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Abstract
Aim: Assessing	 the	 performances	 of	 different	 sampling	 approaches	 for	 document-
ing community diversity may help to identify optimal sampling efforts and strategies, 
and to enhance conservation and monitoring planning. Here, we used two data sets 
based on probabilistic and preferential sampling schemes of Italian forest vegetation 
to analyze the multifaceted performances of the two approaches across three major 
forest types at a large scale.
Location: Italy.
Methods: We	pooled	804	probabilistic	and	16,259	preferential	forest	plots	as	sam-
ples of vascular plant diversity across the country. We balanced the two data sets in 
terms of sizes, plot size, geographical position, and vegetation types. For each of the 
two data sets, 1000 subsets of 201 random plots were compared by calculating the 
shared and exclusive indicator species, their overlap in the multivariate space, and the 
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1  |  INTRODUC TION

Human- induced environmental changes are affecting the distribu-
tion, structure, and functioning of ecosystems, resulting in a global 
biodiversity crisis with evident impact on our society (Cardinale 
et al., 2012; Pecl et al., 2017).	 While	 international	 conservation	
programs strengthen protection goals (COM, 2020),	 the	 scientific	
community provides data, measurements, and evaluations of the 
biodiversity crisis from local to global scales (IPBES, 2019).	 Large	
collections of field observations at different spatio- temporal scales 
have thus become an essential tool to monitor, model, and predict 
the impact of global changes on natural ecosystems (Schmeller 
et al., 2015; Staude et al., 2020).	Monitoring	 agencies	 need	 cost-	
effective sampling approaches to accomplish national conservation 
strategies and programs. In this context, the performance of a sam-
pling approach can be evaluated based on the efficiency in collecting 
information. Useful approaches should detect multiple aspects of 
the spatio- temporal patterns of biodiversity (Chiarucci et al., 2011; 
Mihoub et al., 2017; Schmidt- Traub, 2021).

Currently, the geographical extent of plant diversity databases 
ranges from the regional to the global scale, including different 
types of diversity observations, such as species records and co- 
occurrence data (Chytrý et al., 2016; Sabatini, Lenoir, et al., 2021).	
One advantage of this latter type of data is to allow accurate es-
timations of local diversity due to the recording of complete —  or 
almost complete —  species lists within sampling units, e.g. a vege-
tation plot (Franklin et al., 2017).	Co-	occurrence	data	can	also	be	
transformed to single- species records, while species assemblages 

derived from aggregates of for example herbarium specimens, 
could lead to spurious results (Bottin et al., 2020).	 Herbarium	
specimens have shown a bias towards rare but colorful and char-
ismatic species (Troudet et al., 2017;	 Adamo	 et	 al.,	 2021)	 when	
compared with aggregates of vegetation plot databases (Bottin 
et al., 2020).	Estimates	of	beta	diversity	across	large	areas	obtained	
by assembled plot data are similar to those obtained by species lists 
(Chiarucci et al., 2021),	suggesting	that	the	standardization	of	large	
vegetation plot databases allows sufficient representation of veg-
etation conditions, modeling and predicting biodiversity patterns 
at different spatio- temporal scales (Staude et al., 2020; Laughlin 
et al., 2021; Testolin et al., 2021).

Notwithstanding the amount of aggregated historical data, bio-
diversity	monitoring	requires	continuous	and	expensive	sampling	
efforts to detect changes in species diversity. The long tradition of 
vegetation surveys in Europe has allowed the implementation of 
different sampling approaches across the continent. Traditionally, 
preferential	(opportunistic)	sampling	has	been	widely	employed	in	
Europe. This approach collects vegetation plots at environmen-
tally homogeneous sites selected on the basis of expert selection 
and using variable numbers and grain sizes of plots to character-
ize	plant	communities	(Braun-	Blanquet,	1964).	Despite	some	lim-
itations in the use of preferentially collected data for inferential 
purposes (Chiarucci, 2007;	Roleček	et	al.,	2007),	this	approach	is	
suitable for the assessment of total species richness of a given 
study area, as well as to detect rare vegetation types character-
ized by habitat specialist or alien species (Michalcová et al., 2011; 
Speak et al., 2018).	Other	studies	have	suggested	the	advantages	

areas encompassed by spatially- constrained rarefaction curves. We then calculated 
an index of performance using the ratio between the additional and total information 
collected by each sampling approach. The performances were tested and evaluated 
across the three major forest types.
Results: The probabilistic approach performed better in estimating species richness 
and diversity of species assemblages, but did not detect other components of the 
regional diversity, such as azonal forests. The preferential approach outperformed 
the probabilistic approach in detecting forest- specialist species and plant diversity 
hotspots.
Conclusions: Using a novel workflow based on vegetation- plot exclusivities and com-
monalities, our study suggests probabilistic and preferential sampling approaches are 
to be used in combination for better conservation and monitor planning purposes 
to detect multiple aspects of plant community diversity. Our findings can assist the 
implementation of national conservation planning and large- scale monitoring of 
biodiversity.

K E Y W O R D S
biodiversity, co- occurrence data, detrended correspondence analysis, indicator species 
analysis, regional survey, spatially constrained rarefaction curve, temperate forests, vegetation 
database, zonal vegetation
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of probabilistic approaches, in which plots are placed according to 
a survey design to produce robust inferences on the abundance 
and distribution of species and vegetation types (Michalcová 
et al., 2011; Swacha et al., 2017).

The combination of probabilistic and preferential sampling ap-
proaches may detect different facets of plant community diversity, 
revealing both common and rare species distributions and abun-
dances	 (Roleček	 et	 al.,	 2007).	 However,	 despite	 the	 urgent	 need	
for improving sampling schemes for plant diversity monitoring, the 
two approaches have been compared only at the landscape scale 
(Michalcová et al., 2011; Swacha et al., 2017; Speak et al., 2018),	thus	
neglecting environmental and biogeographical factors which drive 
plant community diversity patterns. Since probabilistic data sets at 
the regional scale are difficult to retrieve, extensive diversity data 
sets are usually obtained by aggregating local data sets based on 
different sampling schemes. In turn, aggregated data sets suffer 
from	biases	 in	data	distribution	with	respect	to	the	most	frequent	
vegetation	types	in	a	defined	geographic	area	(Roleček	et	al.,	2007).	
To efficiently monitor plant diversity and improve surveys at broad 
spatial scales, standardized measurements of performances of data 
sets could shed light on how to efficiently integrate both probabilis-
tic and preferential data.

In this study, we evaluated the performance of probabilistic and 
preferential sampling approaches for estimating different facets of 
forest diversity at the country scale. Using a novel workflow based 
on vegetation plot exclusivities and commonalities, we compared 
the	 two	 approaches	 in	 terms	 of	 representing:	 (i)	 habitat	 specialist	
composition,	 (ii)	 diversity	 of	 species	 assemblages,	 and	 (iii)	 species	
diversity estimates. We thus evaluated the performance of the 
two sampling approaches based on the additional information with 
respect to the shared information collected by each sampling ap-
proach, weighted by their sum. By combining vegetation data sets 
from across Italy, we aim to discuss the importance of collecting and 
combining spatial observations to develop biodiversity monitoring 
programs for national conservation planning (Hochkirch et al., 2021; 
Schmidt- Traub, 2021).

2  |  METHODS

2.1  |  Study area

Italian	 forests	 cover	 90,851	 km2 (Gasparini et al., 2022).	 The	high	
variation	of	 the	 study	area	 in	 latitude	 (from	35°	 to	47°),	 elevation	
(from	0	m	 to	 4809 m	 a.s.l.,	with	 forest	 vegetation	 up	 to	~1700 to 
1900 m	 a.s.l.),	 geomorphological	 heterogeneity	 (Fredi	 &	 Palmieri	
Lupia, 2017),	 and	 climatic	 conditions	 (from	 subtropical	 to	 cold-	
temperate	 climate;	 Fratianni	 &	 Acquaotta,	 2017)	 is	 mirrored	 by	
a high diversity of forest types (Chiarucci et al., 2019;	 Agrillo	
et al., 2021).	The	main	vegetation	forest	types	in	the	study	area	are	
broad- leaved evergreen and deciduous forests of warm- temperate 
climate, broad- leaved deciduous forests of cool- temperate climate, 
and needle- leaved forests of cold- temperate climate (Dinerstein 
et al., 2017).	According	to	the	Italian	forest	inventory	(INFC,	2015),	
“forests	with	high	trees”	cover	89,567 km2, of which 17% is repre-
sented by high- elevation coniferous forests, 67% by broad- leaved 
deciduous forests, 13% by Mediterranean evergreen forests, and 3% 
by riparian forests.

2.2  |  General workflow

We compared a single vegetation plot data set (hereafter, “proba-
bilistic	 data	 set”)	 with	 a	 larger	 aggregate	 of	 vegetation	 plot	 data	
sets	 (hereafter,	 “preferential	 data	 set”),	 both	 representing	 vascu-
lar plant diversity of Italian forests across the whole country (see 
the	next	paragraph).	The	vegetation	plots	of	 the	probabilistic	data	
set were collected according to a formal and reproducible scheme, 
while the vegetation plots of the preferential data set were obtained 
by aggregating preferentially collected data. We developed a novel 
workflow based on the partitioning of the performance into shared 
and exclusive information emerging from each data set (Figure 1).	
While the shared information was defined as the portion collected 
by both data sets, the exclusive information differentiated a data set 

F I G U R E  1 Graphical	conceptualization	
of the methodology used to measure 
the performance of the two sampling 
approaches. The shared and 
exclusive biodiversity information 
calculated as percentages and emerging 
from the data sets highlights similarities, 
differences, and the overall performance 
of the two sampling approaches. The 
index of performance evaluates the 
additional information with respect to the 
common information collected by each 
sampling approach, weighted by their 
sum.
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with respect to the others. The sum of these two components cor-
responded to the overall, or joint, information of the probabilistic 
and preferential approaches —  that is, the total size or area of in-
formation	retained.	A	heuristic	index	measuring	the	performance	of	
each sampling approach was then calculated as the ratio of the dif-
ference between exclusive and shared information divided by their 
sum (Figure 1).	 Since	we	measured	 shared	 and	 exclusive	 informa-
tion	as	proportions,	the	index	ranges	between	−1	and	1.	The	index	
was calculated on randomly re- sampled and balanced subsets of the 
probabilistic and preferential data sets (Figure 2),	 as	 described	 in	
the following subsections. We evaluated multiple aspects of plant 
diversity retained by each data set using three different ecological 
analyses (Figure 2).	We	 then	 applied	 this	 approach	 to	 three	 zonal	
forest types for evaluating widely distributed and rare plant com-
munities (Figure 3).

2.3  |  Probabilistic data set

The probabilistic data set of Italian forest vegetation consisted of 
plots collected in the framework of the BIOSOIL project (Hiederer & 
Durrant, 2010).	It	was	obtained	by	extracting	a	probabilistic	sample	
of	plant	communities	based	on	a	16 km × 16 km	grid	superimposed	
on the whole Italian country (Level I network; Lorenz et al., 2002; 
Forests ICP, 2016; Chiarucci et al., 2019).	Grid	corners	were	selected	
if	a	forest	patch	larger	than	0.01 km2 occurred therein. Hence, a sta-
tistically representative sample of 261 sites was considered for field 

observations of forest ecosystems (Petriccione & Cindolo, 2006).	
Overall, 60 sites were excluded by ground surveys because they 
were not forests, inaccessible, or extremely disturbed (e.g. recent 
tree	harvesting,	cattle	rest	areas,	ski	slopes).	This	resulted	in	a	final	
sample	of	201	circular	sampling	sites	(radius	25.24 m;	sampled	area	
2000 m2),	 in	which	four	10	m × 10	m	plots	were	located	at	random	
distances from the center, along the main cardinal directions. In 
each plot, plant species identities and their relative cover were re-
corded (Canullo et al., 2013; Ferretti et al., 2013).	 Coordinates	 of	
sampling site centers were extracted from GPS devices with a posi-
tional uncertainty below 10 m. The field campaign was carried out 
in spring– summer 2007, employing 10 teams of two surveyors each, 
after a common training and calibration exercise following Quality 
Assurance	 guidelines	 (Allegrini	 et	 al.,	 2009; Canullo et al., 2016).	
Taxa identified at the genus level were excluded from the data set. 
Thus,	a	 final	data	set	containing	plant	cover	values	 for	1,099	spe-
cies observed in 804 plots distributed over 201 sites was obtained. 
Taxonomy was standardized according to the Italian flora (Pignatti 
et al., 2017–	2019).

2.4  |  Preferential data set

The preferential data set of Italian forest vegetation consisted of plot 
observations	 aggregated	 from	 four	 databases	 (see	 Appendix	 S1).	
The	data	set	underwent	a	filtering	process	on	an	initial	set	of	51,529	
plots.	We	selected	plots	with:	(i)	an	estimated	positional	uncertainty	

F I G U R E  2 Graphical	conceptualization	
of the workflow adopted to balance and 
analyze the probabilistic and preferential 
data sets. To balance data set sizes, we 
randomly re- sampled plots considering 
sizes, plot sizes, geographic distribution 
and vegetation types. To consider 
different aspects of plant community 
diversity, we applied the conceptual 
model to three ecological analyses: 
Indicator	Species	Analysis,	Detrended	
Correspondence	Analysis,	and	spatially-	
constrained rarefaction curves.
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below	 1000 m;	 (ii)	 cumulative	 tree	 species	 cover	 above	 30%;	 and	
(iii)	all	taxa	identified	at	the	species	level.	Duplicated	plots	were	re-
moved. Taxonomy was standardized according to the Italian flora 
(Pignatti et al., 2017–	2019).	The	final	data	set	included	16,259	plots	
containing	plant	 cover	 values	 for	2,948	 species,	 including	plots	of	
different	sizes	(17%	of	the	plots	had	no	information	about	plot	size).	
The	preferential	 data	 set	 resulted	 in	 a	 total	 of	946	geographically	
distinct	locations	identified	in	a	16 km × 16 km	cell	grid.

2.5  |  Environmental variables

To characterize each plot in terms of environmental variables, we ex-
tracted elevation (European Union, 2021)	and	all	the	19	bioclimatic	
variables	of	the	Chelsa	data	set	at	1	ArcSec	resolution	(~1000 m	at	
the	equator;	Karger	et	al.,	2017).

2.6  |  Forest vegetation types

For the sole purpose of defining major vegetation types in Italian 
forests, we used the probabilistic data set at the site level (aggre-
gation of four 100- m2	plots)	by	square-	root-	transforming	species	
cover values and performing a multivariate regression tree with 
environmental variables (De'ath & Fabricius, 2002).	 This	 tech-
nique	identifies	the	most	probable	vegetation	type	given	a	certain	
climate, by concurrently accounting for species co- occurrences 
and environmental variables (Borcard et al., 2011).	Clustering	the	
probabilistic data set at the site level instead of the plot level (201 
sites × 4	 plots)	 allowed	 the	 assignment	of	 the	 four	plots	 forming	
sites	to	a	unique	vegetation	type.	Because	of	the	heterogeneous	
sources of the preferential data set, we preferred to use the proba-
bilistic data set for the definition of vegetation types due to its sta-
tistical representativeness of the distribution of forest vegetation 

F I G U R E  3 Graphical	summary	of	the	differences	between	probabilistic	and	preferential	data	sets	in	characterizing	Italian	forest	types.	
We obtained forest vegetation types using a multivariate regression tree on the probabilistic data set and assignment of the preferential 
plots	with	a	noise	clustering	technique.	The	azonal	vegetation	type	occurs	only	in	the	preferential	data	set.	We	show	the	geographical	
distribution	and	the	frequency	of	clustered	co-	occurrence	data	sets	(804	probabilistic	and	16,259	preferential	plots),	the	first	10	significant	
woody indicator species (p < 0.01)	ranked	by	their	association	values	(phi	coefficient),	the	density	plots	and	mean	values	of	environmental	
variables for the two data sets. The dashed density plot and the bold character in the mean values represent the Italian forests.
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in	the	study	area.	After	checking	for	multicollinearity	among	en-
vironmental variables with Variation Inflation Factor analysis (VIF, 
Zuur et al., 2010)	using	a	threshold	of	10,	we	used	eight	predictors	
in the model —  i.e. elevation, minimum temperatures of the driest 
and	wettest	quarter,	temperature	seasonality	(the	standard	devia-
tion	of	 the	monthly	 temperatures),	 isothermality	 (the	ratio	of	di-
urnal	variation	to	annual	variation	in	temperatures),	precipitation	
seasonality (the standard deviation of the monthly precipitation 
estimates expressed as a percentage of the mean of those esti-
mates),	and	precipitations	of	the	wettest	month	and	of	the	cold-
est	quarter	(Karger	et	al.,	2017).	We	characterized	and	named	the	
three obtained clusters using their geographical and environmen-
tal distributions along with their list of indicator species resulting 
from	the	Indicator	Species	Analysis	(De	Cáceres	et	al.,	2010).	The	
three clusters were considered as mean ecological prototypes rep-
resentative	 of	 Italian	 zonal	 forest	 types:	 (i)	 the	warm-	temperate	
forest, dominated by evergreen and deciduous broad- leaved 
trees	 (109	 sites,	 54%);	 (ii)	 the	 cool-	temperate	 forest,	 dominated	
by	deciduous	broad-	leaved	trees	(56	sites,	28%);	and	(iii)	the	cold-	
temperate forest, dominated by needle- leaved trees (36 sites, 
18%).	 Then,	 chord-	transformed	 preferential	 plots	were	 assigned	
to zonal forest types based on their chord distance from proto-
type centroids expressed as species composition in a multivariate 
space, namely by using noise clustering (De Cáceres et al., 2017).	
By setting a threshold distance for plot assignment, we excluded 
outlier plots from the probabilistic prototypes —  meaning 12% 
of the data set, composed mainly of azonal forest stands such as 
riparian types and coastal areas. Most of the preferential plots 
were assigned to a zonal vegetation type (64% warm- temperate; 
19%	cool-	temperate;	5%	cold-	temperate).	A	detailed	description	
of	the	methodology	 is	 reported	 in	Appendix	S2, while details on 
the characterization of forest types are graphically summarized in 
Figure 3. The environmental characterization of the two data sets 
was compared with the whole distribution of Italian forests pro-
vided by Copernicus Land Monitoring Service products upscaled 
at 1000- m spatial resolution (Figure 3; European Union, 2021).	
The area occupied by each forest type was obtained as a predic-
tion of the multivariate regression tree model performed on envi-
ronmental	variables.	A	complete	list	of	indicator	species	sorted	by	
life forms and ordered by fidelity values to forest vegetation types 
is	 provided	 in	Appendix	S3. Specifically, we calculated indicator 
values	 for	preferential	plots:	 (i)	 regardless	of	plot	size;	 (ii)	with	a	
plot	 size	 of	 100 m2 except for cold- temperate forest (plots with 
sizes	 ranging	 between	 100	 and	 300 m2);	 and	 (iii)	 with	 plot	 sizes	
ranging	between	100	and	500 m2.

2.7  |  Performance measurement

To compare the performance of probabilistic and preferential data 
sets, considering their discrepancy in plot numbers, we sampled 
1000 different subsets of 201 plots for each data set. Plots were 
randomly sampled at the site level. While sites for the probabilistic 

data set were defined in the sampling design as random forested 
corners	of	 a	16 km × 16 km	grid,	 for	 the	preferential	data	 set	we	
simulated a similar re- sampling design selecting random plots lo-
cated	within	 cells	 of	 the	 16 km × 16 km	 grid.	 Thus,	 the	 probabil-
istic subsets were aggregated selecting a random plot for each 
of the 201 sites. In the preferential plot subsets, we maintained 
proportions among vegetation types observed with the probabil-
istic	data	set	—		meaning	109	plots	for	the	warm-	temperate	forest,	
56 plots for the cool- temperate forest, and 36 plots for the cold- 
temperate forest. To standardize plot sizes between the two data 
sets, we selected only preferential 100- m2 plots, except for cold- 
temperate forest for which we selected plots with sizes ranging 
between	100	and	300 m2. To evaluate the effect of plot size on 
the performance measurements, we repeated the analyses also 
using 1000 preferential subsets of plots with sizes ranging be-
tween	100	and	500 m2.

For each of the 1000 subsets of the two data sets, the overall 
information	 on	 habitat	 specialist	 species	 was	 quantified	 by	 sum-
ming the relative number of shared and exclusive indicator species 
for each data set (De Cáceres et al., 2010).	We	used	the	“multipatt”	
function of the indicspecies R package (De Cáceres et al., 2020)	with	
999	permutations	and	counted	those	species	with	a	significant	phi	
coefficient (p value <0.01).	This	analysis	allowed	us	to	compare	clus-
ters	of	unequal	sizes	(Tichý	&	Chytrý,	2006).

Overall information on species assemblage diversity was calcu-
lated by summing the shared and exclusive occupied areas of each 
data set over the two first axes of Detrended Correspondence 
Analysis	 (DCA).	We	 used	 the	 “decorana”	 function	 of	 the	 vegan R 
package (Oksanen et al., 2020).	 DCA	 axes	were	 used	 to	 estimate	
species turnover and summarize patterns of variation among plant 
assemblages (Eilertsen et al., 1990).

Overall information on species diversity estimates among plots 
was calculated by summing the relative shared and exclusive areas 
encompassed by spatially- constrained rarefaction curves for each 
data set (Chiarucci et al., 2009).	 Spatially-	constrained	 rarefaction	
allowed accounting for the spatial arrangement of plots to calcu-
late rarefaction curves by moving toward geographically close plots 
(Chiarucci et al., 2009).	We	thus	used	the	“rare_alpha”	 function	of	
the RarefyR package (Thouverai et al., 2021).	For	the	estimation	of	
the exclusive information of each data set, we excluded the relative 
shared part of information.

The index of performance for each data set was then calculated 
based on the obtained percentage measurements of the exclusive 
and shared information in the three ecological analyses. Positive val-
ues of the index correspond to a good performance of the sampling 
approach which collects more exclusive than shared information. On 
the other hand, negative values mean that the shared information 
collected by the approach is larger than the exclusive information. 
To compare the performances of the probabilistic and preferential 
approaches, the index was tested for significance using the non- 
parametric Mann– Whitney test.

All	the	analyses	were	performed	using	QGIS	version	3.16	(QGIS	
Development Team, 2020)	and	R	version	4.1.2	(R	Core	Team,	2022).
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3  |  RESULTS

The probabilistic and preferential data sets showed a different spe-
cies composition and environmental characterization of the three 
zonal forest types, especially in the warm forest type (Figure 3, 
Appendix	S3).	The	probabilistic	data	set	showed	an	environmental	
characterization closer to the whole forest distribution provided 
by Copernicus Land Monitoring Service (European Union, 2021)	 in	
comparison with the preferential data set. The preferential data set 
showed more plots at low elevation in the warm- temperate and cold- 
temperate forests. The preferential data set also showed a high num-
ber of woody habitat specialist species in the cool- temperate forest 
type.

Regarding the three ecological analyses we performed, 
namely	the	 Indicator	Species	Analysis,	 the	DCA,	and	the	spatially-	
constrained rarefaction curves, we found significantly different per-
formances for the two data sets across the zonal forest types. We 
found concordant results for the heterogeneous and larger plot- size 
aggregated	data	set	(Appendix	S4).

The probabilistic data set showed the lowest values for the 
overall and exclusive information in the habitat specialist species 
(Figure 4a).	 The	 preferential	 data	 set	 outperformed	 the	 probabi-
listic data set for the whole data set, and for the warm-  and cold- 
temperate forests types (Figure 5a).	For	the	cool-	temperate	forest,	
the two data sets performed similarly instead.

The probabilistic data set showed the highest values for the overall and 
exclusive information on the diversity of species assemblages (Figure 4b).	
The probabilistic data set outperformed the preferential data set for both 
the cool-  and cold- temperate forests, but it showed negative performance 
for the whole data set and warm- temperate forest (Figure 5b).

The probabilistic data set showed the lowest values for the over-
all and exclusive information on species richness estimates in the 
whole data set and warm- temperate forests, but the highest values 
in the cool-  and cold- temperate forests (Figure 4c).	We	found	lower	
performances for the probabilistic data set in the whole data set and 
in the warm- temperate forest (Figure 5c).	To	the	contrary,	the	prob-
abilistic data set outperformed the preferential data set in the cool-  
and cold- temperate forests.

4  |  DISCUSSION

We provide a comparison of multifaceted performance between 
probabilistic and preferential sampling approaches in evaluating 
plant community diversity at a large scale. We confirmed our find-
ings considering both similar and larger plot sizes for preferential 
plots with respect to probabilistic plots, suggesting plot size as a 
weak factor driving the analyzed patterns. The performance was 
assessed among three zonal forest types obtained by numerical 
clustering	on	the	probabilistic	data	set	and	subsequent	assignment	
of the forest types to preferential plots based on the species com-
position. This clustering approach allowed grouping of the most 
frequent	forest	communities,	which	resulted	to	be	the	zonal	forest	

types. To the contrary, basing the clustering on a large and hetero-
geneous aggregate of plots, such as the preferential data set, might 
emphasize uncommon vegetation types which would make our 
comparison unstable. In general, the probabilistic approach failed 
in	 detecting	 the	 regional	 (gamma)	 diversity,	 by	 neglecting	 azonal	
forests —  meaning riparian and coastal forest types. The data sets 
analyzed here were differentiated by habitat- specialist species and 
environmental distribution, with the preferential data set having 
more plots at warmer sites. The preferential approach also outper-
formed the probabilistic approach in detecting assemblages rich 
in habitat specialists. To the contrary, the probabilistic data set 
showed the higher performance in detecting diversity of species 
assemblages and spatially assembled regional species richness es-
timates. Notwithstanding this, in the given zonal forest types, the 
two sampling approaches deviate from this general finding.

4.1  |  The probabilistic approach

Given	an	equal	sampling	effort,	a	systematic	approach	applied	to	
forest areas represented by the probabilistic data set performed 
better in detecting richness of species and diversity of species 
assemblages at the national scale compared to a heterogeneous 
aggregate	of	preferential	vegetation	plot	data	sets.	According	to	
Botta- Dukát et al. (2007),	this	result	may	be	due	to	the	sampling	
of degraded forest stands in which species typical of species- rich 
open habitats tend to occur. Degraded sites are often avoided 
during preferential vegetation sampling surveys because of their 
mixed species composition which may hardly be assigned to tar-
geted habitat types (e.g. Chytrý et al., 2020).	The	exception	to	this	
finding is represented by the warm- temperate forests in which the 
two approaches performed similarly. This is probably due to a bias 
of the preferential data set toward sites with warm- temperate for-
est types occurring at lower elevations with higher temperatures, 
in which evergreen forest stands occur. This bias is confirmed by 
the occurrence of evergreen species as woody habitat specialist 
species in the preferential data set —  for example Arbutus unedo 
or Quercus ilex. These forests have traditionally attracted the 
interest of botanists and vegetation ecologists because of their 
relatively easy accessibility combined with typical species com-
position. In turn, this particular attention could have enriched the 
preferential data set in terms of species diversity. The evergreen 
warm- temperate forests may be difficult to detect by random or 
systematic sampling if we consider their limited distribution in the 
study area with respect to the deciduous warm- temperate forests 
(Agrillo	 et	 al.,	 2021).	 The	 low	 performance	 of	 the	 probabilistic	
data set in detecting habitat specialist species is in line with the 
results of Swacha et al. (2017)	 and	 suggests	 the	difficulty	of	 in-
cluding undisturbed and characteristic forest patches in the data 
collection because of their limited geographical distribution in the 
study area. Thus, the data collection in transitional zones rich in 
non- specialist species constrained by the probabilistic sampling 
design could have increased the observed diversity of species and 
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species assemblages. Moreover, the constrained sampling adopted 
in the probabilistic approach prevents the detection of scattered 
patches and linear elements of, for example, remnant riparian for-
ests,	which	frequently	occur	in	peculiar	landscape	configurations	
detectable by fine topographic variables only (Douda, 2010).

4.2  |  The preferential approach

The preferential approach performed better with forest stands rich in 
specialist species with a higher number of relatively rare species, e.g. 

Acer lobelii, Taxus baccata or Abies alba in the cool-  and cold- temperate 
forests, respectively. Chytrý (2001)	 suggested	 preferential	 data	 sets	
of species- poor vegetation may be biased toward higher species rich-
ness because of the surveyors' tendency to increase the plot size to 
include indicator species. We found low performance of the preferential 
sampling for detecting species richness and diversity of species assem-
blages in the typically species- poorer cool-  and cold- temperate forests, 
which is in line with Botta- Dukát et al.'s (2007)	findings.	The	focus	of	
the preferential approach with respect to undisturbed forest stands am-
plifies the sampling of rare specialist species but reduces the sampling 
of ecotonal species connected to forest dynamics, thus decreasing the 

F I G U R E  4 Overall,	shared	and	exclusive	information	emerging	from	the	probabilistic	and	preferential	data	sets	for:	(a)	the	habitat	
specialist	species;	(b)	diversity	of	species	assemblages;	and	(c)	species	richness	estimates.	Proportional	Venn	diagrams	with	median	values	
of	their	components:	the	exclusive	components	(“pro”	and	“pre”),	the	shared	component	(“sha”)	and	the	overall	information	(“Probabilistic”	
and	“Preferential”).	The	components	were	calculated	for	the	indicator	species,	the	areas	occupied	by	the	data	sets	in	a	Detrended	
Correspondence	Analysis	bi-	plot,	and	the	areas	encompassed	by	spatially-	constrained	rarefaction	curves	of	the	two	data	sets.
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sampled species richness. By contrast, this approach allows sampling 
similar or higher species richness estimates and assemblage diversity 
than the probabilistic approach in complex vegetation types such as 
the warm- temperate forest. Because of ecological, biogeographi-
cal, evolutionary, and historical factors, the warm- temperate forests 
have a particularly rich species pool (Box, 2015; Rundel et al., 2016; 
Večeřa	et	al.,	2019),	especially	in	annual	species	(Večeřa	et	al.,	2021).	
Interestingly, this high diversity is also reflected in a high number of 
vegetation types (Preislerová et al., 2022).	Moreover,	when	considering	
patterns of forest area gains and losses, in combination with levels of 
protection and population density, low- elevation forest stands of the 
Italian country have been affected by a high degree of human impact 
during the last century (Zannini et al., 2022).	This	could	result	in	more	
undisturbed conditions characterized by rare forest specialists at remote 
and high- elevation sites and a continuum between rural landscapes and 
secondary forest stands at low- elevation sites. Thus, the exclusive spe-
cies richness combined with a complex forest landscape affected by 

millennia of anthropogenic impacts (Sadori et al., 2011)	 exacerbates	
the	diversity	of	species	assemblages	occurring	in	limited	areas	(Agrillo	
et al., 2021).	This	complexity	may	be	better	detected	with	the	support	
of a preferential approach because of the localization of sampling units 
positively conditioned by the knowledge of expert botanists.

4.3  |  Combining probabilistic and 
preferential sampling

The complementary perspective of the probabilistic and the prefer-
ential approaches for detecting multiple facets of plant community 
diversity suggests the high potential of combining both sampling ap-
proaches. The large availability of preferential plots can be used for 
explorative analyses and for obtaining descriptive statistics, whereas 
the probabilistic data set is essential for hypothesis testing (Botta- 
Dukát et al., 2007).	While	 the	 probabilistic	 data	 set	 can	 unbiasedly	

F I G U R E  5 Index	of	performance	for	the	probabilistic	and	preferential	data	sets	calculated	for	three	types	of	diversity	analyses.	
The index is calculated as the ratio between the shared performance subtracted from the exclusive performance and their 
sum.	Performances	are	calculated	as	percentages	and	the	derived	index	ranges	between	−1	and	1.	We	calculated	the	index	for	the	whole	
data sets and three vegetation types. Median values and significance of p values obtained from the Mann– Whitney test are shown 
(***, p < 0.001).
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represent the ecological status of forests at the country scale by eval-
uating	 the	most	 frequent	 species	 richness	 or	 composition	 (Roleček	
et al., 2007),	the	preferential	data	set	focuses	on	stands	rich	in	undis-
turbed and specialist species as well as peculiar forest types, attaining 
additional information that is crucial for estimating regional diversity. 
Accordingly,	the	mean	composition	of	Italian	forests	assessed	with	the	
probabilistic data set resulted in lower occurrences of habitat special-
ist species with respect to the species composition provided by an ag-
gregate of preferential data sets. However, the indicative value of the 
preferential approach highlights its potential to detect conservation- 
relevant vegetation types (Chytrý et al., 2020).	The	scattered	and	rare	
distribution of undisturbed forest remnants rich in specialist species 
(e.g. old- growth forest stands; Barredo et al., 2021)	 could	be	better	
detected through targeted sampling. This holds true also for hotspots 
of plant diversity driven by topographic or biogeographic factors —  for 
example, the azonal and Mediterranean evergreen forests (Naiman 
& Décamps, 1997; Rundel et al., 2016).	A	 combination	 of	 both	 ap-
proaches in field surveys is thus recommended as it allows efficient 
and comprehensive evaluation of ecosystem diversity and status.

4.4  |  Spatial and temporal baselines for 
conservation planning

We have presented here a workflow to test performances and de-
tect unbalanced data distributions in large vegetation plot data-
bases. The combination of existing large vegetation plot data sets 
has been shown to be a reliable reference system to extrapolate 
spatial and temporal baselines for biodiversity conservation plan-
ning (Franklin et al., 2017; Chytrý et al., 2020).	Our	study	underlines	
the importance of studying diversity patterns while considering a 
well- designed integration of different sampling schemes to pro-
vide a description of multiple facets of plant community diversity. 
These sampling schemes should use standards to consistently 
apply statistical assumptions but also evaluate local and regional 
species diversity considering heterogeneous landscapes as a result 
of biogeographical and land- use history (Canullo et al., 2013; Speak 
et al., 2018).	Using	significant	environmental	strata	to	select	sam-
pling sites, probabilistic approaches will result in diversity meas-
urements with known uncertainty values. On the other hand, the 
flexibility of preferential approaches identifies species- rich areas 
supporting the development and implementation of conservation 
planning and targeted actions —  for example identifying habitat 
types (Chytrý et al., 2020),	vegetation	types	(Bonari	et	al.,	2021),	
old- growth forests (Sabatini, Bluhm, et al., 2021),	refugia	(Jiménez-	
Alfaro	et	al.,	2018;	Alessi	et	al.,	2019),	and	riparian	forest	remnants	
(Douda et al., 2016).	 Geographical	 and	 biogeographical	 gaps	 in	
diversity monitoring data could be filled in a step- by- step proce-
dure	based	on	two	(or	more)	sampling	approaches	which	include:	
(i)	tracing	the	spatial	and	temporal	diversity	baselines	using	exist-
ing	 large	electronic	 archives;	 (ii)	 evaluating	data	deficiencies	 and	
performances;	and	(iii)	planning	efficient	monitoring	surveys	based	
on historical data. In this procedure, adaptative sampling strategies 

may be effective for monitoring highly diverse and rare species or 
habitats (Fattorini et al., 2022).	In	adaptive	sampling	strategies	an	
additional sampling effort is allocated to areas where the ecological 
phenomenon was observed in the earlier sampling surveys (Pacifici 
et al., 2016).	Aggregated	archives	and	preferential	 surveys	could	
play an important role as baseline for monitoring regional diversity. 
This workflow should generate standardized diversity work and 
data flows between the scientific community and environmental 
agencies to implement conservation planning at the national scale 
(Mihoub et al., 2017; Hillebrand et al., 2018; Schmidt- Traub, 2021).	
Our combined approach thus encompasses a comprehensive in-
tegrated view that will eventually result in an optimized tool for 
assessing plant diversity in natural and semi- natural ecosystems.
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