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A fast and robust algorithm for General Defocusing Particle Tracking
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! Department of Physics, Technical University of Denmark,
DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
2 Heinz-Nizdorf-Chair of Biomedical Electronics, Department of Electrical and Computer Engineering,
Technical University of Munich, TranslaTUM, 81675 Munich, Germany

The increasing use of microfluidics in industrial, biomedical, and clinical applications requires a
more and more precise control of the microfluidic flows and suspended particles or cells. This leads
to higher demands in three-dimensional and automated particle tracking methods, e.g. for use in
feedback-control systems. General Defocusing Particle Tracking (GDPT) is a 3D particle tracking
method based on defocused particle images which is easy to use and requires standard laboratory
equipment. In this work, we describe in details a fast and robust algorithm for performing GDPT,
which is suitable for automatized and real-time applications. Its key feature is a fast, segmentation-
free approach to identify particles and estimate their 3D position. This detection step is followed by
a refinement and iteration step to improve accuracy and identification of overlapping particles. We
show that the algorithm is versatile and can be applied to different types of images (darkfield and
brightfield). We use synthetic image sets of varying particle concentration to evaluate the perfor-
mance of the algorithm in terms of detected depth coordinate uncertainty, particle detection rate,
and processing time. The algorithm is applied and validated on experimental images showing that it
is robust towards background or illumination fluctuations. Finally, to test the algorithm on real-time
applications, we use synthetic images to set up a simulation framework with experimentally-relevant
parameters and where the true particle positions are known.

I. INTRODUCTION

The recent advancements in microfluidic devices, spe-
cially in fields like biology or medicine, require more and
more precise and continuous measurements of microflu-
idic flow fields and suspended particles. In particular,
two main needs are emerging in this domain: tools that
can effectively be operated by non-expert users like biol-
ogists or physicians, and automated, real-time methods
suitable for active force and flow control (e.g. to allow
single-cell manipulation [1]). Since the first application of
microscopic PIV [2], about two decades ago, several ve-
locimetry and particle tracking methods have been pro-
posed as diagnostic tools for microfluidics, both in 2D and
3D, using different principles such as defocusing [3, 4],
astigmatic aberration [5, 6], evanescent waves [7], holog-
raphy [8], and tomography [9]. However, most of these
methods require complex calibration procedures as well
as experienced users to properly perform a measurement
and are therefore not accessible to a wider community
neither for usage nor for further development [10].

One method with the potential to meet these needs is
the General Defocusing Particle Tracking (GDPT) which
was proposed by Barnkob et al. [11] and is illustrated in
Fig. 1. The general requirements for the GDPT method
is an optical system with small depth of field (particle
images must have different shapes depending on their
depth positions) and a set of reference images showing
the particle image shapes at different known positions.
Both requirements are typically fulfilled in microfluidic
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applications, where large magnification objective lenses
are used and where the calibration images can easily be
obtained by a systematic scanning of the microscope fo-
cus. Moreover, distortions in microscopic objectives are
typically small and the defocusing patterns are consis-
tent across the entire camera sensor [12]. GDPT can
indifferently be used on brightfield, darkfield, or fluores-
cent images as long as the image contrast is sufficiently
high. Furthermore, in a standard GDPT algorithm, such
as the free-to-use GDPTlab [13], most outliers (i.e. false
positive) can be easily filtered out based on a single sim-
ilarity parameter that evaluates how well a target image
is matched to the calibration images. Therefore, and due
to its simplicity, GDPT is receiving an increasing inter-
est in microfluidics and lab-on-a-chip communities [14—

]. Here in particular within the acoustic manipulation
of microparticles [ ], where information about the
three-dimensional acoustophoretic behavior is crucial to
further development as well as for the translation to in-
dustrial and clinical use, where feedback control is essen-
tial to secure stable and viable conditions [23, 24].

In this work, we present a new algorithm to perform
GDPT measurements in a fast, automated and versatile
fashion. Its key feature is a segmentation-free approach
to identify particles and estimate their 3D position. This
detection step is followed by a refinement and iteration
step to improve the accuracy and the identification of
overlapping particles. The performance of the algorithm
is evaluated using the benchmark dataset provided in
Ref. 12 with respect to error, valid detected particles, and
processing time. Following, the algorithm is validated on
experimental images with distortions and aberrations for
the tracking of the three-dimensional motion of tracer
particles inside an evaporating drop. Furthermore, we
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(a) 3D particle tracking using General Defocusing Particle Tracking (GDPT)
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FIG. 1. Example of single-camera, 3D particle tracking performed by General Defocusing Particle Tracking (GDPT). (a)
Suspended microparticles are imaged with a conventional microscope resulting in 2D images with defocused particle images.
The depth positions of the particles are determined by comparing their images to a reference set of already-acquired experimental
particle images at known depth positions (calibration model). (b) The calibration model is obtained from a set of calibration
images acquired experimentally by taking subsequent images of one or more reference particles displaced at known positions,
e.g. by observing sedimented particles using a motorized microscope focusing stage. (c¢) The depth coordinate uncertainty and
processing time can be estimated prior to the experiment by applying the tracking algorithm to the set of calibration images

with the calibration model as input.

created a simulation framework to test the algorithm for
use in real-time applications. The simulation is created
using a combination of synthetic images [25] and analyt-
ical predictions of particle trajectories in acoustofluidic
devices [20].

II. ALGORITHM DESCRIPTION

The essential elements of the GDPT method is the
calibration model consisting of a set of calibration im-
ages that maps defocused (or astigmatic) particle images
with their respective depth position z and a methodol-
ogy to compare the similarity between a target parti-
cle image and the calibration images. Typically, the set
of calibration images is obtained experimentally by tak-
ing subsequent images of a reference particle which is
displaced at known positions, e.g. using a motorized fo-
cusing stage while observing a sedimented particle, see
Fig. 1(b) [L1, 12]. In Refs. and 12, and in this
work, we use a calibration model based on calibration
images of a single particle (calibration stack) and the

normalized cross-correlation function [27]. The normal-
ized cross-correlation is used to rate the similarity be-
tween target and calibration images, using its maximum
peak value as the similarity coefficient, referred to as Cly,,
see Fig. 2(a,ii). The values of Cy, can range from 0 to
1, with 1 corresponding to a perfect match between the
target image and a calibration image.

A conventional approach for GDPT measurements
consists of the following steps [11, 13]:

e identify candidate particles using image segmenta-
tion,

e for each candidate particle, identify the best match-
ing calibration image through C), using an opti-
mized iterative procedure,

e for each candidate particle, determine the z posi-
tion with ”sub-image” resolution through interpo-
lation in (z,Cp).

This procedure is very accurate, however, it is relatively
slow since it needs to compute a large number of cross-
correlations. For instance, the optimized approach in
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FIG. 2. Overview of the detection step. (a) The calibration model is based on a single calibration stack of N, single-particle
calibration images. (i) A subset of Ngu, calibration images is extracted. (ii) The similarity between two particle images is
evaluated through the parameter Cy,, which represents the (local) peak value of the normalized cross-correlation (x) between
two images. (iii) By cross-correlating a given calibration image (dashed blue line) with the Ngu1, calibration subset images, a
down-sampled C, prediction profile across the entire measurement height is created. (iv) A Cy, prediction map is created by
creating down-sampled Cy, profiles for each Nca calibration images in the stack. (b) 3D particle detection scheme. (v) Input
image of defocused particle images. (vi) The input image is cross-correlated with the Ngu, calibration subset images resulting
in Ngup correlation maps. Candidate particles are detected from the correlation maps from the local peaks larger (red areas)
than a certain Cy, threshold (shown for Cy, = 0.5). (vii) For a subject candidate particle (dashed magenta lines), the Cp,
profile is extracted. (viii) The profile for the subject particle is matched to the Cp, profile prediction map to determine its
depth position with discrete precision h/Nga1. Following, the continuous depth position zp is determined through a three-point
estimator to the three best profile map matches.

GDPTlab [13] requires on average average 6-10 cross- Detection step: fast and segmentation-free detection

correlations for each candidate particle to converge to
the best match. Moreover, the segmentation procedure
must be optimized for each image type and fails if the
background or the illumination is not uniform, therefore
a pre-processing step is often required.

In this work, we present an improved algorithm to per-
form GDPT measurements based on the following steps®:

& The algorithm constitutes ”"Method 1”7 in DefocusTracker,

of particles with a robust first estimation of the
3D particle position,

Refinement step: for each candidate particle, refine
the depth position walking through the calibration
images stack,

which is an open-source GDPT implementation pub-
lished under the open-source license and available through
https://defocustracking.com/.
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Sub-image step: for each candidate particle, determine
the z position with ”sub-image” resolution using a
three-point interpolation scheme,

Iteration step: iteratively repeat the preceding steps,
while shading the images of detected particles, to
increase the number of detected particles with over-
lapping images.

The detection and sub-image steps are the base of the
algorithm and provide already a complete measurement.
The subsequent steps improve the quality of the measure-
ment but at a larger computational cost. The user can
decide which strategy is most suitable for the application.
All steps are described in details in the following.

A. Detection step: Segmentation-free particle
detection and fast particle position estimation

The detection step is summarized in Fig. 2. To pre-
pare the calibration model, we first select a subset of
Ngup calibration images from the total N, images in the
calibration stack, see Fig. 2(a). For each of the N, cali-
bration images, we calculate an ”expected” Cy, profile by
performing a normalized cross-correlation with the Ngyp
images in the subset. This gives an a priori expected
Ch, profile mapping, which are used during the evalu-
ation for a fast identification of the particle z positions.
The detection step starts by performing normalized cross-
correlations between the full image and the Ny, calibra-
tion images in the subset, resulting on a total of Ny, cor-
relation maps, see Fig. 2(b). The correlation maps have
values between 0 and 1, with their peak values located in
the center of the particle images with shapes similar to
the calibration image used to create the map. The center
positions of candidate particles are identified collecting
the locations of all peaks in the correlation maps with a
value above a certain threshold (typically 0.5). Now, for
each given candidate particle, the corresponding C\, pro-
file across the Ngyp number of z positions is immediately
available by reading the values of the Ngu, correlation
maps at that location (Fig. 2(b,vii)). Each correlation
profile can following be compared with the mapping of
expected Cy, profiles to obtain a robust guess of the z
position. This is much faster than comparing 2D calibra-
tion images since the Cy, profiles are 1D arrays of Ngup
numbers. With this approach we have three significant
advantages:

1. Automatic detection: The in-plane and out-of-
plane positions of candidate particles are deter-
mined by setting a single parameter, namely Cl,.

2. Fast detection: Only Ng,p cross-correlations are
needed, regardless of the number of particles in the
image.

3. Versatility: The same procedure can be applied for
any type of particle images (fluorescent, brightfield,

4

with non-uniform illumination, etc.) without any
additional steps.

B. Refinement, sub-image, and iteration steps

The preceding detection step provides a complete mea-
surement with the identification of the particles and a
robust estimation of their three-dimensional position.

Refinement step. The detection step might not nec-
essarily find the best matching calibration image and a
refinement can be needed. All particles identified in the
detection step is ordered according to their C,, values,
from larger to smaller. Then, a walking procedure is ap-
plied to the first particle image to find the best match
with the images in the calibration stack, searching in po-
sitions close to the z value predicted by the first step.
When the refined z position is obtained, the particle im-
age is removed from the image by replacing its area with
the intensity values of the background. The same pro-
cedure is repeated for the second particle and so forth.
At the end of the refinement step, all the detected parti-
cles have been removed from the image as illustrated in
Fig. 4(a).

Sub-image step. The determination of the z po-
sition, both after the detection step and the refinement
step, is produced with discrete output among the N, im-
ages separated by h/Nc,. In order to obtain a continuous
output with a “sub-image” resolution, the best match-
ing calibration image must have been detected. Conse-
quently, its neighbouring images are included for match
interpolation, similar to what is typically done in dig-
ital PIV evaluations to obtain sub-pixel resolution, see
Fig. 2(b). We use here a three-point parabolic estima-
tor [28].

Iteration step. As shown in Fig. 2(b), in the detec-
tion step, the cross-correlation already filters out parti-
cles based on their image shape, i.e. only particle im-
ages similar to the calibration images are detected (high-
lighted in red). This allows to identify overlapping par-
ticles of different shapes. However, when the degree of
overlapping between two particle images is too large, the
height of the correlation peak decreases significantly and
it is no longer possible to identify them. A way to im-
prove the detection in this case is to blank out one of
the overlapping particle images [29, 30]. This is done in
the refinement step with the remaining particles images
being those that were not identified in the first step. In
order to increase the number of detected particles, the
preceding steps are repeated, see Fig. 4.

The above steps improve the accuracy and number of
detected particles, however more computation time is
consumed, therefore it might not be suitable for real-
time applications. The relation between accuracy, num-
ber of detected particles, and computational time is in-
vestigated in the next section.
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FIG. 3. Parametric assessment of the presented algorithm on synthetic images in terms of error in the depth coordinate
determination o, the relative number of valid detected particles ¢, and the processing time, as a function of the number of
images in the calibration stack Nca1, the number of images in the calibration subset Ngup, with or without the refinement step.
The assessment is performed on synthetic reference images for three values of the particle image concentration: (a) Ns = 0.05,
(b) Ns = 0.30, and (c) Ns = 0.59 [12]. Results performed with the software GDPTlab are reported as reference.

III. PERFORMANCE ASSESSMENT ON
SYNTHETIC IMAGES

The presented algorithm allows to automatically de-
tect particle images and determine their 3D position from
a suitable calibration image set. Only few parameters
must be chosen from the user before starting the evalua-
tion, namely:

e The number of images N, in the calibration stack.

e The number of images Ngyp in the calibration sub-
set.

e The threshold value of Cy, for identifying candidate
particle images.

e Refinement step or no refinement step.
e The number of iterations.

For the purpose of automated and real-time measure-
ments, the most relevant parameters to evaluate are the
uncertainty in the depth coordinate determination o,
the relative number of valid detected particles ¢ (relative
to the total number of particles in the image), and the
overall processing time for each image. We do not con-
sider here the uncertainty in the in-plane directions o 4,
which are normally one or more orders of magnitude less
than o,. Measured particles with a z-error larger than 0.1
are considered outliers and not counted as valid detected
particles. For a complete description of the assessment
of GDPT methods, see Ref. 12.

In order to assess the effect of different parameter set-
tings on the algorithm, we used a standardized dataset of
synthetic defocused particle images presented in Ref. 12.
The images are created using MicroSIG, a synthetic
image generator, based on ray tracing, for defocused
and astigmatic particle images [25]. The dataset sim-
ulate measurements performed on 2-pm-diameter parti-
cles, with 10x magnification over a measurement depth
of 86 um. In particular, we used Dataset II, which con-
tains sets of images of different particle image concentra-
tions?. The images are gray scale, 16-bit images with
size of 1024 x 1024 pixels. Following Ref. 12, we define
the particle image concentration in terms of source den-
sity Ng [31, 32], namely, the number of particles in the
image multiplied by the particle image area and divided
by the total image area (or, alternatively, particle per
pixels times average particle image area).

Three parameter configurations have been investigated
as a function of using different number of calibration im-
ages N¢ap: Configuration 1 with Ng,p, = 5 and with refine-
ment step (blue circles), Configuration 2 with Ny, = 3
and with refinement step (red squares), and Configura-
tion 3 with Ny, = 5 and no refinement step (yellow
diamonds). For all the configurations we used a single
iteration step and a similarity threshold value Cy, = 0.5.
The choice of C, is mostly dictated by the user needs

b The dataset can be downloaded through

https://defocustracking.com/
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FIG. 4. Performance assessment of the iteration step on synthetic images. (a) Portions of the analyzed images and reconstructed
particle positions at each iteration. At the end of each iteration, the detected particle images are deleted, and the following
iteration determines a new set of particle positions. (b) Error in the depth coordinate determination o, the relative number
of valid detected particles ¢, and processing time as a function of the image concentration Ns. The analysis was performed
using Nca1 = 21, Ngub = 3, and the refinement step, and for one, two, and three iterations. Results performed with the software

GDPTlab are reported as reference.

for a given experiment: Larger C}, values yield lower un-
certainty at the cost of less detected particles and the
other way around. The number of detected particles has
also an impact on the computational time, as will be dis-
cussed later. Overall, different values of C}, do not play
a significant role in the trends observed in the follow-
ing investigation, therefore we show the results for one
single C}, value. For reference, we performed the analy-
sis also with a previous GDPT software, GDPTlab [13].
GDPTlab uses a user-defined segmentation step (based
on an intensity threshold) for particle identification and
a refinement step as described in Section II B for the z
determination.

The results are presented in Fig. 3 for three different
particle image concentrations (Ng = 0.05,0.30,0.59). In
general, a use of N¢,1 larger than 10 is required, however
values larger than 20 do not improve the performance
significantly. Also, the value of N, minimally affect the
processing time as the z estimation in the detection step
is done through simple matching of 1D profiles with Ngyp,
points, see Fig. 2(b,viii). The refinement step does not
decrease the uncertainty significantly, but it results in a
significantly larger processing time, which increases pro-
portionally with the particle image concentration. On
the other hand, without the refinement step (Configura-
tion 3), the processing time is basically independent of
the particle image concentration. All the three configu-
rations provide approximately the same number of valid
detected particles, which is however strongly affected by

the particle image concentration. At Ng = 0.59, the rel-
ative number of detected particles drops to around 30 %.

It is possible to increase the number of valid detected
particles by adding more iterations of the refinement step
as shown in Fig. 4. In particular, a second iteration
brings this value up to 50 %, whereas a third iteration
does not improve it much further as the additionally-
detected particles have similarity values below the thresh-
old of C\, = 0.5. The cost of more iterations in terms of
processing time is however significant.

Finally, in comparison with GDPTlab, the results are
similar in terms of uncertainty and detected particles,
showing that the segmentation-free approach is in this
case as good as a conventional segmentation procedure
based on an intensity threshold. However, the current
analysis was performed on synthetic images with uni-
form background and no noise. The advantage of the
segmentation-free approach is more evident on experi-
mental images with noise and time-varying background,
as shown in the next section. In terms of processing time,
GDPTlab is strongly affected by the number of processed
particles. Although it is faster at lower concentrations, it
slows down rapidly as the number of particle increases,
whereas the new algorithm allows a faster processing also
for larger concentrations.
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FIG. 5. Application to experimental images: Particles inside an evaporating drop. (a) Example raw image showing the
defocused images of fluorescent particles inside the region of interest (ROI, green area in sketch inset). The image subset
inside the cyan-marked rectangle is shown for two frames at time ¢ = 0 s and ¢ = 210 s, respectively. For each frame, the
detected particles are marked (green shapes) for C > 0.7 and Cr > 0.9. No image pre-processing was used to treat the non-
homogeneous background (due to reflections at the drop interface). (b) Particle image shapes in the calibration images and in
the experimental images. (¢) Uncertainty assessment and correction of systematic errors through evaluation of the calibration
images obtained by taking images of sedimented particles at known depth positions z (illustrated in Panel (b) in Fig. 1). The
measured (z’,y’,2')-positions (blue dots) are used to map the systematic error due to the field curvature (face-colored surface).
The uncertainty o /h of the measured depth coordinate 2’ is accessed through (2, z’) shown for the normal (left) and the fast
(right) GDPT processing as well as with (blue points) and without (grey points) the correction of the systematic error from
the field curvature. (d) Measured (x’,y’,2") particle trajectories inside the evaporating drop taken at 0.1 fps over a time of 210
s when using the normal (top) and the fast (bottom) GDPT processing.

IV. APPLICATION TO EXPERIMENTAL
IMAGES

To demonstrate the algorithm on experimental images,
we chose images of tracer particles inside an evaporating
droplet. We will not discuss the physics of the prob-
lem here or the details of the experimental setup, and
for this we refer to Ref. 33. As a quick overview, a 2-
mm-diameter droplet of pure water was deposited on a
transparent glass slide. The drop was seeded with 1-pum-
diameter polystyrene spheres that were observed from
the bottom using an inverted epi-fluorescent microscope.
This example is interesting to test the proposed algo-
rithm, since the image background is not uniform and
it changes frame after frame due to reflections from the
moving air-water interface (as shown in Fig. 5(a)). Such
images would need a pre-processing step for background
removal in order to be processed with a conventional seg-
mentation approach, such the one used in GDPTlab. The
current segmentation-free algorithm can be applied on
raw images, without any pre-processing step.

The evaluation was performed on 16-bit images, with

size of 1280 x 1080 pixels. The calibration stack was ob-
tained on sedimented particles that were scanned moving
the microscope objective focus with steps of 2 um across
a depth of 100 pm (Nea = 51). For the calibration, we
chose one particle in the center of the image. We should
briefly mention two practical aspects here. First, during
the calibration, the objective lens moves in air and the
particles are fixed, whereas during the measurement the
objective lens is fixed and the particles moves in water.
Although this has a minimal effect on the shape of the
particle images, as shown in Fig. 5(b), in order to obtain
the same defocusing effect, the distance that a particle
must travel in water is different from the distance that
the objective lens has travelled in air. In this case, this
difference is well-approximated by a pre-factor equal to
the refractive index of water 1.33 [34]. Second, in ex-
perimental images the defocusing patterns might change
across the image sensor due to distortions, perspective
errors, or other aberrations. These are systematic errors
that can in most case be corrected, more information are
given in Ref. 12.

To correct for bias errors in the case at hand, we eval-



uated the positions of all the particles in the calibration
images, which are particles lying on a flat surface and
stuck to fixed in-plane positions. As shown in Fig. 5(c),
particles across the entire sensor could be measured, per-
spective or distortion errors are negligible (< 0.2 pixels),
and the only relevant source of error is given by the curva-
ture of the focal plane which is not perfectly flat (shown
by the curved mesh in the figure).

We can use these data also to assess the measurement
uncertainty. In particular, we used two settings of the
presented algorithm: Ngu, = 7, with refinement step
(normal), and Ngup = 5, without refinement step (fast).
In Fig. 5(c), we show the measured versus true z po-
sitions for the two settings, the blue dots are the data
after bias correction. Larger errors are observed in the
top part of the calibration, where the images are dimmer
and more blurred. Overall, the uncertainty difference be-
tween the two settings is small, and is about 2 % for the
normal setting and 3 % for the fast setting (standard de-
viation of the error normalized on the total measurement
depth [12]).

Finally, we show the results of the droplet measure-
ment. The images were acquired at 0.1 frames per sec-
ond and processed with the two settings described above
(normal and fast). The processing time per frame was
3 and 8 s, respectively, using a laptop computer with an
Intel Core i7-7600U CPU processor running at 2.80 GHz
with a RAM memory of 16 GB. The particle trajecto-
ries and velocities where obtained using a simple nearest
neighbor approach. No image pre-processing was used,
and, as shown in Fig. 5(a), the detection process worked
properly independently of the background intensity fluc-
tuations. The number of particles that are detected is
determined by a threshold on their Cy, value: A lower
threshold catches more particles but increase also the
measurement error and the presence of outliers.

The final particle trajectories using the two settings are
reported in Fig. 5(d), and correspond to a measurement
volume of about 1600 x 1300 x 133 um3°. Particles on
the bulk of the fluid move downwards toward the contact
line, whereas particles at the interface move upward due
to a thermally-induced Marangoni flow. Although the
normal setting catches more tracks than the fast setting,
the overall structures of the flow are well captured also
by the fast setting. On the other hand, in case of real-
time measurement, the fast setting allows a three times
faster temporal resolution.

V. SIMULATION OF A REAL-TIME
MICROFLUIDIC EXPERIMENT

In this section we set up a simulation framework to test
¢ Note that in Ref. a deeper and finer calibration stack was

used, yielding a measurement volume of 1400 x 1300 x 150 pum?3
and depth uncertainty of 1 wm.

the performance of the presented algorithm on a real-time
application. We use simulations since we need to have ac-
cess to the true particle positions to assess the algorithm
performance. As a real-time application, we chose parti-
cle focusing in acoustofluidic devices, which is receiving
a growing interest in biomedical applications [35].

Simulation of acoustofluidic focusing. We set
up a simulation of a typical acoustofluidic experiment
for separation or focusing of particles or cells [36, 37],
see Fig. 6(a). The simulation consists of 5-um-diameter
polystyrene particles suspended in water in a microchan-
nel of rectangular cross-section (width w = 200 pm,
height h = 100 pm). The particle suspension is trans-
ported through the microchannel by an externally-driven
flow and the resulting stream-wise particle velocities
uflov(y, 2) are calculated from the analytical solution of
a Poiseuille flow in a rectangular channel with flow rate
@ = 3 pl/h [38]. The microchannel is acoustically actu-
ated by an attached piezo-electric transducer to induce
a vertical half-wave standing acoustic waves of frequency
f2 = cwa/(2h) = 7.49 MHz across the channel height.
The acoustic actuation leads to acoustic radiation forces
on the suspended particles [39] (we neglect any effects
from acoustic streaming and particle-particle/particle-
wall interactions [40]) and through balance of the vis-
cous drag force and the acoustic radiation force, we can
calculate analytically the cross-sectional acoustophoretic
particle velocities as

2
u?d(z) = %%%Eac sin [277(2 + ;)], (1)
where n is the fluid viscosity, ® the acoustic contrast
between particle and suspending fluid, and F,. is the
acoustic energy density. We used an acoustic energy den-
sity Fac = 0.3 J /m?’7 which is a low but realistic value
corresponding to maximum acoustic particle velocities of
approximately 8 um/s [26, 41]. Before the onset of the
experiment, the particles are randomly distributed inside
the channel and the resulting cross-sectional particle po-
sitions over a time of 8 seconds are shown in Fig. 6(c).

Generation of synthetic images. The acoustoflu-
idic simulations were used to create synthetic images of
the particles using MicroSIG [25]. The main setting for
the synthetic images were a 10x /0.3 objective lens plus
astigmatic aberration on a 512x512 pixels sensor (pixel
size of 6.5 pm, 16 bit). Gaussian noise was added to the
images resulting in signal-to-noise ratio SNR for individ-
ual particle images ranging from 30 to 240. A typical
synthetic image is shown in Fig. 7(a), which corresponds
to a classical darkfield image used in micro-PIV setups
(i.e. fluorescent particles observed with an epi-fluorescent
microscope). Additionally, we used two other types of
images: Brightfield images obtained by inverting the val-
ues of the darkfield images (Fig. 7(b)) and brightfield
images with an added intensity disturbance, introduced
to simulate non-uniform backgrounds or non-uniform il-
lumination (Fig. 7(c)). The disturbance consists of a 2D
sinusoidal pattern.
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FIG. 6. (a) Schematic of the acoustofluidic experiment object of the simulations: an acoustofluidic device is used to focus
particles in the center height of a rectangular microchannel. Real-time GDPT measurements are used to monitor the position
of the particles inside the channel and to identify the time t5/3, when 90 % of the particles are inside a vertical region of
thickness h/3 (indicated by red horizontal lines in (c)). (b) Illustration of the percentage of particles that has reached the h/3
vertical region as a function of time. The points indicate the real number of particles inside the region, the spacing in the time
axes is determined by the frame rate of the acquisition. The circles indicate the number particle inside the region as measured
by GDPT, the spacing in the time axis is determined by the computation time. (c) Cross-sectional view of the simulated
particle position in the measurement region for different time instants when assuming a Poiseuille flow with flow rate Q = 3

ul/h and acoustic energy density Fac = 0.3 J/ m?.

Simulation of real-time experiment. An ad hoc
Matlab routine was written to simulate real-time GDPT
measurements with a camera frame rate of 25 fps in a sec-
tion of the microchannel as illustrated in Fig. 6(a). The
objective of the simulation is to identify the ”trigger”
time tj/3 for which 90 % of the particles have been fo-
cused in a vertical center region of thickness h/3 (marked
with red horizontal lines in Fig. 6(c)). There are mainly
three parameters to consider for the assessment of real-
time GDPT measurements: (1) the computational time
of a single evaluation, (2) the accuracy of the measure-
ment, and (3) the number of detected particles (this
strongly depends on the particle concentration, since it
is more difficult to process overlapping particles, see Sec-
tion IIT). Improving points (2) and (3) leads to longer
computational times therefore a trade-off must be found.
The computational time sets also the temporal resolution
of the real-time measurement, therefore a random delay
time proportional to the temporal resolution is expected.
This is shown in Fig. 6(b), where the percentage of parti-
cles that has reached the h/3 vertical region is plotted as
a function of time. The points indicate the real number
of particles inside the region and the red vertical line in-
dicates the real "trigger time” t5,3. The circles show the
corresponding GDPT measurements, which have lower

temporal resolution due to the computational time of
each frame. The blue vertical line marks the correspond-
ing GDPT ”trigger time” ¢}, /3- In the hypothetical case of
perfect GDPT measurements, the delay time ¢}, /3~ th)3
is between one and two times the temporal resolution.
However, due to the GDPT measurement uncertainty, a
smaller or larger delay time can occur. As an example,
if the delay time is negative, GDPT detects that 90 % of
the particles have reached the region before they actual
have.

Results of real-time GDPT measurement. In a
first set of experiments, we tested the performance of
real-time GDPT measurements on the fluorescent im-
ages. As discussed in Section ITI, we test different strate-
gies to decrease the computational time, namely by re-
ducing the total number of images in the calibration stack
Neal, by reducing the number Ng,p, of images in the sub-
set of the calibration stack, and by removing the refine-
ment step. In particular, see Fig. 8(a), we calculated the
detection delay time ;,/3 — t;l/g as a function of the av-
erage computational time for each image. The grey area
indicates the expected results in the case of having no un-
certainty in the GDPT measurements. The simulations
show that removing the refinement step speeds up signifi-
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cantly the computational time with relatively low impact
on the accuracy. On the other hand, decreasing the num-
ber of images in the calibration stack minimally decrease
the computational time but can cause a failure of the
measurement. The corresponding average percentage of
the number of detected particles is shown in Fig. 8(b).

In a second set of experiments, we tested the perfor-
mance of the presented algorithm when applied to differ-
ent types of images: fluorescent, brightfield, and bright-
field with disturbance, see Fig. 7. This time we always
used N¢, = 51 images in the calibration stack. The re-
sults of the simulations are presented in Fig. 8(c-d) and
show that no significant difference is observed when the
refinement step is used, proving that the presented ap-
proach is suitable for different image types but that in
most challenging situation the refinement step is needed.

The simulations were performed on 512 x 512-sized, 16-
bit images on a laptop computer with an Intel Core i7-
7600U CPU processor running at 2.80 GHz with a RAM
memory of 16 GB. With this setup it was possible to
achieve an evaluation time of about one second.

VI. CONCLUSIONS

We have presented a new algorithm for perform-
ing 3D particle tracking using GDPT that does not
need preliminary pre-processing or segmentation steps.
The presented algorithm needs to compute only few

cross-correlations in comparison with other iterative ap-
proaches and is therefore suitable for a fast evaluation
time. In addition, the algorithm allows for the detection
of overlapping particles. The performance of the algo-
rithm, in terms of uncertainty in the depth determina-
tion, detection of valid particles, and processing time, was
tested on synthetic and experimental images. The algo-
rithm was tested for real-time application by setting up a
framework for real-time simulation of an acoustophoretic
experiment, created using synthetic images and an ad hoc
Matlab routine. The real-time simulations show, that
even without using the refinement step, the presented al-
gorithm is able to perform automated control-tasks and
that work robustly on different types of images (dark-
field or brightfield) also with fluctuations of the back-
ground intensity. The presented algorithm and simula-
tion framework set the base for use of GDPT in real-time
applications as well as for the further development and
improvement hereof.
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