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Abstract: Electric vehicles (EVs) penetration growth is essential to reduce transportation-related local
pollutants. Most countries are witnessing a rapid development of the necessary charging infrastruc-
ture and a consequent increase in EV energy demand. In this context, power demand forecasting
is an essential tool for planning and integrating EV charging as much as possible with the electric
grid, renewable sources, storage systems, and their management systems. However, this forecasting
is still challenging due to several reasons: the still not statistically significant number of circulating
EVs, the different users’ behavior based on the car parking scenario, the strong heterogeneity of both
charging infrastructure and EV population, and the uncertainty about the initial state of charge (SOC)
distribution at the beginning of the charge. This paper aims to provide a forecasting method that
considers all the main factors that may affect each charging event. The users’ behavior in different
urban scenarios is predicted through their statistical pattern. A similar approach is used to forecast the
EV’s initial SOC. A machine learning approach is adopted to develop a battery-charging behavioral
model that takes into account the different EV model charging profiles. The final algorithm combines
the different approaches providing a forecasting of the power absorbed by each single charging
session and the total power absorbed by charging hubs. The algorithm is applied to different parking
scenarios and the results highlight the strong difference in power demand among the different
analyzed cases.

Keywords: electric vehicles; EV power demand forecasting; charging hub; urban scenarios; machine
learning

1. Introduction

Current policies of the European Union and national governments are strongly push-
ing the transition to local zero-emission mobility based on electric vehicles (EVs). This is
being followed by continued growth in the number of circulating electric vehicles. There-
fore, we are witnessing a rapid and widespread development of the necessary charging
infrastructure. The simultaneous global push toward energy transition leads to accompa-
nying the installation of charging systems with the installation of photovoltaic and storage
systems for optimal energy management. This is making demand forecasting an essential
topic of strong interest.

On one hand, for the charging infrastructure providers, the forecasting of user en-
ergy consumption is essential to estimate possible revenues and losses to assess the cost-
effectiveness of the installations [1,2]. On the other hand, for the grid operators, the
forecasting of the power required for EV charging is mandatory to quantify the effects on
the power grid management and stability [3–6]. Predicting the EV charge power profiles
allows effective charging management strategies [7] and the optimal integration of EVs
with the electrical grid, storage systems, and renewable sources [8–11].
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However, power forecasting in this context is still challenging due to several reasons.
The current number of EVs is still statistically not representative to derive a robust model
based on the available data [12]. Moreover, despite the general continuous growth, in some
countries like Italy, the number of new EV registrations is experiencing an unexpected
decrease [13]. Added to this is the fact that, the charging power profile is highly dependent
on many different factors. The power level of the charging can vary in a wide range. The
most common value is 22 kW for AC charging points (CPs) [14], but it can reach hundreds
of kW in the DC stations [15]. However, the effective use of the available power level can
vary among the different EV manufacturers and models [16]. For example, the Renault
ZOE can charge up to 46 kW in DC, while the Renault Twingo cannot exceed the 22 kW
exclusively in the AC mode. The Tesla Model Y can achieve a 250 kW DC peak power
during the charge. Eventually, this power level is not constant during the whole charging
process. The charge of lithium batteries is typically carried out by means of the constant
current-constant voltage (CC-CV) charging protocol [17]. This protocol involves a reduction
in the charging power during the final stage of charging to preserve the state of health
of the battery. For this reason, the resulting power profile is discontinuous. Moreover,
the profile of absorbed power varies in relation to many other factors such as the battery
technology, the onboard charger, or the adopted battery management system [18].

In the case of charging hubs (CHs), the whole absorbed power profile is in turn
dependent on many other factors related to the considered scenario and the users’ behavior.
The arrival times distribution of a CH of a working place parking lot typically presents a
peak around the first-morning hours while, in a CH of a shopping area, this peak typically
occurs around the evening. Finally, the energy demand of each CH is influenced by other
factors like the state of charge (SOC) of the battery at the beginning of the charge, and the
duration of parking (i.e., the time the CP remains occupied).

Several works about EV charging parameters forecasting can be found in the literature.
Authors in [19] adopted Bayesian inference methods with convolution to forecast the daily
charging pattern of an EV fleet. This work only considers the 3 kW household power level,
then results can not be applied to public CH in different parking lot scenarios, charging
station power levels, and EV models. A day-ahead Bayesian deep learning forecasting
method was proposed in [20]. The objective was to capture the uncertainties in EV charging
forecasting by adopting Bayesian theory and neural networks. In [21], a forecasting method
based on multi-source data and prospect theory was presented. The travel behaviour of
private electric vehicles and taxi owners was considered along with the roads’ velocity and
network. Authors in [22] compared four different deep learning methods for a real case
in Marocco to predict charging demand of an EV station. In [23], a data-driven approach
using machine learning regression methods is adopted for a public charging station. In [24],
historical data was clustered based on EV user behaviour and the corresponding probability
density functions were derived. Three main parameters were considered, i.e., arrival time,
charging duration and average power. These works, which are mainly based on charging
data analysis, don’t provide a method able to take into account the single session charging
power as a function of the time. Moreover, charging infrastructure and EV characteristics
(such as initial/final state of charge, maximum power capability, battery capacity etc.) were
not considered. Finally, authors in [8] provide a forecasting method based on a statistical
model of the arrival and departure time of the users. Although this method calculates
the power consumed by each connected vehicle as a function of time, only 22 kW AC
charging points are considered, and only a single parking scenario (i.e., a metal-working
company) was analyzed. To the best of authors’ knowledge no papers provide a charging
forecasting method based on specific EV and CH infrastructure characteristics, different
urban scenarios, and real charging power profiles.

The proposed work aims to fill this gap at both single charging point and total charging
hub level by considering multiple approaches. The users’ behavior is modeled through
a statistical-based approach in which arrivals, departures, and charging durations are
predicted based on the specific patterns related to the considered scenario. The distribution
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of the EV battery SOCs at the beginning of the charge is based on a probabilistic analysis of
specific consumption and distances traveled before the charging event of each vehicle. A
machine-learning-based approach is used to develop a battery charging behavioral model
(BCBM). The BCBM is able to emulate the charging power profile of different EV models as
a function of the battery SOC and the power rating of the CP to which the EV is connected.
Based on custom input settings that describe the CH charging station characteristics, the
expected number of EVs, and the operating scenario, the resulting forecasting algorithm
evaluates the charging power profile of each EV and the SOC evolution of each EV during
the whole period in which it is connected to the CP with a fine time resolution. Finally, the
forecasting algorithm provides as output the total power demand of the CH as a function
of the time.

The paper is structured as follows: Section 2 analyzes the main parameters influencing
EV charging power demand and provides models to emulate their patterns, trends and
behavior; Section 3 describes the prediction algorithm; Section 4 shows and discusses
the results of the proposed method by comparing them under different scenarios; Finally,
conclusions are drawn in Section 5.

2. Analysis and Modeling of Parameters Influencing EV Charging

The reference scenario object of the study is a generic CH within a car park in which
the EV parking lots present a charging point as sketched in Figure 1. EV users can arrive at
the CH and depart it at different times of the day.

Charging hub

:

Electric SystemCP

CP

CP

CP

CP

Figure 1. Diagram of a typical charging hub and nomenclature of powers and system elements.

The total CH power PCH is assumed equal to the sum of power PEV provided to each
vehicle. The daily power absorption of the CH is computed by taking the following factors
under consideration:

• The maximum power made available by the CP, named PCP (kW). The CH is consid-
ered composed of CP of the same kind.

• The EV characteristics in terms of maximum power PEVmax accepted by the battery
and its maximum capacity EBmax.

• The EV users’ behavior in terms of arrival and departure times, parking duration
(Tpk), and charging duration.
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• The initial state of charge (SOC0), i.e., the SOC value at the arrival of the EV at the
parking lot, that depends on the EV users’ behavior and consumption before the
charging event.

• The profile evolution of the power absorbed by the battery during the charging process
in relation to charging station and EV models.

The discussion of each parameter is addressed in detail in the following sections.

2.1. Charging Infrastructure and EV Model Characteristics

According to the EU Alternative Fuels Infrastructure Regulation (AFIR) [25], the
charging points are divided into two categories based on the typology of connection
between the vehicle and the charging station:

1. Category 1. The CP provides an AC output power and the battery charging is managed
by the EV on-board charger [26].

2. Category 2. The CP provides a DC output power and the battery charging is managed
directly by the off-board converter installed inside the charging station [27].

The on-board charger size is limited by the reduced space that is available in the vehicles.
Then, the AC CPs generally have a lower power rating than the DC category.

A sub-classification of the EV charging systems considers different output power and
the consequent charging speed. This classification system is summarized in Table 1.

Table 1. Charging point categories based on AFIR Proposal (Annex III) [25].

Category Sub-Category Power Output Definition

Slow AC charging point, single-phase PCP < 7.4 kW Normal power
Category 1

(AC) Medium AC charging point, triple-phase 7.4 kW ≤ PCP ≤ 22 kW Normal power

Fast AC charging point, triple-phase PCP > 22 kW High power

Slow DC charging point PCP < 50 kW High power
Category 2

(DC) Fast DC charging point 50 kW ≤ PCP < 150 kW High power

Level 1—Ultra-fast DC charging point 150 kW ≤ PCP < 350 kW High power
Level 2—Ultra-fast DC charging point PCP ≥ 350 kW High power

The number of charging stations has grown in the past three years, the year 2022 also
confirms this growing trend. Figure 2a (data retrieved from [28]) shows a strong increase in
AC charging points belonging to the “medium-speed AC” category. The figure also shows
that the main increase in the DC category is related to “fast DC” and “ultra-fast DC”—Level
1 systems. Currently, 88% of the CPs in the EU belong to the AC category. The pie-plot
in Figure 2b shows that 73% of CPs provide power between 7.4 kW and 22 kW followed
by 11% of CPs having a power rating lower than 7.4 kW. The DC charging category only
provides 11% of the total number of CPs. Most DC CPs have a power rating between 50 kW
and 150 kW (5.5%), followed by ultra-fast charging—Level 1 (3.8%).

Electric vehicle registrations in Europe are growing as well. The number of EVs on the
road more than tripled from 616 thousand in 2019 to about 2 million in 2021. However, the
EVs share in comparison to the total car fleet still remains very low, at around 0.81% [12].

The different graphs of Figure 3 summarize the characteristics of the 20 best-selling EV
models in Italy. Specifically, the abscissa represents the variation range of some features for
the EV population considered: the usable battery capacity (a), the specific consumption in
terms of kWh/100 km (b), the AC charging (c) and DC charging (d) power capability. The
scatter plot depicts the feature value for each EV model indicated in the y-axis. The markers’
size is proportional to the share of the model on the total number of registered EVs. The
histograms, referred to the left-axes, depict the distribution of the corresponding features
among the population. The specific consumption data are referred to the world harmonized
light-duty vehicles test procedure (WLTP) declared by manufacturers [16]. The reported
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vehicles represent 90% of the whole registrations in Italy in 2021. Since some of these
models have different options for battery capacity and engine size, only the characteristics
of the most popular models are considered for the sake of analysis simplification. Finally,
the vertical dashed line depicts the average values.

2020 2021 2022
year

0

100000

200000

300000

400000

to
ta

l n
um

be
r

Slow AC
Medium AC
Fast AC
Slow DC
Fast DC
Level 1
Level 2

(a)

slow AC

medium AC
fast AC

slow DC

fast DC

level 1
level 2

(b)

Figure 2. Total number of publicly accessible charging points, according to the AFIR categoriza-
tion [28]: (a) AC charging and DC charging; (b) Pie plot of the CP share in EU @2022.

The data analysis allows a baseline of the users of each hypothetical CH. Specifically,
the following conclusions can be drawn:

• The average usable battery capacity (Figure 3a) is 42.3 kWh with a standard deviation
of 18.6 kWh. 53% of EVs (including the top 4 registered models) have a capacity of
less than 40 kWh. Compared to the European scenario, the Italian fleet has only 13%
of EVs belonging to the 70–80 kWh capacity range.

• The average specific consumption is 16.4 kWh per 100 km. As visible in Figure 3b, the
distribution is fairly homogeneous among the fleet and owns a standard deviation of
1 kWh/100 km. Considering the average battery capacity, it is possible to calculate the
average distance driven in the WLTP condition, which is about 260 km.

• The average AC charging power (Figure 3c) is equal to 11.16 kW with a standard
deviation of 5.2 kW. This value is in line with the European scenario. About 50% of
the vehicles have a maximum charging power of 11 kW. 15% (represented by the
Renault brand) can charge up to 22 kW in AC. Finally, about 75% of the vehicle’s
onboard chargers allow medium-speed AC charging, remaining 25% can only use
slow AC levels. No vehicles enable Fast AC charging.

• The average DC charging power (Figure 3d) is 76 kW with a standard deviation of
60 kW. It is worth noting that about 20% of EVs can not charge via DC CP and 20%
can only be charged via Slow DC level. About 50% of the fleet can be charged via Fast
DC CP. The remaining 10% of EV is enabled to charge via Level 1—Ultra-fast chargers.
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Figure 3. EV population characteristics of the Italian registrations scenario @2021 as a function
of the EV model: (a) Usable battery; (b) specific consumption; (c) AC charging capability; (d) DC
charging capability. The scatter plots depict the features’ value for each EV model. The markers’ size
indicates the share of the model on the total number of registered EVs. The histograms depict the
distribution of the corresponding features among the population. The vertical dashed line indicates
the average value.

2.2. Statistical Patterns of Users Behavior

This section focuses on the modeling of the users’ behavior in terms of arrival time,
departure time, and parking duration. The parking duration Tpk is here defined as:

Tpk = tdep − tarr (1)

where tarr and tdep are, respectively, the time of arrival and departure of the vehicle at/from
the parking lot. The duration of Tpk, as well as the instants tarr and tdep, depend on several
factors and change according to the different scenarios in which the CH is located. In
order to extrapolate statistical patterns that identify the users’ behavior as a function of the
parking lot scenario, two data sources are considered and analysed. The first set of data
is derived from the National Household Travel Survey (NHTS) [29]. Some preliminary
results are reported in Figures 4 and 5a.
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Figure 4. Working place parking lot scenario: (a) arrival and departure time of users; (b) parking
time of the users; (c) probability density function of arrivals and departures; (d) probability density
function of the parking duration.

The NHTS presents about one million trip observations. From each observation, it is
possible to derive the tarr, the tdep, Tpk associated to a parking scenario and the distance
traveled. Through data processing, the main data-set is clustered into two macro scenarios
according to the associated reason for travel: motivations related to work activities (named
“working scenario”); motivations related to the purchase of services and goods (named
“shopping scenario”). The results of the data processing and the statistical pattern obtained
are summarized through Figure 4. The scatter plots in Figure 4a,b show the instant of
arrival (tarr, blue marker), departure (tdep, orange marker) and parking time of the working
scenario users. About 40 thousand observations are collected from [29] and analyzed. The
probability density distributions (pdf) pattern derived from the observation are reported in
Figure 4c and Figure 4d, respectively. For the working scenario, the tarr distribution has two
peaks, the first around 8:00, and the second around 13:00. The tdep pdf presents a higher
peak around the evening (17:00) and a lower peak at 12:00. Most of the cars are parked
for about 9 hours and the average value of Tpk is 6.5 h. Similar analyses are carried out
for the shopping scenario data, which statistical pattern of arrival and departure times are
reported in Figure 5a. The tarr and tdep distributions are found to be similar, concentrated
mainly during store opening hours. The average parking time of the shopping scenario is
42 min.

A second analysis is based on data collected from real case studies. A 1-month data
collection campaign was carried out on several parking lots located in the urban area of
Bologna, in cooperation with companies that provide parking services for EVs. Figure 5
shows the output of data processing in terms of statistical patterns of the car park scenarios.
Each figure considers 31 different histograms (normalized) corresponding to the 31 days of
data collection. The histograms on the left (in blue) represent the tarr-distributions, while
those on the right (in orange) represent the tdep-distributions. The dashed black line depicts
the average daily distribution.
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Figure 5. Distribution of arrival (left) and departure (right) times of users for different parking lot
scenarios. (a) shopping; (b) mall; (c) airport; (d) city center 1; (e) city center 2.
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Information about the reference case studies is reported in Table 2, together with the
nomenclature used in this paper. Table 2 also summarizes the scenarios analyzed, the data
source, and the corresponding average parking time.

Table 2. Summary of the car park scenarios analyzed in this paper.

Car Park Scenario Name Data Source Parking Lots Average Tpk

working place working survey not defined 6.5 h
shopping area shopping survey not defined 42 min
mall car park mall collection campaign 210 62 min

airport car park airport collection campaign 1972 79 min
municipal car park city-center 1 collection campaign 350 136 min

paid public car park city-center 2 collection campaign 200 128 min

2.3. Pre-Connection SOC Modeling

The state of charge at the arrival time SOC0 (indicated as pre-connection SOC) in-
fluences the amount of energy supplied to the EV during a charging process. Together
with the maximum usable capacity of the battery CB, and the average charging power PEV,
SOC0 determines the charging duration Tch as:

Tch =
(SOCf − SOC0)

100
CB

PEV
(2)

where SOCf is the SOC value (in percentage) at the end-of-charging. In order to forecast
the EV charging demand is important to analyze the value of SOC0i for each EVi arriving
at the charging hub.

Previous works proposed two different approaches. In [7] a statistical model based on
real-world data is proposed. A three-month SOC0 data collection campaign was conducted
on an electric car-sharing fleet. The car-sharing fleet under study is entirely composed of
Renault ZOE. The EV charging is entrusted to operators that monitor the SOC and the
location of each vehicle. When the SOC drops below a certain “alert” level, an operator
drives the EV toward a charging hub to recharge its battery. It is essential to point out
that this operation is not based on rigid procedures. Indeed, an operator is left free to
bring a vehicle to the charging hub even if the vehicle’s battery does not strictly need
to be recharged, or the SOC value is quite below the alert level. The human decision
variable along with the different distances of the vehicles from the charging hub introduce
some level of randomness and data variance in the SOC0 population. Figure 6a shows the
collected data, their probability distribution, and the approximation obtained through a
Weibull function.

A different approach, more suitable for a private and heterogeneous EV fleet, was
proposed in [10,30]. The method in [10] estimates the SOC0 of an EV starting from the
energy consumed after the last full-charging event. Let be SOC0(dδ) the pre-connection
SOC (referring to the day of charging dδ) and SOC(d0) the final value at the end of the last
complete total charge (assumed 95%), then:

SOC0i(dδ) = SOCi(d0)−
δ−1

∑
j=0

Di(dj)cSPi

CBi
(3)

The daily energy consumed by each vehicle during dj is calculated from the daily traveled
distance, Di(dj) and the specific consumption, cSPi of the EV model (ref. Figure 3). The daily
traveled distance is obtained based on the statistical analysis carried out in [10]. A Weibull
function having K = 1.7 and λ = 37.5 is used for modeling the daily traveled distance. By
introducing the specific consumption and the daily distance traveled by each vehicle it is
possible to calculate the energy consumed by the i-th vehicle in each j-day, i.e., Di(dj)cSPi.
Then, ∑δ−1

j=0 Di(dj)cSPi is the cumulative energy consumption had during the δ days before
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dδ. For example, SOC0i(d3) considers the consumption of the previous three days (starting
from the last full charging). It should be emphasized that this approach does not consider
home overnight charging in the calculation of the cumulative energy consumption. Then,
it is possible to assume that vehicles with a larger battery capacity are able to provide
more days of autonomy (i.e., higher δ) than vehicles with a smaller capacity. Therefore,
δ is statistically estimated based on the battery capacity using probability distribution
functions whose median is the greater the larger the EV model’s range. Figure 6b shows the
SOC0 distribution of a 100-EV population whose share reflects the one reported in Figure 3
obtained through the method proposed in [10].
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Figure 6. Distribution of the SOC0 of an EV fleet: (a) probability distribution obtained from the study
carried out in [7] on a car-sharing fleet; (b) probability distribution obtained applying the method
of [10] to a 100-EV population which characteristics follow Figure 3.

2.4. EV Battery Charging Behavioral Model Based on Machine Learning

The charging power PEVi(t) is not constant during a charging process. The battery
charger controls the charging profile to comply with the Constant Current-Constant Voltage
(CC-CV) charging protocol for lithium batteries [17,31]. According to this protocol, the
charge starts with the CC phase where a constant current is provided to the battery. During
this phase, the battery voltage increases, and the power profile follows the one of the
voltage. When the battery voltage reaches the upper cut-off value, the CV phase begins.
During this phase, the charger keeps the battery voltage constant while the charging current
decreases. Therefore, the power profile follows the current drop. The CV phase continues
until the end of the charging.

The CC-CV charging phases can be conveniently described through the power–SOC
curves [32] that are reported in Figure 7. Figure 7 shows the PEV − SOC curves for different
vehicle models considering different charging rates. It is possible to note (Figure 7a)
that the higher the charging power, the more pronounced the CV phase. For the same
EV model, the charging power profile depends on the SOC evolution and the C-rate
(CR), i.e., the ratio between charging power and EV battery energy capacity CB (in kWh).
Moreover, different EV models may have different charging profiles. This is due to the
differences in the EV’s hardware (i.e., battery, onboard charger, etc.), and firmware (mainly,
the battery management system) adopted by the different manufacturers [18]. The aim
of this Subsection is to investigate Battery Charging Behavioral Models (BCBM) that are
capable of emulating power profiles and dynamically calculating the charging power of an
EV as a function of SOC, C-rate, and vehicle model.
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Figure 7. PEV–SOC profiles at different C-rate for different EV models. The figure legend reports the
power rating of the charging station (PCP) on which the test is performed, and the battery capacity of
the EV model.

Focusing on a whole charging process, PEVmax is the peak value of the power profile,
which generally corresponds to the end of the CC phase. The value of PEVmax depends on
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both the charging point power rating (PCP) and the maximum power that the vehicle battery
can receive PBmax. Finally, the peak value of the charging profile (PEVmax) corresponds to:

PEVmax = min[PCP, PBmax] (4)

Knowing the value of PEVmax, the charging power profile can be obtained as:

PEV = k(SOC, CR, MID) PEVmax (5)

where k ∈ [0, 1] is a normalization factor that varies during the charging process as a func-
tion of the SOC, the C-rate, and the EV model (MID). The BCBM expressed by Equation (5)
is based on a supervised machine learning predictive model. It defines the k-function
through the training of the model via historical data, which encapsulates the dependence
on the features (SOC, CR, MID). The entire procedure of data processing, model training
and validation is described below.

2.4.1. Data Pre-Processing

Predictive models, such as regression morels, work by establishing a relationship
between variables in the data that represent characteristics of the quantity being observed
(known as the features), and the variable being targeted for prediction (known as the
label) [33]. In order to develop a predictive model via machine learning technique, a
pre-processing of the data (i.e., the data population used for the model training) is required.

The training of the model is obtained starting from the measured charging profiles
retrieved from [18]. The EV charging profiles (such as the curves reported in Figure 7) are
collected and sampled to create the main data frame. Thus, for each punctual value of
SOC, the value of PEV is registered. The PEV data are normalized as a function of the peak
power value of the charging profile. The same process is carried out to the SOC in order
to have normalized values, i.e., (PEVn, SOCn) ∈ [0, 1]. Each pair (PEVn, SOCn) is matched
with the vehicle model identification number (MID) and the corresponding CR value. The
output of data pre-processing consists of a data frame in which each sampling observation
is organized into four columns containing the label, i.e., PEVn, and the features SOCn, CR,
and MID. Figure 8 shows the output of the above-described data processing. Figure 8a
shows the PEVn(SOCn) curves colored as a function of MID. On the other hand, Figure 8b
shows the PEVn(SOCn) curves colored as a function of CR.
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Figure 8. Charging power profile data pre-processing. The normalized value of the power profiles as
a function of the SOC, whose color depicts the model ID number (a) and the corresponding C-rate (b).
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2.4.2. Model Training

The use of historic data with known label values to train a model is also called
“supervised machine learning”. The training process fits the features x = [SOCn, CR, MID]
to the known label y = PEVn to define a general function F(x) that can be applied to new
features for which the labels are unknown, and predict them. This is achieved by applying
an algorithm that tries to fit the x values to a calculation that produces prediction reasonably
accurately for all of the cases in the training dataset. Referring to Equation (5), it means
identifying a model that minimizes the error between the sampled PEVn(SOCn, CR, MID)
and its prediction F(SOCn, CR, MID). The model training, as well as data pre-processing,
are carried out in Python by using the scikit-learn libraries [34,35].

Different regression methods can be used in machine learning, such as linear regres-
sion, decision forest regression, neural network regression, boosted decision tree regression,
etc. Due to the high prediction accuracy, fast training time [36], and its particularly fitting
to data sets of both continuous and categorical kind [37], the model used in this work is the
Gradient Boosting Regressor (GBR). Gradient boosting is a machine learning technique
used in regression (but also classification) tasks. It gives a prediction model in the form
of an ensemble of weak prediction models, which are typically decision trees [38]. Unlike
other regressors based on decision trees (such as the random forest regressor), the GBR
learns from its mistakes in each iteration. It means that in gradient boosting, all trees are
interconnected and each subsequent tree learns from the mistakes of the upstream ones by
optimizing a differentiable loss function [39,40].

It’s common practice in supervised learning to split the data into two subsets [41]:

• A training dataset (typically larger than about 70% of the main data set) with which to
train the model. It contains the training feature (xtrain) and label (ytrain) values;

• A test dataset (about 30% of the main dataset) with which to validate the trained model
by generating predictions for the label and comparing them to the actual known label
values. This enables to evaluate the model error and accuracy. The test dataset contains
the test feature (xtest) and label (ytest) values.

It’s important to perform the splitting randomly. This helps ensure that the two data
subsets are statistically comparable (i.e., the model is validated with data that has a similar
statistical trend to the data on which it was trained).

The performance of the GBR algorithm strongly depends on the constituent parame-
ters, such as the number of trees, the number of leaves and nodes of each tree, the learning
rate, the loss function, etc. These setting parameters are generally called “hyper-parameters”
of the model (i.e., parameters not directly learned within estimators). It is important to find
the optimal setting of the hyper-parameters to have a good prediction performance.

The GBR model used in this work is the GradientBoostingRegressor [42] from the library
sklearn.ensemble [34]. The model proposed by sklearn has several hyper-parameter that
is possible to set for the tuning of the model. In this work, the focus is on the element
of the vector H̄P = [M, ν, Jm] that represents the number of trees, the learning rate, and
the number of leaves for each tree, respectively. The search for the optimal value of H̄P
is carried out via an iterative deterministic process that considers combinations of the
H̄P-elements within pre-determined ranges of variation. This operation is performed using
a “fit” and a “score” method, where the H̄P-elements are optimized by cross-validated
grid-search over a parameter grid [35]. The optimal values of H̄P are used to set the GBR
model. Finally, the learning of the GBR model is performed on the population of the
training dataset (xtrain, ytrain).

2.4.3. Model Validation

To validate the accuracy of the model trained through (xtrain, ytrain), the test dataset
is used. The validation procedure consists in comparing the model predictions F(xtest),
which are made on the test features (xtest), with the label of the test dataset (ytest). In other
words, the validation procedure evaluates the difference between the label predicted when
the model applies the “behavior” it learned during training to the test data, and the actual
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value of the test label. The indicate the expected level of error when the model is used with
new data for which the label is unknown [41].

An initial qualitative evaluation of the model’s performance can be taken graphically
from Figure 9. The figure compares the actual observation of the test label ytest (blue
markers) with respect to its predictions F(xtest) (red markers). Figure 9a provides the
comparison as a function of the SOCn feature. It appears that the predictions are able
to overlap adequately well with the observed samples. Finally, Figure 9b provides an
evaluation of the residuals. The blue dashed line depicts the ideal zero-error prediction
and the light-blue area represents a 5% error zone. It can be seen from Figure 9b that most
of the F(x) values overlap the dashed line and remain within the light-blue zone.
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Figure 9. (a) Comparison between the predictions (red) and the observation (blue) on the test
population samples as a function of the features SOCn; (b) Trend of the prediction’s residuals,
F(xtest) vs ytest: ideal prediction points should belong to the blue line. The blue band depicts the 5%
error zone.

Quantitative validation of the model prediction performance is obtained using the
following operator:

• Mean Square Error (MSE) that is the mean of the squared differences between predicted
and actual values. The proposed GBR model obtains a value of MSE = 0.0003;

• Root Mean Square Error (RMSE) that is the square root of the MSE. This parameter
yields an absolute metric in the same unit as the label (in this case, p.u.). The smaller
the value, the better the model. The predictions overlap the observation with an
RMSE = 0.0174;

• Coefficient of Determination (usually known as R-squared or R2). It is a relative metric
that quantifies the fit of the model. In essence, this metric represents how much of
the variance between predicted and actual label values the model is able to explain.
A good trade-off to avoid over-fitting is R2 = 1 [43]. The proposed method score is
R2 = 0.9959.

Finally, according to Equation (5), the trained model is encapsulated in the definition
of the coefficient k (reporting the dependence on SOC from p.u. to percentage):

k = F(x) (6)

Introducing the machine learning predictive model in Equation (6), it is possible to recreate
the profile of PEV for each value of SOC, C-rate, and vehicle model through Equation (5).
Figure 10 shows, as an example, the results obtained considering the Tesla Model 3 RP
(from the MID list). The left plots show the k value as a function of the SOC as the C-rate
increases (i.e., PEVmax increases). The right plots show the corresponding power–SOC
profile computed via Equation (5) (dashed black lines). The colored markers in the figure
represent the starting measured data from which the model was trained.
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Figure 10. Example of the calculation of the PEV power profile using the proposed BCBM. The left
frames depict the normalized profile (k) with increasing C-rates (i.e., the profile drop due to the CV
phase starting at lower SOC values). The right frames compare predicted PEV with actual data.

3. EV Charging Forecasting Algorithm

All results derived in Section 2 are integrated and used for developing the algorithm
proposed in this work. The input data received by the algorithm are reported in Table 3.
From this data, the algorithm computes the daily power profile PEVi(t) of each EVi∈N and
calculates the daily total power profile required by the whole CH, PCH.

Table 3. Input and output data of the proposed algorithm.

Symbol Description

input data
N daily number of vehicles arriving to the CH
PCP charging station power rating
CCP charging station category, AC or DC charging point
S parking lot scenario

output data
PEVi(t) daily power profile of each EVi∈N
PCH(t) daily total power profile required by the whole CH
SOCi(t) state of charge evolution of each EVi∈N

The algorithm is initialized by the parameters of the N-EVs population then it collects
the related information in an initialization data frame. This data frame, called ID, consists
of N rows and each row reports information about the related EVi. By way of example,
Table 4 shows the initialization data frame of a population of 5 EVs. The ID data frame
contains information about the EVs population derived from the distribution of the models’
share summarized in Figure 3. Along with the EV model, ID reports the corresponding
value of battery capacity CB (in kWh), the ID number associated to each model, and the
maximum charging capability in AC (PAC

Bmax) and DC (PDC
Bmax) modes (both in kW). To

each EVi is assigned a SOC0i value (in percent). The SOC0i is obtained according to the
procedures described in Section 2.3.

The last columns of ID report the arrival time, departure time, and parking duration
of the i-th EV (expressed in hours). These values are obtained considering the analysis
carried out in Section 2.2 and according to the selected parking lot scenario S. The values of
tarr, tdep, and the relative Tpk are computed starting from their distribution so as to obtain
a population of N samples whose probabilistic trend respects that of the selected scenario.
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Table 4. Example of the initialization data frame (ID) of a 5-vehicles population.

EVID Model MID CB SOC0 PAC
Bmax PDC

Bmax tarr tdep Tpk

1 FIAT 500e 0 37.3 34 11 85 8:15 15:00 6.75
2 Tesla M3 4 75 23 11 210 10:00 17:45 7.75
3 Renault ZOE 13 52 67 22 46 7:45 10:30 2.25
4 FIAT 500e 0 37.3 51 11 85 9:30 16:00 6.50
5 VW UP! 8 36.8 15 7.4 40 8:00 12:00 4.00

For each EVi, the charging time Tch,i is defined as the period between the initial time
of charging tch0,i, that is the instant in which EVi is plugged in, and the final time of
charging tech,i:

Tch = tech − tch0 (7)

The end-charging time tech,i may depend on two conditions:

1. The vehicle is plugged and the SOC reaches the maximum value. Hence, the charging
stops and SOCi(tech) = SOCmax;

2. The vehicle is unplugged because the users leaves the parking lot even if the charging
is incomplete. Hence, SOCi(tech) < SOCmax.

It is assumed that the instant of arrival in the parking lot coincides with the beginning
of the charging, therefore:

tch0 = tarr ⇒ SOC(tch0) = SOC0 (8)

On the other hand, the final charging instant could coincide or not with the departure time
of the vehicle from the parking lot. This condition is governed by the following equation set:

tech < tdep ⇒ SOC(tech) = SOCmax (9a)

tech = tdep ⇒ SOC(tech) < SOCmax (9b)

The second step of the proposed method is to define, for each i-th EV, an array
that contains the value of PEVi for each discretized instant τ of the day. In this work, a
discretization time resolution ∆τ = 1 min is considered. Thus, the PEVi-array for a 1-day
calculation consists of T = 1440 elements. Considering the whole population of N EVs it
is possible to define the N × T matrix PEV whose element PEV[i, τ] represents the power
required by the i-th EV (row-index) at the τ-th minute of the day (column-index). Similarly,
it is possible to define the matrix describing the vehicle presence in the parking lot, called
PK, and the matrix of the SOC(t) evolution, called SOC. The elements of PK are of Boolean
kind; specifically PK[i, τ] = 1 if the i-th vehicle is parked at instant τ, otherwise PK[i, τ] = 0.
The element SOC[i, τ] represents the state of charge of EVi at the instant τ. It is clear that
SOC[i, τ]τ=tch0 = SOC0i and is initialized through the value of the ID data frame. The
following forecasting algorithm logic is shown in Figure 11.

Considering an N-users population the algorithm runs in parallel for each EV
(PEV-row) in order to fill all the elements of the PEV matrix. The algorithm starts the
calculation by referring at the time τ = 0 (beginning of the day, i.e., 00:00). For each EVi the
algorithm is initialized through the i-row of the ID data frame, whose data are represented
by the red box in the flow chart of Figure 11. The resulted powers are highlighted through
the green boxes.

As long as τ < tch0, the vehicle is not present and PK[i, τ] = 0, the output PEV[i, τ]
is zero. As soon as the vehicle arrives in the parking lot, PK[i, τ] switches to one and
keeps this value as long as the vehicle is parked. SOC[i, τ] is initialized to SOC0i and the
algorithm starts calculating the charging power.
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Figure 11. Flow chart of the proposed algorithm. The output of the algorithm is the power of EVi

(green box). The red boxes represent the initialization values obtained from the ID data frame. For
each τ ∈ T, the algorithm runs in parallel for each i ∈ N.

After that, the initial value of the power is multiplied by a scale factor k according
to Section 2.4. The k parameter is the output of the BCBM and sets the power absorption
of EVi according to its MID, SOC, and relative C-rate. The algorithm updates the SOC
in each iteration by calculating the battery’s energy through charging power integration.
Accordingly, the element SOC[i, τ] of SOC at the instant τ is obtained by Equation (10):

SOC[i, τ] = SOC[i, tch0] +
∑τ

ζ=tch0
PEV[i, ζ]∆τ

CBi
(10)

where SOC[i, tch0] = SOC0i and the term ∑τ
ζ=tch0

PEV[i, ζ]∆τ represent the cumulative
energy (kWh) from the start of charging to the τ-instant. The charging process can stop
(PEV[i, τ] = 0) if condition of Equation (9a) or (9b) occurs. Finally, the algorithm stops
computing at τ = T (end of the day, i.e., 24:00).

Once the PEV matrix is calculated for each τ ∈ T it is possible to obtain the total power
profile of the charging hub containing the contribution of each EVi∈N :
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PCH[τ] =
N

∑
i=1

PEV[i, τ] (11)

As an example, Figure 12 shows the results of the proposed algorithm considering a
100-EV population and a charging hub having AC CPs of PCP = 22 kW. The charging hub
is located in a working place parking lot. The scatter plot in Figure 12a shows the arrival
and departure time randomly generated from their scenario pattern (Figure 4c). Figure 12a
also shows PEVi as a heat map. The heat map represents the power level that the EVs
require from the CPs during the charge. The color variations depend on the modulation
due to the BCBM. Figure 12b shows the charging power profile of each EV belonging to the
N-users population. It is evident how the power profile varies during charging depending
on the vehicle model, C-rate, and the evolution of the SOC. Although PCP = 22 kW, only a
portion of EVs manage to use all of CP power (mainly the Renault ZOE). Most vehicles
receive a maximum power output of 11 kW or less. Figure 12c shows the value of the SOC
at the arrival time and at the departure time. The black dashed line depicts the evolution
of the state of charge as a function of time, SOCi(t). Finally, Figure 12d shows the total
power required by the charging hub, PCH obtained from Equation (11). The figure shows a
peak of about 400 kW at the peak of EV arrivals. Through the algorithm, it is also possible
to calculate the total energy required daily by the CH, which is about 2200 kWh and is
represented by the blue area in Figure 12d.
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Figure 12. Results of the proposed algorithm considering N = 100, PCP = 22 kW, CCP = “AC”, and
S = “working”: (a) arrival and departure times and heat map of the power PEV(t); (b) plot of PEV(t)
of each EV; (c) SOC0, SOCf and SOC evolution as a function of time; (d) profile of PCH(t) and
corresponding energy (kWh).
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4. Results on Different Scenarios

The following section analyzes and discusses the results obtained from the proposed
forecasting algorithm. Comparisons are conducted considering the possible variations
of the algorithm setting parameters. Specifically, the effects on the power profile of the
number of daily users, the charging stations’ power rating, and the parking scenario are
analyzed in detail. Table 5 shows the settings of the algorithm input parameters selected to
compare the results.

The values of PCP is set to match all the charging level categories reported in Table 1,
from slow AC-charging to ultra-fast DC-charging. The CCP is set according to the related
power level. Four charging hub daily users numbers from 10 to 200 EV/day are selected in
order to evaluate a possible temporal increase in EV penetration or a different size of the
parking area.

Table 5. Setting of the algorithm input parameter used in this section.

Input
Parameter Simulation Setting Value Unit

PCP 3.6 7.4 11 22 25 50 75 100 150 200 250 350 kW
CCP AC AC AC AC DC DC DC DC DC DC DC DC -
N 10, 50, 100, 200 EV/day
S work, mall, airport, city center 1, city center 2, shopping -

Figures 13 and 14 show some preliminary results. The figures represent the daily power
profiles (24-h time window) for 4 different scenarios as the charging points’ power and
the number of daily users change. The gray lines depict PCH(t) (with a 1-min resolution).
The dashed colored lines depict the PCH moving average whose color is a function of the
N-setting. The PCP selected for Figures 13 and 14 are 22 kW (that is the upper limit of the
most common AC-charging level) and 150 kW (that is the upper limit of the most common
DC category).

It is possible to see how the profiles are more pulsed the higher is the CP power. This
phenomenon is mainly due to the arrival of new users who can each potentially increase
consumption by 150 kW at the instant of connection. The CH peak power is also naturally
affected by PCP and N. In addition, the results show that the peak power and, in general,
the evolution of the whole profile strongly depend on the scenario S under consideration.

For the same number of daily users, the scenario with a more concentrated distribution
of arrivals and longer parking time exhibits a contemporaneity of charging events. More
users connected for a longer time implies a higher demand for instantaneous power
and total energy. This phenomenon can be observed by comparing Figure 13a,c with
Figure 13b,d. As described in Section 2.2, the “working” scenario has a more concentrated
distribution of arrivals (peaking around 8 a.m.) and a longer average parking time. This
affects the simultaneity of charging events compared to the “mall” scenario, which instead
has a more distributed probability of arrivals and a shorter vehicle dwell time. As a result,
Figure 13b,d shows higher peaks (about twice as high) than Figure 13a,c. This difference is
more pronounced the higher the number of daily CH users N. Similar considerations can
be done in Figure 14 where another parking scenario in analyzed.

Based on the parking lot scenario, it is possible to analyze the simultaneity of the
charging events through Figure 15. The proposed algorithm allows us to evaluate the
instant and the duration of the users’ connection time. Then, it is possible to calculate the
number of users simultaneously connected to the charging hub. From a complementary
point of view, Figure 15 shows the number of CPs that the CH should have to satisfy the
entire fleet of N users per day.
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(c) S = mall; PCP = 150 kW
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Figure 13. Comparison of the charging hub profiles based on the scenario (S), the charger power
(PCP). The grey color lines depict the power demand PCH; The colored lines depict the PCH moving
average considering 10 (blue), 50 (orange), 100 (green), and 200 (red) EV charged per day.

0 2 4 6 8 10 12 14 16 18 20 22 240

100

200

300

400

500

Po
we

r (
kW

)

(a) S = airport; PCP = 22 kW

0 2 4 6 8 10 12 14 16 18 20 22 240

200

400

600

800

Po
we

r (
kW

)

(b) S = city center 1; PCP = 22 kW
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Figure 14. Comparison of the charging hub profiles based on the scenario (S), the charger power
(PCP). The grey color lines depict the power demand PCH; The colored lines depict the PCH moving
average considering 10 (blue), 50 (orange), 100 (green), and 200 (red) EV charged per day.

It is therefore possible to state that the parking scenario influences the sizing of the CH
in terms of peak power required, the number of CPs to be installed to satisfy the entire fleet
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of N users (simultaneity of charging events), and finally the average energy deliverable
to vehicles. The following sections quantitatively analyze the results by comparing the
scenarios in these respects.
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Figure 15. Maximum number of vehicles connected to the CH as a function of the total EV users per
day, i.e., the optimal number of CPs should be installed into the CH as a function of N. Different
colors depict different parking lot scenarios.

4.1. Analysis on the Charging Hub Peak Power

Although the simulations are initialized with models that follow a defined pattern,
the individual elements of the initialization data frame (ID, Table 4) own a random nature.
Therefore, it may occur that the algorithm generates slightly different power profiles despite
being set with the same input values. To provide adequate statistical significance to the
results shown in the following, multiple simulations are performed for each input data
setting. The final output results from the averaging of the values of each simulation run.

Assuming that the CH is sized to have the optimal number of CPs to satisfy all users
(as in Figure 15), Figure 16 shows the peak power absorbed by the CH (peak of PCH) from
the grid as a function of N for the scenarios under study. Different colors in Figure 16
depict different values of the CP power PCP. The most common sub-categories of Table 1
are selected for comparison.

The figure shows a quite linear proportionality between N and the peak value of
the CH power profile. Specifically, the analysis conducted in this subsection confirms the
dependence of PCP on the number of EVs simultaneously connected (Figure 15).

On the other hand, results show that there is no direct proportionality between the
peak power and the power rating available at the charging points. For example, let refer to
the case N = 200 in Figure 16e which considers the “city center 1” scenario. The greatest
increase in peak power occurs at the transition from 22 kW to 50 kW. Thereafter, tripling
the CP power does not imply a noticeable increase in peak power. Moreover, in almost
all the scenarios analyzed, from Fast to Ultra-fast CPs, the peak power variation is very
slight in comparison to the PCP variation. This is mainly due to the few numbers of EVs
having a charging capability above 150 kW among the total population (as reported in
Figure 3). This means that currently, for the same number of daily users and available CPs,
the contracted power of a CH that has 150 kW CPs could potentially be similar to a CH
that has 350 kW CPs.
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Figure 16. Peak power value of the total charging hub, PCH as a function of the scenario, the daily
users’ number, and the charging infrastructure power level.

4.2. Analysis on the EV Fleet Charged Energy

This subsection compares the total energy provided to the EVs by the CH under
different input settings. The total daily energy that CH supplies to the EVs, named ECH,
depends on the charging power PCP and charging time Tpk. However, the real values of
used power is limited by the maximum power PEV that the vehicle’s battery and onboard
converter can accept. Therefore, there could be a sort of threshold value of PCP beyond
which, further increase in the nominal power of the CPs would not result in an increases in
the total energy delivered to the EV population batteries. The parking scenario influences
users’ parking time and thus, for the same power output, itaffects the total daily energy
delivered to EVs. It may be possible that scenarios with lower Tpk require higher PCP to
meet the energy needs of EVs.

Through the proposed method, it is possible to address these issues and evaluate
the CH’s ability to meet vehicle energy demand under different parking scenarios. The
comparison proposed in this section focuses on the daily average energy supplied to the
EV population (kWh/users) and their average state of charge at the departure time (SOCf).
Simulations run considering N = 100 for each S. The value of PCP varies in the range
shown in Table 5. Figure 17 shows the values of EVs’ SOC at the departure time, which are
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depicted by the red dots (top-frame of the sub-figures). The black line with round markers
represents the average value of SOCf. On the bottom frame of the sub-figures, the blue
markers depict the average energy supplied per EV (kWh/user).
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Figure 17. Comparison of the average SOCf (top-frame) and average ECH (bottom-frame) considering
N = 100 as a function of PCP. The red dots show the SOCf, and the black line with round markers
represents the average value of SOCf. The blue markers depict the average energy supplied per EV
(kWh/user).
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The figures point out clear differences among scenarios. In the working place parking
scenario (Figure 17b), results show that high power levels do not imply significant addi-
tional increase in SOCf and ECH. This is due to the longer Tpk, where EVs stay parked long
enough to ensure adequate SOCf even at low PCP. The figure shows a slight increase in
ECH at the transition between AC and DC charger (22 kW to 25 kW) due to the bypass of
the onboard charger that enables charging at higher powers. Higher values of PCP seem to
produce no improvement in delivered energy ECH, that remains at 26 kWh/user, and in
the average SOCf, whose value remains close to SOCmax = 95%).

Considering other scenarios which have a lower Tpk, it is evident how switching from
AC 22 kW to DC 25 kW CPs results in a significant increase in the delivered energy and the
associated average SOCf. The Figure 17a,d–f show that for a small increase of +3 kW in PCP,
the energy delivered per vehicle doubles, and SOCf exhibits a radical increase. For example,
Figure 17e,f show that ECH increases from 13 to 20 kWh/users and the average SOC from
66% to 82% in the case of city-center scenarios. Thereafter, performance increases as PCP
increases and then saturates at PCP between 50 kW and 75 kW. In the case of shopping
scenario (Figure 17c) where the parking time is extremely short, even if PCP increases the
energy delivered to EVs cannot reach more than 14 kW/user and the increase in SOCf is
negligible.

It is important to emphasize that the results obtained are valid under the assumption
expressed by Equation (9b), or, in other words, that the charging time is considered equal to
the parking time. Clearly, this assumption loses its validity in the event that the user extends
the parking time to reach an higher SOC at departure. However, it is worth reiterating that
the analysis performed aims precisely to investigate the capability of the CH to provide
adequate energy to users without altering their behavior (i.e., usual parking time).

Results show that, in general, Slow DC charging points enable better performance in
terms of ECH and SOCf compared to AC chargers having similar power ratings. Consider-
ing the working scenario, the AC medium-level charging is sufficient to ensure adequate
SOCf to the whole EV fleet. For all other scenarios analyzed, a good trade-off between ECH,
SOCf values and the CP power output is PCP ∈ [50, 75] kW. Fast and Ultra-fast charging
point seems not to bring an improvement in the performance markers under study.

Finally, Table 6 shows the summary of the analysis carried out in this section. The
table compares the scenarios considering N = 100 users per day. For each scenario, the
table reports the number of CPs needed to ensure connection to each EV in the fleet, the CP
power rating suggested to avoid over-sizing and ensure an adequate SOCf, the peak value
of the CH power, and the average energy supplied per user.

Table 6. Summary of the analysis carried out in this section a 100-EV fleet.

Parking
Scenario (S)

Optimal CP Number
(N = 100 EV/day)

Optimal PCP
(kW)

Peak of PCH
(kW)

Average
ECH/EV

(kWh/EV)

mall 12 50 (DC) 288 18
working 63 22 (AC) 385 25
shopping 7 75 (DC) 200 12

airport 8 75 (DC) 250 18
city center 1 13 50 (DC) 344 24
city center 2 22 50 (DC) 377 24

5. Conclusions

The work has aimed at providing a method for forecasting the power demand related
to a charging hub for EVs in different parking scenarios.

The method tried to take into account all the main factors that may influence the
power demand. The preliminary analyses on the charging stations and EV models currently
available revealed a significant heterogeneity in the values of power levels of the charging
stations and in the battery capacities and accepted power levels for the recharge among the
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different EV models. At the same time, the absorbed power profile of a charging hub is
influenced by other factors such as the arrival and departure time, and parking duration
of EV users. These parameters change strongly according to different parking scenarios
(e.g. malls, airports, urban car parks, etc.) Finally, for each charging process, the EV energy
demand also depends on the state of charge at arrival at the charging hub.

Given the complexity, numerousness, and aleatory nature of the various factors con-
sidered, a probabilistic approach was used to generate a model of the vehicle population
and user behavior under different parking scenarios in terms of arrival, departure, and
parking duration times. The analysis of an extremely large sample of trips combined with
the statistical distribution of the battery capacities of the electric vehicles on the road and
the charging needs as a function of distance traveled has made possible to obtain a distri-
bution of the state of charge of the EVs at their arrival at the charging hub. A supervised
machine-learning model has been adopted to reproduce the behaviour of the battery during
the charge as a function of the charging rate, the considered EV model and the evolution
of the SOC during the charge. The model allowed to obtain the absorbed power profile
associated to each charging event. The model has been trained and tested by using the
power curves of different EV models, under different charging rates. The derived model
has fit the test data with an RMSE = 0.017 and R2 = 0.996.

The resulting models from each analysis have been integrated in the final algorithm
capable of forecasting the absorbed power for the charging of an electric vehicle fleet in the
time domain.

The results section compares the algorithm outputs considering different combinations
of the input data, namely: the parking scenario, the number of daily EV users, and the
characteristics of the charging infrastructure (i.e., power rating and category of the CPs).
The proposed algorithm proved its high effectiveness in assessing all major aspects essential
for planning and sizing charging hubs in different installation scenarios. As shown in the
results section, the algorithm allowed the evaluation of the optimal number of CPs to be
installed to satisfy the demand of a certain EV fleet, the peak power required by the CH
from the grid and the total energy daily delivered to each vehicle together with their final
state of charge.

Analysis of the results showed marked differences between the power profiles of the
scenarios analyzed. CH located in a working place scenario requires more CPs to satisfy
the same number of users per day compared to other urban scenarios. On the other hand,
22 kW AC charging points are sufficient to meet the energy demand of the entire fleet. In
fact, the results proven that DC chargers do not introduce significant improvements. The
other urban scenarios, which have a lower probability of simultaneous user connection,
require fewer CPs for the same number of daily charging events. However, due to the
shorter parking times, fast DC CPs are needed to ensure an adequate energy supply. In this
case, rated powers between 50 kW and 75 kW are sufficient to meet fleet energy demand.
In general, considering the characteristics of the current EV population and the typical
parking times of urban scenarios, the proposed method showed that the use of ultra-fast
(i.e., PCP > 150 kW) charging points produces no increase in average energy delivered.
Similar considerations can be made regarding the SOC level of vehicles at the end of
charging and the total peak power.

Future works can consider new parking scenarios like residential, home charging, and
highway parking. Moreover, also the residential overnight charging can be considered
for the computation of the pre-connection SOC. Finally, starting from the proposed EV
load forecasting, future research can investigate sizing methods to optimize the design and
management of PV and battery systems integrated with the charging hub.
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