some regularity requirements on problem (1).
We first make two assumptions regarding each f ti .
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Assumption 1 (Lipschitz continuous gradients): The
functions f ti have L-Lipschitz continuous gradients for all i ∈
{1, . . . , N} and t ≥ 0.

Assumption 2 (Strong convexity): The functions f ti are
μ-strongly convex for all i ∈ {1, . . . , N} and t ≥ 0.

We point out that, in light of Assumption 2, the minimizer xt�
is unique for all t ≥ 0. Finally, the following characterizes the
communication structure.

Assumption 3 (Network Structure): The weighted graph G
is connected with doubly stochastic matrix W stochastic.

In order to analyze GTAdam, we rewrite it into an ag-
gregate form. Given the variables {xti}Ni=1, we define xt �
col(xt1, . . . , x

t
N ) and their average as x̄t � 1

N

∑N
i=1 x

t
i. Similar

definitions apply to the quantities mt,vt,dt,gt, st and their
averages m̄t, v̄t, d̄t, s̄t. With these definitions at hand, GTAdam
can be rephrased from a global perspective as

mt+1 = β1m
t + (1− β1)s

t (3a)

vt+1 = min{β2vt + (1− β2)s
t � st,1G} (3b)

dt+1 = (Vt+1 + εI)−1/2mt+1 (3c)

xt+1 =Wxt − αdt+1 (3d)

st+1 =W st + gt+1 − gt (3e)

where we set W � W ⊗ In, Vt � diag(vt), and V̄ t �
diag(v̄t). Moreover, the averaged quantities of (3) satisfy

m̄t+1 = β1m̄
t + (1− β1)s̄

t (4a)

v̄t+1 = min{β2v̄t + (1− β2)s̄
t � s̄t, G} (4b)

d̄t+1 = 1
N 1
dt+1 (4c)

x̄t+1 = x̄t − αd̄t+1 (4d)

s̄t+1 = s̄t + 1
N

N∑
i=1

(gt+1
i − gti). (4e)

Our analysis is based on studying the aggregate dynamical
evolution of the following: average first momentum ‖m̄t‖, aver-
age tracking momentum difference ‖s̄t−m̄t‖, first momentum
error ‖mt−1m̄t‖, gradient tracking error ‖st−1s̄t‖, consensus
error ‖xt−1x̄t‖, and solution error ‖x̄t−xt�‖. Let yt be the
vector stacking the above quantities at iterations t

yt �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

‖m̄t‖
‖s̄t − m̄t‖

‖mt − 1m̄t‖
‖st − 1s̄t‖
‖xt − 1x̄t‖
‖x̄t − xt�‖

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

Notice that due to the distributed context and no assumptions on
the boundedness of the gradients, we need to take into account
all these quantities to study the convergence. Let us introduce
two useful variables that will be used to provide the main result

of the article, namely

ηt � sup
i

sup
x∈Rn

‖∇f t+1
i (x)−∇f ti (x)‖

ζt � ‖xt+1
� −xt�‖. (6)

Then, the main result of this article is stated as follows.
Theorem 1: Consider GTAdam as given in Algorithm 3. Let

Assumptions 1, 2, and 3 hold. Then, for a sufficiently small
step-size α > 0, there exists a constant 0 < ρ̃ < 1, such that

RT ≤ Lλ2

2

(∥∥y0∥∥2
1− ρ̃2

+ 2
∥∥y0∥∥ST +QT

)
(7)

whereRT is defined in (2), the constant λ is defined in the proof
[cf. (18)] and

ST �
T∑

t=1

t−1∑
k=0

ρ̃t+k

(
N + 1√
N

∥∥ηt−k−1
∥∥+ ∥∥ζt−k−1

∥∥) (8a)

QT �
T∑

t=1

(
t−1∑
k=0

ρ̃k
N + 1√
N

∥∥ηt−k−1
∥∥+ ∥∥ζt−k−1

∥∥)2

(8b)

where ηt, ζt are defined in (6) and we assume that they are finite.
Moreover, it holds

lim
T→∞

N∑
i=1

∥∥xTi − x̄T
∥∥2 ≤ λ2

(1−ρ̃)2 max
t

{
N2+1

N ηt + ζt
}
. (9)

As it requires several intermediate results, the proof of Theo-
rem 1 is carried out in Section IV.

There is evidence in the literature, see, e.g., [1], [9], [26],
[34], [35], [36] that the bound on the dynamic regret cannot
be sublinear with respect to T . As stated, e.g., in [1], when
the objective functions are strongly convex and have bounded
gradients, the bound on dynamic regret is O(1 + ηt). Our work
does not assume gradient boundedness and, thus, our bound has
additional terms due to variations over time of the gradients.
Specifically, Theorem 1 shows that RT is upper bounded by a
constant depending on the initial conditions and by the other
two terms. The latter involves ST and QT , which capture the
time-varying nature of the problem itself. Indeed, suppose that
the problem varies linearly, i.e., there exists C > 0 so that
ηt, ζt ≤ C for all t ≥ 0. Then, being ρ̃ ∈ (0, 1), we can exploit
the geometric series properties to write the following:

ST ≤ (N +
√
N + 1)(ρ̃− ρ̃T+1)(1− ρ̃T )C√

N(1− ρ̃)2

QT ≤ (N +
√
N + 1)2(1− ρ̃T )2 C2 T

N(1− ρ̃)2
.

In this case, (7) ensures that the average regretRT /T asymptot-
ically approaches a constant when T → ∞, specifically

lim
T→∞

RT

T
≤ Lλ2(N2 +

√
N + 1)2 C2

2N(1− ρ̃)2
.

The key point of the proof consists in showing that the error
vector yt (5) evolves according to a linear system with state
matrixA(α) (whose entries depend on the problem parameters,
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e.g., the strong convexity function or the network connectivity),
which is perturbed by an input qt related to the variations of the
problem over time (11). Notice that the parameter ρ̃ is related
to the spectral radius of A(α) and, thus, depends also on the
network topology.

Agent Regret: We may also consider a regret for each agent
i defined as RT,i �

∑T
t=1 f

t(xti)−
∑T

t=1 f
t(xt�).

Corollary 1: Under the same assumptions of Theorem 1, for
all i ∈ {1, . . . , N}, it holds

RT,i ≤ 2Lλ2

(∥∥y0∥∥2
1− ρ̃2

+ 2
∥∥y0∥∥ST +QT

)

where λ, ρ̃, ST , and QT are defined as in Theorem 1.
The proof is given in Appendix G.

Static Set-up: We provide an additional corollary of Theo-
rem 1 asserting theoretical guarantees in a static scenario. Specif-
ically, for this special case, the GTAdam distributed algorithm
converges to the optimal solution with a linear rate.

Corollary 2 (Static Set-up): Under the same assumptions
of Theorem 1, if additionally holds f t = f for all t ≥ 0, then,
for a sufficiently small step-size α > 0, there exists a constant
0 < ρ̃ < 1 such that

f(x̄t)− f(xt�) ≤ ρ̃2t
Lλ2

2

∥∥y0∥∥2 (10)

where the constant λ is defined in (18).
The proof is given in Appendix H.

IV. ANALYSIS

This section is devoted to provide the proof of Theorem 1.

A. Preparatory Lemmas

We now give a sequence of intermediate results, providing
proper bounds on the components of yt [defined in (5)], that are
then used as building blocks for proving Theorem 1.

Lemma 1 (Average first momentum magnitude): Let As-
sumption 1 holds. Then, for all t ≥ 0, it holds∥∥m̄t+1

∥∥ ≤β1
∥∥m̄t

∥∥+ (1−β1)L√
N

∥∥xt−1x̄t
∥∥+(1−β1)L

∥∥x̄t−xt�∥∥.
The proof is given in Appendix A.
Lemma 2 (First momentum error): For all t ≥ 0, it holds∥∥mt+1 − 1m̄t+1

∥∥ ≤ β1
∥∥mt − 1m̄t

∥∥+ (1− β1)
∥∥st − 1s̄t

∥∥ .
The proof of Lemma 2 follows by combining (3a) and (4a)

with the triangle inequality.
Lemma 3 (Input signal error): For all t ≥ 0, it holds

‖dt+1 − 1d̄t+1‖
≤ β1

√
N√
ε

∥∥m̄t
∥∥+ β1√

ε

∥∥mt − 1m̄t
∥∥+ (1−β1)√

ε

∥∥st − s̄t
∥∥

+ (1−β1)L√
ε

∥∥xt − 1x̄t
∥∥+ (1−β1)β1L

√
N√

ε

∥∥x̄t − xt�
∥∥ .

The proof is given in Appendix B.

Lemma 4 (Tracking error): Let Assumptions 1, 2, and 3 hold.
Then, for all t ≥ 0, it holds

‖st+1 − 1s̄t+1‖ ≤
(
σW + α 2(1−β1)L√

ε

)∥∥st − 1s̄t
∥∥

+ α 2β1L
√
N√

ε

∥∥m̄t
∥∥+ α 2β1 L√

ε

∥∥mt − 1m̄t
∥∥

+
(
L ‖W−I‖+ α 2(1−β1)β1 L2√

ε

)∥∥xt − 1x̄t
∥∥

+ α (1−β1)(1+β1)L
2
√
N√

ε

∥∥x̄t − xt�
∥∥+√

Nηt

where σW ∈ (0, 1) is the spectral radius of W − 1
N 11
 and ηt

has been defined in (6).
The proof is given in Appendix C.
Lemma 5 (Consensus error): Let Assumptions 1 and 3 hold.

Then, for all t ≥ 0, it holds

‖xt+1 − 1x̄t+1‖ ≤
(
σW + α (1−β1)L√

ε

)
‖xt − 1x̄t‖

+ αβ1

√
N√
ε

∥∥m̄t
∥∥+ α β1√

ε

∥∥mt − 1m̄t
∥∥

+ α (1−β1)√
ε

∥∥st − s̄t
∥∥+ α (1−β1)β1L

√
N√

ε

∥∥x̄t − xt�
∥∥ .

The proof is given in Appendix D.
Lemma 6 (Tracking momentum difference magnitude):

Let Assumptions 1, 2, and 3 hold. Then, for all t ≥ 0, it holds

‖s̄t+1 − m̄t+1‖ ≤ β1‖s̄t − m̄t‖+ αβ1 L√
ε

∥∥m̄t
∥∥

+ α 2β1 L√
ε
√
N
‖mt − 1m̄t‖+ α L√

ε
√
N

∥∥st − 1s̄t
∥∥

+

(
σW

L√
N

+ L√
N

+ α (1−β1)L
2

√
ε
√
N

)∥∥xt − 1x̄t
∥∥

+ α (1−β1)L
2√

ε

∥∥x̄t − xt�
∥∥+ 1√

N
ηt.

The proof is given in Appendix E.
Lemma 7 (Solution error): Let Assumptions 1, 2, and 3 hold.

Then, for all t ≥ 1, it holds

‖x̄t+1 − xt+1
� ‖

≤ (1− αδ)‖x̄t−xt�‖+ α β1√
ε
‖s̄t−m̄t‖+ α L√

ε
√
N
‖xt−1x̄t‖

+ α β1√
ε
√
N

∥∥mt − 1m̄t
∥∥+ α (1−β1)√

ε
√
N

∥∥st − 1s̄t
∥∥+ ζt

where ζt is defined in (6) and δ � min{ μ√
ε+G

, L√
ε
}.

The proof is given in Appendix F.

B. Proof of Theorem 1

By recalling the definition of yt given in (5) and combining
Lemma 1, 2, 4, 5, 6, and 7, it is possible to write

yt+1 ≤ A(α)yt + qt (11)
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where qt � col(0, 1√
N
ηt, 0,

√
Nηt, 0, ζt). The matrixA(α) can

be decomposed in A(α) � A0 + αE, with

A0 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

β1 0 0 0 β1c1 (1− β1)L

0 β1 0 0 σW c1 + c1 0

0 0 β1 1− β1 0 0

0 0 0 σW c2 0

0 0 0 0 σW 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

E �⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
β1 L√

ε
0 2β1c1√

ε
c1√
ε

(1−β1)c1 L√
ε

(1−β1)L
2√

ε

0 0 0 0 0 0
2β1L

√
N√

ε
0 2β1 L√

ε
2(1−β1)L√

ε
c3 c4

β1

√
N√
ε

0 β1√
ε

1−β1√
ε

0 c5

0 β1√
ε

β1√
ε
√
N

0 (1−β1)√
ε
√
N

−δ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where we used the following shorthands:

c1 � L√
N
, c2 � L‖W − I‖, c3 � 2(1−β1)β1 L2√

ε

c4 � (1−β1)(1+β1)L
2
√
N√

ε
, c5 � (1−β1)β1L

√
N√

ε
.

Being A0 triangular, it is easy to see that its spectral radius
is 1 since both β1 and σW are in (0, 1). We want to study
how the perturbation matrix αE affects the simple eigenvalue
1 of A0. Hence, we denote by χ(α) such eigenvalue of A(α)
as a function of α. Call w and v, respectively, the left and
right eigenvectors of A0 associated with the eigenvalue 1, then
w = col(0, 0, 0, 0, 0, 1) and v = col(L, 0, 0, 0, 0, 1). Since the
eigenvalue 1 is simple, from [37, Th. 6.3.12], it holds

dχ(α)

dα

∣∣∣∣
α=0

=
w
Ev
w
v

= −δ < 0.

Then, by continuity of eigenvalues with respect to the matrix
entries, χ(α) is strictly less than 1 for sufficiently small α > 0.
Then, it is always possible to choose α > 0 so as the remain-
ing eigenvalues stay in the unit circle. Therefore, the spectral
radius is ρ(A(α)) < 1. Moreover, since A(α) and qt have only
nonnegative entries, one can use (11) to write

yt ≤ A(α)ty0 +

t−1∑
k=0

A(α)t−1−kqk. (12)

From [37, Lemma 5.6.10], we have that for any γ > 0, there
exists a matrix norm, say ||| · |||γ , such that

|||A(α)|||γ ≤ ρ(A(α)) + γ. (13)

Let us pick γ ∈ (0, 1− ρ(A(α))) and define ρ̃ � ρ(A(α)) + γ.
Then, in light of (13) it holds |||A(α)|||γ ≤ ρ̃ < 1. Moreover,
by applying [37, Th. 5.7.13], there exists a vector norm ‖ · ‖γ
such that ‖Mv‖γ ≤ |||M |||γ‖v‖γ for any matrixM ∈ R6×6 and

v ∈ R6. Hence, we can manipulate (12) taking the norm and
using the triangle inequality to write

∥∥yt∥∥
γ
≤ ∥∥A(α)ty0∥∥

γ
+

∥∥∥∥∥
t−1∑
k=0

A(α)t−1−kqk

∥∥∥∥∥
γ

≤ ρ̃t
∥∥y0∥∥

γ
+

t−1∑
k=0

ρ̃k
∥∥qt−1−k

∥∥
γ

(14)

which shows that first term decreases linearly with rate ρ̃ < 1
while the second one is bounded. By using the Lipschitz conti-
nuity of the gradients of f t (cf. Assumption 1), we have

f t(x̄t)− f t(xt�) ≤ L
2 ‖x̄t − xt�‖2

(a)

≤ L

2

∥∥yt∥∥2 (15)

where, in (a), we use the fact that ‖x̄t − xt�‖ represents a
component of yt leading to the trivial bound ‖x̄t − xt�‖ ≤ ‖yt‖.
Recalling that all norms are equivalent on finite-dimensional
vector spaces, there always exist λ1 > 0 and λ2 > 0 such that

‖·‖ ≤ λ1 ‖·‖γ (16a)

‖·‖γ ≤ λ2 ‖·‖ . (16b)

Thus, by applying (16a), we bound (15) as

f t(x̄t)− f t(xt�) ≤
Lλ1

2

∥∥yt∥∥2
γ

which, combined with the definition of RT [cf. (2)] and the
result (14), leads to

RT ≤ Lλ2
1

2

( T∑
t=1

ρ̃2t
∥∥y0∥∥2

γ
+ 2
∥∥y0∥∥

γ

T∑
t=1

t−1∑
k=0

ρ̃t+k
∥∥qt−1−k

∥∥
γ

+

T∑
t=1

( t−1∑
k=0

ρ̃k
∥∥qt−1−k

∥∥
γ

)2)

(a)

≤ Lλ2
1λ

2
2

2

(∥∥y0∥∥2
1− ρ̃2

+ 2
∥∥y0∥∥ T∑

t=1

t−1∑
k=0

ρ̃t+k
∥∥qt−1−k

∥∥

+

T∑
t=1

( t−1∑
k=0

ρ̃k
∥∥qt−1−k

∥∥)2)
(17)

where, in (a), we use the geometric property series and the
relation (16b). The proof follows by using the triangle inequality,
the definitions of UT and QT [cf. (8)], and by setting

λ � λ1λ2. (18)

Finally, in order to prove (9), we notice that
∑N

i=1 ‖xTi −
x̄T ‖2 ≤ ‖yT ‖2 ≤ λ2

1‖yT ‖2γ , in which we apply (16a). By ap-
plying the bound (14) for t = T , we get

∥∥yT∥∥
γ
≤ ρ̃T

∥∥y0∥∥
γ
+

T−1∑
k=0

ρ̃k
∥∥qT−k−1

∥∥
γ
.

The first term of the latter inequality vanishes as T → ∞ while
the second one can be bounded by relying on the geometric series
property and maxk{‖qk‖2}. By exploiting these arguments, we
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can write

lim
T→∞

N∑
i=1

∥∥xTi − x̄T
∥∥2 ≤ λ2

1

(1−ρ̃)2 max
t

{∥∥qt∥∥2
γ

}
(a)

≤ λ2

(1−ρ̃)2 max
t

{∥∥qt∥∥2} (19)

where, in (a), we apply (16b) and the definition (18) of λ. The
result (9) follows by noticing that:

max
t

{∥∥qt∥∥2}=max
t

{
N2+1

N ηt + ζt
}
.

V. NUMERICAL EXPERIMENTS

In this section, we consider three multiagent distributed learn-
ing problems to show the effectiveness of GTAdam. The first
scenario regards the computation of a linear classifier via a
regularized logistic regression function for a set of points that
change over time. The second scenario involves the localization
of a moving target. The third example is a stochastic optimization
problem arising in a distributed image classification task. In
all the examples, the parameters of GTAdam are chosen as
β1 = 0.9, β2 = 0.999, and ε = 10−8. Moreover, we compare
GTAdam with the gradient tracking distributed algorithm (GT)
(cf. Algorithm 2 in Section II), the distributed gradient descent
(DGD) (see [38]), and the distributed Adam (DAdam) (see [33])
described by

mt+1
i = β1m

t
i + (1− β1)∇f ti (xti)

vt+1
i = β2v

t
i + (1− β2)∇f ti (xt+1

i )�∇f ti (xt+1
i )

ṽt+1
i = β3ṽ

t
i + (1− β3)max{ṽti , vt+1

i }

xt+1
i =

∑
j∈Ni

wijx
t
j + γt

mt+1
i

ṽt+1
i

for all i ∈ {1, . . . , N}. As suggested in [33], we set β1 = β3 =
0.9, β2 = 0.999, and a diminishing step-size γt = (αt )

−1/2 for
some α > 0.

A. Distributed Classification via Logistic Regression

Consider a network of agents that want to cooperatively train
a linear classifier for a set of (moving) points in a given feature
space. At time t ≥ 0, each agent i is equipped with mi ∈ N
points pti,1, . . . , p

t
i,mi

∈ Rd with binary labels li,k ∈ {−1, 1}
for all k ∈ {1, . . . ,mi}. The problem consists of building a
linear classification model from the given points, also called
training samples. In particular, we look for a separating hyper-
plane described by a pair (w, b) ∈ Rd × R given by {p ∈ Rd |
w
p+ b = 0}. This online classification problem can be posed
at each time t ≥ 0, as a minimization problem described by

min
w,b

N∑
i=1

mi∑
k=1

log
(
1 + e−li,k(w


pt
i,k+b)

)
+ C

2

(‖w‖2 + b2
)

(20)
where C > 0 is the so-called regularization parameter. Notice
that the presence of the regularization makes the cost function
strongly convex. Each point pti,k ∈ R2 moves along a circle of

Fig. 1. Distributed classification via logistic regression. Mean of the
relative cost errors and 1-standard deviation band obtained with Monte
Carlo simulations consisting of 100 trials in which each of the N = 50
agents is equipped with m = 5 points.

radius r = 1 according to the following law:

pti,k = pci,k + r

[
cos(t/100)

sin(t/100)

]

where pci,k ∈ R2 represents the randomly generated center of
the considered circle. We consider a network of N = 50 agents
and pick mi = 5 (for all i). We performed an experimental
tuning to optimize the step sizes to enhance the convergence
properties of each algorithm. In particular, we selected α = 0.1
for GTAdam, α = 0.05 for GT, α = 0.1 for DGD, and α = 0.1
for DAdam. We performed Monte Carlo simulations consisting
of 100 trials, in which we alternatively consider an undirected,
connected Erdős-Rényi graph with connectivity parameter 0.5,
and a ring graph. In Fig. 1, we plot the average across the trials
of the relative cost error, namely ft(x̄t)−ft(xt

�)
ft(xt

�)
, with xt� being

the minimum of f t for all t. The plot highlights that GTAdam
exhibits a faster convergence compared to the other algorithms
and achieves a smaller tracking error.

Finally, we consider a static instance of problem (20), i.e.,
with fixed objective function f ti = fi for all t ≥ 0 and i ∈
{1, . . . , N}. We consider a network of N = 50 agents in a ring
topology. We take α = 0.001 for GTAdam, α = 0.01 for GT,
α = 0.1 for DGD, and α = 0.5 for DAdam. In Fig. 2, we plot
the error ‖x̄t − x�‖ achieved by the considered methods, where
x� ∈ Rd is the (fixed) optimal solution of the problem. Fig. 2
clearly shows the benefit of the tracking mechanism, which
allows GTAdam and GT to achieve the exact problem solution.
The plot also shows that GTAdam is faster than GT.

B. Distributed Source Localization in Smart Sensor
Networks

The estimation of the exact position of a source is a key
task in several applications in multiagent distributed estimation
and learning. Here, we consider an online version of the static
localization problem considered in [39, Sec. 4.2]. An acoustic
source is positioned at an unknown and time-varying location
θttarget ∈ R2. A network of N sensors is capable to measure an
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Fig. 2. Distributed classification via logistic regression. Static set-up in
which each of the N = 50 agents is equipped with m = 5 points.

isotropic signal related to such location and aims at coopera-
tively estimating θttarget. Each sensor is placed at a fixed location
ci ∈ R2 and takes, at each time instant, a noisy measurement ac-
cording to an isotropic propagation modelωt

i � A
‖θt

target−ci‖γ + εti,

where A > 0, γ ≥ 1 describes the attenuation characteristics
of the medium through which the signal propagates, and εti
is a zero-mean Gaussian noise with variance σ2. With these
data, each node i at each time t ≥ 0 addresses a nonlinear
least-squares online problem

min
x

N∑
i=1

(
ωt
i −

A

‖x− ci‖γ
)2

.

We consider a network of N = 50 agents randomly located
according to a two-dimensional Gaussian distribution with zero
mean and variance a2I2 = 100I2. The agents want to track the
location of a moving target, which starts at a random location
θ0target ∈ R2 generated according to the same distribution of
the agents. The target moves along a circle of radius r = 0.5
according to the following law:

θttarget = θcenter + r

[
cos(t/200)

sin(t/200)

]

where θcenter ∈ R2 represents the randomly generated circle cen-
ter. We pick γ = 1, A = 100, and a noise variance σ2 = 0.001.
We take α = 0.05 for GTAdam, α = 0.02 for GT, α = 0.05 for
DGD, and α = 0.0725 for DAdam. The agents communicate
according to a ring graph. In Fig. 3, we compare the algorithm
performance in terms of the (instantaneous) cost function evolu-
tion. Fig. 4 shows that the best performance in terms of average
dynamic regret is obtained by GTAdam. GTAdam seems to
achieve a smaller error with respect to the other algorithms. We
make these comparisons by using θttarget as the optimal estimate
associated with the iteration t but we note that the actual optimal
solution may be slightly different since the noise εti affects the
measurement of each agent.

C. Distributed Image Classification via Neural Networks

In this example, we consider an image classification problem
in which N nodes have to cooperatively learn how to cor-
rectly classify images. We pick the Fashion-MNIST dataset [40]

Fig. 3. Distributed source localization. Cost function values obtained
for a network of N = 50 agents.

Fig. 4. Distributed source localization. Average regret values obtained
for a network of N = 50 agents.

consisting of black-and-white 28× 28-pixels images of clothes
belonging to 10 different classes. Each agent i has a local dataset
Di = {(pi,k, yi,k)}mi

k=1 consisting of mi images pi,k ∈ R28×28

and their associated labels yi,k ∈ {1, . . . , 10}. The goal of the
agents is to learn the parameters x� of a function h(p;x�) so
that h(pi,k;x�) gives the correct label for pi,k. The resulting
optimization problem is

min
x

N∑
i=1

1

mi

mi∑
k=1

V (yi,k, h(pi,k, x)) + C‖x‖2

where V (·) is the categorical cross-entropy loss, and C > 0 is a
regularization parameter. The local cost function is

fi(x | Di)�EDi
[�i(x)]=

1

mi

mi∑
k=1

V (yi,k, h(pi,k, x))+
C

N
‖x‖2.

We represent h(·) by a neural network with one hidden layer
(with 300 units with ReLU activation function) and an out-
put layer with 10 units. Moreover, we pick N = 16 agents
and associate each of them mi = 3750 labeled images for all
i. We performed Monte Carlo simulations consisting of 100
trials and each trial lasts 10 epochs over the local datasets.
The results are reported In Figs. 5 and 6, in terms of the
global training loss f({x̄ep,D1, . . . ,DN}) �∑N

i=1 fi(x̄ep |



1444 IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS, VOL. 10, NO. 3, SEPTEMBER 2023

Fig. 5. Distributed image classification. Mean and 3−standard devia-
tion band of the training loss.

Fig. 6. Distributed image classification. Mean and 3−standard devia-
tion band of the training accuracy.

Di), with x̄ep � 1
N

∑N
i=1 xi,ep, and the average training ac-

curacy ψ({x̄ep,D1, . . . ,DN}) � 1
N

∑N
i=1 ψi(x̄ep | Di), where

ψi(x̄ep | Di) is the accuracy achieved with x̄ep on the local
dataset of the agent i at the end of epoch ep. We take α = 0.001
for GTAdam, and α = 0.1 for DGD, GT, and DAdam. As it
can be appreciated from Figs. 5 and 6, in both cases GTAdam
outperforms the other algorithms.

VI. CONCLUSION

We proposed GTAdam, a novel distributed optimization al-
gorithm tailored for multiagent online learning. Inspired by the
popular Adam algorithm, our novel GTAdam is based on the
gradient tracking distributed scheme, which is enhanced with
adaptive first- and second-order momentum estimates of the
gradient. We provided theoretical bounds on the convergence of
the proposed algorithm. Moreover, we tested GTAdam in three
different scenarios showing a performance improvement with
respect to state-of-the-art algorithms.

APPENDIX

We report a lemma that will be used in the proof of Lemma 7
(cf. Appendix F).

Lemma 8: Let f(x) : Rn → R be σ-strongly convex and
withL-Lipschitz continuous gradient. Moreover, letD ∈ Rn×n

be a positive definite diagonal matrix such that Dii ∈ [ε,M ]
for all i = 1, . . . , n with M ≥ ε > 0 and M <∞. Let L̄ =

ML and s = εσ. Letxt+1 = xt − αD∇f(xt), withα ∈ (0, 2
L̄
].

Then ‖xt+1 − x�‖ ≤ max{(1− αs), (1− αL̄)}‖xt − x�‖.
Proof: Let h(x) be a function such that ∇h(x) = D∇f(x)

for allx. It can be easily shown thath has L̄-Lipschitz continuous
gradients, in fact

‖∇h(x)−∇h(y)‖ = ‖D∇f(x)−D∇f(y)‖
≤ ‖D‖‖∇f(x)−∇f(y)‖ ≤ ‖D‖L‖x− y‖ ≤ML‖x− y‖.

Moreover h is s-strongly convex, since ∇2h(x) = D∇2f(x) �
DσI ≥ εσI . Define g(x) = h(x)− s

2‖x‖2. Notice that, by def-
inition, g is convex and with (L̄− s)-Lipschitz continuous gra-
dient. Thus, by definition, we have

〈∇g(x)−∇g(y), x− y〉 ≥ 1
L̄−s

‖∇g(x)−∇g(y)‖2. (21)

Now, by using the definition of g, one has

〈∇h(x)− sx−∇h(y) + sy, x− y〉
= 〈∇h(x)−∇h(y), x− y〉 − s‖x− y‖2. (22)

Moreover

‖∇g(x)−∇g(y)‖2 = ‖∇h(x)− sx−∇h(y) + sy‖2

= ‖∇h(x)−∇h(y)‖2 + s2‖x− y‖2

− 2s〈∇h(x)−∇h(y), x− y〉. (23)

By combining (21), (22), and (23), we get

〈∇h(x)−∇h(y), x− y〉
≥ sL̄

s+L̄
‖x− y‖2 + 1

s+L̄
‖∇h(x)−∇h(y)‖2. (24)

Now, by using the update rule, one has

‖xt+1 − x�‖2 = ‖xt − αD∇f(xt)− x�‖2

= ‖xt − x�‖2 − 2α〈D∇f(xt),xt − x�〉+ α2‖D∇f(xt)‖2

= ‖xt − x�‖2 − 2α〈D∇f(xt)−D∇f(x�),xt − x�〉
+ α2‖D∇f(xt)−D∇f(x�)‖2.

By using the result (24) with ∇h(x) = D∇f(x), we have

‖xt+1 − x�‖2 ≤ ‖xt − x�‖2 + α2‖D∇f(xt)−D∇f(x�)‖2

− 2α sL̄
s+L̄

‖xt − x�‖2 − 2α
s+L̄

‖D∇f(xt)−D∇f(x�)‖2

=
(
1− 2α sL̄

s+L̄

)
‖xt − x�‖2

+ α
(
α− 2

s+L̄

)
‖D∇f(xt)−D∇f(x�)‖2

≤
(
1− 2α sL̄

s+L̄

)
‖xt − x�‖2 + α

(
αL̄2 − 2s2

s+L̄

)
‖xt − x�‖2

≤ max{(1− αs)2, (1− αL̄)2}‖xt − x�‖2.
The proof follows by taking the square root of both sides. �

A. Proof of Lemma 1

By using the update (4a), we can write∥∥m̄t+1
∥∥=∥∥β1m̄t+(1−β1)s̄t

∥∥≤β1∥∥m̄t
∥∥+(1−β1)

∥∥s̄t∥∥ (25)
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in which we use the triangle inequality. Regarding the term
‖s̄t‖, we use the relation s̄t = 1

N

∑N
i=1 ∇f ti (xti), and we add

1
N

∑N
i=1 ∇f ti (xt�) = 0, thus obtaining

‖s̄t‖=
∥∥∥∥∥ 1
N

N∑
i=1

∇f ti (xti)− 1
N

N∑
i=1

∇f ti (xt�)
∥∥∥∥∥
(a)

≤ L
N

N∑
i=1

∥∥xti−xt�∥∥
(b)

≤ L√
N

∥∥xt−1xt�
∥∥ (c)

≤ L√
N

∥∥xt−1x̄t
∥∥+L ∥∥x̄t−xt�∥∥ (26)

where, in (a),we exploit the Lipschitz continuity of the gradients
of the cost functions (cf. Assumptions 1), in (b), we use the
basic algebraic property

∑N
i=1 ‖θi‖ ≤ √

N‖θ‖ for a generic
vector θ � col(θ1, . . . , θN ), and in (c), we add and subtract the
term 1x̄t and apply the triangle inequality. The proof follows by
combining the bounds (25) and (26).

B. Proof of Lemma 3

By using (3c) and (4c), one has∥∥dt+1−1d̄t+1
∥∥=∥∥∥(I − 1

N 11
) (Vt+1 + εI)−1/2mt+1
∥∥∥

(a)

≤
∥∥∥(Vt+1+εI)−1/2

∥∥∥∥∥mt+1
∥∥ (b)

≤ 1√
ε

∥∥mt+1
∥∥

(c)

≤ 1√
ε

∥∥mt+1−1m̄t+1
∥∥+ √

N√
ε

∥∥m̄t+1
∥∥ (27)

where, in (a), we apply the Cauchy–Schwarz inequality
combined with ‖I − 1

N 11
‖ ≤ 1, in (b), we use the bound
‖(Vt+1 + εI)−1/2‖ ≤ 1√

ε
(justified by the fact that vt+1 ≥ 0

for all t ≥ 0), in (c),we add and subtract within the norm 1m̄t+1

and apply the triangle inequality and an algebraic property.
The proof follows by using Lemmas 1 and 2 in (27).

C. Proof of Lemma 4

By combining (3e) and (4e), one has

‖st+1 − 1s̄t+1‖

=

∥∥∥∥∥W st + gt+1 − gt − 1

(
s̄t + 1

N

N∑
i=1

(gt+1
i − gti)

)∥∥∥∥∥
(a)

≤ ∥∥(W − 1
N 11
) (st − 1s̄t)

∥∥
+
∥∥(I − 1

N 11
) (gt+1 − gt)
∥∥

(b)
= σW

∥∥st − 1s̄t
∥∥+ ∥∥gt+1 − gt

∥∥ (28)

where (a) uses 1 ∈ ker(W − 1
N 11
) and the triangle inequal-

ity and (b) combines the Cauchy–Schwarz inequality with the
bounds ‖W − 1

N 11
‖ ≤ σW and ‖I − 1
N 11
‖ ≤ 1.

Let g̃t � col(∇f t+1
1 (xt1), . . . ,∇f t+1

N (xtN )) and manipulate
the term ‖gt+1 − gt‖ in (28) as

‖gt+1 − gt‖ ≤ ‖gt+1 − g̃t‖+ ∥∥g̃t − gt
∥∥

(a)

≤ L‖xt+1 − xt‖+ ‖g̃t − gt‖
(b)

≤ L
∥∥xt+1 − xt

∥∥+√
Nηt

(c)
= L‖Wxt − αdt+1 − xt‖+

√
Nηt (29)

where, in (a), we use the Lipschitz continuity of the gradients
of the cost functions (cf. Assumption 1), (b) uses the variable ηt

[cf (6)], and (c) uses the update (3d) of xt+1. Let us manipulate
the first term on the right-hand side of (29)∥∥Wxt − αdt+1 − xt

∥∥ (a)
=
∥∥(W − I)(xt − 1x̄t)− αdt+1

∥∥
(b)

≤ ‖W−I‖‖xt−1x̄t‖+α‖dt+1− 1d̄t+1‖+ α‖1d̄t+1‖ (30)

where (a) uses the fact that ker(W − I) = span(1) and, in (b),
we add and subtract the term 1d̄t+1 within the norm and we ap-
ply the triangle inequality and the Cauchy–Schwarz inequality.
Regarding ‖1d̄t+1‖, we use (3c) and (4c) to write

‖1d̄t+1‖ =
∥∥ 1
N 11
dt+1

∥∥ =
∥∥∥ 1
N 11
(Vt+1 + εI)−1/2mt+1

∥∥∥
(a)

≤ 1√
ε

∥∥mt+1
∥∥ (b)

≤ 1√
ε

∥∥mt+1−1m̄t+1
∥∥+ √

N√
ε

∥∥m̄t+1
∥∥ (31)

where, in (a),we apply the Cauchy–Schwarz inequality and the
bounds ‖ 1

N 11
‖ ≤ 1 and ‖(Vt+1 + ε)−1/2‖ ≤ 1√
ε
, in (b), we

add and subtract within the norm the term 1m̄t+1, apply the
triangle inequality, and use an algebraic property. By combin-
ing (30) and (31), we bound (29) as

‖gt+1 − gt‖ ≤ L‖W − I‖‖xt − 1x̄t‖+ αL‖dt+1−1d̄t+1‖
+ α L√

ε

∥∥mt+1 − 1m̄t+1
∥∥+αL

√
N√
ε

∥∥m̄t+1
∥∥+√

Nηt. (32)

Now, by using the bound (32) within (30), we get∥∥st+1 − 1s̄t+1
∥∥ ≤ σW

∥∥st − 1s̄t
∥∥

+ L‖W − I‖‖xt − 1x̄t‖+ αL‖dt+1 − 1d̄t+1‖
+ α L√

ε

∥∥mt+1 − 1m̄t+1
∥∥+ αL

√
N√
ε

∥∥m̄t+1
∥∥+√

Nηt. (33)

The proof follows by using Lemmas 1, 2, and 3 to bound
‖m̄t+1‖, ‖mt+1 − 1m̄t+1‖, and ‖dt+1 − 1d̄t+1‖.

D. Proof of Lemma 5

By combining (3d) and (4d), we have

‖xt+1 − 1x̄t+1‖ = ‖Wxt − αdt+1 − 1x̄t + α1d̄t+1‖
(a)

≤ ‖Wxt − 1x̄t‖+ α‖dt+1 − 1d̄t+1‖
(b)

≤ σW ‖xt − 1x̄t‖+ α‖dt+1 − 1d̄t+1‖
where, in (a), we apply the triangle inequality and (b) follows
by ‖W − 1

N 11
‖ ≤ σW . The proof follows by Lemma 3.

E. Proof of Lemma 6

From the updates of s̄t+1 and m̄t+1 [cf. (4e) and (4a)], we get

‖s̄t+1−m̄t+1‖=
∥∥∥∥s̄t+ 1

N

N∑
i=1

∇f t+1
i (xt+1

i )− 1
N

N∑
i=1

∇f ti (xti)

− β1m̄
t − (1− β1)s̄

t

∥∥∥∥
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(a)

≤ β1‖s̄t − m̄t‖+
∥∥∥∥∥ 1
N

N∑
i=1

∇f t+1
i (xt+1

i )− 1
N

N∑
i=1

∇f ti (xti)
∥∥∥∥∥

where (a) uses the triangle inequality. By adding and sub-
tracting within the second norm 1

N

∑N
i=1 ∇f t+1

i (x̄t+1) and
1
N

∑N
i=1 ∇f t+1

i (xti), we use the triangle inequality to obtain

‖s̄t+1 − m̄t+1‖ ≤ β1‖s̄t − m̄t‖

+

∥∥∥∥∥ 1
N

N∑
i=1

∇f t+1
i (xt+1

i )− 1
N

N∑
i=1

∇f t+1
i (x̄t+1)

∥∥∥∥∥
+

∥∥∥∥∥ 1
N

N∑
i=1

∇f t+1
i (xti)− 1

N

N∑
i=1

∇f ti (xti)
∥∥∥∥∥

+

∥∥∥∥∥ 1
N

N∑
i=1

∇f t+1
i (x̄t+1)− 1

N

N∑
i=1

∇f ti (xti)
∥∥∥∥∥

(a)

≤ β1‖s̄t − m̄t‖+ L√
N
‖xt+1 − 1x̄t+1‖+ 1√

N
ηt

+ L√
N
‖xt − 1x̄t+1‖ (34)

where, in (a), we use the Lipschitz continuity of the gradients
of the cost functions (cf. Assumptions 1) for the second and the
third norms, and we use ηt [cf. (6)]. Now, we replace x̄t+1 with
its update (4d) within the last term of (34) obtaining

‖s̄t+1 − m̄t+1‖ ≤ β1‖s̄t − m̄t‖+ L√
N
‖xt+1 − 1x̄t+1‖

+ L√
N
ηt + L√

N
‖1x̄t − α1d̄t+1 − xt‖

(a)

≤ β1‖s̄t − m̄t‖+ L√
N
‖xt+1 − 1x̄t+1‖+ L√

N
ηt

+ L√
N
‖xt − 1x̄t‖+ α L√

ε
√
N

∥∥mt+1 − 1m̄t+1
∥∥

+ α L√
ε

∥∥m̄t+1
∥∥ (35)

where, in (a),we use (31) to bound ‖1d̄t+1‖. The proof follows
by using Lemmas 5, 1, and 2 to bound‖xt+1 − 1x̄t+1‖,‖m̄t+1‖,
and ‖mt+1 − 1m̄t+1‖, respectively.

F. Proof of Lemma 7

By using (4d), one has∥∥x̄t+1 − xt+1
�

∥∥ =
∥∥x̄t − αd̄t+1 − xt+1

�

∥∥
(a)

≤ ∥∥x̄t − αd̄t+1 − xt�
∥∥+ ζt

where, in (a), we add and subtract within the norm xt�, use
the triangle inequality, and use ζt [cf. (6)]. Now, we add and

subtract within the normα1
(Vt+1+εI)−1/21
N2 ∇f t(x̄t) and we use

the triangle inequality to write

‖x̄t+1 − xt+1
� ‖ ≤

∥∥∥x̄t − α1
(Vt+1+εI)−1/21
N2 ∇f t(x̄t)− xt�

∥∥∥
+ α

∥∥∥1
(Vt+1+εI)−1/21
N2 ∇f t(x̄t)− d̄t+1

∥∥∥+ζt. (36)

Consider the second term of (36) and use (4c) to write

α
∥∥∥1
(Vt+1+εI)−1/21

N
∇ft(x̄t)

N − d̄t+1
∥∥∥

= α

∥∥∥∥1
(Vt+1+εI)−1/21
N

∇ft(x̄t)
N − 1
(Vt+1+εI)−1/2

N mt+1

∥∥∥∥
(a)

≤ α
∥∥∥1
(Vt+1+εI)−1/21

N

(
∇ft(x̄t)

N − m̄t+1
)∥∥∥

+ α
∥∥∥1
(Vt+1+εI)−1/2

N (mt+1 − 1m̄t+1)
∥∥∥

(b)

≤ α√
ε

∥∥∥∇ft(x̄t)
N −m̄t+1

∥∥∥+ α√
ε
√
N

∥∥mt+1−1m̄t+1
∥∥ (37)

where, in (a), we add and subtract within the norm the term
1
(Vt+1+εI)−1/21

N m̄t+1 and we apply the triangle inequality, in
(b), we apply the Cauchy–Schwarz inequality combined with

the bounds ‖1
(Vt+1+εI)−1/21
N ‖ ≤ 1√

ε
and ‖1
(Vt+1+εI)−1/2

N ‖ ≤
1√
ε
√
N

.

Now, we add and subtract the term 1
N

∑N
i=1 ∇f ti (xti) and

then we use the triangle inequality to rewrite the first term of the
second member of (37) as

α 1√
ε

∥∥∥∇ft(x̄t)
N − m̄t+1

∥∥∥ ≤ α 1√
ε

∥∥∥∥∥ 1
N

N∑
i=1

∇f ti (xti)− m̄t+1

∥∥∥∥∥
+ α 1√

ε

∥∥∥∥∥∇ft(x̄t)
N − 1

N

N∑
i=1

∇f ti (xti)
∥∥∥∥∥

(a)
= α 1√

ε

∥∥∥∥∥ 1
N

N∑
i=1

∇f ti (xti)− β1m̄
t − (1− β1)s̄

t

∥∥∥∥∥
+ α 1√

ε

∥∥∥∥∥∇ft(x̄t)
N − 1

N

N∑
i=1

∇f ti (xti)
∥∥∥∥∥

(b)

≤ α β1√
ε

∥∥s̄t − m̄t
∥∥+ α L√

ε
√
N

∥∥xt − 1x̄t
∥∥ (38)

where, in (a), we use (4a), (b) uses the relation s̄t =
1
N

∑N
i=1 ∇f ti (xti), and the Lipschitz continuity of the gradients

of the cost functions (cf. Assumption 1). Next, in order to
bound the right-hand side of (36), first notice that 1√

G+ε
<

1
(Vt+1+εI)−1/21
N < 1√

ε
. Moreover, being f t μ-strongly convex

for all t ≥ 0 (cf. Assumption 2) and having L-Lipschitz contin-
uous gradients (cf. Assumption 1), we apply Lemma 8 (in the
Appendix) to write∥∥∥x̄t−α1
(Vt+1+εI)−1/21

N2 ∇f t(x̄t)−xt�
∥∥∥≤φ ∥∥x̄t−xt�∥∥ (39)

where φ � max{|1− α√
ε+G

μ|, |1− α√
ε
L|}. If we take α <

min{
√
ε+G
μ ,

√
ε

L }, then it holds φ = 1− αδ, where δ is defined
in the statement of Theorem 1. By combining the latter with (38)
and (39), it is possible to upper bound (36) as

‖x̄t+1 − xt+1
� ‖ ≤ (1− αδ)‖x̄t − xt�‖+ α β1√

ε
‖s̄t − m̄t‖

+ α√
ε
√
N

∥∥mt+1−1m̄t+1
∥∥+ αL√

ε
√
N

∥∥xt−1x̄t
∥∥+ ζt. (40)
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The proof follows by invoking Lemma 2 to bound ‖mt+1 −
m̄t+1‖ within (40).

G. Proof of Corollary 1

We add and subtract f t(x̄t) to f t(xti)− f t(xt�), obtaining

f t(xti)− f t(xt�) = f t(xti)− f t(x̄t) + f t(x̄t)− f t(xt�)

(a)

≤ f t(xti)− f t(x̄t) +
L

2

∥∥x̄t − xt�
∥∥2

(b)

≤ ∇f t(x̄t)
(xti−x̄t)+
L

2

∥∥xti−x̄t∥∥2+L

2

∥∥x̄t−xt�∥∥2 (41)

where, in (a),we apply (15) and in (b) we use the Lipschitz con-
tinuity of the gradients of the cost functions (cf. Assumption 1).
Being ∇f t(xt�) = 0, we rewrite (41) as

f t(xti)− f t(xt�) ≤ (∇f t(x̄t)−∇f t(xt�))
(xti − x̄t)

+ L
2

∥∥xti − x̄t
∥∥2 + L

2

∥∥x̄t − xt�
∥∥2

(a)

≤ L
∥∥x̄t−xt�∥∥∥∥xti−x̄t∥∥+ L

2

∥∥xti−x̄t∥∥2+ L
2

∥∥x̄t−xt�∥∥2 (42)

where, in (a), we use the Cauchy–Schwarz inequality and the
Lipschitz continuity of the gradients of the cost functions (cf. As-
sumption 1). Now, we notice that both ‖x̄t − xt�‖ and ‖xti − x̄t‖
represent a component of the vector yt defined in (5), and thus,
can be both upper bounded by ‖yt‖. Hence, the inequality (42)
can be elaborated as

f t(xti)− f t(xt�) ≤ 2L
∥∥yt∥∥2 . (43)

By summing over t the inequality in (43), we bound RT,i as

RT,i ≤ 2L

T∑
t=1

∥∥yt∥∥2 (a)

≤ 2Lλ2
1

T∑
t=1

∥∥yt∥∥2
γ

(44)

where, in (a), we apply (16a). As done above to prove (7), the
proof follows by combining (44), (14), and (16b).

H. Proof of Corollary 2

Using the same arguments of Theorem 1, we start from (14).
Differently from the dynamic case, in the static set-up, we have
∇f ti (x) = ∇fi(x) for all t and i, leading to xt� = x� for all t.
Thus, we can combine (14) with qt ≡ 0, the Lipschitz continuity
of the gradient of the cost function (cf. Assumption 1) and (16a),

to write f(x̄t)− f(x�) ≤ ρ̃2t
Lλ2

1

2 ‖y0‖2γ ≤ ρ̃2t
Lλ2

1λ2
2

2 ‖y0‖2, in
which we use (16b). The proof follows by using the defini-
tion (18) of λ.
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