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Fault Detection Problems for Switching Linear
Systems: a Structural Approach

Giuseppe Conte, Life Member, IEEE, Anna Maria Perdon, Life Member, IEEE, and Elena Zattoni, Senior
Member, IEEE

Abstract—The fault detection and isolation problem is con-
sidered in the context of switching linear systems. The problem
is tackled by searching for suitable residual signal generators,
whose existence is completely characterized in structural terms.
Both the situation in which the initial condition of the system
subject to possible faults is known and that in which it is not
known are considered. The results are compared with those found
in the classical linear case for the same problem using a structural
geometric approach in order to show consistency and to highlight
differences.

Index Terms—Fault detection; Model-based methods; Switch-
ing linear systems; Structural methods; Algebraic/geometric
methods

I. INTRODUCTION

In the operation of a plant, any fault that may degrade the
performances and/or compromise safety needs to be quickly
and accurately detected in order to take, if possible, appro-
priate countermeasures. For this reason, fault detection and
isolation (FDI) is an important area of study in the framework
of dynamical systems, whose aspects have been investigated
by many authors using different approaches.

In particular, model-based (or analytical redundancy-based)
FDI methods have been greatly developed for classical linear
systems and are by-now widely used (see, e.g., [1]–[3] and the
references therein). The characteristic feature of these methods
is that the occurrence of faults is detected by comparing
a function of the measured output of the (possibly) faulty
system with its estimated value, thus obtaining what is called
a residual. The dynamical system that filters and processes the
available information to compute the residual, called residual
generator, is based on an observer that is designed using a
mathematical model of the plant. In that model, faults are
represented by specific unknown inputs, while uncertainties,
disturbances and noise are taken into account by modelling
them as the effects of other, additional unknown inputs.

The existence of observers that generate residuals which
are sensitive to the faults and insensitive to the unknown
inputs that account for uncertainties and disturbances, or robust
observers in the terminology of [1], is therefore a key problem
to investigate for developing FDI model-based schemes (see
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[1, Section 5.3], [2, Section 2.3], [3, Section III-B]). A
comprehensive survey of the main contributions given in that
direction by using the unknown input observer approach, in
the case of classical linear systems, can be found in [1]–[3].

In the ideal situation, the residual, beside being sensitive
to the faults, is independent of (i.e., completely decoupled
from) the other unknown inputs. The existence of model-based
schemes that achieve this objective is characterized by a set
of rank conditions in [4]. An equivalent characterization that
better highlights the structural content of the problem is given
in [5] by means of a geometric condition which expresses
the fact that two specific subspaces of the output space of
the plant, the first depending on the faults and the second
depending on the other unknown inputs, intersect only at the
origin. Indeed, the ideal existence condition is difficult to be
satisfied in practice. Nevertheless, also when it is not satisfied,
it is useful because it allows a clear identification of the struc-
tural obstructions that prevent the residual being completely
decoupled from the unknown inputs. This information can be
exploited to design the dynamics of the residual generator in
such a way to decouple the residual at least from a subset
of the set of unknown inputs and to attenuate the effects of
the remaining ones. The occurrence of the fault can then be
detected with the aid of suitable thresholds.

In this paper, we consider the FDI problem for switching
linear systems: i.e., systems whose dynamics varies in a given
family according to a known time signal. The main result is a
necessary and sufficient condition for the existence of model-
based schemes consisting of robust observers (like those
considered, in particular, in [1]–[5] for the classical linear
case) whose residual is sensitive to the faults and completely
decoupled from the other unknown inputs.

From a general point of view, our investigation is moti-
vated by the usefulness and efficacy of the switching system
paradigm in modelling complex dynamical behaviors in many
situations of interest (in the huge literature on switching linear
systems and their applications, the reader can see, e.g., [6]–
[10]).

The FDI problem for switching systems and, in particular,
the model-based methods for its solution have already received
attention by a number of authors. Since qualitative methods for
analysis and synthesis of switching linear systems (like those
based on norm minimization techniques, Lyapunov functions
and LMIs) were, until recently, more developed than structural
ones, the construction of FDI schemes where the effects of
the unknown inputs on the residual are attenuated, without



necessarily being annihilated, has been privileged. Indeed,
a complete structural characterization of the existence of
unknown input observers, which are crucial for constructing
model-based FDI schemes that achieve complete decoupling,
was given, in the framework of switching linear systems, only
lately in [11].

As for the current literature, in [12], a model-based FDI
scheme for switching systems affected by disturbances, noise
and modeling errors is obtained by approaching the problem
as a standard H /H∞ model matching problem. The residual
consists of an observer of Luemberger type whose parameters
are to be chosen in such a way to attenuate, in terms of H∞
performance, the effects of disturbances, noise and modeling
errors on the residual, while making it sensitive to the fault
according to an H index. The construction is performed un-
der the somehow limiting assumption that all the single modes
of the switching system are observable and that they have the
same nominal output matrix. A conceptually similar approach
is followed in [13], where the assumption on observability
of each mode is maintained and the existence of a suitable
observer is formulated as a feasibility LMI problem. In [14],
a family of FDI filters with H∞ performances for discrete-time
switching linear systems is designed via a switched Lyapunov
functional approach. Sufficient conditions for the existence
of filters/controllers that satisfy H /H∞ performances are
given in [15] using LMI techniques. The possible presence
of delays is taken into account in [16], where the construc-
tion of observers is carried out using Lyapunov-Krasovskii
functionals and LMI techniques. Likewise, system inversion,
switched Lyapunov functions and LMIs are employed to
design fault detection filters in [17]. Model-based schemes
for FDI that employ high-order sliding mode observers for
switching systems are proposed in [18]–[22]. An approach
based on interval observers, whose construction is complicated
by the requirement of generating a non-negative estimation
error, is developed in [23], [24].

Although the current literature, as illustrated above, con-
siders several ways to design model-based FDI schemes for
switching systems, the ideal situation in which a complete
decoupling between the residual and the unknown inputs can
be achieved has not yet been fully characterized. The specific
contribution of this paper consists in giving such characteriza-
tion in structural terms (that is in terms of dynamical properties
and mutual geometric relationships of specific subspaces of the
state space of the switching system at issue) in Theorem 1.
This provides a sound and complete extension of the results
of [5] to the framework of switching systems and it gives a
valuable insight into the problem, which cannot be obtained
by means of qualitative methods.

The structural characterization given by the existence con-
dition of Theorem 1 is an effective means to define

1) a viable algorithmic procedure for checking the existence
of model-based schemes in which the residual is sen-
sitive to a given fault and completely decoupled from
the unknown inputs representing other faults or model
uncertainties and disturbances;

2) a viable algorithmic procedure for constructing schemes
of the above kind, if any exists, by means of unknown
input observers.

The solution of the FDI problem is an obvious consequence
if the initial condition of the plant is known. Otherwise, if the
initial condition of the plant is unknown, asymptotic stability
(in a suitable sense, in the framework of switching systems)
of the unknown input observers is needed to solve the FDI
problem, and the existence of such observers is characterized
in Theorem 2.

The conditions of Theorem 1 and Theorem 2 are tight. How-
ever, even if they are not satisfied and a complete decoupling
of the residual from the unknown inputs is not possible, the
structural characterization enables the search of subsets of the
set of unknown inputs for which this can be achieved. Then,
using the possible degrees of freedom in the construction of
the observer, one can try to minimize, according to a suitable
norm, the effects of the unknown inputs from which the
residual cannot be decoupled.

The paper is organized as follows. In Section II, the
class of switching linear systems considered is introduced.
In the system’s equations, the presence of unknown inputs,
other than those representing the faults, serves to take into
account uncertainties, disturbances and noise when physical
plants are modelled, as is described in [1]–[3], [12]. The
problem of generating a residual that, if its generator is
suitably initialized, deviates from 0 only at the occurrence
of a given fault and is completely decoupled from the other
unknown inputs is formally stated in Problem 1. Then, if the
initial condition of the possibly faulty plant is known, the
solvability of Problem 1 implies the possibility of detecting
and isolating the fault, that is the solvability of the FDI
problem. The switching behavior makes the construction of
unknown input observers that can generate a residual with the
desired properties more complex than in the classical linear
case. Therefore, specific geometric notions and tools, that are
introduced and illustrated in Section III, need to be used to
tackle the problem. The results of [11] are instrumentally
used in constructing a candidate residual generator as an
unknown input observer and, in Section IV, the solvability
of Problem 1 is completely characterized in structural terms
by Theorem 1. The consequences of the theorem are illustrated
in subsequent remarks. In Subsection IV-A, we discuss how
to exploit the structural characterization when the existence
condition turns out to be not satisfied. In Subsection IV-B,
the condition found in the case of switching linear systems
is shown to encompass that given in [5] in the case of
classical linear systems. However, the formulation given herein
is new also when specialized to the classical linear system
case. In Section V, an example illustrates the construction
of the residual generator and its behavior in the occurrence
of faults. The case in which the initial state of the plant
is not known is considered in Section VI. In that case,
fault detection and isolation can be practically dealt with by
means of residual signal generators that enjoy suitable stability
properties: namely, whose dynamics is asymptotically stable



for sufficiently slow switching. Their existence is characterized
in Theorem 2 by modifying the condition of Theorem 1.
In Section VII, an example illustrates the construction of a
residual generator whose dynamics is globally asymptotically
stable for sufficiently slow switching and its behavior in
the occurrence of faults (modeled in different ways) in the
case where the initial state of the plant is unknown. Finally,
Section VIII contains some concluding remarks and a brief
description of future work.

Notation: The symbols R, R+ and Z
+ are used to denote

the sets of real numbers, non negative real numbers and non
negative integer numbers, respectively. Real vector spaces and
subspaces are denoted by calligraphic letters, like V . The
quotient space of a vector space X over a subspace V ⊆X is
denoted by X/V . The subspace orthogonal to a given subspace
V is denoted by V⊥. Linear maps between vector spaces
and the associated matrices are denoted by the same slanted
capital letters, like A. Therefore, the statements A∈R

p×q and
A :Rq →R

p are consistent. The image and the kernel of A
are denoted by ImA and KerA, respectively. The image of
a subspace V under a map A is simply denoted by AV . The
transpose of A is denoted by A�. The symbols In, 0m×n and
0n are respectively used for the identity matrix of dimension
n, for the m×n zero matrix and for the n-dimensional zero
vector (subscripts are omitted if the dimensions are clear from
the context).

II. PRELIMINARIES AND PROBLEM STATEMENT

A switching linear system Σσ is a continuous-time dynam-
ical system described by the equations

Σσ ≡
{

ẋ(t) = Aσ(t) x(t) +Bσ(t) u(t),
y(t) = Cσ(t) x(t),

(1)

where t∈R
+ is the time, x∈X =R

n the state, u∈U =R
m

the input, y ∈Y =R
p the output; letting I = {1, . . . , N} be

a finite index set, σ :R+ → I is a piecewise-constant, left-
continuous function that represents the time-driven switching
signal; Ai, Bi, Ci, for all i∈ I , are real matrices of suitable
dimensions. The linear systems

Σi ≡
{

ẋ(t) = Ai x(t) +Bi u(t),
y(t) = Ci x(t),

with i ∈ I,

are the modes of Σσ and they form the indexed family
Σ= {Σi}i∈ I of the modes of Σσ . The active mode at time t
is specified by the value of σ(t)∈ I . In dealing with switching
linear systems of the form (1), we assume that σ(t) is known
at time t for all t∈R

+ and we refer to this assumption by
saying that σ is measurable.

The points of discontinuity of the switching signal σ are
called the switching times and the dwell time τσ of σ is defined
as the lower bound of the set of the lengths of the time
intervals between two consecutive switching times. To avoid
Zeno phenomena in the behavior of Σσ , only the switching
signals that have finitely many points of discontinuity in any
time interval of finite length are considered to be admissible.
Their set is denoted by S0, while Sα ⊆S0, with α∈R

+,
denotes the set of the switching signals such that τσ ≥α.

We assume that the components of the input signal u(t)
may be discontinuous functions (with finitely many points of
discontinuity on [0,+∞)) and/or a (linear combination of)
Dirac delta functions. Accordingly, the state equation in (1)
has to be interpreted in a generalized sense, either by letting
it hold almost everywhere (except at the discontinuity points of
u(t)) and/or considering the derivative ẋ(t) in a distributional
sense.

Letting Tσ = {t0 =0, t1, t2, . . .} be the finite or countably
infinite ordered set of the discontinuity points of the switching
signal σ ∈S0, given an initial state x(0)=x0 ∈X and an
input u(t) defined over the interval [0, t̄), the (generalized)
solution x(t) to the state equations of (1) is recursively defined,
for any t∈ (tk−1, tk] with tk−1, tk ∈Tσ , by

x(t) = eAik
(t−tk−1)x(tk−1) +

∫ t

tk−1

eAik
(t−τ)Biku(τ)dτ

where ik =σ(t) for t∈ (tk−1, tk]. To highlight that x(t) de-
pends on the choice of σ and on t, x(0) and u(t) over [0, t),
we will write x(t)=φσ(t, x(0), u(τ)|[0,t)).

Note that the notion of switching linear system described
above remains consistent also if we let the dimension of the
input vector and the dimension of the output vector vary as the
system switches from one mode to another. Since it is possible
to maintain such dimensions constant by embedding u(t) and
y(t), separately, in two larger real vector spaces, we refer, by
a slight abuse of notations and without loss of generality, to
the representation (1) also in case such variations occur.

The stability of a switching system depends on the stability
of its modes as well as on the switching signal. We say that
Σσ is globally asymptotically stable over Sα if it is globally
asymptotically stable for all σ ∈Sα, i.e. if the origin of X is
a stable equilibrium point that attracts all the free motions.
Asymptotic stability of all the modes does not guarantee
global asymptotic stability for arbitrary switching, that is for
all σ ∈S0 [25]. In general, one is interested in guaranteeing
that Σσ is globally asymptotically stable over Sα provided
α is sufficiently big or, equivalently, for (sufficiently) slow
switching. The basic result in this direction is the following.

Lemma 1: [26, Lemma 2] Let all the modes Σi, with i∈ I ,
of Σσ be asymptotically stable. Then, there exists α∈R

+ such
that Σσ is globally asymptotically stable over Sα.

The proof of Lemma 1 given in [26, Lemma 2] implies
that if ‖eAit‖≤ e(ai−λit), with λi > 0, for all i∈ I and for
all t≥ 0, then Σσ is globally asymptotically stable over
Sα for α≥maxi∈ Iai/λi. Since any constant σ belongs to
Sα for any α, asymptotic stability of all the modes is a
complete characterization of global asymptotic stability for
slow switching. To characterize stability over Sα for a specific
α is, in general, more difficult: sufficient conditions in terms
of LMIs can be found in [27] and in the references therein.

Given a switching linear system Σσ of the form (1) with
dimU =m≥ 2, let some components of the input u, say,
possibly after reordering, u1, . . . , um1

, with m1 ≤m, model
the occurrence of m1 different faults, while the other com-
ponents represent control inputs or possible unknown inputs
that are not to be regarded as faults. In order to model an



abrupt failure (like that due to a sudden component rupture)
that occurs at time t̄∈R

+, we can assume, for instance, that
uj(t), with j ∈{1, . . . ,m1}, is of the form uj(t)= a δ(t− t̄),
where a∈R and δ(t) denotes the Dirac delta function, or of
the form uj(t)= aH(t− t̄), where a∈R and H(t) denotes
the Heaviside step function. Otherwise, to model a faulty
variation of the performances that initiates less abruptly at
time t̄, we can assume that uj(t) is a continuous function
such that uj(t)= 0 on [0, t̄] and uj(t) 
=0 on (t̄, t̄+ ε), for
some ε> 0. The components of the input that model the faults
will be generally referred to as the fault inputs.

In such situation, the FDI problem consists in recognizing
the occurrence of faults, i.e. the occurrence of deviations
from 0 of any fault component uj , with j≤m1, of the input
and in determining which component(s) has (have) deviated
by analyzing the output of the system. The most natural
way to perform this analysis consists in comparing (a linear
combination of the components of) the output of the system
with the output of a suitably designed observer, so as to
generate a residual signal rj(t) whose behavior carries the
desired information on uj(t). From this general point of view,
since the signals affecting the system behavior through the
fault inputs are unknown to the designer, the considered prob-
lem shows similarities with the unknown input observation
problem studied, for switching linear systems, in [11].

On that basis, if the initial state x(0) of the system is
known, one may look for an observer such that rj(t) remains
identically equal to 0 as long as the fault input is equal to
zero, while it deviates from zero when the possible fault occurs
and the fault input becomes different from zero. To be more
precise, this means that, if the fault occurs at time t̄, however
it is modeled, the residual rj(t) should be equal to 0 on the
interval [0, t̄) and different from 0 on the interval (t̄, t̄+ ε),
for some ε> 0. In that case, the behavior of rj(t) gives an
immediate and sharp indication of the occurrence of a fault.

Otherwise, if x(0) is not known, one may ask that rj(t)
goes asymptotically to 0 for sufficiently slow switching if no
faults occur, and that the convergence to 0 is lost or somehow
significantly disturbed in the occurrence of faults. However,
in this case, it is not immediate and it may not be simple to
recognize the occurrence of a fault by analyzing the behavior
of rj(t). We will consider this situation with more detail in
Section VI.

In order to state the problem formally, let us assume that
the switching linear system Σσ , of the form (1), with m≥ 2,
is the mathematical model of a real, possibly faulty, plant and
let us denote by

− uj(t), with j ∈{1, . . . ,m}, the j-th component of the
input vector u(t);

− uC(t) the subvector of u(t) whose components represent
known inputs (like, e.g., control inputs);

− uj(t) the vector obtained by removing the j-th compo-
nent uj(t) and all the components of uC(t) from u(t).

The inputs uj(t) and uj(t) are unknown to the designer and, in
particular, uj(t) is meant to model a specific fault of interest.
Some of the components of uj(t) may model further faults,

while the others are used to take into account the presence of
model uncertainties and mismatches as well as of disturbances,
in the same way as in [1, Eqs. (54)–(55)], [2, Table 4],
[3, Eqs. (5)–(6)] in the case of linear systems and in [12,
Eqs. (1)–(2)], [13] in the case of switching systems. With these
notations, the problem we are interested in is stated as follows.

Problem 1 (Residual Signal Generation Problem): Given
a switching linear system Σσ of the form (1), with m≥ 2,
let uj be a fault input and assume that σ(t) is measurable.
Then, the j-th Residual Signal Generation Problem (j-RSGP)
consists in finding a switching linear system Σ

resj
σ , called the

j-th residual signal generator, of the form

Σresj
σ ≡{

ż(t) = AOσ(t) z(t) +BOCσ(t) uC(t) +BOσ(t) y(t),
rj(t) = COσ(t) z(t) +DOσ(t) y(t),

(2)

with state space Z =R
q , together with an exact initialization

map P :X →Z , with ImP =Z , such that, for all σ ∈S0,
R1. the residual signal rj(t) is independent of (i.e., com-

pletely decoupled from) both uC(t) and uj(t)

and, if Σresj
σ is initialized exactly at z(0)=P x(0),

R2. rj(t)= 0 for t∈ [0, t̄) if and only if uj(t)= 0 for t∈ [0, t̄).
Clearly, if x(0) is known, solvability of Problem 1 implies

the possibility of detecting and isolating, with respect to the
effect of any other fault, unknown or control input, the fault
modeled by the input uj(t). Hence, we can say that the
solution of the FDI problem obtained in this way is robust
with respect to the model uncertainties and to the disturbances
that, together with the other possible faults, are modeled by
means of the unknown input uj(t). In the case in which the
j-RSGP is solved by a j-th residual signal generator Σresj

σ but
x(0) is not known, the asymptotic behavior of rj(t) depends
on the global stability properties of Σ

resj
σ as well as on the

characteristics of the fault signal uj(t). We will consider this
situation in Section VI.

Remark 1: Following the approach of [5] more closely, it
would be possible to formally state the FDI problem in a more
general way than that of Problem 1. More precisely, assuming
that the set of the, say, m1 fault inputs is partitioned in disjoint
subsets ū1, . . . , ūm2

, with m2 ≤m1, one could consider a
residual generator Σres

σ of the form

Σres
σ ≡{
ż(t) = AOσ(t) z(t) +BOCσ(t) uC(t) +BOσ(t) y(t),
r(t) = COσ(t) z(t) +DOσ(t) y(t),

(3)

and reformulate Requirement R1 by asking that, for all
σ ∈S0, the output trajectories of Σres

σ generated by each
subset of fault inputs ūj are confined, for each mode Σres

i ,
to the subspaces of the output space of that mode which are
mutually independent – i.e., such that each of them does not
intersect the sum of all the others. Note that this condition is
stronger than asking that the output trajectories of each mode
Σres

i generated by each subset of inputs ūj are confined to
independent subspaces of the output space of the mode. If
there exists a residual generator for which such condition is
satisfied, the occurrence of faults modeled by different subsets



of fault inputs affects components of r(t) that are contained,
for all i∈ I , in independent subspaces of the output space
and then it can be identified by looking at the projection of
r(t) onto each one of those subspaces. Since, in general, the
interest is in detecting each single fault input and in isolating it
with respect to all the others (and to all the possible non-fault
inputs), in stating Problem 1 we concentrate on the situation
in which the set of fault inputs is partitioned into two subsets:
one consisting of uj alone and the other consisting of the
remaining fault inputs, viewed as a subset of components of
uj(t). Beside simplifying the notation and the investigation in
the switching framework, this choice gives us the possibility
of incorporating, in the construction of the residual generator,
the projection on the independent subspace of the output that
is affected by the fault, thus reducing the dimension of the
residual generator. In practice, assuming that m1 fault inputs
are present and that one is interested in detecting and isolating
each of them with respect to all the others, the formulation
of the problem (called the Beard and Jones Detection Filter
Problem, or BJDFP) given in [5] in the classical linear case
applies and it leads to look for one residual generator and a
bank of m1 projection operators. By considering the j-RSGP
stated here for j=1, . . . ,m1, we have a different formulation
of the same problem and we are led, in the same situation, to
look for a bank of m1 residual generators of lower dimension.
Moreover, focusing on a single fault input at a time, as it
happens in the classical linear case, we can give conditions
to assure that the residual actually differs from 0 if the fault
occurs (see the discussion at the end of [5, Section IV]).

Remark 2: Note that the FDI problem concerns the in-
put/output behavior and, therefore, in the classical linear
framework, one can assume, without loss of generality, that
the system at issue is observable. On the other hand, in a
switching linear system, unobservable modes can be present
together with observable ones and, in any case, it may be
impossible to get rid of their unobservable subsystems without
destroying the structure of the overall switching system. This
adds a nontrivial complication to the problem and, together
with the fact that the independency of the effects of the various
fault inputs must be maintained in the switching from one
mode to another, it establishes the main technical difference
between the classical case and the one considered herein (see
also Remark 7). It is worthwhile mentioning that the observ-
ability problem has been circumvented in [12], [13] simply
by assuming that all the modes of the considered switching
system are observable. Our approach is more general, since
no observability assumption on the single modes is made.

III. STRUCTURAL GEOMETRIC TOOLS

The fundamental geometric tool in the investigation of
solvability of the j-RSGP is the notion of robust conditioned
invariant subspace, which was first introduced and studied
in the framework of switching linear systems in [28], [29]
and which was exploited to characterize solvability of the
unknown input observation problem in [11]. The definitions of
robust invariant subspace and of robust conditioned invariant
subspace for a switching linear system are recalled below.

Definition 1: Given a switching linear system Σσ of the
form (1), a subspace SR ⊆X is said to be:

1) a (robust) invariant subspace for Σσ if it is an invariant
subspace for all the modes of Σσ , i.e. if Ai SR ⊆SR for
all i∈ I;

2) a (robust) conditioned invariant subspace for Σσ if it is
a conditioned invariant subspace for all the modes of Σσ ,
i.e. if Ai (SR ∩KerCi)⊆SR for all i∈ I .

To simplify the notation, when speaking of invariant or
conditioned invariant subspaces for Σσ , we will drop the
adjective robust, although we will keep the subscript R.

Let us now recall a number of results from [11], [28], [29],
which are instrumental in the subsequent developments.

Proposition 1: Given a subspace SR ⊆X and a matrix P�

whose columns form a basis of S⊥
R , SR is a conditioned

invariant subspace for Σσ if and only if one of the following
equivalent conditions holds:

i) there exists an indexed family of linear maps
G = {Gi, Gi :Y→X}i∈ I such that

(Ai +Gi Ci)SR ⊆ SR for all i ∈ I; (4)

ii) there exists an indexed family of pairs of matrices with
real entries {(Li,Mi)}i∈ I such that

A�
i P

� = P�L�
i + C�

i M�
i for all i ∈ I. (5)

Moreover, {(Li,Mi)}i∈ I is an indexed family of pairs of real
matrices that satisfy (5) if and only if there exists an indexed
family G = {Gi, Gi :Y→X}i∈ I of linear maps that satisfy
(4) with {

P Gi =−Mi

P (Ai +Gi Ci) = Li P
for all i ∈ I. (6)

The set of all conditioned invariant subspaces for Σσ

containing a subspace W⊆X has a minimal element, which
is denoted by S∗

R(W). The sequence of subspaces SRk, with
k∈Z

+, generated by the recursive algorithm{ SR0 = W
SR(k+1) = SRk +

∑
i∈ I Ai (SRk ∩KerCi)

(7)

converges to S∗
R(W) in n steps at most.

Any indexed family G = {Gi, Gi :Y→X}i∈ I that satisfies
Condition i) of Proposition 1 is called a friend of SR. Any
friend G = {Gi, Gi :Y→X}i∈ I of a conditioned invariant
subspace SR for Σσ defines a family of output injections
which, applied to the corresponding modes of Σσ , yield a
new switching linear system ΣG

σ , whose modes are described
by the equations

ΣG
i ≡

{
ẋ(t) = (Ai +Gi Ci)x(t) +Bi u(t),
y(t) = Ci x(t),

with i ∈ I.

By (4), the subspace SR is invariant for the switching linear
system ΣG

σ . Thus, ΣG
σ induces a switching linear dynamics

on the subspace SR and a switching linear dynamics on the
quotient space X/SR. The former will be denoted by ΣG

σ |SR

and the latter will be denoted by ΣG
σ |X/SR

.



Proposition 2: Given a conditioned invariant subspace
SR ⊆X for Σσ , an n× q matrix P� whose columns form
a basis of S⊥

R and a friend G = {Gi, Gi :Y→X}i∈ I of
SR, the switching linear dynamics induced by ΣG

σ on
X/SR is described, up to a change of basis, by the in-
dexed family of matrices {Li}i∈ I , where {(Li,Mi)}i∈ I is
a family of pairs which satisfy (5) with P Gi =−Mi and
P (Ai +Gi Ci)=Li P for all i∈ I .

To gain more insight into the situation described by Propo-
sition 2, let us apply the change of basis x=T ξ= [P� S] ξ,
where P� is a matrix whose columns form a basis of S⊥

R and
S is a matrix whose columns form a basis of SR. Then, the
equations that describe the modes ΣG

i of ΣG
σ take the form

ΣG
i ≡

{
ξ̇(t) = A′

i ξ(t) +B′
i u(t),

y(t) = C ′
i ξ(t),

with i ∈ I,

where, in particular,

A′
i =T−1(Ai +Gi Ci)T =

[
A′

11i 0
A′

21i A′
22i

]
for all i ∈ I.

Since

T−1 =

[
(P P�)−1P
(S�S)−1S�

]
,

in the ξ-coordinates, a basis of SR is given by the columns of
the matrix (0(n−q)×q I(n−q))

� and the canonical projection Pc

from X onto X/SR is given by (Iq 0q×(n−q)) :X →X/SR.
Thanks to the lower block-triangular form of A′

i, this shows
that, for all i∈ I , the matrix A′

11i describes the dynamics
induced by ΣG

i on X/SR, while A′
22i describes that induced

on SR. Moreover, the diagram below

X Ai+GiCi ��

(PP�)−1P

��

T−1

���
��

��
��

��
X

T−1

����
��
��
��
�

(PP�)−1P

��

X A′
i ��

Pc

����
��
��
��

X
Pc

���
��

��
��

�

X/SR

A′
11i �� X/SR

is commutative, and hence we have

A′
11i (PP�)−1P = A′

11i (Iq 0q×(n−q))T
−1

= (Iq 0q×(n−q))A
′
i T

−1

= (Iq 0q×(n−q))T
−1 (Ai +GiCi)

= (PP�)−1P (Ai +GiCi).

Hence, since P is a full row rank matrix, by the second
equation in (6), it follows that (PP�)A′

11i (PP�)−1 =Li,
where {(Li,Mi)}i∈ I , with P Gi =−Mi for all i∈ I , is a
family of pairs of matrices which satisfy (5). By choosing an
orthonormal matrix P� to represent a basis of S⊥

R , we have
A′

11i =Li for all i∈ I .

IV. SOLUTION OF THE PROBLEM

Given a switching linear system Σσ of the form (1), with
m≥ 2, letting uj be a fault input and assuming that σ is

measurable, we can construct a candidate residual signal
generator that solves the j-RSGP. Then, let us denote by

− bjσ(t) the column of the input matrix Bσ(t) that multiplies
uj(t);

− BCσ(t) the submatrix of the input matrix Bσ(t) that
multiplies uC(t) (recall that uC(t) is the subvector of
u(t) whose components represent known inputs);

− Bj
σ(t) the matrix obtained by removing the j-th column

and the submatrix BCσ(t) from the input matrix Bσ(t);

and let us assume that bji 
=0 for all i∈ I , that is let us assume
that the fault input uj affects all the modes of Σσ . Note that
this assumption does not cause any loss of generality, since
the j-RSGP, as it has been stated, would not make sense if
we had some mode that is not affected by the fault. With the
above notations, we can write the state equation of Σσ as:

ẋ(t) = Aσ(t)x(t) +BCσ(t)uC(t) + bjσ(t)uj(t) +Bj
σ(t)u

j(t).

Then, we construct the minimal conditioned invariant sub-
space for Σσ that contains ImBj

i for all i∈ I , that is
S∗
R(

∑
i∈ I ImBj

i ), by means of the recursive algorithm (7).
Letting P� be an n× q matrix whose columns form a basis of
(S∗

R(
∑

i∈ I ImBj
i ))

⊥, we consider the map P :X →Z with
Z =R

q . Note that KerP =S∗
R(

∑
i∈ I ImBj

i ). Then, letting
G = {Gi, Gi :Y→X}i∈ I be a friend of S∗

R(
∑

i∈ I ImBj
i )

and letting {(Li,Mi)}i∈ I be an indexed family of pairs of
matrices that satisfy (5), we can define the switching dynamics

ż(t) = Lσ(t)z(t) + PBCσ(t)uC(t)− PGσ(t)y(t) (8)

with z ∈Z . On the basis of the discussion following Proposi-
tion 2, we can view the free dynamics in (8) as the dynamics
induced on X/S∗

R(
∑

i∈ I ImBj
i ) by that of ΣG

σ .
Now, for each i∈ I , let us consider the subspace

image of S∗
R(

∑
i∈ I ImBj

i ) under the map Ci, i.e.
CiS∗

R(
∑

i∈ I ImBj
i )⊆Y , and the quotient space

Y/CiS∗
R(

∑
i∈ I ImBj

i )=Yi. We denote by P i :Y→Yi

the canonical projection and by P iCi :X →Yi the
map obtained by composing Ci and P i. Since
ImBj

i ⊆S∗
R(

∑
i∈ I ImBj

i )=KerP ⊆KerP iCi, for each
i∈ I there exists a unique map COi :Z→Yi such that
COiP =P iCi, as shown in the commutative diagram below

S∗
R(

∑
i∈ I ImBj

i ) = KerP
Ci ��

� �

��

CiS∗
R(

∑
i∈ I ImBj

i )� �

��
X Ci ��

P

��

Y
P i

��
Z COi �� Yi

First of all, note that the dimension of Yi may depend on the
index i and vary with it. However, we can define a switching
time-signal rj(t), that depends, in particular, on σ, as

rj(t) = COσ(t) z(t)− P σ(t) y(t). (9)



A candidate residual signal generator to solve the j-RSGP
is the switching linear system Σ

resj
σ defined by (8)–(9), i.e.

Σresj
σ ≡{

ż(t) = Lσ(t) z(t) + PBCσ(t) uC(t)− PGσ(t) y(t),
rj(t) = COσ(t) z(t)− Pσ(t) y(t).

(10)

As remarked above, the dimension of the output rj(t) of
Σ

resj
σ may take different values on the different intervals

[tk, tk+1). As anticipated in Section II, this fact has no relevant
consequences on the definition of the system at issue and,
except for signalling it, we do not pay attention to it.

Remark 3: The input/output relation described by (10) does
not depend on the choice of the basis of S∗

R(
∑

i∈ I ImBj
i ). In

fact, any other basis is of the form P�H� for some invertible
(q× q)-matrix H and its use in the above construction gives
rise to a different representation of Σ

resj
σ which is related to

(10) by the change of basis in Z defined by H .
To state the condition under which the system Σ

resj
σ defined

above solves the j-RSGP, we consider, for each i∈ I , the
maximal (Ai +GiCi)-invariant subspace of X contained in(
KerCi +S∗

R(
∑

i∈ I ImBj
i )
)

and we denote such subspace
by Wi. Then, the following technical result is in order.

Proposition 3: With the above notations, Wi does not
depend on the choice of the friend G = {Gi, Gi :Y→X}i∈ I

of S∗
R(

∑
i∈ I ImBj

i ).
Proof: Note that, by construction, S∗

R(
∑

i∈ I ImBj
i ) ⊆

(KerCi+S∗
R(

∑
i∈ I ImBj

i )) is (Ai+GiCi)-invariant. Hence,
by maximality of Wi, we have S∗

R(
∑

i∈ I ImBj
i ) ⊆ Wi.

Also note that any element w ∈ Wi can be decomposed as
w = w′+s, with w′ ∈ KerCi and s ∈ S∗

R(
∑

i∈ I ImBj
i ) and

we have (Ai + GiCi)w = (Ai + GiCi) (w
′ + s) = Ai w

′ +
(Ai+GiCi) s = Ai w

′+s′ with s′ ∈ S∗
R(

∑
i∈ I ImBj

i ) ⊆ Wi

by (Ai+GiCi)-invariance of S∗
R(

∑
i∈ I ImBj

i ). On the other
hand, by (Ai +GiCi)-invariance of Wi, (Ai w

′ + s′) belongs
to Wi and we can therefore conclude that Ai w

′ belongs to
Wi. Now, if G ′ = {G′

i, G
′
i : Y→X}i∈ I is another friend

of S∗
R(

∑
i∈ I ImBj

i ), we have (Ai + G′
iCi)w = (Ai +

G′
iCi) (w

′ + s) = Ai w
′ + (Ai + G′

iCi) s = Ai w
′ + s′′

with s′′ ∈ S∗
R(

∑
i∈ I,i �= j ImBj

i ), and, consequently, (Ai +
G′

iCi)w belongs to Wi. Thus, the subspace Wi ⊆ (KerCi +
S∗
R(

∑
i∈ I ImBj

i )) is also (Ai+G′
iCi)-invariant and its max-

imality is obvious.
The main result that states the condition under which Σ

resj
σ

solves the j-RSGP, making it possible to detect the occurrence
of the fault modeled by uj , is the following.

Theorem 1: Given a switching linear system Σσ of the
form (1), with m≥ 2, let uj be a fault input that affects
all the modes Σi of Σσ and assume that σ is measurable.
Then, letting Wi be the maximal (Ai +Gi Ci)-invariant sub-
space of X contained in (KerCi +S∗

R(
∑

i∈ I ImBj
i )), where

G = {Gi, Gi :Y→X}i∈ I is a friend of S∗
R(

∑
i∈ I ImBj

i ),
the j-RSGP is solvable if and only if

Wi ∩ Im bji = {0} for all i ∈ I. (11)

Moreover, in that case, the switching linear system Σ
resj
σ

constructed above and described by (10), along with the

initialization map P : X →Z , where the columns of P� are
a basis of (S∗

R(
∑

i∈ I ImBj
i ))

⊥, is a solution to the j-RSGP.
Proof: If. We show the sufficiency of (11) by proving

the last statement of the theorem. To this aim, referring to the
candidate residual signal generator Σ

resj
σ defined by (10), let

us consider the auxiliary variable

eaux(t) = z(t)− P x(t). (12)

Using the expression of ẋ(t) and of ż(t) given in (1)
and (10), respectively, and exploiting the second equality
of (6) (which implies P (Aσ(t) +Gσ(t)Cσ(t))=Lσ(t)P
for all σ ∈S0 and for all t∈R

+) and the relation
ImBj

i ⊆S∗
R(

∑
i∈ I ImBj

i )=KerP (which implies
P Bj

σ(t) =0 for all σ ∈S0 and for all t∈R
+), we have

that the time evolution of eaux(t) is described by the
following equation

ėaux(t) = Lσ(t)z(t) + PBCσ(t)uC(t)− PGσ(t)y(t)−
PAσ(t)x(t)− Pbjσ(t)uj(t)− PBCσ(t)uC(t)− PBj

σ(t)u
j(t)

= Lσ(t)z(t)− Pbjσ(t)uj(t)− P (Aσ(t) +Gσ(t)Cσ(t))x(t)

= Lσ(t)eaux(t)− Pbjσ(t)uj(t). (13)

Moreover, by adding and subtracting COσ(t)Px(t) to the
second member of (9), since COiP = P iCi, we have

rj(t) = COσ(t)eaux(t) (14)

for all σ ∈S0 and for all t∈R
+. Considering (13) and (14)

together, we can conclude that rj(t) depends only on the value
of the auxiliary variable eaux(t) at time 0, that is eaux(0),
and on uj(t). In particular, it is independent of uj(t) for all
σ ∈S0. Hence, the system Σ

resj
σ satisfies Requirement R1 of

Problem 1.
Assume now for the rest of the proof, that Σ

resj
σ is

correctly initialized at z(0)=Px(0), so that eaux(0)= 0. If
uj(t)= 0 for all t∈ [0, t̄), we have by (13) also eaux(t)= 0
for all t∈ [0, t̄) and, therefore, by (14) we get rj(t)= 0
for all t∈ [0, t̄) and for all σ ∈S0. To prove the converse,
consider for i∈ I the image of Wi under the map P , namely
the subspace PWi ⊆Z . The subspace PWi is contained in
KerCOi and, since (Ai +GiCi)Wi ⊆Wi, we have LiPWi =
P (Ai +GiCi)Wi ⊆PWi. Hence PWi is Li-invariant for all
i∈ I and, by maximality of Wi, it turns out to be the maximal
Li-invariant subspace of Z contained in KerCOi. From this,
we can conclude that, for all i∈ I , the subspace PWi is the
unobservability subspace of the i-th mode of the switching
linear system described by (13) and (14), namely{

ėaux(t) = Li eaux(t)− P bji uj(t),
rj(t) = Ci eaux(t).

(15)

Now, we can state that P bji is not an element of PWi.
Otherwise, from P bji ∈PWi we would have bji =wi + s with
wi ∈Wi and s∈KerP =S∗

R(
∑

i∈ I ImBi)⊆Wi, where the
last inclusion has been shown in the proof of Proposition 3.
Hence, bji would belong to Wi and, since bji 
=0 for all i∈ I
because uj has been assumed to affect all the modes, this
contradicts (11). The fact that at least one vector, namely



P bji , is not contained in the unobservability subspace Wi

of system (15), implies that at least one component of the
(dimYi)× 1 transfer function matrix of this latter is different
from 0. Otherwise the transfer function matrix would be null
and, hence, the unobservability subspace Wi would include
the whole state space. As a consequence, rj(t)= 0 for t∈ [0, t̄)
and for all σ ∈S0 implies uj(t)= 0 for t∈ [0, t̄). Therefore,
Σ

resj
σ satisfies Requirement R2 of Problem 1.
Only if. Let Σ

resj
σ be a residual signal generator of the

form (2), with state space Z =R
q , that, together with the

initialization map P :X →Z , solves the j-RSGP. Without
loss of generality, we can assume that Σ

resj
σ has no un-

observable states, i.e. no states z 
=0 whose free evolution
z(t)=φσ(t, z, 0) is such that, for all σ ∈S0, COσ(t)z(t)= 0
for all t∈R

+. In fact, the unobservable states form a
subsystem whose evolution does not influence the residual
rj(t) and that, therefore, can be factored out by taking
a suitable quotient system. Since Σ

resj
σ satisfies Require-

ment R2 of Problem 1, if, in particular, uj(t)= 0 for t≥ 0,
for any choice of the initial state x(0)=x0 ∈X we have
rj(0)=COσ(0)Px0 +DOσ(0)Cσ x0 =0 for all σ ∈S0. This
implies COiP +DOiCi =0. Hence, by considering the auxil-
iary error eaux(t) defined by (12) and adding and subtracting
AOσ(t)Px(t) to its state equation and COσ(t)Px(t) to the
output equation of Σresj

σ respectively, we get⎧⎪⎪⎨
⎪⎪⎩

ėaux(t) = AOσ(t) eaux(t)− Pbjσ(t) uj(t)− PBj
σ(t) u

j(t)

+ (BOCσ(t) − PBCσ(t))uC(t)
+ (BOσ(t)Cσ(t) − PAσ(t) +AOσ(t)P )x(t),

rj(t) = COσ(t) eaux(t).
(16)

In order to satisfy Requirement R1 of Problem 1 with
z(0)=Px(0), in particular, for the identically null input
u(t)= 0 for t≥ 0, the forced component of eaux(t) excited
by x(t) must be null for any x(t)=φσ(t, x(0), 0) for all
x(0)=x∈X , and, hence, we have

(BOiCi − PAi +AOiP ) = 0 for all i∈ I. (17)

Then, for the same reason, in particular for uj(t)= 0 for t≥ 0,
since uj(t) and uC(t) are mutually independent, we have

(BOCi − PBCi) = 0 for all i∈ I, (18)
ImBj

i ⊆ KerP for all i∈ I, (19)

and (16) reduces to{
ėaux(t) = AOσ(t) eaux(t)− Pbjσ(t) uj(t),

rj(t) = COσ(t) eaux(t).
(20)

Since ImP =Z , there exist suitable maps Gi :Y→X
such that BOi =−PGi for all i∈ I and, by (17), we
get P (Ai +GiCi)=AOiP for all i∈ I . This implies that
KerP is a conditioned invariant subspace for Σσ , of which
G = {Gi, Gi :Y→X}i∈ I is a friend, and that the dy-
namics of Σ

resj
σ coincides with the dynamics induced on

X/KerP by that of ΣG
σ . Moreover, by (19) and minimality of

S∗
R(

∑
i∈ I ImBj

i ), we also have S∗
R(

∑
i∈ I ImBj

i )⊆KerP .
Denoting by Wi, for i∈ I , the maximal (Ai +GiCi)-invariant
subspace of X contained in (KerCi +KerP ) and using

the same arguments of the proof of Proposition 3 and
of the If-part of this proof, we can show that PWi is
the unobservability subspace of the i-th mode of the sys-
tem described by (20). Since Requirement R2 of Prob-
lem 1 is satisfied, we have that Pbji does not belong
to PWi and, hence, Wi ∩ Im bji = {0} for all i∈ I . Since
(KerCi +S∗

R(
∑

i∈ I ImBj
i ))⊆ (KerCi +KerP ), by maxi-

mality of Wi, we have Wi ⊆Wi for all i∈ I and we conclude
that (11) is satisfied.

Remark 4: Assuming that Condition (11) of Theorem 1
holds for all i∈ I and that the fault described by uj occurs
at time t̄, the theorem says that rj(t) is completely decoupled
from the unknown input uj(t) and it is not identically equal
to 0 on the interval [t̄, t̄ + ε) for all ε> 0. The value rj(t̄)
depends on how the occurrence of the fault is modeled. If
uj(t)= aδ(t− t̄), where a∈R and δ(t) denotes the Dirac delta
function, we have rj(t̄) 
=0. Instead, if uj(t)= aH(t− t̄),
where a∈R and H(t) denotes the Heaviside step function,
or uj(t) is a continuous function such that uj(t)= 0 for
t≤ t̄ and uj(t) 
=0 for t> t̄, we have rj(t̄)= 0 because of
the continuity property of eaux(t). In all cases, the time
instant t̄ at which the fault occurs is the infimum of the
set of points on which rj(t) is different from 0, that is
t̄= inf{t, t∈R

+ such that rj(t) 
=0}, the infimum being actu-
ally a minimum if uj(t) is an impulsive signal. By observing
rj(t), it is therefore possible to detect the occurrence of the
fault and the time at which it occurs.

Remark 5: Note that the presence in Σσ of inputs that are
known has no relevance in the j-RSGP (similarly to what
happens in the unknown input observation problem studied in
[11]), since they do not contribute to the dynamics of eaux(t).
The solvability condition, dependending on the matrices Bj

i

with i 
= j, takes into account only the components of u that are
not known, either because they also model faults or because
they are unknown inputs of other type (e.g., disturbances).

Remark 6: Note that if the representation of the residual
signal generator Σ

resj
σ that, together with the exact initial-

ization map P :X →Z , solves the j-RSGP is modified by
a change of basis z=H−1ξ, where H is a q× q invertible
matrix, also the exact initialization map is modified into HP .
Since KerHP =KerP , recalling Remark 3, we can say that,
if Condition (11) is satisfied, Theorem 1 establishes a bijective
correspondence between the set of the pairs consisting of a
residual signal generator Σ

resj
σ of the form (2) and an exact

initialization map P that solve the j-RSGP and the set of the
pairs consisting of a conditioned invariant subspace S ⊆X and
a friend G such that S∗

R(
∑

i∈ I ImBj
i )⊆S and Wi ∩ bji = {0}

for all i∈ I . Such correspondence is described by S =KerP
and BOi =−PGi for all i∈ I .

A. Analysis in case the solvability condition is not satisfied

Condition (11) is quite tight and when it is not satisfied it
is not possible to generate a residual satisfying both R1 and
R2. However, a more detailed analysis provides information
useful for handling the FDI problem by means of different
strategies.



Since Wi contains the unobservability subspace Oi of the
i-th mode Σi of Σσ , we have that Condition (11) is not
satisfied, in particular, if bj belongs to Oī for some ī∈ I ,
i.e. if bj is unobservable for the ī-th mode. In such case,
if the fault described by uj(t) occurs when the ī-th mode
is active, the residual rj(t) is not forced to deviate from 0,
at least, until the system switches and, so, the fault is not
detected when it occurs. Note that unobservability with respect
to the ī-th mode does not prevent the fault described by uj(t)
from affecting the output of Σσ , except in the case in which
the only active mode on [t̄,+∞), where t̄ denotes the time
when the fault occurs, is just the ī-th mode. Therefore, this
situation represents a non trivial case that is not found in the
framework of classical linear systems. The information on the
fault contained in the output of Σσ is intrinsically poor and
the only way to overcome this drawback is to intervene on
the physical plant that is modeled by Σσ , if it is possible,
to modify the location of the sensors or to add some. This
action must aim at altering the output map Cī, so that the
unobservability subspace of the ī-th mode no longer contains
bj and this obstruction to solve the FDI problem is removed.

Excluding the above situation, we have that Condition (11)
is not satisfied only if, for some ī∈ I , Ak

ī
bj belongs to

KerCī +S∗
R(

∑
i∈ I Bj

i ) for all k≤ dimAī − 1. The in-
formation on the fault contained in the output of Σσ is
hidden by the effect of the other unknown inputs. In this
case, to handle the FDI problem without intervening on
the structure of the plant modeled by Σσ , one can search
for a decomposition of the input matrix Bj

σ(t) of the
form Bj

σ(t) = [Bj
σ(t)1 Bj

σ(t)2] (possibly after reordering its
columns), such that, for all i∈ I , there exists ki ≤ dimAī − 1
which satisfies Aki

i bj /∈KerCi +S∗
R(

∑
i∈ I Bj

i1). If such de-
composition exists, Condition (11) is satisfied by replacing Wi

with the maximal (Ai +GiCi)-conditioned invariant subspace
contained in KerCi +S∗

R(
∑

i∈ I Bj
i1). Then, decomposing

uj(t) accordingly as uj(t)=

(
uj1(t)
uj2(t)

)
and disregarding the

term Bj
σ(t)2u

j2 in Σσ , it is possible to obtain a residual rj(t)
that satisfies R2 and is independent of (i.e., completely decou-
pled from) uC(t) and uj1(t). One can then exploit the degrees
of freedom in the choice of a friend G = {Gi, Gi :Y→X}i∈ I

of S∗
R(

∑
i∈ I Bj

i1) to attenuate the effects of uj2(t) on rj(t),
while enhancing those of uj(t), by means of qualitative
techniques like, e.g., those employed in [12] and [13]. Note
that there may be several alternative ways to decompose
Bj

σ(t) as described above. In choosing one of them, beside
minimizing the dimension of uj2(t), one should exploit any
available information about norm and/or frequency bounds on
the components of uj(t) to increase the performances of the
residual generator by a suitable choice of the friend G .

B. Comparison with the classical linear case

In order to compare the content of Theorem 1 given above
with the characterization of solvability of the residual signal
generator problem given by [5] in the classical case of linear

systems, we assume that Σσ consists of a single mode and we
write, with an obvious use of the symbols,

Σσ = Σ ≡
{

ẋ(t) = Ax(t) +B u(t),
y(t) = C x(t).

(21)

Letting uj(t) be a fault input and assuming that Σ is observ-
able, Theorem 3 of [5] states that the j-RSGP is solvable if
and only if CS∗

R(Im bj)
⋂

CS∗
R(ImBj)= {0}, where, consis-

tently with the notations introduced at the beginning of this
section, bj denotes the j-th column of B and Bj denotes the
matrix obtained from B by removing its j-th column. The
following proposition shows that Theorem 1 is consistent with
this statement.

Proposition 4: Given a linear system Σ of the form (21),
with m≥ 2, for any j ∈{1, . . . ,m}, the following conditions
are equivalent:

i) bj ∈X is an observable state and

CS∗
R(Im bj) ∩ CS∗

R(ImBj) = {0}; (22)

ii)
W ∩ Im bj = {0}, (23)

where W is the maximal (A+GC)-invariant subspace
of X contained in (KerC +S∗

R(ImBj)).
Proof: Assume that Condition i) holds and suppose, by

contradiction, that bj belongs to W . Then, since S∗
R(Im bj) is

the minimum (A+GC)-invariant subspace of X that con-
tains bj , we have S∗

R(Im bj)⊆W ⊆ (KerC +S∗
R(ImBj)).

It follows that any s∈S∗
R(Im bj) can be written as

s= k+ s′, with k∈KerC and s′ ∈S∗
R(ImBj), and that

C s=C(k+ s′)=Cs′. By (22), the last equality implies
Cs=0 and, since this holds for any s∈S∗

R(Im bj), it con-
tradicts the observability of bj .

Assume that Condition ii) holds and let us con-
struct S∗

R(Im bj). If Akbj belongs to KerC for all
k≥ 0, by applying the recursive algorithm (7) we have
S∗
R(Im bj)= span {Akbj}k≥ 0. In this case, we would have

S∗
R(Im bj)⊆KerC ⊆ (KerC +S∗

R(ImBj)) and, hence, by
minimality of S∗

R(Im bj), also S∗
R(Im bj)⊆W , but this con-

tradicts (23). Therefore, there exists k such that Akbj /∈KerC
and we have S∗

R(Im bj)= span {Akbj}k≤ k̄+1 where k̄ is the
minimum integer such that Akbj ∈KerC for k≤ k̄. This im-
plies, first of all, CAkbj 
=0 and hence bj ∈X is an observable
state. Moreover, assuming, by contradiction, that (22) does
not hold, we have that there exists s∈S∗

R(ImBJ) such that
CA(k̄+1)bj =Cs 
=0. This implies A(k̄+1)bj =xc + s with
xc ∈KerC and, as a consequence, S∗

R(Im bj) turns out to
be contained in (KerC +S∗

R(ImBj)). As seen above, by
minimality of S∗

R(Imbj), this implies also S∗
R(Im bj)⊆W ,

which contradicts (23).
Remark 7: Condition ii) of Proposition 4 is just the solv-

ability condition of Theorem 1 specialized to the situation at
issue, while Condition i) corresponds to the condition given
in [5, Theorem 3] for the case in which one is interested
only in detecting and isolating the specific fault input uj

with respect to all the others, with the only difference of
requiring explicitely the observability of bj . We have already



pointed out in Remark 2 that this explicit request is satisfied
without loss of generality, in the case of classical linear
systems, by assuming that Σ is observable. In case one is
interested in detecting and isolating each fault input, not only
the j-th one, with respect to all the other unknown inputs,
namely in solving the Beard-Jones detection filter problem
as it is formulated in [5], Theorem 1 says that a solution
consisting of a bank of m− 1 residual generators exists if
and only if Condition ii) is satisfied for all j=1, . . . ,m1,
and, hence, by Proposition 4, if and only if Condition i)
holds for all j=1, . . . ,m1. Focusing the attention on (22),
it is possible to prove that it holds for all j=1, . . . ,m1 if
and only if CS∗

R(Im bj)∩C(
∑

i�=j S∗
R(Im bi))= {0} for all

j=1, . . . ,m1. Then, except again for the additional request
of observability, we have that the characterization given by
Theorem 1 coincides with that given by [5, Theorem 3] and
that they are equivalent if Σ is observable.

V. EXAMPLE 1
In this section, the devised synthesis procedure is illustrated

by a numerical example. Computations and simulations are
made with MATLAB and MATLAB-based software for the
geometric approach available with [30].
Let us consider system Σσ , of the form (1), with I = {1, 2},
where

A1 =

⎡
⎢⎢⎣

0 0 0 0
0 0 1 0
0 1 0 0
−1 0 0 1

⎤
⎥⎥⎦ , A2 =

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
1 0 0 0
0 1 0 0

⎤
⎥⎥⎦ ,

B1 =

[
1 0 0 0
0 1 0 0

]�
, B2 =

[
0 0 1 0
0 0 0 1

]�
,

C1 =

[
1 0 0 0
0 1 0 0

]
, C2 =

[
0 0 0 1
0 0 1 0

]
.

Note that Σ1 is not observable, but this does not prevent
solvability of j-RSGP (Remark 2). Let us assume that input u1

model a fault of interest and input u2 be unknown (it may
be another fault or an input of other nature like, e.g., a
disturbance). Then,

b11 =
[
1 0 0 0

]�
, b12 =

[
0 0 1 0

]�
,

B1
1 =

[
0 1 0 0

]�
, B1

2 =
[
0 0 0 1

]�
.

Henceforth, we denote by ei, with i=1, . . . , 4, the i-th vector
of the natural basis of R4. Following the procedure described
in Section IV and applying standard methods of linear algebra,
by the recursive algorithm (7), where W =ImB1

1 +ImB1
2 , we

compute S =S∗
R(W)= span {e2, e4} and we also obtain

P =

[
1 0 0 0
0 0 1 0

]
.

Moreover, for any value of their parameters gîĵ and hîĵ , the
matrices

G1 =

⎡
⎢⎢⎣

g11 0
g21 g22
g31 −1
g41 g42

⎤
⎥⎥⎦ , G2 =

⎡
⎢⎢⎣

−1 h12

h21 h22

0 h32

h41 h42

⎤
⎥⎥⎦

define a friend G = {G1, G2} of S (see Proposition 1). Then,
by solving (5), we obtain

L1 =

[
g11 0
g31 0

]
, L2 =

[
0 h12

1 h32

]
.

The maximal (Ai +GiCi)-invariant subspaces contained in
KerC1 +S and KerC2 +S are W1 =span {e2, e3, e4} and
W2 =span {e2, e4}, respectively. Thus, Condition (11) of
Theorem 1 is satisfied with j=1 and i=1, 2.
To complete the construction of the residual generator Σres1

σ ,
that detects the occurrence of the fault modeled by u1, we use
the relation COi P =Pi Ci, with i = 1, 2, where the canonical
projections P1 :Y→Y1 =Y/C1S and P2 :Y→Y2 =Y/C2S
are P1 = [1 0] and P2 = [0 1]. Thus, we obtain CO1 = [1 0]
and CO2 = [0 1]. Consequently, the modes of Σres1

σ are

Σres1
1 ≡

⎧⎪⎨
⎪⎩

ż(t) =

[
g11 0
g31 0

]
z(t)−

[
g11 0
g31 −1

]
y(t)

r1(t) =
[
1 0

]
z(t)− [

1 0
]
y(t)

Σres1
2 ≡

⎧⎪⎨
⎪⎩

ż(t) =

[
0 h12

1 h32

]
z(t)−

[ −1 h12

0 h32

]
y(t)

r1(t) =
[
0 1

]
z(t)− [

0 1
]
y(t)

To run simulations, we choose the parameter values g11 =0.1,
h12 =−1.2, g31 =−2.5, h32 =0.7 and the switching signal

σ(t) =

⎧⎨
⎩

1 for 0≤ t < 1,
2 for 1≤ t < 3,
1 for 3≤ t.

We initialize the plant Σσ at x(0)= [0.5 −1 0.3 1.2]�. We
model the occurrence of a fault at input u1 at time t̄=0.6 by
the signal

u1(t) =

⎧⎨
⎩

0 for 0 ≤ t < 0.6,
t− 0.6 for 0.6 ≤ t < 1.6,
1 for 1.6≤ t,

and we assume u2(t)= 0 for t∈R
+ (see Fig. 1). Conse-

quently, with Σres1
σ initialized at z(0)=Px(0)= [0.5 0.3], the

residual r1(t) has the behavior shown in Fig. 2 and, zooming
in around time t=1 s, in Fig. 3. In particular, r1(t) is equal
to 0 on the time interval [0 0.6] and, as expected, the instant
t̄=0.6 at which the fault occurs corresponds to

t̄ = inf {t, t ∈ R
+ such that r1(t) 
= 0}.

Note that, although the state of Σres1
σ has a continuous

behavior, r1(t) is discontinuous at the switching times 1 and 3,
due to the abrupt change of the output map from CO1 = [1 0]
to CO2 = [0 1] and viceversa.
To show that the unknown input u2 has no effect on the
residual, let us consider the same situation as above, except
for the input u2(t), which is assumed to be a sinusoid – e.g.,
u2(t)=−1.8 sin(2t+π/2) as shown in Fig. 4. The behavior
of the residual is shown in Fig. 5 and Fig. 6. As is easy to
notice, these plots respectively coincide with those shown in
Fig. 2 and Fig. 3. Finally, let us consider the same situation
as above, except for a delay of 1 s in the fault input, so that
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Fig. 1. Saturated ramp at fault input u1 and zero at input u2
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Fig. 2. Residual r1 with saturated ramp at fault input u1 and zero at input u2

the latter affects the system after the first switch has occurred.
Namely, let us consider the signal

u1(t) =

⎧⎨
⎩

0 for 0≤ t < 1.6,
t− 1.6 for 1.6≤ t < 2.6,
1 for 2.6≤ t,

(see Fig. 7). As it is shown in Fig. 8 and Fig. 9, the residual
remains equal to zero until the occurrence of the fault, and
this shows, as expected, that the initial synchronization of the
state of the residual generator with that of the system is not
compromised by the occurrence of the switch.
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Fig. 3. Zoomed portion of the plot in Fig. 2
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Fig. 4. Saturated ramp at fault input u1 and sinusoid at input u2
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Fig. 5. Residual r1 with saturated ramp at fault input u1 and sinusoid at
input u2

VI. FAULT DETECTION AND ISOLATION WITHOUT
KNOWLEDGE OF THE INITIAL CONDITION

As pointed out in Section IV and in Remark 4, detection
and isolation of the fault is possible provided Condition (11)
of Theorem 1 is satisfied and the initial condition x(0) of the
system is known. Note that, in principle, it is not necessary
to require any stability property for Σ

resj
σ . However, global

asymptotic stability over Sα for some α≥ 0, beside being
desirable in general, is necessary to deal with the FDI problem
in case x(0) is not known and, thus, the residual signal gen-
erator cannot be initialized exactly. To analyze this situation,
we need the following definition from [11, Definition 2].
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Fig. 6. Zoomed portion of the plot in Fig. 5
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Fig. 7. Delayed saturated ramp at fault input u1 and sinusoid at input u2
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Fig. 8. Residual r1 with delayed saturated ramp at fault input u1 and sinusoid
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Definition 2: Given the switching linear system Σσ of
the form (1), a conditioned invariant subspace SR ⊆X is
said to be externally stabilizable if there exists a friend
G = {Gi, Gi :Y→X}i∈ I such that the switching linear dy-
namics induced on X/S by that of ΣG

σ is globally asymptot-
ically stable over Sα for some α≥ 0.

The following proposition completely characterizes the ex-
ternal stabilizability of a conditioned invariant subspace SR.

Proposition 5: Let SR ⊆X be a conditioned invariant sub-
space for Σσ and let G = {Gi, Gi :Y→X}i∈ I be a friend of
SR. Let P� be a matrix whose columns form a basis of S⊥

R

and let {Li,Mi}i∈ I be an indexed family of matrices that,
together with P , satisfy (6). Let

[
N�

1i N�
2i

]�
be, for all
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Fig. 9. Zoomed portion of the plot in Fig. 8

i∈ I , a matrix of suitable dimensions whose columns form a
basis of Ker

[
P� C�

i

]
. Then, SR is externally stabilizable if

and only if the pairs (Li, N
�
1i) are detectable for all i∈ I .

Proof: See [11, Proposition 17].
The set of all externally stabilizable conditioned invari-

ant subspaces containing
∑

i∈ I ImBj
i has a minimum el-

ement, called the good conditioned invariant subspace con-
taining

∑
i∈ I ImBj

i and denoted by SRg(
∑

i∈ I ImBj
i ).

An algorithmic procedure to construct SRg(
∑

i∈ I ImBj
i )

is given in [11, Section 6.2]. In general, we have
SR(

∑
i∈ I ImBj

i )⊆SRg(
∑

i∈ I ImBj
i ). Now, we have the

following result.
Theorem 2: Given a switching linear system Σσ of the

form (1), with m≥ 2, let uj be a fault input that affects all the
modes Σi of Σσ and assume that σ is measurable. Then, letting
W ′

i be, for all i∈ I , the maximal (Ai +GiCi)-invariant sub-
space of X contained in (KerCi +S∗

Rg(
∑

i∈ I ImBj
i )), where

G = {Gi, Gi :Y→X}i∈ I is a friend of S∗
Rg(

∑
i∈ I ImBj

i ),
the j-RSGP is solvable by means of a residual signal generator
that is globally asymptotically stable over Sα for some α≥ 0
if and only if the following condition holds:

W ′
i ∩ Im bji = {0} for all i∈ I. (24)

Proof: If. Since (KerCi +SR(
∑

i∈ I ImBj
i ))⊆ (KerCi+

SRg(
∑

i∈ I ImBj
i )) for all i∈ I , Theorem 1 applies. Then,

the residual signal generator Σ
resj
σ constructed by using

a matrix P such that the columns of P� are a basis of
(SRg(

∑
i∈ I ImBj

i )
⊥, a friend G = {Gi, Gi :Y→X}i∈ I of

SRg(
∑

i∈ I ImBj
i ) such that the switching linear dynamics

induced on X/S by that of ΣG
σ is globally asymptotically

stable over Sα for some α≥ 0 and an indexed family of pair
of matrices {Li,Mi}i∈ I that verify (5) solves the j-RSGP
and has the required stability property.

Only if. Let Σ
resj
σ be a residual signal generator of

the form (2), with state space Z =R
q , that, together with

the initialization map P :X →Z , solves the j-RSGP and
that is globally asymptotically stable over Sα for some
α≥ 0. Reasoning as in the proof of Theorem 1, we get
that KerP is a conditioned invariant subspace for Σσ that
contains ImBj

i for all i∈ I . Moreover, the dynamics in-
duced on X/KerP by that of ΣG

σ , where the elements of
G = {Gi, Gi :Y→X}i∈ I are defined by BOi =−PGi for
all i∈ I , coincides with that of Σresj

σ . Since this latter is glob-
ally asymptotically stable over Sα for some α≥ 0, it follows
that KerP is externally stabilizable according to Definition 2.
By minimality of SRg(

∑
i∈ I ImBj

i ), it follows, in partic-
ular, (KerCi +SRg(

∑
i∈ I ImBj

i ))⊆ (KerCi +KerP ) and,
denoting by Wi the maximal (Ai +GiCi)-invariant subspace
of (KerCi +KerP ), we also have W ′

i ⊆Wi for all i∈ I .
Reasoning again as in the proof of Theorem 1, we obtain that
bj does not belong to Wi for all i∈ I and we conclude that
(24) is satisfied.

Remark 8: Assuming that Condition (24) is satisfied, the
correspondence described in Remark 6 specializes to a bijec-
tive correspondence between the set of the pairs consisting
of a residual signal generator Σ

resj
σ of the form (2) and an



exact initialization map P that solve the j-RSGP, with Σ
resj
σ

globally asymptotically stable over Sα for some α≥ 0, and
the set of the pairs consisting of an externally stabilizable
conditioned invariant subspace S ⊆X and a friend G such
that S∗

R(
∑

i∈ I ImBj
i )⊆S and bji /∈S for all i∈ I .

Assuming that Σ
resj
σ is a residual signal generator that,

along with the exact initialization map P , solves the j-RSGP
and that is globally asymptotically stable over Sα for some
α≥ 0, let us analyze the behavior of the residual signal rj(t).
As seen in Section IV, rj(t) can be described in terms of the
auxiliary error eaux(t) by (20). Global asymptotic stability
implies that ‖eaux(t)‖ goes to 0 exponentially if no fault
occurs and, in particular, that there exists β ∈R and 0<λ∈R

such that ‖eaux(t)‖≤ e(β−λ)t‖eaux(0)‖ for all t∈R
+. Conse-

quently, also r(t) goes to 0 asymptotically if no fault occurs,
with a behavior that may be discontinuous at the switching
points due to the abrupt change of the output map. Otherwise,
letting T = {t0 =0, t1, t2, . . .} be the finite or countably infi-
nite, ordered set of discontinuity points of the switching signal
σ ∈Sα and letting ik =σ(t) for t∈ (tk−1, tk], assuming that
the fault described by uj(t) occurs at time t̄∈ (tk̄−1, tk̄], we
have that for t≤ tk̄ the residual signal rj(t) is given by

rj(t) = COik̄e
AOi

k̄
(t−tk̄−1)

k̄−1∏
h=1

eLih
(th−th−1)eaux(0)

+

∫ t

tk̄−1

COik̄e
Li

k̄
(t−τ)Pbj

k̄
uj(τ)dτ . (25)

If Σ
resj
σ cannot be exactly initialized since the initial condi-

tion x(0) is not known, (25) shows that the only indication of
the occurrence of the fault at time t̄ that we can gather from the
inspection of rj(t) is some sort of alteration of its asymptotic
behavior toward 0, due to the effect of a non zero forced
component, namely the second addend on the right-hand side
of (25), from time t̄ on – note that the first addend on the right-
hand side of (25) goes to 0 asymptotically and the second
addend is equal to 0 for all t< t̄ and for any input uj(t).
In general, since eaux(0) is not known, it may be difficult to
detect promptly this phenomenon unless uj(t)= aδ(tt̄), where
a∈R and δ(t) is the Dirac delta function. In fact, in that
case, the occurrence of the fault causes a left discontinuity at
t̄ of rj(t), which otherwise is left-continuous on (tk−1, tk]. If
uj(t)= aH(t− t̄), where a∈R and H(t) is the Heaviside step
function, the auxiliary error eaux(t) presents a forced behavior
on each interval (tk−1, tk] with tk−1 ≥ t̄ with initial condition
eaux(tk−1), whose characteristics depend on the active mode.
In particular, if the interval is sufficiently large, after a transient
behavior, eaux(t) exhibits a nonzero steady state behavior that,
filtered by COi, defines the behavior of rj(t).

Remark 9: Theorem 2 applies obviously also to the classical
case of linear systems, for which global asymptotic stability
over Sα for some α≥ 0 means asymptotic stability tout-
court. It is worth noting that asymptotically stable residual
signal generators are considered in [5, Section V], where their
construction is discussed, but their existence is not completely
characterized in structural terms.

VII. EXAMPLE 2

The aim of this section is to illustrate the devised synthesis
procedure when initialization errors are present, through a
worked out numerical example.

Let us consider the system Σσ of the form (1), with
I = {1, 2}, where

A1 =

⎡
⎢⎢⎣

2.60 0.40 −1.90 −4.60
−0.80 −0.10 0.20 0.60

0 0.50 −0.20 3.80
0 0.30 0 −0.60

⎤
⎥⎥⎦ ,

A2 =

⎡
⎢⎢⎣

−0.80 −2.20 4.20 −10.60
1.20 3.30 −3.9 1.60
0 1.52 −3.36 −0.48
0 5.0 9.0 2.0

⎤
⎥⎥⎦ ,

B1 =

⎡
⎢⎢⎣

2 0 1
−1 1 0
0 0 −1
0 0 2

⎤
⎥⎥⎦ , B2 =

⎡
⎢⎢⎣

0 1 2
−0.5 0 1
0 0 1
0 0 −1

⎤
⎥⎥⎦ ,

C1 =

[
0 0.1 0 0.2
0 0.5 0 3

]
, C2 =

[
0 1 2 1
0 1 0 0

]
.

Let us assume that input u3 models a fault of interest, while
u1 and u2 are unknown inputs (i.e., they may be other fault
inputs or unknown disturbances), so that

b31 =
[
1 0 −1 2

]�
, b32 =

[
2 1 1 −1

]�
,

B3
1 =

[
2 −1 0 0
0 1 0 0

]�
, B3

2 =

[
0 −0.5 0 0
1 0 0 0

]�
.

Henceforth, we denote by ei, with i=1, . . . , 4, the i-th vector
of the natural basis of R4. Following the procedure described
in Section IV, we obtain S∗

R(
∑

i∈ I ImB3
i )= span{e1, e2}

and we also get

P =

[
0 0 1 0
0 0 0 1

]
.

Using Proposition 5, one can see that S∗
R(

∑
i∈ I ImB3

i )
is externally stabilizable and, therefore, it coincides with
S∗
Rg(

∑
i∈ I ImB3

i ). In fact, for any value of the parameters,

G1 =

⎡
⎢⎢⎢⎢⎣

g11 g12
g21 g22

g31 −g31
5

− 1

g41 −g41
5

− 3

5

⎤
⎥⎥⎥⎥⎦ , G2 =

⎡
⎢⎢⎢⎣

h11 h12

h21 h22

h31 −38

25
− h31

h41 −5− h41

⎤
⎥⎥⎥⎦

define a friend G = {G1, G2} of S∗
R(

∑
i∈ I ImB3

i ). By solv-
ing (5), we obtain

L1 =

⎡
⎢⎢⎣

−1

5
−2

5
g31 +

4

5

0 −2

5
g41 − 12

5

⎤
⎥⎥⎦ ,

L2 =

⎡
⎢⎣ 2h31 − 84

25
h31 − 12

25

2h41 + 9 h41 + 2

⎤
⎥⎦ .



The matrices L1 and L2, along with N�
11 = [0 0.3651] and

N�
12 = [0.7559 0.3780], show that the pairs (Li, N

�
1i), with

i∈ I , are detectable. In particular, the matrices Li, with i∈ I ,
which represent the dynamics induced by (Ai +Gi Ci), with
i∈ I , on X/S∗

R(
∑

i∈I ImB3
i ), turn out to be Hurwitz if, in

particular, the following values are assigned to the arbitrary
parameters: g31 =0, g41 =1, h31 =0, h41 = − 4.5. In fact,
with these values of the parameters,

L1 =

[ −0.5 0.8
0 −2.8

]
, L2 =

[ −3.36 −0.48
0 −2.5

]

and the corresponding switching dynamics is globally asymp-
totically stable over Sα, in particular with α=0.5, by
Lemma 1. The remaining arbitrary parameters of G1 and
G2 can be taken, for instance, equal to zero. Concerning the
computation of the matrices of the output equations of the
residual generator, since

KerC1 + S∗
R(

∑
i∈ I

ImB3
i ) = span {e1, e2, e3}

KerC2 + S∗
R(

∑
i∈ I

ImB3
i ) = span {e1, e2, e3 − 2e4}

it is easy to see, also without computing W ′
1 and W ′

2, that
Condition (24) of Theorem 2 is satisfied with j=3 and
i=1, 2. Then, it follows that

C1S∗
R(

∑
i∈ I

ImB3
i ) = span{e1 + 5e2}⊆R

2

C2S∗
R(

∑
i∈ I

ImB3
i ) = span{e1 + e2}⊆R

2.

and also that P 1 =
[ −5 1

]
, P 2 =

[
1 −1

]
. Conse-

quently, from COi P =P i Ci, with i∈ I , one gets

CO1 =
[
0 2

]
, CO2 =

[
2 1

]
.

In conclusion, a residual signal generator that, together with
the map P found above, solves the 3-RSGP and is globally
asymptotically stable over S0.5 is the system Σres3

σ of the
form (2) with Z = R

2 and modes

Σres3
1 ≡⎧⎪⎨
⎪⎩

ż(t) =

[ −0.2 0.8
0 −2.8

]
z(t) +

[
0 1
−1 0.8

]
y(t)

r3(t) =
[
0 −2

]
z(t)− [ −5 1

]
y(t)

Σres3
2 ≡⎧⎪⎨
⎪⎩

ż(t) =

[ −3.36 −0.48
0 −2.5

]
z(t) +

[
0 1.52
4.5 0.5

]
y(t)

r3(t) =
[
2 1

]
z(t)− [

1 −1
]
y(t)

To run simulations, we choose, e.g., the switching signal

σ(t) =

⎧⎨
⎩

1 for 0≤ t < 1,
2 for 1≤ t < 4,
1 for 4≤ t.

We initialize Σσ , e.g., at x(0) = [1 −1 0 1]� and Σres3
σ at

z(0) = [0 0]�. Further, we assume that the fault described

0 1 2 3 4 5 6 7 8 9 10
−2

−1.5

−1

−0.5

0

0.5

r3

t
Fig. 10. Residual r3 with Dirac delta function at fault input u3, zero at u1

and u2
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Fig. 11. Residual r3 with rectangular impulse at fault input u3, zero at u1

and u2

by u3(t) occurs at time t̄ = 2 and, without loss of generality,
we take u1(t) = u2(t) = 0 for all t∈R

+. Then, we consider
the behavior of the residual, r3(t), corresponding to the fault
modelled by four different signals.

Case 1
Let the fault be modelled as u3(t)= δ(t− 2), where δ(t) is the
Dirac delta function. The behavior of r3(t), shown in Fig. 10,
exhibits a discontinuity at t̄=2 caused by the occurrence of
the fault – apart from the discontinuities at the switching times
t=1 and t=4 due to the abrupt changes of the output matrix
COσ(t). The discontinuity due to the fault occurrence interrupts
the asymptotic trend of r3(t) toward 0. However, the effect of
the fault vanishes with time, so that, globally, r3(t) goes to 0
asymptotically.

Case 2
Let the fault be modelled as u3(t)=H(t− 2)−H(t− 3),
where H(t) is the Heaviside step function. The behavior of
r3(t), shown in Fig. 11, exhibits an asymptotic trend toward 0
interrupted at t̄ = 2 due to the fault occurrence. As the fault
signal is discontinuous at t̄=2 and t=3, correspondingly, the
residual r3(t) is non-differentiable. The fault effect vanishes
with time and, globally, r3(t) goes to 0 asymptotically.
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Fig. 12. Residual r3 with Heaviside step function at fault input u3, zero at
u1 and u2
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Fig. 13. Residual r3 with sine wave function at fault input u3, zero at u1

and u2

Case 3
Let the fault be modelled as u3(t)=H(t− 2). The behavior
of r3(t), shown in Fig. 12, has an asymptotic trend toward 0,
interrupted at time t̄ = 2 due to the fault occurrence. Since
the fault signal is discontinuous at t̄=2, correspondingly, the
residual r3(t) is non differentiable. Since the fault is equal
to 1 for all t≥ t̄, the behavior of r3(t) goes asymptotically
toward a steady state value different from 0.

Case 4
Let the fault be modelled as u3(t)=H(t− 2) sin(t− 2). The
behavior of r3(t), shown in Fig. 13, presents an asymptotic
trend toward 0, which is interrupted at time t̄ = 2 due to the
fault occurrence. Since the fault is modelled by a continuous
function, the behavior of r3(t) turns out to be differentiable
at any point except (possibly, as in this case) at the switching
points. This makes it difficult to detect by direct inspection
the time at which the fault occurs. However, since the fault
input persists in being different from 0, r3(t) does not go
asymptotically to 0 and, in this case, it shows a periodic steady
state behavior.

VIII. CONCLUSIONS AND FUTURE WORK

The development of model-based schemes for FDI has been
dealt with for plants modeled by switching linear systems.

Model uncertainties and disturbances have been assumed to
be represented by the effects of a set of unknown inputs.
The existence of residual signal generators that achieve a
complete decoupling of the residual from the unknown inputs
has been characterized in structural terms. Both the case in
which the initial condition of the possibly faulty system is
known and that in which the initial condition is not known
have been considered. This study shows the efficacy of the
structural approach in determining the necessary and suffi-
cient conditions under which the problem is solvable and
in constructing, when possible, model-based schemes for its
solution. Comparison with the literature shows that the results
found here are consistent with those found in the classical and
structurally simpler case of linear systems.

Since the existence conditions are tight, complete decou-
pling may not be achievable and it would be of interest, in
future works, to develop an algorithmic procedure to find
maximal subsets of the set of unknown inputs from which
the residual can be completely decoupled. Then, to handle
the FDI problem, qualitative techniques can be employed to
analyze the residual with respect to the effects of the remaining
unknown inputs.

An alternative way to take into account model uncertainties
is that of employing polytopic switching systems. Structural
methods have already been proved to be suitable for solving
control problems for polytopic switching systems (see [31],
[32]), while the construction of observers that are robust with
respect to polynomial uncertainties has been considered in
[33] for the classical linear case. Future work will address the
construction of unknown input observers for switching systems
with polytopic uncertinties along the lines of [11] and their use
in constructing residual generators that are robust with respect
to the uncertainties will be explored.
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