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Defocus particle tracking (DPT) has gained increasing importance for its use to determine particle
trajectories in all three dimensions with a single-camera system, as typical for a standard microscope,
the workhorse of today’s ongoing biomedical revolution. DPT methods derive the depth coordinates
of particle images from the different defocusing patterns that they show when observed in a volume
much larger than the respective depth of field, therefore it has become common for state-of-the-art
methods to apply image recognition techniques. Two of the most commonly and widely used DPT
approaches is the application of (astigmatism) particle image model functions (MF) and normalized
cross-correlations between measured particle images and reference templates (CC). Though still
young in the field, the use of neural networks (NN) is expected to play a significant role in future
and more complex defocus tracking applications. To assess the different strengths of such MF, CC,
and NN defocus tracking approaches, we present in this work a general and objective assessment
of their performances when applied to synthetic and experimental images of different degrees of
astigmatism, noise levels, and particle image overlapping. We show that MF-based approaches
work very well in low-concentration case, while CC-based approaches are more robust and provide
better performance in cases of larger particle concentration and thus stronger particle image overlap.
The tested NN-based methods generally showed the lowest performance, however, in comparison
to the MF- and CC-based methods, they are yet in an early stage and have still great potential to

develop within the field of defocus particle tracking.

I. INTRODUCTION

Several methods have been proposed to enable the fully
three-dimensional measurement of the velocity field in a
volume. Especially in the case of investigating microflu-
idic flows, usually only one direction of observation is
available, limiting the range of applicable techniques [3].
On the other hand, flows in microfluidics are often inher-
ently three-dimensional or show strong gradients in all di-
rections of the velocity field. One of the first applications
using defocused particle images to determine out-of-plane
velocities was shown in 1994 by Stolz and Kohler [41].
Since then, several different defocusing-based methods
have widely been used, especially in microfluidic appli-
cations [4-7, 18, 25-27, 30, 35, 39, 43, 44]. Each of the
methods performed well for a specific experiment but a
general assessment on the applicability for different situ-
ations and a thorough and comprehensive discussion on
errors is missing so far.

With one of its first introductions by Kao and Verk-
man in 1994 [17], one widely-used method applies cylin-
drical lenses to introduce astigmatic aberrations to break
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the axis symmetry of the optical system and to pro-
vide elliptically-shaped particle images. By the evalua-
tion of the length and width of the elliptical particle im-
ages, a particle’s depth position can be determined [11].
However, the algorithms developed for the classical im-
plementation of astigmatism particle tracking velocime-
try (APTV) rely on the model assumption of Gaussian-
distributed light intensity of the particle images [9]. Al-
though the method showed better performance in com-
parison to typically-used stereoscopic micro Particle Im-
age Velocimetry (uPIV) [10], there was much room for
further improvements and optimization [36]. Especially,
since optical systems are quite complex and additional
image aberrations often occur, the elliptical model often
does not hold and experimentally-acquired images are
needed for calibration [9].

Derived from the need of calibration images and to ac-
count for differently-distributed intensities, a direct com-
parison between measured and calibration particles im-
ages was proposed, called the General Defocusing Par-
ticle Tracking (GDPT) [1]. In its simplest form GDPT,
uses templates of actual calibration particle images to de-
termine a particle’s depth position through matching of a
template particle image and an actual measured particle
image using cross correlation. The advantage is that the
method can be applied even using minor quality optical
systems without knowledge of the transfer function. Ad-
ditionally, the use of calibration images enables the pre-
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measurement assessment of expected uncertainties which
can be a critical factor in the adjustment and optimiza-
tion of a given defocus tracking setup.

Different image comparison approaches can be used
and, only recently, artificial neural networks were ap-
plied for image recognition and classification in defocus
particle tracking problems. These methods have shown
to be useful for the position recognition of particle im-
ages [12, 21].

The three methods all rely or benefit strongly from
the use of calibrations images, each with their advan-
tages in terms of ease of applicability, coordinate uncer-
tainties, detection rates, and required amount of cali-
bration/training data. The aim of the paper at hand is
therefore to set up and perform tests of the three differ-
ent approaches to determine advantages and limitations
of each of them in order to guide a potential user to se-
lect the best suitable approach for a given application.
For this reason and similar to the assessment scheme
already used for GDPT [3], we present and apply the
three methods to synthetic test images taking into ac-
count different degrees of astigmatic aberrations, noise
levels, and particle image concentrations [33]. For ref-
erence, the methods are further applied to experimental
test images. All datasets presented will be freely avail-
able to the research community through the community
platform https://defocustracking.com/.

II. METHODS

Three different approaches to determine the depth po-
sition by certain features of the particle images are com-
pared in this study. The first method relies on some
knowledge of the imaging and makes assumptions and
simplifications of the particle images, i.e. the spatial in-
tensity distribution on the sensor. The original APTV
approach makes use of a model for the width and height
of the particles images and uses curve fitting for calibra-
tion as will be described in Section IT A.

If such a model is unknown or too complex, particle
images from known depth position can be used as tem-
plates for a cross-correlations with particles images from
particles at unknown depth positions. The depth posi-
tion can then be determined by the template with the
highest correlation coefficient as outlined in section Sec-
tion II B.

A third method is the use of image recognition by mod-
ern machine learning neural networks. In principle every
image aberration can be regarded as a feature to deter-
mine the depth position with such a network if trained
by enough particle images where the depth positions are
known. The details of such models are described in sec-
tion Section I1C.

All methods have in general that calibration images
with known z-positions have to be available to built a cal-
ibration function or to train the neural network in order
to relate certain image features with the depth position.

These calibration images can be obtained with a syn-
thetic image generator which is especially useful to ana-
lyze the performance of the different methods and will be
described in Section I1I A. However, in a real experiment
particles, typically dried on a microscopic slide or settled
at the bottom of a microchannel are imaged for different
known z-positions spanning the desired depth range for
the measurements as described in Section IV A.

A. Particle image model functions (MF)

Considering geometrical optics, a model for the imag-
ing of small particles was introduced by Olsen and
Adrian [29]. Under the assumption that the intensity
distribution follows a Gaussian distribution, the size of a
particle image can be calculated, taking into account the
contributions due to the particle diameter d;, itself (ge-
ometric part), diffraction, and defocusing. The particle
image diameter on the camera sensor a; can be modelled
as a function of the distance of the particle to the fo-
cal plane 6z. Assuming the working distance of the lens
significantly larger than 6z we have [23, 28]

n2
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(@M (N”A _ 1)_1 G

with A being the wavelength of the emitted light, ng the
refractive index of the immersion medium of the lens, and
M and NA the magnification and numerical aperture of
the lens, respectively. By measuring the particle image
diameter and solving Eq. (1) for dz, it is possible to de-
rive the depth position of the particle with respect to the
focal plane, although without knowing its sign. APTV
methods solve this problem by introducing a cylindri-
cal lens in the optical path. When properly aligned, it
produced elliptical particle images and by measuring the
particle image diameters in the horizontal and vertical
direction (a, and a) it is possible to derive the depth
position without ambiguity [11, 36].

For the particle image detection and evaluation first
standard image processing tools like background sub-
traction and segmentation by a global or local threshold
were used to determine regions of possible particle im-
ages.  For the accurate determination of the x and y
position of the particle images and respective diameters
a; and ay, we will used here two methods, denoted as
“MF Gauss” and “MF Countour”, respectively.

The first method (MF Gauss) uses a cross-correlation
with a Gaussian template, is very fast, and was shown to
be very accurate if the model function holds and the in-
tensity distribution of the particle images can be approxi-
mated by Gaussian functions [8]. However, this approach
can show large errors in cases where the particle images
show significant deviations from the Gaussian intensity


https://defocustracking.com/

distribution due to diffraction effects or optical aberra-
tions [20, 23, 37].  The second method (MF Contour)
detects the edges of the particle images using the locally
normalized intensity values at the rim of the segmented
zone. This approach works especially well when the par-
ticle images are large and show a distinct edge or bright
outer ring. For details the interested reader is referred
to Fuchs et al (2016) [13, 14].

Using the width a, and height a, of the particle im-
ages, a parametric fit function based on Eq. (1) can be
used to determine the z position [36]. More specifically,
the fit function is here a curve representing a, and a, as
a function of z. Given a measured particle image with
diameters [a,, a,], the corresponding z is obtained as the
value that minimizes the Euclidean distance between the
measured diameters and the fit function. This distance
can be used as a validation criterion, thus rejecting par-
ticles that have diameters too far from the fit function
[9]. In real experiments, as the case discussed in Sec-
tion IV B, the fit function often differs across the image
sensor due to optical aberrations, therefore a mapping of
different fit functions across the xy-plane is performed to
account for that.

B. Normalized cross-correlation with calibration
image templates (CC)

Since its simple presentation in 1995 by Lewis [22],
the normalized cross-correlation has been a standard im-
age processing tool for feature tracking and template
matching such as in motion-tracking, facial recognition,
and medical imaging [24, 38]. And since the introduc-
tion of defocusing-based particle tracking through direct
comparison to calibration images, the normalized cross-
correlation has been a common choice to rate the simi-
larities between measured and calibration images, i.e. by
using its maximum peak value CY, as the similarity coef-
ficient ranging from 0 to 1 (1 for perfect match) [1]. Here,
the use of a single similarity parameter Cy, offers a sim-
ple and robust approach for the evaluation and rejection
of outliers. Another key advantage of using the normal-
ized cross-correlation in defocus particle tracking is that
it has a low sensitivity to light-intensity fluctuations and
variations which are common in defocusing-based parti-
cle tracking applications. However, due to its simplicity,
it does not work well for complex image matching prob-
lems, i.e. if the image objects in the matched images are
not similar. This could for example be due to the ob-
jects having different orientation or size, such as within
the tracking of biological cells. Furthermore, the per-
forming of normalized cross-correlations has high com-
putational costs and it is therefore crucial to limit the
number of cross-correlations e.g. using predictive corre-
lation schemes [34].

We applied the cross-correlation-based approach (CC)
using DefocusTracker, which is a freely-available and
open-source Matlab implementation [2]. In particular we

used "method_1” described in Rossi and Barnkob [34].
The datasets were evaluated for C,, values of 0.5 and 0.9
and by the use of sub-image interpolation. To reduce the
effect of noise, an in-plane median filter of 5 x 5 pixel was
applied. DefocusTracker allows for a higher detection-
rate of particles with overlapping images by use of an
iterative procedure [34]. However, such iterative proce-
dure has not been implemented in the used MF and NN
algorithms and will therefore not be applied in this work.

C. Deep neural networks (NN)

Deep neural networks (NN) have shown to be very suc-
cessfully for recognizing features in images. We apply a
cascade of two deep neural models to first detect par-
ticles, i.e. their zy-position, and to infer their depth,
i.e. their z-position, from a 2D image. The first net-
work is supposed to determine a bounding box for each
individual particle in an image, thus identifying their xy-
position as shown for instance by Konig et al. [21]. We
used the Faster R-CNN object detection method [32] with
a ResNet-101 feature extraction network for this purpose.
During training, batch normalization after the convolu-
tional layers of the feature extractor was applied to de-
couple Faster R-CNN’s individual networks typically al-
lowing a faster optimization. We optimized the networks
with stochastic gradient descent (SGD) and a momentum
of 0.9. The initial learning rate was set to 3e — 4, which
was further reduced by a factor of 10 after 900 thousand
and after 1.2 million iterations.

For defocus and astigmatism particle tracking, their
2D features represent also their depth, thus, allowing
a network to learn distinguishing particles of different
heights. Predicting a continuous output value, such as
the desired z-position per particle, based on a given input
(particle image) constitutes a regression problem from a
machine learning perspective. We used a second deep
convolutional neural network (CNN) to obtain a dense
feature representation of a particle on which we trained
the relationship between the appearance of a particle and
its z-position in the penultimate layers of the network.
This model directly succeeds the previous object detec-
tion model, i.e. the first model detects individual par-
ticles and derives their xy-position that is then used to
extract individual particle images as input to the second
model.

We studied four different popular and up-to-date CNN
topologies for this second depth regression network, i.e.,
VGG16 [10], VGG19 [10], EfficientNet-BO [12], and
NASNet-mobile [45]. We chose these comparably less
complex and not so deep topologies since the given visual
concepts to extract from particle images are considered
rather basic. We trained each network with an initial
learning rate of 0.01, which reduced by a factor of 10
as soon as the validation loss does not improve for five
consecutive epochs. In total, we trained each model for
200 epochs with a batch size of 16 images and applied



the Adam [19] optimizer. Later, we used early stopping
to select the model with the lowest validation loss and
reported all inference results based on this model. We
teached networks with a mean square error (MSE) ob-
jective function since we were tackling a regression prob-
lem and used the mean absolute error (MAE) metric for
measuring a networks’ performance on test datasets.

TABLE 1. Performance, training time and trained epochs
across the three astigmatism degrees and four CNN typologies

Astigmatism | Topology Training MAE
degree epochs|time [min]
VGG16 16 120 0.0110
o VGG19 18 120 0.0141
EfficientNet-BO | 25 240 0.0420
NASNet-mobile| 38 200 0.0430
VGG16 15 120 0.0050
mild VGG19 16 120 0.0047
EfficientNet-B0 26 240 0.1210
NASNet-mobile| 35 180 0.0225
VGG16 15 120 0.0152
strong VGG19 17 120 0.0106
EfficientNet-BO | 30 240 0.0700
NASNet-mobile| 37 200 0.0197

The neural network were trained on 17,328 labelled
synthetic particle images, taken from the datasets with
no noise and no overlapping particles (see Section ITT A).
The results across the different trained models are re-
ported in Table I. From left to right, the columns refer to
the degree of astigmatism in the dataset, the network’s
topology, epoch that yielded the lowest validation error,
the training time up to this epoch, and the MAE across
all test samples. We found that the VGG topologies yield
the best performing model. Thereby, the no astigmatism
dataset contains less visual concepts making the more
shallow VGG16 the better choice, while the astigmatism
datasets benefit from the deeper VGG19 topology with
its extra layers of convolution operations. Even the small-
est of the EfficientNet topologies BO with its 18 layers
as well as the NASNet-mobile, both the result of a sys-
tematic topology optimization, seem to have prohibitive
much training capacity for the given task resulting in
considerably worse performance than the VGG topology.

For the results in Section IIT C, we trained three object
detection models and applied Faster R-CNN as described
above. These models were trained with 384 individual
particle images of the respective astigmatism degree com-
ing from all noise levels and using the datasets with no
particle overlap and with Ng = 0.1 (200 particles per
image). Additionally, we trained three depth regression
models, one per degree of astigmatism with the respective
best performing topology discussed above, i.e., VGG16
for no astigmatism and VGG19 for mild and strong astig-
matism. These models were trained with 51,984 individ-
ual particle images of the respective astigmatism degree
coming from all noise levels and using the datasets with
no particle overlap.

To be successfully trained, NN methods require a large
amount of labelled data which are easily accessible with
synthetic images. However, in case of experimental im-
ages the labelled data (i.e. the true values of z, y, and
z positions) must be obtained with a different measure-
ment method. This makes the uncertainty estimation
much more complex, therefore in this work we limit the
analysis of NN methods only to the synthetic cases.

III. ANALYSIS OF SYNTHETIC IMAGES

The assessment of the methods is performed on syn-
thetic images, following a well-established practice in par-
ticle tracking studies [15, 16, 31]. Synthetic images give
access to the ground truth of the data (in our case the
three-dimensional coordinates x, y, and z of the parti-
cles), therefore allowing for more objective comparison
of different algorithms or methodologies. Furthermore,
it is crucial when working with neural networks, which
by definition require a large number of labelled data to
be successfully trained. This requirement poses of course
several challenges to the application of neural networks
to real experiments, and we will discuss this aspect at a
later stage in this paper. Instead, the objective of this
section is to assess the performance of the different meth-
ods with respect to two major parameters [3]:

e The measurement uncertainty, o, oy, and o, for
the determination of the in-plane coordinates (z,
y) and for the out-of-plane coordinate (z), respec-
tively. The measurement uncertainties are calcu-
lated on the entire depth of volume and are de-
fined as the root-mean-square of the error between
the measured coordinates and their ground truth.
To investigate the measurement performance as a
function of the depth coordinate z, we use the local
depth coordinate uncertainty o (z) which gives the
uncertainty on a number of bins (20 in this work)
of width 26 = 0.05h.

e The recall parameter ¢, which consider the ratio be-
tween the number of valid measured particles (true
positive) and total particles (true positive + false
negative, i.e. not detected particles).

The concept of valid measured particles is here in-
tended as the final output of a measurement, including
eventual validation steps. It is important to keep in mind
that the uncertainty and recall are connected to each
other, since a lower uncertainty can be obtained at the
cost of a more strict rejection criterion for valid particles,
and vice-versa. Therefore a fair assessment of the per-
formance must take into account both parameters, espe-
cially in the cases with many overlapping particle images.

For both MF methods, the validation criterion is based
on the distance to the calibration curve (see Section IT A
and Ref. 9) which was set to 8 pixels in all cases. For
the CC method, two thresholds were considered, C,, =



Strong astigmatism,
no noise, Ng = 0.6

(a) No astigmatism, Mild astigmatism,
high noise, no overlap low noise, Ng = 0.1

®) No astigmatism

Mild astigmatism

a n
-+
v vV

Strong astigmatism
A )
o - B- 4

© 1500

Hp [counts]
-
o
3
o

FIG. 1. Synthetic images: (a) Example field of view (FOV)
of the synthetic images of different level of astigmatism, noise
level, and particle image concentration Ns. (b) Example of
the synthetic particle images at different z (columns) and for
different level of astigmatism. (¢) Mean particle image signal
up as a function of depth z.

0.5 (more valid particles, higher uncertainty) and Cy, =
0.9 (less valid particles, lower uncertainty). For the NN
methods there was no validation step and all the output
data were considered valid measured particles.

A. Synthetic dataset preparation

The synthetic images are prepared using MicroSIG, a
synthetic image generator for defocused and astigmatic
particle images based on ray-tracing [33]. Following
Barnkob and Rossi [3], we set the MicroSIG parame-
ters to simulate 2-pm-diameter particles observed with
a 10x magnification objective showing spherical aberra-
tion, across a depth height of h = 85 pm. This setup
is widely encountered in microfluidic experiments [3, 23]
and has been selected as relevant benchmark case.

We consider three different optical arrangements, cor-
responding to three different degrees of astigmatism
(none, mild, strong), shown in Fig. 1, in which the re-
spective defocused particle images and their mean parti-
cle image signal p,, are shown as a function of the depth
coordinate z. The background level is fixed at 500 counts,

whereas the particle image intensity varies across the
depth position ranging between 700 and 1400 counts.

For each image type, we consider three levels of noise
(none, low, high). The low noise cases have a random
Gaussian noise with oy = 50 counts. The high noise
cases have oy = 100counts, and additionally the image
intensity of individual particle images fluctuate randomly
between £50 % the nominal intensities. The correspond-
ing signal-to-noise ratios (SNRs) are given by u,/or [3].

Finally, we consider seven cases of different particle
image density Ng, starting from a zero case where the
particles are placed on a regular grid (no overlap), and
gradually increasing the concentration up to a maximum
of 1,200 particle images in 1,024x1,024-pixels images,
corresponding to a Ng of approximately 0.6. The par-
ticle image density Ng, sometimes referred to as source
density, is defined as the ratio between the sum of the
particle image areas and full image area, for more details
see Barnkob and Rossi [3].

Therefore, a total number of 3x3x7 data-sets have
been created. Each data-set contains a varying number
of images in order to have an overall number of about
20,000 particle images, see Table II.

B. Uncertainty in the depth position for MF, CC,
and NN

The synthetic-image datasets were processed with the
three approaches with current state-of-the-art algorithms
as described in Section II. The cases with no astigmatism
were not processed with the MF methods, which rely on
the presence of astigmatic aberrations. Throughout the
analysis, we considered particles with depth coordinate
uncertainty o, /h larger than 0.1 (so more than 10 % the
full-depth scale) and in-plane uncertainty larger than 2
pixels as outliers, and count them as if they were unde-
tected particles (i.e. false negatives and contributing to
a lower recall ¢).

We start out considering the error in the depth coor-
dinate for the cases with no particle image overlap. Fig-
ure 2 shows the local depth coordinate uncertainty o°
as a function of z for the different levels of astigmatism
and noise. In the following discussion, it is important
to keep in mind that due to spherical aberration, par-
ticle images at lower depths show ring-shaped defocus-
ing patterns, whereas particle images at larger z show
Gaussian-shaped patterns [33]. As a consequence of this,
the MF-Gauss method shows good performance in the
middle-upper depth range where the particle images fol-
low more closely the Gaussian intensity shape, but it has
problems at lower depths or in the case of strong astig-
matism where the images are more complex and show
distinct local maxima of the intensity. The MF-Countour
method in general performs very well with no noise, how-
ever it starts to have problems as long as noise is intro-
duced, especially in the upper depths where the intensity
gradients are smaller and it is more challenging to define
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TABLE II. Signal-to-noise ratio (SNR) and particle image density (Ng) for the 3 x 3 x 7 synthetic image datasets.
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—e— MF, Gauss (mild/strong astig.)
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No overlap, low noise
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FIG. 2. Application of all three defocus tracking methods (MF, CC, NN) to synthetic-image datasets with no overlapping
particle images: Local depth coordinate uncertainty ag(z) /h as a function of the degree of astigmatism (rows) and noise

level (columns).
aberrations.

the particle image borders.

The results of the CC method on the no-astigmatic
case are consistent with previous observations [3], and
show large uncertainties only in the focal region where it
is difficult to differentiate the particle image shapes. This
problem is mitigated by the introduction the astigmatic
aberration, showing that even if an astigmatic aberration
is not required for this methods, it is still advisable to
avoid localized large errors in the focal region. The CC
methods appears also to be robust against noise.

A more careful discussion must be done for the results
presented for NN methods. The use of convolutional neu-
ral networks for defocus particle tracking is very promis-

No-astigmatism cases were not processed with the MF methods as they rely on the presence of astigmatic

ing, however it is still at its early stage. NN methods
require a large amount of labelled data to be trained and
this is experimentally challenging (experimental calibra-
tion images are typically available only for few hundreds
discrete depth positions). Some strategies have been pro-
posed to virtually increase the number of training data
[12, 21], but we will not cover this aspect in the current
comparison. We will instead consider a 'perfect set’ of la-
belled data with no-noise (see Section IT A) and train the
network on them. The objective here is to evaluate how
NN trained in optimal conditions compare with current
state-of-the-art methods. The study here is also limited
to the depth regression, and the zy-position of the parti-
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FIG. 3. Application of the all three defocus tracking methods (MF, CC, NN) to synthetic-image datasets with noise: Local
depth coordinate uncertainty o (2)/h as a function of the degree of astigmatism (rows) and no overlap and particle image

density Ng of 0.1 and 0.6 (columns).

No-astigmatism cases were not processed with the MF methods as they rely on the

presence of astigmatic aberrations. The missing points, for instance for MF Gauss, Mild astigmatism, Ng = 0.6, and z/h < 0.25,
mean that no valid measured particles could be found in that region.

cle images is directly taken from the ground-truth data.
We will show results including the in-plane identification
and localization of particles in the next Section ITI C.

The results with no noise (first column in Figure 2),
shows that NN methods are able to solve the task with
a comparable accuracy of MF and CC methods, however
the error is more evenly distributed across the depth.
In agreement with the other methods, the setup with
mild astigmatism is the one showing better performance.
When noise is added, the uncertainty grows considerably,
showing that a training in which also noise is present is
probably necessary to improve the results.

Similar results are observed leaving out the noise but
increasing the particle image density, as shown in Fig-
ure 3. Here, the difficulty is given by the increasing
number of overlapping particles, which are clearly more
difficult to process. Also in this case, CC methods appear
to be the most robust, while the error increases signifi-
cantly for NN methods. This is clearly expected since the
training was performed on non-overlapping particles, so
more sophisticated training schemes should be applied.

In conclusion, the results of this section show that MF
methods perform very well for low concentrations and
when the particle images fit well the used model func-
tion. CC methods are more robust for increasing noise
and particle concentrations. NN methods are able to pro-
vide similar results than state-of-the-art methods, but it
does not seem that they can improve significantly the

accuracy. This is a hint that the regression problem for
the examined cases (no-noise, no-overlapping particles)
is still relatively simple and NN methods do not offer
significant advantages in comparison with conventional
methods. A more interesting application of NN meth-
ods could be on cases with large particle image density
or strong distortion across the image sensor, which are
however beyond the scope of this work.

C. Overall uncertainty and recall for MF, CC, and
NN

In the plots of Figs. 4, 5, and 6 we give a complete
overview of the uncertainty and recall obtained for all
the 54 datasets with overlapping particle images when
using MF, CC, and NN methods. In the first column, the
uncertainty of the out-of-plane component o, is reported.
In the second column, the uncertainty of the in-plane
components o, and oy is reported. In the third column,
the recall parameter ¢ and the measured particle image
density N§, corresponding to ¢Ng, are reported. All
plots are presented as a function of the particle image
density Ng and parametrized for the 3 levels of noise.

The results confirm what observed in the previous sec-
tion, with MF methods performing well at low noise and
low particle image density (Fig. 4). The two MF meth-
ods perform similarly, but MF-Contour generally results
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template correlation.

in lower o, /h. The MF-Gauss approach is more robust
against noise, but struggles for large particle image over-
lap.

For mild astigmatism and no noise, o./h is below
0.005 (MF-Contour) and the in-plane uncertainty below
0.05 pixels (MF-Gauss). However, the uncertainty raises
rapidly as the noise and particle image density are in-
creased. The recall falls below 50 % already at Ng = 0.1.
This is understandable, since those methods have not
been designed or optimized to catch overlapping parti-
cles but to be used in low-seeding-density flows.

The minimal uncertainty for the CC results is also ob-
served for mild astigmatism (no noise, low particle im-
age density) with o,/h = 0.06 and in-plane uncertainty
around 0.2 pixels (Fig. 5). The CC methods are how-
ever more robust against noise (almost no effect on the
in-plane uncertainty) and are able to catch significantly
more overlapping particles, with a recall still around 50
% at Ng = 0.1 for the case with C,, = 0.5. The uncer-

tainty can still be improved using a more strict validation
criterion (Cy, = 0.9), at the cost of a lower recall (but
still larger than MF methods).

The 54 datasets were also processed using a NN
method, considering this time an architecture of Resnet-
101 that was able to identify particle images and their zy
position and VGG16 and VGG19 that were able to iden-
tify particle depth z postition (Section ITC and Ref. 21).
Unfortunately, it was very problematic to train this ar-
chitecture on these datasets and the results (reported in
Fig. 6) showed much larger uncertainties and lower re-
call in comparison with MF and CC methods. We be-
lieve that the main problem here is the particle over-
lapping and the relatively small size of the particle im-
ages (around 50 pixels here against around 120 pixels in
Ref. [21]). However, as already mentioned, NN meth-
ods are still on an early stage in defocus tracking and
we believe that in the future different architectures and
training strategies will be able to fill this gap.
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FIG. 5. Application of CC-based defocus tracking to synthetic-image datasets of different degree of astigmatic aberration:
Summary of depth coordinate uncertainty o (first column), in-plane coordinate uncertainties o, and oy (second column), and

recall ¢ as a function of particle image concentration Ng (third column).

The first, second, and third rows show the results

with normalized cross-correlation peak parameter Cy, = 0.5, while the third, fourth, and fifth rows show the results when using

Cm =0.9.

Finally, it is worth mentioning two points. First, as ob-
served in the previous section, the optical arrangement
showing the best results is the one with mild astigma-
tism. Interestingly, a similar conclusion based on a dif-
ferent analysis was obtained for classical APTV calibra-
tion methods [36].  Second, it should be noticed that
the spatial resolution of a PTV analysis is given by the

number of vectors per unit area, which is clearly directly
proportional to the measured particle image density N¢.
Each configuration (method and dataset) has a maximum
N, denoted as N{*, corresponding to the critical particle
image density IN§ at which the method is able to catch
more valid particles. Beyond that point the presence of
overlapping particles will lower again the value of Ng.
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FIG. 7. Synthetic-image dataset challenge: Reference comparison of the different methods for the dataset with mild astigmatic

level and high noise.

The methods are compared with respect to uncertainties (depth and in-plane direction) versus the

measured particle image density obtained at the critical particle image density N& of each method, as shown in the sketch in
the top. The dataset can be downloaded through https://defocustracking.com/.

Following these two points, in Fig. 7 we used the
dataset of mild astigmatism and high noise for a con-
cise comparison of the methods with respect to N§* (i.e.
spatial resolution) and corresponding uncertainties o /h
and oy , . The challenge here is to optimize the processing
in terms of uncertainties (as low as possible) and critical
measured particle image density (as high as possible). We

propose this approach to establish an open quantitative

challenge to keep track of the improvements of defocus
particle tracking methods. The current status sees CC
methods giving the best performance in terms of N§¥,
however at a cost of a larger uncertainty. The NN al-
gorithms tested here performed worse in both metrics,
showing that more research effort is needed to find more
effective NN algorithms and training strategies. The
dataset is available at https://defocustracking.com/.


https://defocustracking.com/
https://defocustracking.com/

IV. ANALYSIS ON EXPERIMENTAL IMAGES

A. Experimental dataset preparation

The experimental images were created using a similar
setup as in Konig et al. [21]. For the calibration measure-
ments particles were suspended in de-ionized water and
filled in a sealed microfluidic chamber. As tracers flu-
orescent polysterol particles (530/607 nm, PS-FluoRed,
MicroParticles GmbH) with a diameter of 2.5 um were
used. As the density of the particles is with 1.05 g/cm?
slightly higher than the density of the water they will
settle down on the microscopic slide. The water was
maintained during the whole calibration experiment in
the sealed microfluidic chamber. This avoids agglomera-
tion, as typically appear when droplets containing parti-
cles were let to dry off. In addition the chamber ensures
that the particle images are identical to later measure-
ments and the particles do not move. This was important
to quantify the position error in the zy-plane as will be
outlined later. The assembled chamber was placed on top
of an inverse microscope (Axio Observer 7, Zeiss GmbH)
equipped with a long working distance Plan-Neofluar ob-
jective (M20x, NA=0.4, Zeiss GmbH) and a cylindrical
lens of a focal length of f. = 250 mm was placed in front
of the camera at a distance of about 40 mm. A triggered
cw-laser with a wavelength of about 532 nm (tarm laser
technologies tlt GmbH & Co.KG) was used to illuminate
the particles for 1 ms that were imaged on the sensor of
an sCMOS camera (imager sSCMOS, LaVision GmbH).
The axis of the cylindrical lens was carefully aligned to
the y-axis of the camera sensor. The different magnifica-
tions in the z- and y-direction were 50/130 pm/Px and
50/160 um/Px, respectively. Particle images were cap-
tured in single-frame mode with a frame rate of up to 20
Hz. To increase the number of particle images for the dif-
ferent calibration methods a stage was used to shift the
chamber in the xy-direction with a stepwidth of 70 pm
from 0 to 700 pwm, resulting in 121 images per xy-plane.
In the z-direction the stages was moved over a distance
of 80 wm using a stepwidth of 1 wm. This results in a
total of 121 x 81 = 9,801 frames with approximately 35
particle image s on each frame. Exemplary particle im-
ages and the corresponding mean particle image signal
can be seen in Fig. 8. Particle image overlap could not
be totally avoided but was limited using this low particle
image density of approximately 10~° particles per pixel.

Note that in the processing of the experimental images,
the z = 0 position is set arbitrarily to be that of the low-
est scanned z-position while the remaining z-coordinates
follow accordingly as we know the step size of the z scan-
ning with high accuracy from the read-out of the motor-
ized z-stage of the microscope.
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FIG. 8. Experimental images: (a) FOV at the same zy-

position for z-positions corresponding to the lower bound
(left), middle (middle) and upper bound (right) of the depth
range. (b) Example of the experimental particle images at
different z (columns) and zy positions (colored squares), re-
spectively. (c¢) Mean particle image signal up as a function of
depth z.

B. Experimental-image processing results for MF
and CC

The results obtained on experimental images are shown
in Fig. 9. For the MF method, we used here the MF
Gauss approach which provided the best results since the
particle images has approximately a Gaussian distribu-
tion. A background subtraction was applied to remove
an offset in the intensity level of the experimental images.
For the CC method, we used the same settings as for the
synthetic images, with a threshold of C\,, = 0.95. We did
not used NN methods here since it was not possible to in-
dependently obtain the true values of the zy-coordinates
for the training.

Additionally, it should be noted that experimental im-
ages present different shapes across the channel due to
distortions and aberrations (see Fig. 8), therefore a cor-
rection method must be used to account for this. For
the MF Gauss case, the images were divided into sev-
eral square sub-regions with an edge length of 20 pixel
for which separate calibration functions were determined
to identify the z-position in correspondence to the xy-
position. For the CC case, a calibration stack obtained
from one particle image in the center of the calibration
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of the depth coordinate z/h.

images was used to calculate z-positions of different par-
ticles across the whole sensor in the calibration images
(thus with known depth positions). A parabolic function
was used to fit these data and later on to correct the
measurements (more details on this procedure are given
in [34]).

In the left part of Fig. 8 the error in the depth direc-
tion as a function of z/h is shown (both before and after
correction). Both approaches result in reasonable mean
errors over the z-position, which never exceed 3 % of the
depth range, and after correction the mean error level
is reduced to 0.0120 and 0.0114 for CC and MF, respec-
tively. The error for the CC method is a little bit larger,
especially in the region where the main focal planes are
at z = 30 um and z ~ 65 pm. In these regions the
particle images shapes are very close among each other,
therefore it is difficult for the cross-correlation to resolve
the differences. On the other hand, in the MF method
the correlation with a Gaussian function (MF) inherently
smooths the signal and these peaks are less prominent
and also the particle image deviations in the FOV be-
come less important as can be seen on the lower error
level of the non-corrected cases.

In the middle part of Fig. 9 the errors in the z- and
y-directions are shown, respectively. As the ground truth
of the x and y-positions was not known, these errors were
obtained using the mean deviation from the displacement
for calibration images taken when the stage with the cal-
ibration chamber was moved in the zy-plane. Since both
approaches rely on determining the local maximum in
the correlation plane with the particle image template
for CC or the Gaussian template for MF, they both give
very similar results and even the distribution of the errors
fall almost on top of each other.

Since the ground truth of the number of possible par-
ticle images is not known in the experiment, on the right
part of Fig. 9, the number of particles that are consid-
ered valid for each method are shown. Here CC shows a
much more homogeneous flat distribution over the whole
depth range, whereas for MF more valid particle images
were detected in the central region. In total 136,387 and

158,496 particles are detected with CC and MF, respec-
tively. The lower number of detected particles for the
CC method is due to the large Cy, threshold (0.95), and
could be increased but at a cost of a larger uncertainty.

Finally, it should be noted that the present experi-
mental images correspond to a case with low noise and
almost no particle overlapping. This configuration is par-
ticularly favorable for the MF methods, as shown also in
the synthetic cases. Provide an experimental case with
overlapping particle images it is not straightforward and
it is not presented here.

V. CONCLUSIONS

In this work we presented a comparison of three dif-
ferent methods for defocus particle tracking based on
model functions (MF), cross-correlation (CC), and neural
networks. Specifically, we evaluated the method perfor-
mance based on the uncertainty and recall (i.e. the ratio
between valid detected particles and total number of par-
ticles in the image). The analysis performed on synthetic
and experimental images with different noise levels and
particle image overlapping shows that:

e In general, all the three methods can be used for
defocus particle tracking. However, the specific NN
algorithms used in this work perform worse on all
metrics in comparison with the more mature MF
and CC approaches, showing that more work is
needed to identify the more well-suited NN algo-
rithms and training strategies.

e An astigmatic aberration is required only for MF
methods, although it is advisable to introduce a
mild astigmatism for all methods. This increases
feature information in dependence on the depth po-
sition, which lowers the uncertainty close to the
focal position. On the other hand, strong astigma-
tism often results in image aberrations that increase
the uncertainty due to small local maxima in the
intensity distribution.



e MF methods give the best performance in cases of
low noise and low particle image overlapping. Using
model functions like a Gaussian intensity distribu-
tion for the particle image detection works well, if
the model represents the particle images well. In
the case of ring-shaped particle images the error in-
creases significantly as can be seen in Fig. 2. An
advantage is, that this function works considerably
well also without further image preprocessing, as
the correlation or the fit by a Gaussian intensity
distribution is inherently smoothing the results in
the image plane.

e CC methods works very robust and reliable for all
cases, and outperformed all other methods in cases
with large noise and large particle image density. A
major strength is that they work very robust deter-
mining reliable results even in heavily overlapping
particle images. Inherently the cross-correlation
amplifies the useful content in a signal and discards
the rest.

e NN methods tested in this work generally per-
formed worse in comparison with the MF and CC
methods. However, NN methods are yet in an early
stage within defocus tracking applications, whereas
MF and CC algorithms and approaches are already
in a mature phase. Given the huge success of apply-
ing NN methods in a wide variety of scientific fields,
we do expect to see a future and rapid improvement
of performance of NN methods in defocus tracking
applications.

e Experimental images were tested with MF and CC
methods on a case with no particle image overlap-
ping. The results were in agreement with the syn-
thetic cases, after suitable corrections were applied
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to account for distortion and aberrations across the
field of view. The application of NN methods to
experimental images requires strategies to provide
large amount of labelled training data, which is cur-
rently an open open point and one of the future
challenges in this field.

e Finally, as shown in Fig. 7, we propose a chal-
lenge for optimizing and comparing the process-
ing performance of new and existing defocus track-
ing methods in terms of maximum measured par-
ticle image density (as high as possible) and corre-
sponding uncertainties (as low as possible). The
challenge uses a specific dataset (mild astigma-
tism, high noise) that can be downloaded through
https://defocustracking.com/.
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