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Abstract: The gut microbiome (GM) has emerged in the last few years as a main character in several
diseases. In pediatric oncological patients, GM has a role in promoting the disease, modulating
the effectiveness of therapies, and determining the clinical outcomes. The therapeutic course for
most pediatric cancer influences the GM due to dietary modifications and several administrated
drugs, including chemotherapies, antibiotics and immunosuppressants. Interestingly, increasing
evidence is uncovering a role of the GM on drug pharmacokinetics and pharmacodynamics, defining
a bidirectional relationship. Indeed, the pediatric setting presents some contrasts with respect to
the adult, since the GM undergoes a constant multifactorial evolution during childhood following
external stimuli (such as diet modification during weaning). In this review, we aim to summarize the
available evidence of pharmacomicrobiomics in pediatric oncology.
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1. Introduction

The gut microbiome (GM) is considered a major determinant in human health with a
pivotal role in the modulation of the immune system [1]. In oncology, the GM has been
demonstrated to contribute in the pathogenesis of cancer [2,3] and to play a major role dur-
ing anticancer therapy. GM dysbiosis, characterized by reduced ecosystem diversity, loss
of health-related commensals and overgrowth of potentially pathogenic bacterial species,
occurs frequently in cancer patients [2,4]. These GM modifications have been associated
with clinical outcomes in cancer patients. For example, intestinal domination, defined as
the presence of a single bacterial taxon comprising more than 30% of the entire GM, of
Enterococcus is associated with increased mortality in the acute leukemia chemotherapy
population [5]. Moreover, GM composition correlates with response and toxicity following
anti-CD19 CAR T cell therapy [6] and anti-PD1 immunotherapy [7]. Most of the current
literature addresses the role of the GM during hematopoietic stem cell transplantation
(HSCT). The intestinal ecosystem undergoes a significant disruption during the procedure
due to a combination of upsetting events [8,9]. In particular, intestinal mucosal barrier
damage associated with the conditioning regimen, dietary alterations and the use of broad-
spectrum antibiotics profoundly injures the GM [4,10–12]. The resulting alterations in
the GM architecture are correlated with clinical outcomes. In recent years, new method-
ologies for studying the GM have extended our comprehension of the host-microbiome
interaction, shedding light on bacterial functional properties such as metabolomics and
metagenomics [13,14]. Drug-metabolizing activity of human gut bacteria has emerged as
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an increasingly interesting function. About two thirds of drugs could be metabolized by
at least one strain in the GM [15]. Compound modifications by gut microorganisms via
enzymatic transformation alter bioavailability, bioactivity and toxicity, potentially leading
to intestinal and systemic pharmacological effects [16]. Chemical transformation by mi-
croorganisms (biotransformation) is not the only mechanism implied. Bioaccumulation,
consisting of bacteria storing the drug intracellularly without chemically modifying it, has
also recently emerged as a common mechanism that alters drug availability with potential
implications for pharmacokinetics, side effects and drug responses [17]. The GM could
therefore influence an individual’s response to a specific drug. However, the interaction
between drugs and the GM is bidirectional, given that drugs could influence microbial
composition. Cancer patients are commonly at high risk of infectious complications making
antimicrobial therapy an essential component of their management. Numerous findings
exist about the impact of antimicrobial drugs on intestinal ecosystem [18]. More recently,
scientific interest has increased about the relationship between GM and other drugs that
could shape microbial composition [16]. Some of these drugs are routinely used in the on-
cological setting, including chemotherapeutic agents, immunosuppressive agents, steroids,
protonic pump inhibitors and biliary acids [19,20]. The interaction between these drugs
and the GM is one of the key components of the complex interplay between the intestinal
ecosystem and the host during anticancer therapies. This bidirectional relationship between
GM and cancer presents with distinctive features in pediatric patients, considering the
rapidly and continuously evolving GM community, the strong impact of complications in
growing subjects and the different subsets of diseases that require specific therapies [21,22].
Therefore, the pediatric setting deserves a specific focus when addressing pharmacomi-
crobiomics. In this paper, we aim to provide a complete overview on the bidirectional
relationship between GM and drugs commonly used in the clinical practice in pediatric
patients with cancer (Figure 1).
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The main studies addressing the relationship between drugs commonly used in
pediatric patients and gut microbiota are summarized in Table 1.
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Table 1. Studies addressing the relationship between drugs commonly used in pediatric patients and
gut microbiota. ↑, increased; ↓, decreased.

Drug Name Year First Author Setting Sample Size Interaction with Gut Microbiome Ref

Irinotecan (CPT-11) 2015 Wallace, BD Preclinical /

Intestine bacteria producing
β-glucuronidase can convert
non-toxic CPT-11 metabolite
(SN-38-G) to toxic metabolite
(SN-38), causing diarrhea.

[23]

Irinotecan (CPT-11) 2008 Stringer, AM Preclinical, rats /
↑ number of
β-glucuronidases-expressing
species.

[24]

Cyclophosphamide 2013 Viaud, S Preclinical /

Translocation of specific
Gram-positive bacteria from the
intestine to secondary lymphoid
organs was critical for the
differentiation of CD4+ T cells into
Th1 and Th17 cells.

[25]

Cyclophosphamide 2015 Xu, X Preclinical / ↑ Firmicutes, ↓ Bacteroidetes. [26]

L-asparaginase 2021 Dunn, KA Pediatric ALL 12 patients

↑ Escherichia in the community if
decreased-activity, ↑ Bacteroides and
Streptococcus in the community if
increased-activity.

[27]

Anti-PD1 2018 Gopalakrishnan,
V

Adults,
melanoma 112 patients

↑ α-diversity of responders to
anti-PD1 therapy. Higher proportion
of Ruminococcaceae, Faecalibacterium,
and Bifidobacterium spp. reported in
responders.

[28]

Anti-PD1 2018 Routy, B Mice, Adults Mice, 249
treated

↑ Akkermansia, Ruminococcus spp.,
Alistipes spp., and Eubacterium spp in
responders.
↓ Bifidobacterium adolescentis, B.
longum, and Parabacteroids distasonis
in responders.

[29]

Cyclosporine 2019 Jia et al. Preclinical 8 treated
↑ gut microbial richness,
Enterobacteriaceae. ↓ F. prausnitzii,
Clostridium clusters I and XIV.

[30]

Cyclosporine 2020 O Reilly et al. Adults 6 ex vivo,
8 in vivo

No significant α and β diversity
before and after treatment. [31]

Tacrolimus 2017 Zhang et al. Mice 8 treated

No change in bacterial richness and
diversity.
↑ genera Allobaculum, Bacteroides and
Lactobacillus. ↓ Clostridiales,
Ruminococcaceae, Rikenella,
Ruminococcaceae and Oscillospira.

[32]

Tacrolimus 2017 Bhat et al. Mice 5 treated

↓ Mollicutes, Micrococcaceae,
Actinomycetales, Roseburia,
Oscillospira, Rothia and
Staphylococcus. ↑ A. muciniphila.

[33]

Tacrolimus 2018 Toral et al. Mice 8 treated ↓ microbial diversity.
↑ Firmicutes/Bacteroidetes ratio. [34]

Tacrolimus 2018 Jiang et al. Mice

8 high dosage,
8 medium
dosage, 8 low
dosage

Intermediate dose:
↑ Bifidobacterium, Faecalibacterium
prausnitzii
↓ less Enterobacteriaceae,
Bacteroides-Prevotella
Low and high doses:
↑ Enterobacteriaceae
↓ Bifidobacterium, Faecalibacterium
prausnitzii.

[35]
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Table 1. Cont.

Drug Name Year First Author Setting Sample Size Interaction with Gut Microbiome Ref

MMF 2018 Flannigan et al. Mice 9 treated

↓ overall diversity
↑ Proteobacteria
(Escherichia/Shigella),
Deferribacteres, Firmicutes
↓ Bacteroidetes and Verrucomicrobia
phyla, Akkermansia,
Parabacteroides and Clostridium
genera.

[36]

Rapamycin 2017 Bhat et al., Mice 5 treated

↓ bacterial diversity.
↓ Roseburia, Oscillospira, Mollicutes,
Rothia, Micrococcaceae,
Acninomycetales and Staphylococcus.

[33]

Rapamycin 2016 Jung et al. Mice 5 treated
↓ Turicibacter, unclassified
Marinilabiliaceae, Alloprevotella. ↑
Ruminococcus.

[37]

Alemtuzumab 2013 Li et al. Monkeys 15 treated
↑ Enterobacteriales order and
Prevotella genus.
↓ Lactobacillales order.

[38]

Steroids 2014 Lee et al. Humans 4 treated ↓ Clostridiales
↑ Erysipelotrichales. [39]

Steroids 2016 Tourret et al. Mice 8–10 treated ↑ Firmicutes/Bacteroidetes ratio
↓ Clostridium sensu stricto. [40]

Steroids 2017 Wu et al. Mice 30 lower dose,
30 higher dose

↓ bacterial richness and diversity.
↓ Firmicutes, Bacteroides,
Actinobacteria, α and γ Proteobacteria,
Clostridiales and Lactobacillus.
↑ Proteobacteria.

[41]

Steroids 2019 He et al. Mice 10 treated

↓ Proteobacteria, Deferribacteres,
Rikenella, Mucispirillum, Oscillospira
and Bilophila.
↑ Prevotella and Anaerostipes.

[42]

Steroids 2020 Vich Vila et al. Adults 17 treated ↑ Methanobrevibacter smithii and
Streptococcus salivarius. [43]

PPI 2016 Jackson et al. Adults 1827

↓ diversity in PPI users.
↑ Lactobacillales order, families
Micrococcaceae and Streptococcaceae,
genera Rothia and Streptococcus,
species Rothia mucilaginosa and
Streptococcus anginosus.
↓ families Erysipelotrichaceae,
Lachnospiraceae, Ruminococcaceae,
genera Firmicutes, species
Erysipelotrichales and Clostridiales.

[44]

PPI 2015 Imhann et al. Adults 99 treated

↓ species richness and ↓ Shannon
diversity, although not significant.
↑ Gammaproteobacteria class,
Actinomycetales order, families
Streptococcaceae and Micrococcaceae,
genera Rothia, Streptococcus and
Veilonella, species Lactobacillus
salivarius.

[45]

PPI 2015 Freedberg et al. Adults 12 treated

No changes in diversity.
↑ families Enterococcaceae,
Streptococcaceae, Micrococcaceae and
Staphylococcaceae.
↓ Clostridiales.

[46]

PPI 2015 Tsuda et al. Adults 18 treated
No changes in α diversity, increased
β diversity.
↓ genus Faecalibacterium.

[47]
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Table 1. Cont.

Drug Name Year First Author Setting Sample Size Interaction with Gut Microbiome Ref

PPI 2020 Vich Vila et al. Adults 108 treated

↑ species Veillonella parvula,
Streptococcus salivarius, Streptococcus
parasanguinis, Streptococcus
vestibularis, Bifidobacterium dentium,
Haemophilus parainfluenzae.

[43]

PPI 2021 Simakachorn
et al. Pediatrics 20 treated

No significant change in α and β
diversity.
No change in total number of
species-level taxonomy categories.

[48]

UDCA 2018 Pearson et al. Adults 661 treated

No change in microbial richness.
↑ Streptocuccus, Escherichia and
Bilophila spp., Faecalibacterium
prausnitzii; ↓ Fusobacterium spp.,
Ruminococcus gnavus.

[20]

UDCA 2018 Tang et al. Adults 60 treated ↑ Enterobacteriaceae. [49]

2. Antibiotics

The advances in the understanding of the role of GM in human health have changed
our views on antibiotic use in the last few years, particularly during chemotherapy or in
immunocompromised patients. Antibiotic use in these patients could represent a double-
edged sword. Other than the anti-infective function, antibiotics are known to be strong
negative modulators of the GM [50]. Their detrimental role was already known, as their use
is associated with metabolic alterations and with the emergence of pathogenic strains, such
as C. Difficile [51]. However, the emerging field of microbiota research has revealed deep
and complex antibiotic-related modifications in the gut flora that result in various positive
or detrimental clinical effects [50,52]. This seems to be mediated by a selective pressure by
the antibiotics on the GM resulting in different patterns of modification depending on the
antibacterial activity spectrum. Moreover, it has been demonstrated that antibiotic-driven
modifications of the GM can last long after treatment with relevant later consequences [53].
Considering the high rate of antibiotics administrated during anticancer therapies, the effect
on GM is prominent in these and should be considered in clinical decision algorithms [54].
While the topic should deserve a specific focus considering the extent of the available
literature (systematic review can be found in reference [55]), we herein report the effect of
the main antibacterial molecules on GM with a particular focus on bacteria with a proven
effect on outcome for cancer patients (Figure 2).

2.1. β-Lactams

β-lactams are frequently used as first line antibiotic therapy for febrile neutropenia
in children with cancer [56,57]. Recent ECIL8 guidelines recommend the use of an an-
tipseudomonal non-carbapenem β-lactam/β-lactamase inhibitor combination for clinically
stable patients, whereas carbapenems are reserved for clinically unstable conditions [58].
β-lactams are characterized by a wide antibacterial spectrum, appropriate for empirical
therapies. Following their use, changes in microbial composition persist long after the
end of the therapy. A long term alteration has been reported that lasts up to 12 weeks
after treatment, with an incomplete restoration of microbial composition and emergence
of antibiotic-resistant strains [59]. However, other authors reported complete recovery of
GM and resistome composition at baseline levels one week after a short-term antibiotic
course [60]. All β-lactams have an effect of modification in the GM in terms of overall α and
β diversity and at a taxonomic scale, but different types present particular effects. β-lactams
have generally been reported to both increase and decrease the relative abundance of dif-
ferent strains, even if the decrease is more common [55]. Amoxicillin has been associated
with an increased abundance of the family of Enterobacteriacee [61] and an increase of
pathogenic genera such as Enterococcus, Staphylococcus and Streptococcus [62]. In contrast,
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other health promoting genera have been reported to be reduced in abundance, namely,
Blautia, Collinsella, Oscillospira and Roseburia [63]. Some studies also reported a small in-
crease in Clostridiales clostridium [64], an order known to be associated with positive clinical
outcomes in an onco-hematological setting, as a producer of short chain fatty acids (SCFA),
such as butyrate [65]. One study directly addressed the effect of penicillin administration
on SCFA and did not find any changes in fecal concentrations during treatment [66].
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Cephalosporins are broadly used in pediatric patients as well, often as the first line
treatment for neutropenic fever [57,67]. Most studies reported a decrease of Enterobacteriacea
and an increase of Enterococcus following their administration [68]. Enterococcus has been
associated with negative clinical outcomes both in leukemia and in HSCT patients [5,69].
Interestingly, the effect of cephalosporin on Clostridiales depends on the generation of
the antibiotic. First and second generation cephalosporins have been associated with a
decrease, while third, fourth and fifth generation with an increase of Clostridiales [70]. SCFA
have been measured in one study showing a decrease after ceftriaxone administration [71].
The genus of Bifidobacterium is commonly decreased after treatment with penicillins and
cephalosporins [72]. This represent an important genus in pediatric cancer patients, being
far more present in children rather than in adults [8], and alterations in Bifidobacterium
abundances can last up to 6 weeks following treatment [73]. Cefepime is frequently used
in this setting and was specifically addressed in several studies [74]. In a cohort of HSCT
recipients, cefepime was found not to exert an effect on intestinal diversity suggesting
a potential protective role [75]. From a compositional point of view, cefepime has been
associated with a decrease in E. coli and bifidobacteria abundances and an increase in
Bacteroides spp. and C. difficile [76].

Carbapenems represent a β-lactams subclass with a narrower antimicrobial spectrum,
usually used as second line therapy. Their use has been associated with a decrease in the
abundance of Enterobacteriacaea, Streptococcus spp., Bacteroides spp., Clostridium spp. and an
increased abundance of Enterococcus spp. [77].

Among monobactams, aztreonam is the most frequently used. Recently its use has
been associated with positive outcome in HSCT recipients, suggesting a little suppressive
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effect on GM [51]. Two studies addressed the effect of aztreonam on GM showing an
increase in Firmicutes, Clostridium, Bacteroidetes and E. limosum [78,79]. Interestingly, this
latter has been associated with a reduced incidence of relapse after HSCT [80].

2.2. Quinolones

Quinolones inhibit the ligase activity of the type II topoisomerases, DNA gyrase and
topoisomerase IV. They are used mainly as prophylactic agents during chemotherapy and
HSCT [81,82]. They are also used as step-down therapy following episodes of febrile
neutropenia [83]. The effect of quinolones on gut microbiota is variable, with reports of
increase in the Bacteroides, Proteobacteria family and members of the Clostridiales order as
well as decrease in Faecalibacterium [84–86]. Quinolone-induced modifications can last for a
variable period, from 1 month up to one year [84,85].

2.3. Tetracyclines

Tetracyclines inhibit protein synthesis by binding to the 30S and 50S subunit of micro-
bial ribosomes. Their use in pediatric patients is quite limited considering their negative
effect of dental discoloration; however, they can be used in particular situation in pediatric
cancer patients [87]. Patients receiving tetracyclines presents an increase of Bacteroidetes
and a decrease of Bifidobacterium, Lactobacillus and Clostridium [88]. Moreover, a decrease of
Negativibacillus, Romboutsia, Sutterella and Peptostreptococcaceae family was reported [63].

2.4. Glycopeptides

Glycopeptides are characterized by the ability to inhibit synthesis of the cell wall in
susceptible microbes by inhibiting peptidoglycan synthesis. They are particularly used
in neutropenic patients when Gram-positive bacteria are suspected. Glycopeptides are
associated with a reduced fecal microbial diversity, with a decrease of Gram-positive
bacteria, particularly Firmicutes, compensated by Gram-negative bacteria, mainly Pro-
teobacteria [85], confirmed also in murine models [89,90]. In other studies the depletion of
Gram-positive bacteria has been replaced by Akkermansia muciniphila [91], a strain associ-
ated with longer neutropenic fever in pediatric allogeneic HSCT (allo-HSCT) recipients [92]
and worse outcome in cancer patients [52].

2.5. Macrolides

Macrolide antibiotics are protein synthesis inhibitors, binding reversibly to the P site
on the 50S subunit of the bacterial ribosome. They are mainly used for the treatment of
intracellular bacteria. The effect of macrolide on GM is variable, impacting the abundance
of many taxa and reducing the α-diversity [55,93]. Interestingly, its use is often associated
with colonization of Gram-positive bacteria. In particular, the bacterial depletion mediated
by macrolide has been reported to be occupied by Gram-positive anaerobes, predominantly
Blautia and Dorea, intestinal commensal organisms within the bacterial class Clostridia,
particularly important in pediatric cancer patients in which Clostridia has been associated
with lower complications rates [3]. These modifications seem to be persistent after the
antibiotic discontinuation [94]. Macrolides have also been associated with increased abun-
dances of Streptococcus [95], associated with higher infectious complications in pediatric
patients [96]. Interestingly, recent evidence showed that the GM of pediatric patients prior
to allo-HSCT is enriched with genes coding for drug resistance to macrolides [14].

2.6. Other Antibiotics

Other less studied antibiotics have been associated to different extents with microbiota
modifications. Licosamides in healthy volunteers affected the GM substantially, resulting
in a reduction of Lactobacilli, Enterococci and Bifidobacteria [85]. In hospitalized patients,
clindamycin treatment was associated with increases in Escherichia spp., Salmonella spp.
and Bacteroides spp. [72]. Aminoglycosides treatment in healthy volunteers has been
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associated with a decrease in Ruminococcaceae, Lachnospiraceae, Faecalibacterium spp. and
Blautia spp. [97].

3. Chemotherapeutic Agents

The relationship between GM and chemotherapy drug metabolism represent a rapidly
expanding field of research [98]. The reciprocal targeted modulation has demonstrated to
affect both efficacy and adverse drug reactions of several drugs commonly used as part of
pediatric antineoplastic treatments.

3.1. Irinotecan

Irinotecan is an antineoplastic agent used primarily for the treatment of soft tissue
sarcomas, bone tumors and neuroblastoma in children [99,100]. It is administered as a
prodrug, CPT-11, which requires enzymatic conversion by carboxylesterase. SN-38 is
the active metabolite that acts as a topoisomerase I inhibitor, causing single-strand DNA
breaks and ultimately cell death [101]. The SN-38 is then glucuronidated in the liver by
UDP-glucuronosyltransferase into its less toxic derivate, SN-38-G, and later transported in
the bile and excreted to the intestinal lumen. Some symbiotic species of GM can produce
β-glucuronidase that reverts SN-38-G to its active and more toxic form, SN-38, increasing
irinotecan intestinal toxicity. These bacteria include Escherichia coli, Bacteroides vulgatus,
and Clostridium ramosum [23,102]. The main adverse effect associated with irinotecan
is diarrhea, which can be acute or delayed [103]. Delayed-type diarrhea can be severe
and potentially dose-limiting [104]. The exact mechanism is still unknown but probably
directly mediated by high concentration of intraluminal SN-38 [105]. Interestingly, selec-
tive inhibition of β-glucuronidase activity has proven successful in alleviating intestinal
toxicity in mice [102]. Furthermore, Irinotecan treatment itself can modify the host GM
composition, increasing the number of β-glucuronidases-expressing species, such as E. coli,
Staphylococcus spp., and Clostridium spp. [24], which could potentially amplify this effect.
Considering the role of GM components on irinotecan metabolite-induced diarrhea, the
potential utility of antibiotics coadministration with irinotecan has been studied, with
positive results. The administration penicillin/streptomycin, to irinotecan-treated rats
resulted in decreased levels of SN-38 in the feces and reduced diarrhea [105]. Although
some early studies suggested a role of neomycin in reducing irinotecan-induced delayed-
diarrhea [106], some later evidence mitigated these results [107]. Despite its possible utility,
the use of concomitant prophylactic antibiotics with chemotherapy is controversial, due to
possible emergence of antibiotic resistance and impact on GM composition. More specific
strategies to target β-glucuronidase activity have been investigated, including the “old”
drugs such as Amoxapine to inhibit β-glucuronidases [108]. 3D X-ray crystallographic data
are also under investigation in order to rationally design a β-glucuronidase inhibitor [102].
More recent pharmacological compounds have been tested with positive results [109], but
their application in clinical practice has not been yet validated.

3.2. Cyclophosphamide

Cyclophosphamide (CP) is an alkylating agent with immunosuppressant and anti-
cancer effects. It is widely used in the treatment of immune dysregulatory conditions and
malignancies. CP is a prodrug, which requires metabolic activation. Its active form exerts
its therapeutic activity through several mechanisms. The main active metabolite is phospho-
ramide mustard, which forms irreversible DNA crosslinks both between and within DNA
strands at guanine N-7 positions, leading to cell apoptosis [110]. CP also promotes the dif-
ferentiation of antitumor Th1 and Th17 cells [111], depletes oncogenic regulatory T-cells and
induces the production of pro-apoptotic cytokines, promoting immune-driven cancer cell
death [112]. Viaud et al. demonstrated that germ-free mice, treated with broad-spectrum
antibiotics, showed a significantly reduced anticancer response after CP administration [25].
CP administration resulted in increased IL-17 levels in specific-pathogen-free (SPF) mice
against germ-free (GF) mice. The translocation of specific Gram-positive bacteria (such
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as Lactobacillus johnsonii and Enterococcus hirae) from the intestine to secondary lymphoid
organs was critical for the differentiation of CD4+ T cells into Th1 and Th17 cells. Further-
more, CP and vancomycin cotreatment resulted in overall worse anticancer response in
their animal model, altering CTX-induced Th17 differentiation, which is mandatory for
the tumoricidal activity of chemotherapy [25]. More recent studies confirmed the synergic
interplay between specific bacterial species (such as Enterococcus hirae and Barnesiella in-
testinihominis) and CP, facilitating its antitumoral activity [113]. Moreover, CP treatment
has an impact on the GM composition. When comparing the GM of both CP-treated and
CP-naïve mice, the treatment reduced fecal bacterial diversity, increased the proportion
of Firmicutes, and decreased the proportion of Bacteroidetes bacteria [26]. Recent studies
investigated the potential modulation of various polysaccharides compounds on the effects
of CP on immune modulation, intestinal permeability, and microbial communities in the
mouse with mixed results [26,114–117].

3.3. L-Asparaginase

L-Asparaginase (ASNase) is a critical chemotherapeutic compound of many acute
lymphoblastic leukemia and lymphoma protocols [118,119]. ASNase breaks extracellu-
lar asparagine, an amino acid required for protein assembly of leukemic cells. ASNase
treatment is often accompanied by severe adverse reactions. Since ASNase is a non-self-
protein, antibodies may develop against it which can lead to hypersensitivity reactions
occurring in 25% of patients and undetected inactivation of ASNase, which correlates
with a poor response to treatment [120]. Two ASNase formulations are currently available,
polyethylene-glycolated (PEG) form of the E. coli ASNase (PEG-ASNase) and Erwinia
crysanthemi-derived ASPase [121]. Endogenous GM strains, such as Salmonella or Shigella
flexneri, naturally produce the L-asparaginase periplasmic enzymes that are similar to
PEG-ASNase for 96 and 99.1% of their molecular structure, respectively [118,122]. A recent
study demonstrated that specific GM communities were associated with different ASNase
activity levels in treated children. Escherichia predominated in the decreased-activity
community while Bacteroides and Streptococcus predominated in the increased-activity
community [27]. Furthermore, microbial ASNS was significantly negatively correlated with
change in serum ASNase activity, although the mechanism remains unknown [27].

3.4. Other Chemotherapeutic Drugs

Other chemotherapeutic agents have shown interaction with GM composition. For
example, the alkylating agent Melphalan has been found to be metabolized by “super
metabolizer” bacterial strains such as Bacteroides dorei and Clostridium spp. [15]. In recent
years, evidence emerged about the inactivation through deglycosylation of the widely
adopted anthracycline Doxorubicin mediated by specific gut bacterial strains [123–125],
but further studies are needed to confirm its clinical relevance in vivo.

4. Anti-Programmed Cell Death Proteins

In recent years, immunotherapies and immune checkpoint inhibitors emerged as
alternatives or complementary to conventional chemotherapy in the treatment of vari-
ous malignancies. The interaction between PD-L1 and PD-1 is intended as an immune
checkpoint in various physiological situations, such as immune tolerance in pregnancy, to
prevent self-rejection and minimize the inflammatory response. However, during many
carcinogenic processes, the activation of the PD-L1/PD-1 signaling cascade results in de-
creased T-cell activation, leading to a reduced anticancer immune response [126,127]. A
wide variety of anti-PD-1/PD-L1 antibodies have been developed to treat multiple malig-
nancies including Hodgkin lymphoma, sarcomas, melanoma, and small cell lung cancers.
However, the rise of anti-PD-1 therapy is accompanied by significant variability in patient
response to these inhibitors. Given the recent understanding of the complex interaction
between the GM and the immune response, researchers examined the interaction of the host
gut microbial community with anti-PD-1/PD-L1 inhibitors. Sivan and colleagues firstly
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showed that commensal Bifidobacteria have a positive association with antitumor T-cell
response and Bifidobacterium-treated mice showed a significant improvement in tumor
control [128]. Studies on human stool samples from metastatic melanoma patients were also
conducted. Through the integration of 16S ribosomal RNA gene sequencing, metagenomic
shotgun sequencing, and quantitative polymerase chain reaction, a significant association
between commensal microbial composition and clinical response was demonstrated, with
Bifidobacterium longum, Collinsella aerofaciens, and Enterococcus faecium more abundant in
stool samples of responders [129]. Moreover, the anti-PD-1 responders had presented
greater levels of α-diversity and higher proportions of Ruminococcaceae, Faecalibacterium,
and Bifidobacterium species [28]. Microbiome composition alters anti-PD1 response, with
Akkermansia, Ruminococcus spp., Alistipes spp., and Eubacterium spp. being more represented
in drug responders, while under-representation was found for Bifidobacterium adolescen-
tis, B. long and Parabacteroids distasonis in drug responders [29]. Furthermore, avoiding
antibiotics during anti-PD-1 treatment could increase patients’ positive responses from
25% up to 40%. In the setting of advanced melanoma, tumor cells may become resistant
to anti-PD-1 agents. Davar et al. proposed fecal microbiota transplantation (FMT) as a
strategy to promote a positive and durable gut microbiome perturbation. Responders
exhibited an increased abundance of taxa that were previously shown to be associated
with response to anti-PD-1, increased CD8+ T cell activation, and decreased frequency
of interleukin-8-expressing myeloid cells. This reprogrammed tumor microenvironment
did overcome resistance to anti-PD-1 in this subset of PD-1 advanced melanoma [7]. No-
tably, Tanoue et al. performed a phase 1/2 trial with an oral microbial product (VE800)
that contains 11 clonal commensal bacterial strains from healthy human donor feces and
that is capable of robustly inducing interferon-γ-producing CD8 T cells in the intestine.
The study showed that colonization of mice with the 11-strain mixture enhances both
host resistance against Listeria monocytogenes infection and the therapeutic efficacy of
immune checkpoint inhibitors in syngeneic tumor models [130]. The impact of dietary
habits and commercially available probiotic supplements on fecal microbiota profiles of
patients treated with anti-PD-1 for melanoma, has also been investigated. 128 patients
with sufficient dietary fiber intake showed a significant improvement in progression free
survival compared to insufficient fiber intake, with no impact of probiotic administra-
tion [131]. Other microbiome-modifying interventions have been proposed to enhance
immune checkpoint inhibitor antitumor activity, such as natural polyphenols [132] and
ketogenic diet [133], but more evidence is needed to implement those interventions in
routine clinical practice [22]. Similarly, anti-CTLA-4 antibodies are used as checkpoint
inhibitors in many malignancies. Notably, GM composition seems to present a strong
influence also on the efficacy of this form of immunotherapy [134]. These findings suggest
that the GM has a significant impact on the efficacy of immune checkpoint inhibitors in a
variety of malignancy models [135–137], especially in specific subsets of patients that show
low response to this treatment.

5. Immunosuppressive Agents

The interaction between GM and host’s immune system is bidirectional. Microbiota
plays a major role in the development and regulation of the immune system, while the im-
mune system controls the microbiota through the production and secretion of antimicrobial
peptides and secretory IgA [40,138].

5.1. Cyclosporine

Cyclosporine (CSA) is a calcineurin inhibitor able to bind to immunophilins called
cyclophilins, leading to an increased cyclophilin affinity to calcineurin, a calmodulin-
activated serine phosphatase that associates with NFAT (nuclear factor of activated T cells)
and initiates events involved in T-cell activation. The complex cyclosporine-cyclophillin
binds and inhibits calcineurin, blocking the synthesis of proinflammatory cytokines and
interrupting the downstream sequence of events leading to rejection [139]. O’Reilly et al.
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noticed no significant difference in α or β diversity with CSA use. CSA decreases the
viability of B. distasonis, but it does not affect Lactobacillus or Bifidobacterium species [31].
On the other hand, Junjun Jia et al. demonstrated in rats an improved diversity of the
intestinal microbiota and a richness of species, with an enrichment of Enterobacteriaceae
and a decrease of F. prausnitzii and Clostridium clusters I and XIV, with CSA use [30].

5.2. Tacrolimus

Similar to CSA, tacrolimus is also a calcineurin inhibitor, that binds to different im-
munophilins called FK-binding proteins, with a block of T-cell activation [139]. Tacrolimus
in rats decreases microbial diversity and increases the Firmicutes/Bacteroidetes ratio [34].
Tacrolimus does not change the bacterial richness and diversity of GM, without differ-
ence at the phylum level, but with an increase in the relative abundance of Allobaculum,
Bacteroides and Lactobacillus [32]. In rats, a decreased abundance of Mollicutes, Micro-
coccaceae, Actinomycetales, Roseburia, Oscillospira, Rothia and Staphylococcus and increased
A. muciniphila was also observed [33]. Tacrolimus triggers a gut dysbiosis that is analogous
to that observed in metabolic diseases, with increased Firmicutes/Bacteroides ratio [138].
Interestingly, in a rat model, Jiang at al showed that an intermediate dose was associated
with an increase in beneficial bacteria (Bifidobacterium, F. prausnitzii) and a decrease in
less beneficial bacteria (Enterobacteriaceae, Bacteroides-Prevotella). On the other hand,
lower and higher doses were associated with increased abundance of Enterobacteriaceae
and decrease of Bifidobacterium and F. prausnitzii [35]. Patients who required high doses
of tacrolimus harbored a higher relative abundance of F. prausnitzii in their GM, and
F. prausnitzii abundance at 1 week after kidney transplant was positively correlated with
future dosing of tacrolimus at 1 month [140]. Some gut bacteria, such as F. prausnitzii or
Clostridiales, seem to transform tacrolimus into a 15-fold less active metabolite in vitro.

5.3. Other Immunosuppressive Drugs

Mycophenolate mofetil (MMF) is a pro-drug that is converted into the active metabolite
mycophenolic acid (MPA), which inhibits inosine monophosphate dehydrogenase and
suppresses the proliferation of T and B lymphocytes [36]. MMF causes GI toxicity in
30–50% of patients, ranging from nausea, vomiting, diarrhea, abdominal pain to a colitis
that resembles IBD [36,138]. In mice, MMF treatment causes a decrease in microbiota
richness, with a reduction in Bacteroidetes and Verrucomicrobia phyla and in the genera
Akkermansia, Parabacteroides and Clostridium, and increased Proteobacteria (mainly
Escherichia/Shigella), Deferribacters and Firmicutes. These changes result in a shift of
the microbiota toward one with greater pathogenic potential [36]. MMF has a narrow
therapeutic index and blood concentrations of MPA are highly variable, probably also
depending on MPA enterohepatic recirculation (EHR), with patients with higher HER
having a better immunosuppression but also more concentration-dependent toxicities.
Thus Saqr et al. studied how bacteria influence EHR, showing that MPA EHR is positively
correlated with B. vulgatus and B. thetaiotaomicron and negatively correlated with Blautia
hydrogenotrophica.

Rapamycin, also known as sirolimus, inhibits mTOR, a protein kinase that regulates
cell growth, proliferation and survival, thus interfering with lymphocyte proliferation [138].
Bhat et al. showed in a rat model that bacterial diversity is significantly decreased with the
use of rapamycin, with decreased Roseburia, Oscillospira, Mollicutes, Rothia, Micrococcaceae,
Acninomycetales and Staphylococcus. Decreased Turicibacter, unclassified Marinilabiliaceae,
Alloprevotella, unclassified Porphyromonadaceae, Ruminococcus, Bifidobacterium, Marvinbryan-
tia, Helicobacter and Coprobacillus in rapamycim-treated mice, and increased Ruminococcus
were also reported [37].

Alemtuzumab is a monoclonal antibody that targets CD52 expressed on T and B
lymphocytes, natural killer cells and monocytes, inducing rapid depletion of T cells from
peripheral blood. In a monkey model, Li et al. showed that alemtuzumab treatment causes
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reduced Lactobacillales, and increased Enterobacteriales and Prevotella. In the GM, they also
noticed an increase in the Clostridiales order and a decrease in Faecalibacterium genus [38].

6. Steroids

Glucocorticoids are the mainstays in the treatment of inflammatory and autoimmune
pathologies, and they are used as immunosuppressants following organ transplantation
and as lympholytics in chemotherapeutic regimens. Glucocorticoids reduce inflammation
by suppressing pro-inflammatory cytokine expression through inhibition and upregula-
tion of gene transcription [141]. In a mouse model, glucocorticoids decreased bacterial
richness and diversity, reduced relative abundance of Firmicutes, Bacteroides, Actinobacteria,
alfa and gamma Proteobacteria, and decreased Clostridiales and Lactobacillus. On the other
hand, steroids increased abundance of Proteobacteria, closely related to a proinflamma-
tory state [40–42]. A decrease of Deferribacteres, Rikenella, Mucispirillum, Oscillospira and
Bilophila, and an increase in Prevotella, Methanobrevibacter smithii and Anaerostipes were
also reported [39,42,43]. In the gut, Clostridium scindens converts endogenous glucocorti-
coids into androgens [142]. It has been demonstrated that dexamethasone is metabolized
into androgens by Clostridium scindens in vivo, with potential implications also for other
steroids [15].

7. Protonic Pump Inhibitors

Protonic pump inhibitors (PPIs) are among the most commonly used drugs world-
wide [16,143]. PPIs are prodrugs that need to be activated by addition of two protons and,
once they are activated, they can inactivate the proton pump by binding to the H+-K+-
ATPase that normally creates a 1 million-fold gradient in H+ concentration from inside
the parietal cell to the gastric lumen in return for inward transport of K+ [143]. A first
report on 20 children treated with PPI found no significant changes in overall number of
species-level taxonomy categories but with an increase in the phylum Firmicutes in some
subgroups [48]. Other studies demonstrated that PPI use is associated with an altered
composition of the GM, with an increase in the Lactobacillales order and in particular the
family Streptococcaceae, which has been associated with increased risk for C. difficile infection
(CDI) [43–46,144]. A strong tendency of a reduction of Faecalibacterium, which is known
to possess anti-inflammatory properties, was also reported [47]. Characteristic of the gut
microbiome of PPI users are species highly prevalent in the oral microbiome, such as Strep-
tococcus parasanguinis [43]. Higher dosages are associated with larger microbial changes
and functional changes, such as an increase of fatty acid and lipid biosynthesis, fermen-
tation NAD metabolism and biosynthesis of L-arginine and purine deoxyribonucleoside
degradation [43]. These changes could result from downward movement of upper tract
commensals due to removal of the gastric acid barrier by PPI, causing an “oralisation”
of the GM in PPI users. However, PPI also have a direct effect on the GM, potentially
generated through binding of PPIs to bacterial H+/K+ ATPases [16,145]. A trend toward
reduced diversity was also reported in some reports, even if not always significant [44,45].
Other studies showed no major changes in diversity [46–48].

8. Ursodeoxycholic Acid

Ursodeoxycholic acid is a naturally occurring bile acid that is used to treat a variety
of hepatic and gastrointestinal diseases and also specifically in HSCT, for prevention of
hepatic complications. Bile acids have recently emerged as important regulators of the
intestinal microbiota; thus, it is interesting to see how ursodiol modifies the microbiota, but
not many studies have investigated this [146]. Studies conducted on patients with primary
biliary cholangitis show that UDCA causes an increased abundance of the Enterobacteriaceae
family [49]. Pearson et al. showed in patients with a story of colorectal adenomans that
UDCA causes a shift in microbial community composition, with an increase in species of
Streptococcus, Escherichia and Bilophila and decrease in Fusobacterium, and in particular an
overrepresentation of Faecalibacterium prausnitzii and an underrepresentation of Ruminococ-
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cus gnavus [20]. In mice, ursodeoxycholic acid increases several key bile acid species, that
in turn alter directly or indirectly the gut microbial composition [147].

9. Conclusions

We provided an outline of the interaction between commonly used drugs in pediatric
oncology and the GM. Pharmacomicrobiomics is an emerging field of study that could
change the outlook of research both regarding pharmacology and microbiome studies.
The intestinal flora composition is an issue to be considered in the individual variability
of pharmacokinetics, response to therapy and adverse event rate, other than the usual
studied genetic polymorphism. The impact of drugs on the GM should be taken into
consideration in the future among the factors that can influence trial design and drug
prescribing, with potential implications related to GM modulation [148]. In the near future,
testing of the microbiome may provide a tool to help guide initial dose selection and
dose adjustments of selected drugs, such as in the case of MMF. Moreover, it could help
in the personalized follow up of patients at higher risk of treatment-related toxicity or
treatment failure. Thanks to this field of research, targeting the microbiome could be an
interesting future perspective in order to reduce the number of poor responders or patients
experiencing severe adverse events in selected cases. A deeper understanding of the
biological mechanism underpinning this complex interplay is needed before translating the
presented findings to clinical research. Moreover, dissecting the effect of single drugs in the
human setting is complex, because in oncology different molecules are often administered
together and pharmacological interactions are a key component in the management of
pediatric cancer patients. A better knowledge on the impact of GM on drug metabolism
could lead to fascinating results, potentially translating to clinical practice.
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