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A B S T R A C T   

Visible - near infrared spectroscopy coupled with variable selection using simulated annealing PLS regression 
was tested to predict immunoglobulin fractions (g/L) of bovine colostrum, namely IgG, IgA and IgM. Immu-
noglobulins were quantified in 678 samples using the gold standard radial immunodiffusion. Samples were 
divided in calibration (50%) and validation (50%) datasets. Maximum number of selected variables were limited 
to 200 and root mean squared error in cross validation (RMSECV) was used as loss function. Performance of the 
final model developed using the calibration dataset was assessed on the validation dataset. Overall, simulated 
annealing PLS improved validation RMSECV compared to ordinary PLS regression by 3% to 17%. The present 
study demonstrated the effectiveness of the calibration model for accurate quantification of IgG, the most 
abundant immunoglobulin of bovine colostrum (RMSECV = 13.28 g/L; R2 

= 0.83). These outcomes could be 
useful to assess colostrum quality intended for animal and human usage.   

1. Introduction 

Bovine colostrum is ‘the early milking from dairy cows, taken up to 3 
days post-partum’ (McGrath et al., 2016) and the interest in its quality 
has increased in the scientific community and among stakeholders, as 
well as in the pharmaceutical industry in both veterinary and human 
medicine. More than 1000 original and review articles where the words 
“cow” + “colostrum” or “bovine” + “colostrum” appear in title or au-
thors’ keywords were published from 2010 to 2020 (Scopus, 2021). 

Due to peculiar anatomical reasons, colostrum quality is important 
for new-born in cattle more than in other mammals. In fact, cows are 
characterized by a cotyledonary synepitheliochorial placenta that 
hampers the transfer of antibodies and other bioactive factors from dam 
to foetus. Since calves are deficient in immunoglobulins (Ig) at birth, 
passive transfer of antibodies, vitamins and growth factors is reached 
with colostrum administration based on the ‘3Q’, namely quickness, 
quality and quantity (Costa et al., 2021b). 

Among Ig, the major fractions in bovine colostrum are IgG, IgA, and 
IgM, representing the 80% of total protein content. The IgG is the most 
abundant and important to be monitored to prevent failure of passive 
transfer (McGrath et al., 2016). For this reason, quality of colostrum is 
determined based on the IgG content that should be ideally greater than 

50 g/L when intended to calf feeding (Buczinski & Vandeweerd, 2016; 
McGrath et al., 2016). Bovine colostrum is also interesting for 
manufacturing. In fact, it is an emerging nutraceutical ingredient quite 
used in human and animal supplements, since rich in beneficial bioac-
tive factors and antioxidants with significant positive effects on health 
and performance (Bagwe et al., 2015; Borad & Singh, 2018; Lee et al., 
2019). Bovine colostrum is commercialized in different forms with 
declaration of proteins and/or IgG content (Playford et al., 2020); items 
containing bovine colostrum embrace supplements for athletes, infant 
formula, and artificial milk and supplements for new-borns of humans, 
livestock species, and companion animals. 

Considering studies carried out in humans, it has been demonstrated 
that 60 g/d of colostrum supplementation is beneficial during resistance 
training (Duff et al., 2014) and that colostrum can counteract negative 
side effects of nonsteroidal anti-inflammatory drugs (Mir et al., 2009). A 
beneficial effect of bovine colostrum administration has been recently 
reported in people suffering from clinical diseases, such as ulcerative 
colitis, necrotizing enterocolitis, and traveller’s diarrhoea, and in adults 
following weight loss programmes (Bagwe et al., 2015; Juhl et al., 2018; 
Arslan et al., 2021). 

Therefore, assessing the quality of colostrum is important for 
farmers, veterinarians and other dairy stakeholders to make informed 
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choices, e.g., to set up the farm colostrum bank, to evaluate the potential 
inclusion of external high-quality colostrum, to standardize composition 
and Ig of colostrum at pharmaceutical or food industry level. For these 
reasons, colostrometers and refractometers are available for rapid and 
indirect evaluation of the Ig level in farms (Quigley et al., 2013). 
Nevertheless, the gold standard method for Ig determination in plasma, 
milk and colostrum is the radial immunodiffusion (RID), which provides 
very accurate and repeatable results (Gelsinger et al., 2015) but requires 
laboratory expertise, high investment (more than 5 US $ per sample) and 
time for incubation (24 h; Gelsinger et al., 2015; Costa et al., 2021b). For 
these reasons, RID kits are not suitable to day-to-day on-farm applica-
tion, but can be useful as reference analysis to assess the accuracy of 
faster and cheaper tools that provide indirect quantifications (Abuelo 
et al., 2019; Bielmann et al., 2010; Rivero et al., 2012). 

Infrared spectroscopy is widely adopted in livestock for phenotyping 
purposes and at food industry level for rapid determination of quality 
features in a plethora of matrices, including dairy products and milk. In 
this view, this indirect method could be potentially interesting for 
colostrum, as its compounds are generally determined at laboratory 
level using traditional time-consuming and expensive analyses, such as 
RID, HPLC, ELISA, and other chromatographic techniques. From the 
experience gained in milk, cheese, and meat (De Marchi et al., 2018), 
infrared spectroscopy is expected to be potentially useful for fast, cost- 
effective, and non-destructive analysis of colostrum intended for 
several uses. 

According to the literature, the main limitation of infrared spec-
troscopy is the development of reliable and robust prediction models, 
particularly for compounds present in a low concentration. Such models 
need representative reference data to be collected in order to build ac-
curate predictive equations; for this reason, the accuracy of prediction 
models relies on and cannot be greater than the accuracy of the refer-
ence method (De Marchi et al., 2018). Visible near-infrared spectroscopy 
(Vis-NIRS) exploits the region of the electromagnetic spectrum from 
380 nm to 2500 nm and is based on the molecular overtone and com-
bination of vibrations from which the Vis-NIRS spectrum originates. On 
this view, effective statistics algorithms are necessary to extract useful 
information from spectra of complex organic matrices; the most widely 
used algorithm is partial least squares (PLS) regression, eventually 
associated with other procedures like the variable selection strategies 
(Xiaobo et al., 2010). In addition, machine learning techniques, such as 
convolutional neural networks, have been successfully applied in recent 
years to develop prediction models from infrared spectra (Anderson, 
2007; Denholm et al., 2020). The absorption in the Vis-NIRS region 
range is lower compared to mid-infrared spectroscopy and thus Vis-NIRS 
is more appropriate for the analysis of solid and semi-solid samples like 
colostrum, whose density ranges from 1059 to 1068 kg/m3 (McGrath 
et al., 2016; Strekozov et al., 2008). 

Navrátilová et al. (2006) successfully developed NIRS calibration 
models to determine total solids, fat, non-fatty solids, protein and lactose 
content of colostrum in 90 samples of 18 cows at different moments after 
calving. Moreover, Rivero et al. (2012) evaluated the ability of Vis-NIRS 
to predict bovine colostrum IgG content in 157 samples collected in 2 
farms in Chile. The coefficient of determination in cross validation 
(R2

CV) of the model proposed by Rivero et al. (2012) was very high 
(0.94) and predictions were highly correlated with IgG values measured 
through RID. Results from the literature show that Vis-NIRS models for 
colostrum are reliable and can be exploited on a large scale for rapid, 
cheap and non-destructive analysis (Buczinski & Vandeweerd, 2016; 
Elsohaby et al., 2016; Rivero et al., 2012), however, to the authors’ 
knowledge no studies have evaluated Vis-NIRS for the determination of 
other colostrum Ig fractions, i.e., IgA and IgM. 

Variable selection is an extensively used approach to improve 
infrared-based predictions. Basically, all variable selection algorithms 
point to exclude noisy spectral regions and collinear wavelengths, in 
order to improve model robustness and precision (Kalivas et al., 1989; 
Xiaobo et al., 2010). Simulated annealing (SA) for variable selection has 

demonstrated good performance in improving partial least squares (PLS) 
calibrations in several matrices (Balabin & Smirnov, 2011; Guo et al., 
2020; Liu et al., 2019). The SA is a probabilistic optimization method 
able to accept with a certain probability non-optimizing solutions, in 
order to avoid getting stuck in a local minimum. Solutions improving the 
loss function, e.g., predicted residual sum of squares, are always 
accepted. Solutions worsening the loss function can be accepted with a 
certain probability following a Metropolis criterion. As the algorithm 
proceed, Metropolis criterion became more stringent, allowing conver-
gence (Swierenga et al., 1998). 

In the present study, a large number of individual colostrum samples 
were available to i) determine IgG, IgA, and IgM through the gold 
standard reference method RID and ii) collect Vis-NIRS spectra to 
develop prediction models using the SA-PLS. 

2. Materials and methods 

2.1. Protocol for samples collection 

Colostrum of 678 cows was provided by 9 farms located in northern 
Italy from March 2019 to June 2020. Farmers did not perform vacci-
nation for Rotavirus, Coronavirus, and E. Coli on selected cows before 
calving. According to the experimental protocol, only colostrum samples 
collected within 6 h from parturition were kept for the trial and stored in 
plastic sterile tubes (120 mL). Each farmer was in charge of colostrum 
sampling and was required to annotate the cow ID and the calving date 
on the tube and to freeze samples immediately after collection (− 20 ◦C). 
Considering the high variability of Ig in the first hours after calving, 
samples collected after 6 h from calving were not considered for the 
present study. Periodically, the frozen samples were transferred to the 
University of Padova (Legnaro, Italy) for RID analysis. Official ID, date 
of birth, date of calving and parity of cows were retrieved from farmers’ 
databases. 

2.2. Reference analysis and spectra collection 

Analyses were performed at the ‘LaChi’ laboratory of the University 
of Padua (Legnaro, Italy) as described by Costa et al. (2021b). In 
particular, RID kits for colostrum analyses were purchased from Triple J 
Farms (Bellingham, US) and handled according to the manufacturer’s 
specific instructions. Considering the kit detection range, each colos-
trum sample was diluted 1:5 (v/v) for IgG and 1:3 (v/v) for IgA and IgM 
with ultrapure water (Arium 611UV Sartorius, Sartorius, MB, Italy). 
After incubation, the software ImageJ (Laboratory for Optical and 
Computational Instrumentation, University of Wisconsin-Madison, WI, 
US) was adopted to assess the diameter of each precipitated ring in 
duplicate (2 operators) and the average of the 2 measurements repre-
sented the final diameter considered for each sample in each Ig. 

Costa et al. (2021b) derived the concentration of each Ig (g/L) 
through an equation developed using both reference sera (n = 3) 
diameter and known concentrations, i.e., 1.80, 14.72, and 28.03 g/L for 
IgG, 0.53, 1.94, and 3.87 g/L for IgA, and 0.62, 2.00, and 3.81 g/L for 
IgM. The supplier of the RID plates was Triple J Farms (Bellingham, US). 
A missing value was placed when a not readable or non-circular ring for 
one of the target components due to issues during colostrum dilution or 
pipetting was observed. 

A preliminary test showed that using 1 well per sample was accurate 
enough to determine the RID target component (IgG, IgA, and IgM). 
Briefly, an intra-assay coefficient of variation (CVRID, %) was calculated 
to assess RID repeatability using 4 colostrum samples tested in quintu-
plicate by a single operator. Separately for IgG, IgA and IgM plate, the 
CVRID was calculated as the average of the individual CV of the 4 sam-
ples measured in quintuplicate, as: 
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where xn and sn are the mean and the standard deviation of the 5 con-
centrations available for the same sample. The intra-assay CVRID was 
7.56% for IgG, 2.46% for IgA and 3.03% for IgM. According to the 
guidelines of the US Department of Health and Human Services, Food 
and Drug Administration (2001), values < 10% are considered precise 
enough. Therefore, considering that each plate had 24 wells, 21 were 
intended to samples and 3 to reference sera. 

Spectra were collected using the DS2500 (FOSS Electric A/S, Hill-
erød, Denmark) after homogenization of a representative amount of 
each colostrum sample (10 mL, 20 ◦C) by inversion. The device scanned 
from 400 nm to 2499.5 nm, with a spectral resolution of 0.5 nm, and 
each spectrum was an average of 32 sub-spectra recorded at 8 different 
points by rotating the sample cup automatically. All the spectra were 
recorded as absorbance, which is calculated as log10(1/reflectance). 

2.3. Simulated annealing calibration 

Samples whose spectra had Mahalanobis distance greater than 3.0 
from the mean of the spectra themselves were removed from the dataset 
(Williams, 2007). Spectra were normalized before calibration using 
standard normal variate correction (Barnes et al., 1989). The initial 
dataset was randomly split in two subsets, each representing 50% of 
total samples. Calibration subset was used to train the model, while the 
validation subset was used to assess the final performance of the cali-
bration model. In SA-PLS, variable selection is performed iterating 
several PLS changing wavenumbers included in the model and calcu-
lating root mean squared error in cross validation (RMSECV) as loss 
function. A schematic presentation of the algorithm is presented in 
Fig. 1. Initial variables were randomly selected and used to train the PLS 
model and RMSECV was computed. The RMSECV was calculated per-
forming leave one out cross validation (LOOCV) on the calibration 
dataset at each PLS iteration. To avoid overfitting, the number of latent 
variables included in the PLS model were those allowing the optimiza-
tion of RMSECV (maximum number of latent variables is in Table 1). At 
this point, a candidate solution was generated randomly changing var-
iables according to the disturbance parameter, using a random binomial 
variable, with probability of success equal to the parameter β. Consid-
ering such probabilistic approach, variation in the number of variables 
included in the model was allowed. 

The new solution was evaluated for acceptance following a 
Metropolis criterion. Metropolis criterion probability was defined as P(k 
→ j) = exp((Fk – Fj) / t), where Fk = RMSECV at step k, Fj = RMSECV at 
step j = i + 1, and t is the control parameter. The new solution was 
accepted if P(i → j) > k, where k is a random number between 0 and 1. 
Initial t was set to allow an initial transition acceptance ratio of about 
0.75 (Kalivas et al., 1989). The procedure was iterated until the 
maximum number of new solutions or the maximum number of tested 
solutions were reached. 

Subsequently, control parameter was modified according to the 
following formula: tj = tk * α, and probability of variables changing was 
iteratively diminished at each temperature step with β(k → j) = βk * α +
0.01, where βi is the probability at step I and α is the optimization 
parameter. Then a new Markov chain was started. Two criteria deter-
mined the ending of the optimization algorithm: (i) the solution was not 
updated for two consecutive chains and (ii) the lowest t allowed was 
reached. 

The initial parameters set for preparatory and calculation runs were 
the initial number of wavelengths included in the model, the maximum 
number of wavelengths included in the model at each step, the 
maximum number of latent variables, the optimization parameter α 
smaller than 1, the initial disturbance parameter β, the initial value for 
the control parameter t, the maximum number of tested solutions at each 

Fig. 1. Flowchart of simulated annealing PLS algorithm, where RMSECV in-
dicates the root mean squared error in cross validation. 
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t step, the maximum number of accepted solutions at each t step and the 
lowest value of the t parameter being tested. The number of independent 
runs for each initial set of parameters are reported in Table 1. 

Performance of the final model was assessed on the validation 
dataset calculating coefficient of determination (R2

V), root mean 
squared error in validation (RMSEV) and ratio of prediction to deviation 
(RPD). 

Simulated annealing PLS was performed using a self-built macro in 
SAS® 9.4 (SAS Institute Inc., Cary, NC). In the same software, the PLS, 
SURVEYSELECT, and other procedures were used within the macro. 
Moreover, a receiving operator characteristic (ROC) was carried out for 
the predicted IgG using LOGISTIC procedure to assess diagnostic accu-
racy through the area under curve (AUC) evaluation. In particular, the 
accuracy of predicted IgG in discriminating low- (<50 g/L of RID IgG) 
and high-quality colostrum (≥50 g/L of RID IgG) was evaluated. Source 
codes are available from the authors upon reasonable request. 

3. Results and discussion 

3.1. Radial immunodiffusion analyses 

Means and standard deviation of IgG, IgA and IgM contents calcu-
lated for the whole dataset were 91.53 ± 32.13, 4.63 ± 2.77 and 5.07 ±
2.40 g/L, respectively, and the coefficient of variation was greater than 
35% for all the Ig fractions (Table 2). Overall, concentrations ranged 
from 6.52 to 182.62, 0.13 to 17.51, and 0.18 to 14.01 g/L for IgG, IgA, 
and IgM, respectively. Results are consistent with McGrath et al. (2016) 
who reviewed studies on colostrum Ig and reported values of total Ig 
from 30 to 200 g/L. The average IgG was similar to that reported for 

Simmental cows by Ceniti et al. (2019), whose colostrum samples were 
collected within 6 h from calving, similarly to the protocol adopted in 
the present study. Using samples of 111 multiparous Holstein cows 
collected from 1 to 14.5 h after calving Cabral et al. (2016) reported IgG 
content in the range from 21.4 to 141.4 g/L. In colostrum of Canadian 
beef cattle, IgG determined through RID averaged 149.60 ± 38.70 g/L 
because more than three quarters of the samples were collected within 1 
h from parturition (Gamsjäger et al., 2020). Sampling time is a key factor 
for colostrum Ig, since their concentrations quickly decline in the first 
hours after calving (Godden, 2008). In bovine, there is a physiological 
reason for the decrease in Ig concentration in the first hours post- 
partum. In fact, colostrum content of antibodies is maximum at birth, 
i.e., when calf’s gut permeability is 100%, whereas it declines after-
wards together with the calf’s gut absorption ability (Godden, 2008; 
Hurley & Theil, 2011; Costa et al., 2021b). In addition, it is worth 
mentioning that the method to determine Ig content has to be consid-
ered when comparing studies dealing with colostrum Ig. In fact, there 
can be differences between RID and ELISA tests commercially available 
to determine bovine Ig (Gapper et al., 2007; Solórzano, 2020). 

Descriptive statistics of colostrum Ig in calibration and validation 
sets are presented in Table 2. According to unpaired t-test (P < 0.05), 
means calculated in the two sets within Ig were not significantly 
different, thus variability of each Ig in calibration and validation sets 
was comparable. 

3.2. PLS prediction models 

Results of standard PLS algorithm in predicting the concentration of 
different Ig in colostrum samples are summarized in Table 3. The IgG 
had the best prediction performances, which was expected considering 
they represent about 91% of total Ig content of colostrum. Calculated 
RPD was 2.04, i.e., slightly higher than the value of 2.00 which is 
considered as the minimal threshold for a prediction to be used at least 
for rough screening (Williams, 2014). According to intra-assay coeffi-
cient of variation for the reference method, it is reasonable the 
maximum achievable correlation between reference and predicted Ig to 
be 0.92, 0.98, and 0.97, for IgG, IgA, and IgM, respectively, considering 
Vis-NIRS cannot be more precise than reference data used to build the 
calibration model (Costa et al., 2021b; Zeaiter et al., 2004). On this 
view, R2

V obtained using PLS algorithm suggest there is the possibility to 
improve calibration performances for all the analysed Ig. Obtained re-
sults were in agreement with previous findings of Costa et al. (2021a) 
who reported R2

CV of 0.84 on a subset of samples used in the current 
study. Considering external validation, the same authors reported a 
lower R2

V (0.63), lower than performance reported in the present paper 
(0.76). The observed difference likely arose from the different separa-
tion of samples between calibration and validation set. Results similar to 
the ones obtained in the present study were achieved by Elsohaby et al. 
(2017), Elsohaby et al. (2018), using PLS. In that case, the Pearson 
correlation between RID- and IR-measured IgG was 0.88, roughly cor-
responding to R2 of 0.77. Considering the other analysed Ig, PLS cali-
brations for IgA and IgM obtained in the present study were 
unsatisfactory, with RPD of about 1.20 and R2

V of 0.30 ad 0.33, 
respectively. 

3.3. SA-PLS preparatory runs 

Preparatory runs were set up to evaluate best parameters for the 
computational-intensive calculation runs. In preparatory runs, the 
maximum number of selected wavelengths was not constrained and, in 
order to reduce computational load, a 20-fold cross validation was 
performed instead of full LOOCV. Moreover, shorter Markov chains 
were imposed compared to calculation runs. Variable selection pro-
cedure used RMSECV as loss function, as proposed by Liu et al. (2019). To 
check if RMSECV was a reliable quality index for the final model, 
RMSECV and RMSEV were compared for the 25 independent preparatory 

Table 1 
Simulated annealing parameters for preparatory and calculation runs.  

Parameter Preparatory runs Calculation runs1 

IgG IgA IgM 

Number of initial 
wavelengths 

200 100 100 100 

Maximum number of 
wavelengths 

4200 200 200 200 

Maximum number of latent 
variables 

20 20 20 20 

Cross validation Random, 20 
groups 

LOOCV LOOCV LOOCV 

Optimization parameter (α) 0.950 0.975 0.975 0.975 
Initial disturbance parameter 

(β) 
0.5 0.2 0.2 0.2 

Initial control parameter (t) 1.0 0.5 0.05 0.05 
Markov chain length 250 1000 1000 1000 
Maximum number accepted 

transitions 
100 250 250 250 

Lowest t allowed 0.0005 0.0005 0.0005 0.0005 
Number of independent runs 25 5 5 5  

1 IgG = immunoglobulins G (g/L); IgA = immunoglobulins A (g/L); IgM =
immunoglobulins M (g/L); LOOCV = leave-one-out cross validation. 

Table 2 
Descriptive statistics of immunoglobulins1 in calibration and validation sets.  

Trait n Mean SD Minimum Maximum CV, % 

Calibration set       
IgG 258  92.29  31.71  18.11  182.08  34.4 
IgA 227  4.56  2.82  0.33  17.51  61.9 
IgM 254  5.07  2.36  0.18  11.28  46.5 
Validation set       
IgG 272  90.80  32.57  6.52  182.62  35.9 
IgA 231  4.70  2.72  0.13  15.58  57.9 
IgM 267  5.07  2.44  0.29  14.01  48.2  

1 IgG = immunoglobulins G (g/L); IgA = immunoglobulins A (g/L); IgM =
immunoglobulins M (g/L). SD = standard deviation; CV = coefficient of 
variation. 
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runs (Fig. 2). Pearson correlation between the RMSECV of the selected 
model and the RMSEV of the external dataset was 0.95, confirming that 

the loss function was a good estimator for model selection. An alterna-
tive loss function was proposed by Jiang et al. (2012) combining the 
correlation coefficient and root mean squared error of prediction. 
Considering the good relationship between RMSECV and RMSEV, the 
aforementioned loss function was not investigated further. 

The relationship between the number of variables in the final pre-
diction models and the RMSECV is reported in Fig. 2. It is quite clear the 
inverse relationship between the number of variables and the loss 
function. For this reason, in calculation runs the maximum number of 
spectral variables included in the model was set to 200, allowing lower 
computational load and faster calculations. Previously, Swierenga et al. 
(1998) tested SA-PLS performance fixing the number of selected vari-
ables at 50, 100, 150 and 200, between 1100 and 2500 nm. As a result, 
best average performance was achieved for 50 or 100 wavelengths. 
Accordingly, and considering that the number of spectral variables in 
the proposed algorithm was not fixed, a constrain at maximum 200 
variables was believed reasonable. 

3.4. Calculation runs 

For calculation runs, a LOOCV was performed at each step to 
determine the loss function and to select the optimal number of latent 
variables. Starting t parameter allowed an initial acceptance ratio of 
about 0.5. For each trait, Table 3 reports the results of the best model in 
terms of RMSECV among 5 independent calculation runs. For all the Ig, 
SA-PLS outperformed PLS, with a reduction of RMSECV of 39%, 29% and 
15% for IgG, IgA and IgM, respectively. Considering RMSECV was the 
loss function for the selection algorithm, the result was expected. 
Nevertheless, even if RMSECV was a good statistics for final model se-
lection, generation of thousands of candidate solutions could lead to an 
overfitting of the loss function. Accordingly, robust external validation is 
desirable to estimate the real performance of the algorithm. Comparing 
RMSEV of PLS and PLS-DA, error decreased by 17%, 6% and 3% for IgG, 
IgA and IgM, respectively (Table 3). Even if the improvement is lower 
than for RMSECV, it is still particularly significant for IgG. Notably, the 
best improvement was for the IgG because good performances are ob-
tained for this fraction using standard PLS. In a previous study, Balabin 
& Smirnov (2011) obtained an improvement of RMSEV between 16% 
and 24% on different components of biodiesel, using SA-PLS. Correla-
tion plots for RID and predicted Ig in the validation dataset are available 
in the Supplementary Material (Figs. S1, S2, and S3). 

Considering that for calf feeding conventionally good quality colos-
trum is that one presenting IgG ≥ 50 g/L (Godden, 2008), the capability 
of NIRS model to distinguish between good and poor-quality samples 
was tested using a ROC analysis. The ROC curve was obtained from the 
relationship between RID and predicted IgG in the validation set (Fig. 3) 
and was characterized by an AUC of 0.97. Such value can be classified as 
outstanding according to ROC interpretation standards (Hosmer et al., 
2013). 

Selected wavelengths for SA-PLS models and variable importance in 
projection (VIP) are displayed in Fig. 4. Notably, even if SA-PLS selected 
for different wavelenghts among Ig, VIP followed a similar pattern. For 

Table 3 
Prediction and cross-validation results for the determination of immunoglobulins1 in colostrum using PLS and SA-PLS algorithms2.  

Algorithm Trait N LV  Cross validation External validation  
RMSECV R2

CV RMSEV R2
V Bias Slope RPD 

PLS IgG 4200 18   14.49  0.79  15.93  0.76  16.98  0.80  2.04 
IgA 4200 8   1.88  0.35  2.16  0.30  3.00  0.33  1.20 
IgM 4200 7   1.97  0.37  1.86  0.33  2.93  0.40  1.21 

SA-PLS IgG 50 19   8.77  0.92  13.28  0.83  12.42  0.86  2.45 
IgA 136 15   1.33  0.67  2.02  0.43  2.18  0.57  1.28 
IgM 121 15   1.68  0.54  1.81  0.37  2.70  0.45  1.24  

1 IgG = immunoglobulins G (g/L); IgA = immunoglobulins A (g/L); IgM = immunoglobulins M (g/L). 2PLS = partial least squares; SA-PLS = simulated annealing 
partial least squares. LV = latent variables; RMSECV = root mean squared error in cross validation; R2

CV = coefficient of determination in cross validation; RMSEV =

root mean squared error in validation; R2
V = coefficient of determination in validation; RPD = ratio of prediction to deviation. 

Fig. 2. Plot of A) root mean square error in cross validation (RMSECV) and root 
mean square error in validation (RMSEV) in preparatory runs for immuno-
globulins G (IgG, g/L) and B) number of selected variables (N) and root mean 
squared error in validation (RMSEV) in preparatory runs. 
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IgA and IgM, the range of visible light of the spectrum (400–600 nm) 
was particularly important. The Ig content of colostrum is known to be 
linked to total solids scattering, which determines the whiteness of 
samples and, consequently, the absorbtion pattern in the visible range 

(Cattaneo et al., 2009). Other important variables were detected be-
tween 950 and 1050 nm and between 1080 and 1120 nm. The first is 
usually linked to fourth overtone of C––O bond, typical for protein, and 
to the water content of the sample, and the second is influenced by ar-
omatic compounds such as proteins aromatic residues (Holroyd, 2013; 
Workman, 2016). Another important region of spectum for IgM pre-
diction was between 1400 and 1550 nm, which is referred to the second 
combination region of CH and amide II, and linked to water and protein 
content (López-Lorente & Mizaikoff, 2016). According to VIP, particu-
larly important was the spectral section of the first combination region 
of CH (2070–2150 nm and 2240–2360 nm), linked to protein and fat 
content in food samples (Workman, 2016). 

4. Conclusions 

The present study is the first attempt to predict the concentration of 
the 3 major bovine colostrum Ig fractions from spectral data. Visible- 
near infrared spectroscopy decreases RMSEv when SA-PLS is used for 
calibration by 17%, 6% and 3%, for IgG, IgA and IgM, respectively, 
compared to the standard PLS. Nevertheless, only IgG reached satis-
factory performances for routine usage. Despite this, it is worth high-
lighting that concentration of IgG is the key-parameter used to define 
colostrum quality at both farm and industry level. Therefore, visible- 
near infrared spectroscopy is suitable for IgG quantification in colos-
trum intended for different uses, since it is a fast, reliable, easy to be 
implemented, and cost-effective tool. Further research will focus on the 
prediction of other traits of interest for both farmers and dairy industry, 
like growth factors, vitamins, and antioxidants, in both liquid and spray- 
dried bovine colostrum. 

Fig. 3. Receiving operating characteristic for good and poor-quality colostrum 
predicted using SA-PLS infrared prediction model, calculated on the validation 
set. Positive samples were defined as those with RID-measured IgG < 50 g/L. 

Fig. 4. Average near-infrared spectrum of analysed colostrum samples and variable importance in projection for selected variables: immunoglobulins G (g/L; blue), A 
(g/L; green), and M (g/L; red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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