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Optimal Terminations of 2D Meta-Surfaces for Uniform Magnetic
Field Applications

Sami Barmada1, Nunzia Fontana1, Leonardo Sandrolini3, and Mattia Simonazzi3
1DESTEC, University of Pisa, Italy
2DEI, University of Bologna, Italy

This paper investigates the possibility of obtaining a uniform magnetic field close to a 2D metamaterial made of magnetically
coupled resonant circuits. The magnetic field is controlled by terminating the boundary of the meta-surface with proper additional
impedances, whose values are calculated by means of an optimization procedure. The adopted circuit model has been discussed and
compared with others presented in the literature, highlighting its advantages and disadvantages with reference to the considered
application. Furthermore, the effect of the quality factor on the current distribution generating the field has been addressed. The
uniformity of the magnetic field is then discussed, with reference to possible applications e.g. in magnetic resonance imaging or energy
harvesting for wireless power transfer.

Index Terms—Metasurface, metamaterial, optimization, wireless power transfer, magnetic resonance imaging, MRI.

I. INTRODUCTION

METAMATERIALS are assemblies of multiple elements,
often called ?unit cells? or ?meta-atoms?, arranged

in 2D or 3D patterns to form regular lattices. Shape, size,
orientation of the unit cells give the material specific properties.
They are widely exploited in areas such microwaves and
optics, and have been recently employed also in wireless power
transfer (WPT) systems with different goals, such as magnetic
field focusing and electric field shielding [1]–[4]. Metamaterial
structures are usually analysed by means of circuit theory,
offering the possibility of evaluating the magnitudes of currents
and voltages in each unit cell. Another possible approach is
based on the theory of magneto-inductive waves (MIW) [5],
[6], which has been developed for 1D, 2D and 3D lattices. In
particular, for 1D structures it allows a better understanding of
the matching conditions, as shown in [7].

In this contribution we investigate the possibility of op-
timizing the meta-surface terminations (lumped impedances)
considering a full coupling model of the metamaterial, in order
to obtain a uniform magnetic field on a plane at a given distance
from the meta-surface. The results show that the magnetic field
obtained by such optimization may be considered sufficiently
uniform also in other planes parallel to the meta-surface at
different distances, a characteristic that is fundamental in
applications like, for instance, magnetic resonance imaging
(MRI) or energy harvesting for WPT.

II. MAGNETIC COUPLING BETWEEN CELLS OF THE 2D
META-SURFACE

The considered meta-surface is composed of N×N resonant
RLC circuits immersed in a linear medium and arranged to
form a square lattice, as represented in Fig. 1, as well as
the termination impedances ẐT1, ẐT2 and ẐT3 used for the
optimization of the magnetic field, as described in Sec. IV.

The relations between the currents in each loop can be
expressed by applying the Kirchhoff voltage law (KVL) to
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Fig. 1: Schematic representation of a terminated 2D meta-
surface fed through the central resonator (bold circle). A detail
of the unit cell is also depicted.

all elements of the meta-surface, which results in a linear
algebraic system V̂ = ẐmÎ representing the meta-surface;
V̂ = [0 ... 0 V̂s 0 ... 0]

T represents the resonator phasor voltage
vector (V̂s is the phasor supply voltage of the transmitter),
Î is the vector of the resonator phasor currents and Ẑm

is the impedance matrix of the system. The meta-surface is
considered excited in the central resonator. As regards Ẑm, it
can be built considering all the couplings between each cell
and the other cells of the meta-surface (full coupling model),
or only the couplings between each cell and the others in
the immediate proximity.The coupling models are described
as follows:

a) Full Coupling Model: The impedance matrix Ẑm is a
full matrix since it includes the terms associated to the mutual
coupling between all the loops. Being a full matrix, when
implemented in a computer code it is characterized by a larger
memory occupation and is associated to a larger CPU time for
the system’s solution. However, usual sizes of practical meta-
surfaces do not make the previous characteristics important
drawbacks. On the contrary, the calculation of all the coupling
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coefficients (from analytical or numerical procedures) can be
cumbersome.

b) Nearest-Neighbour Approximation Model: In [5] the
authors study systems with high number of unit cells with the
nearest neighbour approximation, i.e. the couplings between
nonadjacent resonators and between resonators along the diag-
onal directions are neglected; in this way, each single unit cell
is coupled with the nearest four cells (along the x and y axes
of Fig. 1). In addition, the hypothesis of a solution in terms of
a MIW is used, in which propagation in the x and y directions
is assumed, resulting in a dispersion equation [8]. Although for
1D structures the MIW theory can be efficiently used to define
a matching termination (similar to the concept of characteristic
impedance in a transmission line), in case of 2D structures (as
in the case of a meta-surface) the definition of the matching
terminations is not straightforward. When a KVL approach is
used, the nearest neighbour approximation obviously leads to
a sparser impedance matrix as only one coupling coefficient
(if the lattice is regular) needs to be calculated.

c) Nearest-Neighbour Approximation and Adjacent-
Diagonal Couplings: A less rough approximation than
the previous one consists in considering also the mutual
impedances between resonators adjacent along the diagonals
of the lattice.

In order to show how meta-surfaces of small dimensions
behave, a set of simulations with the three above mentioned
coupling models were performed.

The meta-surface is composed of 25 circular resonators of
radius d = 2 cm which are characterized by a resistance
R = 0.01Ω and a self-inductance L = 88 nH; a lumped
capacitance is connected to each loop to tune the system
at the frequency f0 = 1 MHz. The mutual inductances
between the unit-cells were calculated numerically with a FEM
electromagnetic computer code. The strongest couplings are the
ones between adjacent cells in the x and y directions of the
lattice and, in our example, we have Madj = −4.9 nH. Figure
2 shows the results of the analytical solutions obtained using
the three coupling models. It is evident that, for small-size
meta-surfaces, the approximations shown in Figs. 2 (b) and in
(c), i.e. nearest-neighbour plus adjacent-diagonal and nearest-
neighbour only, may give less accurate results if compared
with those obtained with the full coupling model. In particular,
Fig. 2 c) shows that the current values calculated in small
size meta-surfaces can be significantly different from those
obtained with the full coupling model, shown in Fig. 2 a). The
nearest-neighbour approximation has an effect on the current
propagation similar to that experienced by a meta-surface with
a low quality factor, as it is shown in the next section.

III. EFFECT OF THE RESONATOR QUALITY FACTOR ON THE
CURRENT DISTRIBUTION

In real resonators, all quantities are affected by the operating
frequency, because of skin and proximity effects. However,
by using Litz wires the circuits can be considered close to
ideal ones with a reasonable approximation and the dominating
quantity is the quality factor Q = ω0L/R. As a matter of
fact, currents are strongly affected by the resistance R, which

basically determines the attenuation; at a fixed frequency,
different quality factors lead to different current distributions
and this effect can be particularly appreciated as the extension
of the meta-surface increases. Considering a full impedance
matrix Ẑm, for low quality factors (i.e., Q < 100) the res-
onators laying on the diagonals of the lattice experience higher
currents, similarly to when adopting the nearest-neighbour
approximation (see Fig. 3(a)). Differently, as Q increases it
is difficult to predict and control the current distribution, as
shown in Fig. 3(b).
The above mentioned behaviour could be heuristically ex-
plained as follows: a lower quality factor leads to stronger at-
tenuation of the currents far away from the source at the centre
of the lattice; the nearest-neighbour approximation influences
the current propagation so that each resonator influences the
four nearest ones only, somehow reducing propagation, leading
to a similar effect.

IV. MAGNETIC FIELD GENERATED BY A CURRENT
DISTRIBUTION IN THE META-SURFACE

The distribution of the magnetic field generated by the meta-
surface is directly linked to the value of the currents in the
resonators and to their geometry and arrangement. Assuming
a linear medium, the superposition principle for the magnetic
field can hold. Thus, the magnetic flux density generated by
the whole meta-surface at a generic point P̄ of the three-
dimensional space can be expressed as:

ˆ̄B(P̄ ) =

N×N∑
i

ˆ̄Bi(P̄ ) (1)

where ˆ̄Bi(P̄ ) is the magnetic field at point P̄ generated by the
ith meta-surface cell. It is then possible to write:

ˆ̄B(P̄ ) =

N×N∑
i

ÎiḠi(P̄ ) (2)

where Îi is the phasor current of the ith cell and Ḡi(P̄ ) is
a function of the coil geometry and material only, and it is
referred to the point P̄ . For a fixed field point, the functions Ḡi

of each cell are the same, being all identical, and are obtained
by implementing the formulas given in [9].

Once the system geometry is defined, the magnetic field can
then be controlled by acting on the metamaterial currents. As
shown in sec. II, an accurate approach to analyze the currents
of a meta-surface consists in analytically determine the full
impedance matrix and solve it by using KVL. Considering a
single source (for example, the central meta-surface resonator),
the cell currents can be varied by acting on the termination
impedances inserted in the boundary resonators. The uniform
magnetic field above the meta-surface requires then the optimal
distribution of currents in the resonators to be found and this,
in turn, entails the optimal triplet of terminations impedances
to be obtained.
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(a) (b) (c)

Fig. 2: Current distribution of a 5× 5 meta-surface excited in the central resonator considering: (a) all couplings between coils,
(b) the couplings between adjacent coils in the x, y and diagonal directions (nearest-neighbour approximation plus adjacent
couplings) and (c) the nearest-neighbour approximation. The values are normalized to the current of the central resonator.

(a)

(b)

Fig. 3: Current distribution of a 51× 51 meta-surface excited
in the central resonator considering the interaction of each coil
in case of (a) Q = 40 and (b) Q = 260.

V. OPTIMAL TERMINATIONS FOR UNIFORM MAGNETIC
FIELD

The uniformity of the magnetic field is assessed by evaluat-
ing the magnetic flux density at a number of field points on a
xy plane at a given distance from the meta-surface.

Considering the metasurface described in Sec. II, the mag-
netic flux density values are calculated according to (2) on a
regular grid of points with a step of d/4 centred on the central
meta-surface resonator. The grid is on a plane distant 5 cm
from the meta-surface. As a first analysis, all the unit cells are
considered in resonant condition.

The optimization procedure is driven by a genetic optimiza-
tion algorithm and aims at minimizing the difference between
the values of the magnetic flux density in the field points

and the average one. Introducing the average magnetic field
magnitude as

BAVG =
1

NFP

NFP∑
k

| ˆ̄Bk| (3)

where NFP is the number of field points, the cost function F
can be written as:

F = max
k

{
| ˆ̄Bk|−BAVG

}
. (4)

The reason why a genetic optimization procedure is chosen
(and not, for instance, a gradient based algorithm) simply
lays in the fact that the optimization process is not the main
object of the paper, and the genetic algorithm is one of the
simplest methods for a practical implementation. Considering
the symmetry of the meta-surface, we chose to have at most
three different values of the termination impedances: ẐT1 in
the corners, ẐT2 in the generic edge resonators and ẐT3 in
the middle-edge cells, as shown in Fig. 1. For each triplet of
tentative values of the terminations, the currents are calculated
by solving the resonator KVL as:

Î = Ẑ−1V̂. (5)

In particular,
Ẑ = Ẑm + ẐT (6)

where ẐT is an impedance matrix with the values of the
termination impedances ẐT1, ẐT2 and ẐT3 on the diagonal

Fig. 4: Magnetic flux density generated by a metasurface
without terminations on the z = 50 mm plane.
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Fig. 5: Magnetic flux density generated by a metasurface with
optimal terminations on the z = 50 mm plane.

Fig. 6: Magnetic field from a terminated meta-surface calcu-
lated numerically on the z = 50 mm plane with an electro-
magnetic FEM code.

and zeros elsewhere. The optimized terminations are found as
follows: ẐT1 = 3.70 + j1.07, ẐT2 = 7.22 · 10−5 − j0.027,
ẐT3 = 3.51 − j3.58. The optimization requires 20400 itera-
tions to converge and 102 genetic generations, resulting in a
residual value of the cost function of 3.4e-6. To complete the
optimization, the algorithm takes 16 seconds.

Fig. 4 shows the magnetic flux density on the z = 50 mm
plane for the center-fed nonterminated meta-surface. As it can
be seen, in the central area of the plane the variation between
the magnetic flux density values is about 6 dB. With the
optimal terminations obtained with the optimization procedure,
the field uniformity is greatly enhanced, as Fig. 5 shows: in the
central area of the plane the variation of the field is within 3 dB

Fig. 7: Magnetic flux density on the z = 25 mm plane with
the optimal terminations for z = 50 mm.

Fig. 8: Magnetic flux density on the z = 70 mm plane with
the optimal terminations for z = 50 mm.

only. In order to validate this result, the magnetic flux density
was calculated with an electromagnetic field code and is shown
in Fig. 6. These results are in very good agreement with those
of Fig. 5. The magnetic flux density was also calculated, for
the same optimal terminations, on the two additional planes
z = 25 mm and z = 70 mm; the results are shown in Figs. 7
and 8, respectively. For both distances it can be noticed that
in the central area of the planes the variation of the magnetic
flux density is within 6 dB. The magnetic field can then be
considered uniform for a range of distances from the meta-
surface, making then this procedure appealing for a number of
applications, e.g. MRI or energy harvesting for WPT.

VI. CONCLUSIONS

This paper shows that a uniform magnetic field at a given
distance from a centre-fed meta-surface can be obtained by
controlling the termination impedances of the meta-surface. It
is shown also that with these optimal terminations the magnetic
field remains sufficiently uniform also on other planes parallel
to the metasurface at different distances, without any additional
active circuitry.
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