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Simple Summary: The huge amount of fish farmed around the world (about 90 million tons in 2020)
requires equally large quantities of feed, which is in a great part of animal origin, as it comes from
the capture of aquatic species of little commercial value, such as herring, sardines, and krill. Over
the years, this crucial natural resource has been decreasing, calling for alternative sources based
on plant products that are cheaper and have fewer fluctuations in price and quantity. However,
a plant-based diet causes intestinal inflammation, even in fish that are herbivores, such as carp,
one of the most cultivated and consumed cyprinids in the world. Zebrafish is a cyprinid that is
widely used as a model for biomedical research and more recently for aquaculture. In this study, it
was used to develop intestinal inflammation and evaluate the effects of tannins, polyphenols with
antioxidant, anti-inflammatory and immunostimulating properties, in counteracting the intestinal
proinflammatory effects of a plant-based diet. The results show that tannins can improve the zebrafish
intestinal inflammation caused by a terrestrial-plant-based diet.

Abstract: The current study evaluated the effects of hydrolyzable and condensed tannins from chest-
nut and quebracho wood, respectively (TSP, Silvafeed®), on zebrafish with intestinal inflammation
induced by a plant-based diet (basal diet). Four experimental diets were prepared as follows: the
basal diet + 0 TSP, the basal diet + TSP at 0.9 g/kg of feed, the basal diet + TSP at 1.7 g/kg of
feed, and the basal diet + TSP at 3.4 g/kg of feed. Eighty-four zebrafish (Danio rerio) were fed for
12 days with the experimental diets. In zebrafish fed the basal diet, intestine integrity appeared to be
altered, with damaged intestinal villi, high immunoexpression of tumor necrosis factor-α (TNFα)
and cyclooxygenase 2 (COX2), and high expression of the cox2, interleukin 1 (il-1b), interleukin
8 (cxcl8-l1), and tnfα genes. The tannin treatment partially restored intestinal morphology and down-
regulated the expression of cytokines. The best activity was detected with 1.7 and 3.4 g/kg of feed.
In the guts of all groups, Proteobacteria, Fusobacteria, Firmicutes, and Bacteroidetes were the most
represented phyla. The most represented genera were Plesiomonas and Sphingomonas, belonging to
the Proteobacteria phylum; Cetobacterium, belonging to the Fusobacteria phylum; and Lactobacillus,
belonging to the Firmicutes phylum. No significant differences were detected among groups, except
for a slight decrease in the Fusobacteria phylum and slight increases in the Shewanella and Bacteroides
genera with TSP. In conclusion, these results suggest that tannins can improve the zebrafish intestinal
inflammation caused by a terrestrial-plant-based diet in a dose-dependent manner.
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1. Introduction

In 2020, global production of aquatic animals was estimated to be around 178 million
tons, of which aquaculture contributed 49% [1]. The need to produce large quantities
of farmed fish has led over the years to a progressive reduction in the aquatic animal
resources necessary for the production of fishmeal (FM) [1], prompting scientists to search
for alternative protein sources to replace FM. The FM content in the diet can be reduced by
using herbal ingredients that are easily available, sustainable, and low-cost. However, the
total replacement of FM with plant ingredients induces intestinal inflammation, even in
completely herbivorous species such as Cyprinidae carpa gibel (Carassius auratus gibelio) [2]
and grass carp (Ctenopharyngodon idella) [3]. This is a harmful condition that negatively
affects feed digestion and nutrient absorption, resulting in impaired fish growth and
health [4], leading to economic losses. In fish, the intestinal barrier consists of a single
layer of epithelial cells that are selectively permeable to nutrients and secrete chemokines,
cytokines, and antimicrobial proteins that are essential for intestinal mucosal immunity,
while goblet cells protect the intestinal barriers by producing mucus [5]. At first, the
intestinal inflammation can be mild and controllable, but if external stressors, such as
feed, persist, the inflammation may turn into more serious epithelial tissue disruption
and intestinal dysfunction. As a consequence of the inflammation, epithelial cells produce
chemokines to recruit immune cells that in turn produce proinflammatory cytokines such
as interleukin (IL-1β) and tumor necrosis factor-alpha (TNFα), leading to the aggravation
of inflammation [6].

The cyprinidae zebrafish (Danio rerio) is a well-established biomedicine and aquacul-
ture research animal model [7–10]. As a model for aquaculture studies, zebrafish enables
lower research costs and possesses a well-known digestive system from both the mor-
phofunctional and microbiome points of view [11,12], making it a useful model to assess
the relationship between nutrition and health [13,14]. As an omnivorous species, as re-
ported by field observations of wild zebrafish [15], it can feed on both plant and animal
proteins and represents a nutritional animal model for both carnivorous and omnivorous
fish [13]. Zebrafish have been used as a fish model for studying the intestinal inflammation
induced by plant-based diets [16–18], exhibiting the same intestinal inflammatory effects as
other fish species. The migration of neutrophils to the affected areas and the production
of proinflammatory cytokines take place before the effects are observed histologically (a
reduction in villi and an increase in goblet cells) [19,20], shortening study times and giving
considerable economic advantage. In a diet-induced intestinal inflammation zebrafish
model, the increases in proinflammatory cytokines, neutrophil infiltration, goblet cells, and
villi alteration with a loss of mucosal architecture were evident after a 10-day treatment
with k-carrageenan [21].

Plant extracts are an economical and sustainable source of bioactive molecules with
anti-inflammatory and antioxidant actions, among which polyphenols are the most abun-
dant and widely used in the nutraceutical, cosmetic, and pharmaceutical industries [22].
Tannins are polyphenols, secondary chemicals that are ubiquitous in woody plants. They
are classified on the basis of structural characteristics into two main groups: hydrolyz-
able tannins (HTs) and condensed tannins (CTs), while the third group of tannins, called
phlorotannins, is present in brown algae and has less structural complexity than HTs and
CTs [23–25]. In HTs, phenolic groups such as gallic acid or ellagic acid are linked to a
partially or totally esterified carbohydrate, usually represented by D-glucose, giving rise to
the esters of the gallic or ellagic acid of glucose. The CTs consist of flavan-3-ol units and
oligomeric flavonoids, essentially catechin, epicatechin, gallocatechin, and epigallocate-
chin bonded via carbon–carbon bonds [23]. Recently, tannins have received considerable
attention due to numerous beneficial actions such as antioxidant [26], anticancer [27], an-
timicrobial, and antiviral [28] activities. However, the potential effects of tannins on human
and animal health remain largely unexplored. Research has shown the presence of positive
effects linked to the administration of tannins in farmed animals [29]. The most successful
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supplementation of tannins is attributed to the mitigation of frothy bloat in ruminants [30]
and intestinal inflammation in terrestrial farm animals [31].

The literature on the effects of tannins on farmed fish production is limited. Previ-
ous studies indicated that dietary tannins have a general health-promoting effect in fish,
although it may vary in a timing- and dose-dependent manner [32]. Dietary chestnut
tannin supplementation had the highest efficacy on growth performance, innate immunity
parameters, and antioxidant defenses in juvenile beluga sturgeon (Huso huso) [33], Nile
tilapia (Oreochromis niloticus) [34], common carp (Cyprinus carpio) [35], and convict cichlid
(Amatitlania nigrofasciata) [36] at a concentration of 2 g/kg while diets supplemented with
10, 20, or 30 g/kg of tannic acid resulted in decreases in growth parameters in juvenile
European seabass (Dicentrarchus labrax L.) [37].

On these bases, the aim of the present study was to explore the effects of commercial-
ized tannin extracts from chestnut (Castanea sativa), rich in HT, and quebracho (Schinopsis
spp.), rich in CT, on zebrafish fed a plant-based diet and bearing intestinal inflammation.
The gut histology, the immunoexpression of TNFα and COX2, the cytokine gene expression,
and the microbiota composition were analyzed. Altogether, the results suggest that tannins
can improve the zebrafish intestinal inflammation caused by a terrestrial-plant-based diet.

2. Materials and Methods
2.1. Fish Husbandry

Zebrafish were raised in the “zebrafish facility” of the Department of Veterinary
Science of the University of Pisa, Pisa (Italy), and the animal experiments were conducted
in agreement with European Union (EU) Directive 2010/63/EU and upon the approval of
the Italian Authority for Animal Care and Use Committee (B290E.N.F7X). Eight-month-old
wild-type AB-strain zebrafish were used. Fish body weight was measured at the beginning
(310,0 ± 118,28 mg; mean ± SD) and end of the trials. Before and during the experimental
period (two weeks of acclimation and twelve days of treatments), animals were maintained
in a water recirculating system at a temperature of 28 ◦C, which was monitored daily, as
was the pH, electrical conductivity, and dissolved oxygen, as described by Fronte et al. [14],
according to the indications of Westerfield [38].

2.2. Experimental Design and Feeding Protocol

A plant-based diet (control) and three increasing levels of tannins were used. Silvafeed®

TSP (Silvateam S.p.A., San Michele Mondovì, Italy), a blend of HTs and CTs obtained from
chestnut and quebracho wood, respectively, was included in the plant-based diet. The
dietary treatments are shown in Table 1. The ingredients, chemical compositions, and
energy contents of the diets were analyzed according to the AOAC (2000) protocol.

The different feeds were prepared as described by Royes and Chapman [39] and
Fronte et al. [14]. Briefly, the raw ingredients and TSP were subjected to grinding and
homogenization in a mixer, followed by humidification, pelletization, and final drying in
a forced-air oven (40 ◦C for 24 h). At the end, the diets were prepared into convenient
pellet sizes (400–600 µm) and stored at 4 ◦C for further use. Eighty-four zebrafish were
randomly divided into 4 dietary treatments (3 replicates each), for a total of 12 tanks
(3.5 L capacity; 7 fish per tank). The diets were then supplied to the four dietary groups
(n = 21 fish per group) for a total of 12 days. The TSP feed supplementation was calculated
on the basis of the current literature on cyprinids and other species [33–36]. It ensured
the administration of 0.9, 1.7, and 3.4 g/kg for TSP groups I, II, and III, respectively. For
this purpose, the voluntary feed intake (VFI) was measured for 10 days of the two-week
adaptation period, when a control diet was supplied ad libitum to all fish four times per
day (8:00 A.M., 11:00 A.M., 2:00 P.M., and 5:00 P.M.), following the “five minutes” rule
reported by Lawrence [40] (feeding rate: 4.5% of the BW). During the experimental period,
the feeds were distributed with the same method. At the end of the experimental period,
zebrafish fasted for 24 h and were sacrificed with an overdose of anesthesia (0.25 mg/mL
MS-222, Sigma©, St. Louis, MO, USA). For each treatment, fish intestines were collected as
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follows: 36 for the histological and immunohistochemical analysis, 24 for the inflammatory
factor analysis, and 24 for the microbiome analysis.

Table 1. Formulations and proximate compositions of the experimental diets (AOAC, 2000).

Control TSP I TSP II TSP III

Ingredient % % % %

Soybean meal 48 43.00 43.00 43.00 43.00

Corn meal 22.00 22.00 22.00 22.00

Corn gluten 15.00 15.00 15.00 15.00

Wheat gluten 5.20 5.11 5.03 4.86

Rapeseed meal 5.00 5.00 5.00 5.00

Dicalcium phosphate 3.40 3.40 3.40 3.40

Binder (guar gum) 2.20 2.20 2.20 2.20

Soybean oil 2.00 2.00 2.00 2.00

Choline chloride 1.30 1.30 1.30 1.30

Vitamin and mineral premix a 0.50 0.50 0.50 0.50

Sodium propionate 0.10 0.10 0.10 0.10

L-Lysine 0.10 0.10 0.10 0.10

L-Threonine 0.10 0.10 0.10 0.10

DL-Methionine 0.10 0.10 0.10 0.10

TSP 0.00 0.09 0.17 0.34

Total 100.0 100.0 100.0 100.0

Proximate Composition As Fed

Dry matter % 96.11 96.1 96.08 96.06

Crude protein % 36.95 36.88 36.81 36.67

Crude fat % 4.53 4.53 4.53 4.53

Fiber % 3.59 3.59 3.59 3.59

Starch % 18.65 18.64 18.64 18.62

Ash % 4.99 4.98 4.98 4.98

Gross energy MJ/kg 17.05 17.03 17.01 16.97
a Vitamin and mineral premix (kg of product): vitamin A = 1,200,000 IU; vitamin D3 = 200,000 IU; vitamin
E = 12,000 mg; vitamin K3 = 2400 mg; vitamin B1 = 4800 mg; vitamin B2 = 4800 mg; vitamin B6 = 4000 mg; vitamin
B12 = 4800 mg; folic acid = 1200 mg; calcium pantothenate = 12,000 mg; biotin = 48 mg; nicotinic acid = 24,000 mg;
Mn = 4000 mg; Zn = 6000 mg; I = 20 mg; Co = 2 mg; Cu = 4 mg; and Se = 20 mg.

2.3. Histological Analysis

The histological analysis was achieved as described by Orso et al. [21]. Specifically,
intestine samples were fixed for 24 h at 4 ◦C in 4% formalin (pH 7.4) prepared in 0.01 M
PBS (phosphate-buffered saline). Dehydration in a series of increasing ethanol grades and
clarification with xylene were performed prior to embedding tissues in paraffin. Embedded
samples were cut with a microtome (Leica Microsystems, Wetzlar, Germany) into 5 µm
sections, and, as reported by Orso et al. [21], anatomically comparable sections of the
mid-intestine were selected to be deparaffinized and stained with hematoxylin and eosin
(H&E) or Alcian blue to perform morphological analyses and count of the number of goblet
cells, respectively. A Leica DMI6000 light microscope equipped with a Leica DFC340 digital
camera (Leica Microsystems, Wetzlar, Germany) was used to analyze the stained intestinal
sections at 20X and 40X magnifications. The score number was calculated by utilizing the
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score system proposed by Orso et al. [21], and goblet cell quantification was performed as
previously illustrated by Imperatore et al. [32].

2.4. Immunohistochemical Analysis

The immunohistochemical technique was performed as described by Imperatore et al. [41].
Briefly, after dewaxing, sections of the mid-intestine were stained with the following
primary antibodies: a monoclonal anti-tumor necrosis factor-α (TNFα) antibody raised in
mouse (code ab1793, Abcam, Cambridge, UK) or a polyclonal anti-cyclooxygenase 2 (COX2)
antibody raised in rabbit (code 69720, NovaTeinBio, Woburn, MA, USA). Briefly, a 5 min
incubation with 0.1% H2O2 was performed to deactivate the endogenous peroxidases and
to prepare the sections for the subsequent 30 min incubation with blocking solution (NGS)
(10% normal goat serum (Vector Laboratories, CA, USA) and 0.3% Triton X-100 dissolved
in 0.1 M Tris-buffered saline, pH 7.6). Subsequently, overnight incubation with primary
antibodies prepared in NGS (1:200) was performed at 4 ◦C. The next day, several washes
were performed before the incubation with biotinylated goat anti-mouse or goat anti-rabbit
secondary antibodies (Vector Laboratories; 1:100) for 2h at room temperature. In the end,
the sections were incubated with the avidin–biotin complex (ABC Kit; Vectastain, Vector
Laboratories, CA, USA) for 1h, followed by revelation with 0.05% 3′-diaminobenzidine
(DAB) (DAB Sigma Fast, Sigma-Aldrich, St. Louis, MO, USA). The antibody specificity
was proven, as reported by Imperatore et al. [41,42]. Specifically, negative controls were
performed by omitting the primary antibodies, and they did not show any positivity
(Figure S1). A Leica DMI6000 light microscope (Leica Microsystems, Wetzlar, Germany)
equipped with a digital camera (JCV FC 340FX, Leica Microsystems, Wetzlar, Germany)
was used to acquire digital images under constant light illumination at 20X magnification.

2.5. RNA Isolation, cDNA Synthesis, and Real-Time PCR

The Quick RNA miniprep kit (ZymoResearch, Irvine, CA, USA) was utilized to extract
total RNA from zebrafish intestines following the manufacturer’s instructions. By the
reverse transcription of about 500 ng of total RNA, using a PrimeScriptTM RT Reagent kit
(Takara Bio Inc., Shiga, Japan), the cDNA was synthesized, and the qPCRBIO SyGreen Mix
Hi-ROX (PCR Biosystem, Wayne, NJ, USA) was employed to perform the quantitative real-
time polymerase chain reaction (qRT-PCR), according to Licitra et al. [43]. The sequences of
the primers used are listed in Table S1. The 2−∆∆Ct method was used to calculate the genes’
relative expression levels [44]. The result normalization was performed with respect to
the housekeeping gene, β-actin (ENSDARG00000037746). The analysis of gene expression
was calculated with the fold-change method. Each assay was performed in triplicate, and
5 samples per group were analyzed.

2.6. Microbiome Analysis

Whole intestine samples from 6 fish for each treatment were used to extract the to-
tal DNA that was analyzed, as reported by Pelusio et al. [45]. A NanoDrop ND-1000
(NanoDrop Technologies, Wilmington, DE, USA) was utilized for DNA extraction and
quantification. The extracted DNA was stored at –20 ◦C until further processing [46]. The
amplification of the V3-V4 hypervariable regions of the 16S rRNA gene was performed
in a 50 uL final volume containing 25 ng of DNA, 2X KAPA HiFi HotStart ReadyMix
(Roche, Basel, Switzerland), and 200 nmol/L 341F and 785R primers added with Illumina
overhang sequencing adapters. A total of 30 thermal amplification cycles were performed,
as described by Pelusio et al. [45]. To purify the PCR products and prepare indexed libraries
for Illumina sequencing, the Illumina protocol “16S Metagenomic Sequencing Library
Preparation” was followed. In the end, after the normalization to 4 nM, the libraries
were pooled, denatured with 0.2 N NaOH, and diluted with a 20% PhiX control to 6 pM.
The Illumina MiSeq platform was employed to perform sequencing using a 2 × 250 bp
paired-end protocol, as reported in the manufacturer’s instructions (Illumina, San Diego,
CA, USA). At the end of the sequencing process, raw sequences were processed using
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a pipeline combining PANDAseq 2.11 and QIIME2 [47] (https://qiime2.org accessed on
3 March 2017). At the end of the filtering for length (minimum/maximum = 350/550 bp)
and quality steps with default parameters using DADA2 [48], high-quality reads were clus-
tered into amplicon sequence variants (ASVs) using the VSEARCH algorithm (2.7.0) [49].
An RDP classifier against the SILVA database was used to define taxonomy [50]. To evaluate
intrasample diversity (alpha diversity), we evaluated Faith’s phylogenetic diversity (PD
whole tree), the Chao1 index for microbial richness, and the number of observed ASVs.
UniFrac distances were used to estimate the beta diversity with a principal coordinates
analysis (PCoA). All microbiota analyses and respective plots were produced using R
software (https://www.r-project.org/ accessed on 28 November 2020) with the “vegan”
(2.5-7) (http://www.cran.r-project.org/package-vegan/ accessed on 28 November 2020)
and “Made4” packages (3.14) [51]. A permutation test with pseudo-F ratios (function
“Adonis” in “vegan”) was used to test data separation. The Wilcoxon test and the Kruskall–
Wallis test were used to evaluate significant differences in alpha diversity and relative taxon
abundance between groups, respectively. A p-value ≤ 0.05 was deemed to be statistically
significant, while p-values between 0.05 and 0.1 were considered to be trends.

2.7. HPLC Analysis

An LC-4000 Series Integrated HPLC System (JASCO, Tokyo, Japan) equipped with
a liquid chromatography pump (model PU-2829 plus), an autosampler (AS-2059 plus), a
column oven (model CO-2060 plus), a UV/Vis Photodiode Array Detector (model MD-2818
plus), and a ChromNAV 2.0 software program (JAsco, Tokyo, Japan) was used to analyze
the TSP, as reported by Peng et al. [52]. Samples were loaded onto a C18 Luna column with
a 5 µm particle size, 25 cm × 3.00 mm I.D. (Phenomenex, Torrance, CA, USA), with a guard
cartridge of the same material. Briefly, the mobile phase was made of water containing
0,2% (v/v) phosphoric acid (solvent A) and 82% (v/v) acetonitrile containing 0,04% (v/v)
phosphoric acid (solvent B). The following gradient program was used to run the system:
from 0 to 15% B in 15 min, from 15% to 16% B from 15 to 40 min, from 16% to 17% B from
40 to 45 min, from 17% to 43% B from 45 to 48 min, from 43% to 52% B from 48 to 49 min,
held isocratic at 52% from 49 to 56 min, reduced from 52% to 43% B from 56 to 57 min, from
43% to 17% B from 57 to 58 min and from 17% to 0% B from 58 to 60 min. The flowrate was
1 mL/min. The injection volume was 20 µL. Peaks were detected at 280 nm and identified
by comparison to the retention times of hydrolyzable and condensed tannin standards.

2.8. Statistical Analysis

Data related to the fish growth performance and the score number were analyzed
using a one-way ANOVA, and differences between groups were tested by a mean HSD
Tukey–Kramer test (α = 0.05). The data related to qRT-PCR were first analyzed with the
Shapiro–Wilks test to evaluate the normality of the distribution. Post hoc comparisons
were performed using a one-way ANOVA. GraphPad Prism 6 (GraphPad Software, Inc.,
San Diego, CA, USA) was used for all statistical analyses, and p ≤ 0.05 was used to define
significant differences between treatments.

3. Results
3.1. Growth Performances

During the experimental period, all fish grew normally, and no statistically signifi-
cant differences were detected between treatments for the initial and final BWs (Table 2).
Similarly, no differences among treatments were observed for BW increment, VFI, or
FCR (Table S2).

https://qiime2.org
https://www.r-project.org/
http://www.cran.r-project.org/package-vegan/
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Table 2. Initial and final fish BWs (mg), according to the considered treatments.

Parameters Initial BW (mg) Final BW (mg) BW
IncrementTreatments Mean SD Mean SD

Control 291.0 116.93 350.1 117.63 20.3%

TSP I 316.9 108.85 375.1 140.84 18.4%

TSP II 307.2 126.57 372.3 120.54 21.2%

TSP III 318.6 121.84 382.9 157.84 20.2%

SEM * 14.617 16.427

p-value 0.9021 0.9031
* SEM: Standard Error of the Mean.

3.2. Intestinal Histology

Signs of intestinal inflammation were morphologically detectable in zebrafish fed
the plant-based diet (control), showing high goblet cell numbers, infiltrated leukocytes,
and irregular intestinal villi (Figure S2 and Figure 1A). Diets enriched with TSP partially
prevented these morphological alterations in a dose-dependent manner. Indeed, intestine
sections from zebrafish fed a diet containing TSP at 0.9 g/kg of feed (TSP I) showed altered
villus morphology, an abundance of goblet cells, and a loss of integrity of the lamina propria
(Figure 1B). In zebrafish fed TSP at 1.7 g/kg of feed (TSP II) and 3.4 g/kg of feed (TSP III),
the integrity of the lamina propria and villi were preserved and reductions in goblet cells
and infiltrated leukocytes were observed (Figure 1C,D). Significant reductions in the score
number were only found in the TSP II (p < 0.05) and TSP III (p < 0.0001) groups compared
with the control group; while the number of goblet cells only decreased significantly in the
TSP III group (p < 0.0001) compared with the control group.

3.3. Intestinal Immunohistochemistry

Morphological alterations visible in the zebrafish fed a plant-based diet were matched
with a high immunoexpression of the proinflammatory marker TNFα in the enteroen-
docrine and leukocyte infiltrated cells, highlighting the onset of an inflammatory state
(Figure 2A). TSP treatment partially reduced TNFα immunoreactivity when added to the
diet at high concentrations. Specifically, the intestines of zebrafish fed diets supplemented
with TSP at 0.9 g/kg of feed (TSP I) and 1.7 g/kg of feed (TSP II) showed intense TNFα
immunoexpression along the villi and in both infiltrates and epithelial cells (Figure 2B,C),
demonstrating an intense overt inflammatory state. On the contrary, the intestines of ze-
brafish fed a diet enriched with TSP at 3.4 g/kg of feed (TSP III) showed a reduction in the
immunoexpression of TNFα, which was mainly found in a few infiltrated cells (Figure 2D),
indicating an active immune response but the absence of a real inflammatory state.

COX2 immunoexpression was found mainly confined to the villus epithelium
(Figure 3). In particular, the COX2 immunoreactivity was detected on the apical side
of epithelial cells in zebrafish fed the plant-based diet (control) (Figure 3A) and the diet
containing TSP at 0.9 g/kg of feed (TSP I) (Figure 3B). COX2 expression was reduced in
zebrafish fed the diet containing TSP at 1.7 g/kg of feed (TSP II) (Figure 3C) and almost
disappeared in zebrafish fed the diet containing TSP at 3.4 g/kg (TSP III) (Figure 3D).

3.4. Inflammatory Factor Analysis

The mRNA expression of cox2, il-1b, cxcl8-l1, and tnfα is reported in Figure 4. Zebrafish
fed the plant-based diet (control) and the diet containing TSP at 0.9 g/kg of feed (TSP I)
showed similar patterns of inflammatory factors, whereas the double and triple dosages of
TSP (the 1.7 and 3.4 g/kg of feed of TSP II and III, respectively) significantly reduced the
expression of cox2, il-1b, cxcl8-l1, and tnfα by up to half compared to the control group.
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Figure 1. Hematoxylin and eosin (H&E) staining of intestines of (A) zebrafish fed a plant-based
diet (control); (B) TSP I, zebrafish fed a plant-based diet supplemented with TSP at 0.9 g/kg of feed;
(C) TSP II, zebrafish fed a plant-based diet supplemented with TSP at 1.7 g/kg of feed; and (D) TSP
III, zebrafish fed a plant-based diet supplemented with TSP at 3.4g/kg of feed. Scale bar: 100 µm;
50 µm for the higher magnifications. Arrows indicate leucocyte infiltrates; linear boxes depict goblet
cells. (E) Bar graph showing the total morphological alteration score (based on the modification of
intestinal folds and gut lumen and increases in the numbers of goblet cells and leukocytes) defined
for the intestines of each zebrafish group. Data are expressed as means ± SEs. * p < 0.05, *** p < 0.0001
compared to the control group. (F) Bar graph showing the mean number of goblet cells/villi in the
intestines of each zebrafish group. Alcian Blue staining was used to count the goblet cells. Data are
expressed as means ± SEs. *** p < 0.0001 compared to the control group.

3.5. Intestinal Bacterial Community Profile

A total of 24 whole intestine samples, yielding 114,329 high-quality reads (mean ± SD,
4764 ± 2719) and clustered into a total of 334 ASVs, were used to perform the 16S rRNA
gene sequencing. To assess whether the increasing treatment with TSP could exert a benefi-
cial effect on the gut bacteria community during inflammatory events, the gut microbiome
(GM) was analyzed for each dietary group. The variations in the GM profiles (beta diver-
sity) were assessed by a principal coordinate analysis (PCoA) of the unweighted UniFrac
distances that were calculated between the samples. In addition, for each dietary group
variations in the gut microbial community internal diversity were represented by three
different metrics: PD_whole_tree, the Chao1 index, and observed_ASVs. Our findings
(Figure 5) showed that none of the TSP groups showed significant variations in the overall
GM composition compared to the plant-based-diet group (control) in terms of the whole
composition structure (“Adonis”, p > 0.05) (Figure 5A–C). However, the TSP III group
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showed a higher p-value (Adonis) compared to the other TSP dietary groups, highlighting
that the bacterial community in the TSP III group was more similar to the plant-based-diet
group. Conversely, focusing on the microbial internal ecosystem diversity, the diet con-
taining TSP at 3.4 g/kg of feed showed a significant positive effect (Wilcoxon rank-sum
test, p < 0.05). Indeed, we observed a higher values of internal ecosystem diversity in the
TSP II group for all metrics (PD_whole_tree, Chao1, and observed_ASVs) compared to the
plant-based-diet group (Figure 5D).
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Figure 2. TNFα immunostaining in the intestines of (A) zebrafish fed a plant-based diet (control);
(B) TSP I, zebrafish fed a plant-based diet supplemented with TSP at 0.9 g/kg of feed; (C) TSP II,
zebrafish fed a plant-based diet supplemented with TSP at 1.7 g/kg of feed; and (D) TSP III, zebrafish
fed a plant-based diet supplemented with TSP at 3.4 g/kg of feed. Scale bar: 100 µm. Arrows indicate
epithelial cells, and black arrowheads indicate infiltrated leukocytes expressing TNFα.
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Figure 3. COX2 immunostaining in the intestines of (A) zebrafish fed the control diet; (B) TSP I,
zebrafish fed the control diet supplemented with TSP at 0.9 g/kg of feed; (C) TSP II, zebrafish fed the
control diet supplemented with TSP at 1.7 g/kg of feed; and (D) TSP III, zebrafish fed a diet enriched
with TSP at 3.4 g/kg of feed. Scale bar: 100 µm. Arrows indicate COX2 expression on the apical side
of epithelial cells.
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Figure 4. Relative mRNA expression of inflammatory factors in the intestines of zebrafish fed a
plant-based diet (control—CTRL) (black column) or a plant-based diet supplemented with TSP at
0.9 g/kg of feed (TSP I), 1.7 g/kg of feed (TSP II), or 3.4 g/kg of feed (TSP III). Only the significant
differences are reported. Error bars represent the standard errors of the means (SEMs). **** p < 0.00001,
*** p < 0.0001, ** p < 0.001, * p < 0.05.
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Figure 5. Beta diversity and alpha diversity of the gut microbiota of zebrafish fed a control diet
(CTRL), zebrafish fed a diet supplemented with TSP at 0.9 g/kg of feed (TSP I), zebrafish fed a diet
supplemented with TSP at 1.7 g/kg of feed (TSP II), and zebrafish fed a diet enriched with TSP at
3.4 g/kg of feed (TSP III). PCoA based on unweighted UniFrac distances between gut microbiota
structures of CTRL zebrafish and TSP I (A), TSP II (B), and TSP III (C) zebrafish. In all PCoA plots,
samples are not significantly separated (permutation test with pseudo-F ratio, p > 0.05). (D) Boxplots
of alpha diversity, measured with Faith’s phylogenetic diversity (PD_whole_tree), Chao1 index, and
observed_ASVs. For only the TSP II group, higher values of alpha diversity were observed for all
metrics compared to the plant-based-diet group (Wilcoxon rank-sum test, * p ≤ 0.05).
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To further assess the GM composition of zebrafish fed different concentrations of TSP,
the phylogenetic composition was assessed at the phylum and genus levels, as highlighted
in Figure 6A,B, respectively. Overall, similar profiles were found in the GMs of each
group in terms of the most abundant bacterial taxa. More specifically, the most abundant
phyla were Firmicutes, Fusobacteria, and Proteobacteria, which represented about 94%
of the whole intestinal bacterial ecosystem (Figure 6A). On the other hand, Cetobacterium,
belonging to the Fusobacteria phylum; Plesiomonas and Sphingomonas, belonging to the
Proteobacteria phylum; and Lactobacillus, belonging to the Firmicutes phylum were the
most represented genera (Figure 6B).
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Figure 6. Microbiome compositions of the whole intestines of zebrafish fed a control diet (CTRL),
zebrafish fed a diet supplemented with TSP at 0.9 g/kg of feed (TSP I), zebrafish fed a diet sup-
plemented with TSP at 1.7 g/kg of feed (TSP II), and zebrafish fed a diet enriched with TSP at
3.4 g/kg of feed (TSP III). Bar plots summarizing the microbiota compositions at the phylum (A) and
genus levels (B) of CTRL, TSP I, TSP II, and TSP III intestines. Only phyla and genera with relative
abundances ≥ 0.5% in at least 2 samples are represented.

No statistically significant differences at the genus level (Wilcoxon rank-sum test;
p > 0.05) were detected between the dietary groups. However, the paired statistical analyses
performed between each dietary group showed several tendencies of variations at the
genus level. More specifically, the Bacteroides genus appeared to be more abundant in both
the TSP II and TSP III groups compared to the control group (Wilcoxon rank-sum test;
p < 0.1). In addition, the Shewanella genera appeared to be more abundant in the TSP groups
compared to fish fed a plant-based diet (Figure 6B).

3.6. HPLC Profile of TSP

The TPS extract was analyzed by HPLC/DAD. The chromatographic profile, reported
in Figure 7, shows that TPS is composed of a mixture of HTs and CTs. In particular, by
comparing the peak retention times with those of the standards and with the literature, the
HTs belong to the ellagitannins, while the CTs correspond to the oligomers and polymers
of procyanidins.
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4. Discussion

In this study, zebrafish were employed as a model to investigate the possible amelio-
rating effects of a mix of HTs and CTs, the main polyphenols of chestnut and quebracho
wood, respectively, on the intestinal inflammation caused by a plant-based diet.

Our results are in agreement with the fish intestinal inflammation caused by a plant-
based diet whose detrimental effects on intestinal health status have long been documented
in fish. Gut lumen expansion, irregular intestinal villi with the loss of margins, abun-
dant mucus presence, variations in goblet cell numbers and infiltrated leukocytes, the
loss of lamina propria integrity, and the accumulation of fat in the submucosa layer are
among the most distinctive features of intestinal inflammation [53–55] and have been de-
scribed in several marine and freshwater fish species such as zebrafish [20,56,57], common
carp [58], Atlantic salmon (Salmo salar) [59,60], gilthead seabream (Sparus aurata, L.) [61],
silver sillago (Sillago sihama Forsskál) [62], and in the hybrid groupers (Epinephelus fuscogut-
tatus×E. lanceolatu) [63]. In this study, zebrafish fed a plant-based diet showed altered
intestinal morphology and an increased number of goblet cells. Moreover, in agreement
with the evidence that the gastrointestinal tract of vertebrates performs important functions
associated with immune defense, due to the presence of the gut-associated lymphoid tissue
(GALT) [64], leukocyte infiltration was detected. Leukocytes promote the recruitment
of other immune cells and help with mucosal recovery by releasing molecules such as
cytokines that are crucial for the orchestration of the defense response [65].

The addition of tannins to the feed formulation in the presence of intestinal inflam-
mation has been demonstrated to be able to ameliorate the general health status of the
intestine by restoring the structure and the organization of the villi almost to normal in
terrestrial animal farming [29,66,67]. The tannin amount seems to play a relevant and
crucial role in promoting the antioxidant and anti-inflammatory effects. Diet levels of CTs
between 10 and 80 g/kg of feed in grass carp (Ctenopharyngodon idella) caused impairment
of the intestinal immune function and inflammatory status [24], while dietary CTs up to
0.4 g/kg of feed improved the antioxidant status of L. japonicus without altering the growth
performance [68], and CT up to 1 g/kg of feed mitigated oxidative stress and maintained
intestinal health in the spotted sea bass (Lateolabrax maculatus) [69].

Orso et al. [21] reported the morphological and functional recovery of k-carrageenan-
induced intestinal inflammation in zebrafish after treatment with chestnut tannins at
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0.3 g/kg of feed, a lower concentration with respect to the present study, where the
ameliorative effects of tannins were observed at 1.7 and 3.4 g/kg of feed. This apparent
discrepancy could be due to different reasons, one of which is related to the severity of
basal inflammation. Based on the classification of inflammation symptoms in zebrafish
reported by Orso et al. [21], the intensity of inflammation was more severe in the present
study, where the loss of integrity of the villi, the number of goblet cells, and infiltrated
leukocytes were quite high in the group fed the plant-based diet. Furthermore, the duration
of the proinflammatory stimulus was longer in the present study, in which the specimens
were fed the proinflammatory plant-based diet for twelve days, while in the Orso et al.
study [21] the inflammatory stimulus was imposed for three days. Another reason is related
to the tannins employed in this study, which were a mixture of HTs from chestnut and
CTs from quebracho, commercialized under the name of Silvafeed® TSP. An ATR-FTIR
analysis of TSP reported by Coccia et al. [70] and the HPLC analysis in the present study
confirmed the presence of both CTs and HTs. In particular, according to the literature [71],
HTs from chestnut are mainly composed of hydrolyzable ellagitannins, whereas quebracho
condensed tannins mainly comprise proanthocyanidin oligomers and polymers consisting
of a homologous series of flavan-3-ol-based monomers [72]. However, CTs are not as
readily hydrolyzed in the body as HTs and are therefore more difficult to absorb [73]. Thus,
the presence of quebracho CTs in this study may explain why the effects were visible at a
higher percentage of tannins.

In vivo and in vitro studies in fish have demonstrated that tannins are capable of
preventing or ameliorating inflammation by modulating the expression of inflammatory
factors [74,75]. Orso et al. [21] reported that chestnut extract, which is rich in tannins,
ameliorated K-carrageenan-induced gut inflammation, reducing the expression of tnfα,
il-1b, and cox2 and increasing the proinflammatory factor il-10. Similarly, in the present
study, zebrafish fed plant-based diets supplemented with TSP at 1.7 and 3.4 g/kg showed
decreases in the proinflammatory factor TNFα and COX2 immunoexpression with respect
to the zebrafish fed a plant-based diet, an outcome confirmed by the reduction in the relative
expression of the il-1b, cxcl8-l1, tnfα, and cox2 genes. These results corroborate the beneficial
role of tannins in diet-induced inflammation through the reduction in proinflammatory
cytokines. Numerous previous studies showed that antinutritional factors contained in
plant-based diets, such as vegetal proteins and saponins, induce alterations in growth
performance [76], the enhancement of proinflammatory cytokines, and reductions in anti-
inflammatory factors in the intestines of both carnivorous fish, such as Atlantic salmon
(Salmo salar L.) [77], rainbow trout (Oncorhynchus mykiss) [78], and orange-spotted grouper
(Epinephelus coioides) [79], and omnivorous fish, such as Atlantic cod (Gadus morhua L.) [80]
and zebrafish [17]. Specifically, in line with our results, Perera and Yúfera [17] showed
that the inclusion of soybean meal in the zebrafish diet was characterized by high gene
expression of tnf-α, while Marjara et al. [81] found overexpression of il-17 and il-1b in the
intestines of Atlantic salmon (Salmo salar) fed a diet containing soybean meal. Moreover,
the cox2 gene expression appeared to be high in Senegalese sole (Solea senegalensis) fed a
soybean oil diet [82].

Tannins, like polyphenols, exert a myriad of effects whose mechanisms of action are
not yet fully known. Both CTs and HTs are high-molecular-weight molecules, of which
only a small percentage are absorbed at the level of the gastrointestinal system, metabo-
lized by enterocytes, and transferred into the bloodstream, from which they exert systemic
effects [83]. The unabsorbed percentage of tannins are used by the intestinal microbiota and
degraded into products with low molecular weights that can easily be absorbed [84,85]. Evi-
dence has accumulated on the existence of an interplay between polyphenols and intestinal
microbiota. In fact, polyphenols have prebiotic properties that enable them to control the
composition and function of the microbiota and antimicrobial properties against pathogenic
bacteria, thus demonstrating that they can exert beneficial effects in various disorders of
the gastrointestinal system [86]. Metagenomic studies report Proteobacteria, Fusobacteria,
Firmicutes, Bacteroidetes, Actinobacteria, and Verrucomicrobia as the principal phyla in
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the zebrafish gut microbiota and components of the core gut microbiota, as indicated by
the comparison of the gut microbiota of wild-caught zebrafish and zebrafish raised in
the laboratory [87,88]. Accordingly, the metagenomic analysis conducted in this study
showed that the zebrafish intestinal microbiota of all groups were dominated by members
of the phyla Proteobacteria, Fusobacteria, and Firmicutes, followed by low percentages of
Bacteroidetes and Actinobacteria.

It has been reported in the literature that in zebrafish with intestinal inflammation
Fusobacteria dominate over Proteobacteria, while Firmicutes, Bacteroidetes, and Actinobac-
teria are less represented [21,89,90]. In this study, Fusobacteria were abundant in zebrafish
fed a plant-based diet (which showed signs of intestinal inflammation) and dominated over
Proteobacteria. Moreover, in the same group, Cetobacterium (belonging to Fusobacteria) was
the predominant genera. In humans, Fusobacteria predominate in patients with colorectal
cancer and play a pivotal role in promoting the proinflammatory response [91]. On the
contrary, Proteobacteria are abundant under normal conditions in the microbiota of fish [92].
An important aspect of this study is that the intestinal inflammation was improved by the
presence of tannins, regardless of the microbiota. In fact, none of the tannin-treated groups
showed significant variations in the overall microbiota compositions compared to the plant-
based-diet group. The treatment with tannins influenced the relative amounts of the phyla,
decreasing Fusobacteria and Firmicutes, while increasing Proteobacteria, a result that is in
agreement with Orso et al. [21]. Interestingly, the abundance of the Proteobacteria genus
Shewanella increased in the groups fed TSP at 1.7 and 3.4 g/kg of feed. Some Shewanella
species can act as fish health modulators thanks to their potential probiotic activity [93].
Thus, a greater presence of this genus after tannin treatment could be considered beneficial
for the intestinal gut bacteria community, which could lead to a healthier fish gut microbiota
after an inflammatory event. Conversely, Aeromonas (Proteobacteria) are pathogenic to
aquatic animals and increase in tannin-treated zebrafish. In a study carried out on aquatic
bacteria, CTs showed antibacterial activities against Aeromonas, an outcome in conflict with
this study. However, it is worth noting that CTs had good efficacy to inhibit the growth of
pathogenic bacteria, but the efficacy varied with the solvents used to dissolve them, storage
and usage temperature, and the acid–base balance [94]. Such variables were not taken into
consideration in this study and deserve further attention.

In this study, a decrease in the relative abundance of Firmicutes due to tannins was
observed, in agreement with a study carried out in green carp (Ctenopharyngodon idellus)
treated with HT [95]. However, Lactobacilli, beneficial probiotics belonging to Firmicutes,
also appeared to decrease with the tannin treatment. A similar result was recently reported
by Ke et al. [96] in a study that evaluated the effects of HTs and CTs on the bacterial commu-
nity of alfalfa silage, reporting that while the application of HTs decreased the abundance
of Lactobacillus, the opposite results were observed with CTs. The lower absorbability of
CTs with respect to HTs [73] may explain the outcome of the present study.

5. Conclusions

Based on the results of the present study, it is possible to conclude that tannins
may play a relevant role in counteracting the negative effects of plant-based diet derived
inflammation in fish. Ameliorating effects were observed at several levels (gut histology,
immunohistochemistry, inflammatory factors, and microbiota). Hence, in the process of
improving aquaculture sustainability by reducing the use of fishmeal through replacement
with a plant-based meal, the inclusion of tannins in the fish diet may be helpful to maintain
fish health.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani13010167/s1, Figure S1: Antibodies specificity; Figure S2:
Hematoxylin and eosin (H&E) staining of intestine of zebrafish fed a diet based on Artemia salina
cysts; Table S1: Primer sequences for qRT-PCR; Table S2: BW increment (mg), VFI (mg), and FCR.
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