Low-Molecular-Weight Gels as Smart Materials for the Enhancement of Antioxidants Activity

Aneta Toronyi^{*1}, Demetra Giuri^{*2}, Silvia Martiniaková¹, Claudia Tomasini²

¹Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Food Science and Nutrition, Department of Food Technology, Radlinského 9, 812 37 Bratislava, Slovakia

²Università di Bologna, Dipartimento di Chimica Giacomo Ciamician, Via Selmi 2, 40126 Bologna, Italy

Table of Contents

Table S1: Composition of LMW gels with α -tocopherol					
Figure S1: Gels of Boc-L-Dopa(Bn) ₂ -OH with α-tocopherol					
Figure S2. Time sweep analysis of the gel of Boc-L-Dopa(Bn) ₂ -OH 0.8% w/v (DMSO/H ₂ O 70/30) with 5 μ M concentration of α -tocopherol					
Figure S3: Amplitude sweep of gels 0.8% w/v of Boc-L-DOPA(Bn) ₂ -OH in DMSO:H ₂ O = 7:3 with incorporated α -tocopherol in a specific concentration	S6				
Figure S4: Optical microscope images of gels (0.8% w/v) of Boc-L-DOPA(Bn) ₂ -OH in DMSO:H ₂ O = 7:3 with incorporated of α -tocopherol	S6				
Figure S5: 2, 2-diphenyl-1-picrylhydrazyl (DPPH) reaction mechanism	S7				
Table S2: Composition of LMW gels with postbiotics (PB)	S8				
Figure S6: Gels of Boc-L-Dopa(Bn) ₂ -OH with postbiotics	S8				

Figure S7. Time sweep analysis of the gel of Boc-L-Dopa(Bn) ₂ -OH 0.5% w/v with 30% of Repair complex				
Figure S8. Time sweep analysis of the gel of Boc-L-Dopa(Bn) ₂ -OH 0.5% w/v with 30% of ProRenew complex	S9			
Figure S9: Optical microscope images showing gel fibers when postbiotics ProRenew Complex or Repair Complex is used to trigger gelation	S10			
Figure S10: Amplitude sweep of gels 0.5% of Boc-L-DOPA(Bn) ₂ -OH in DMSO:Postbiotics (Repair Complex) in specific concentrations	S11			
Figure S11: Amplitude sweep of gels 0.5% of Boc-L-DOPA(Bn) ₂ -OH in DMSO:Postbiotics (ProRenew Complex) in specific concentrations	S11			

Gelator [%]	α-tocopherol [µM]	α-tocopherol (1mM) [mL]	DMSO [mL]	H ₂ O [mL]	Tot V [mL]
	5	0.005	0.695		
	10	0.010	0.690		
	15	0.015	0.685		
0.8	20	0.020	0.680	0.3	1
	40	0.040	0.660		
	60	0.060	0.640		
	100	0.100	0.600		
	5	0.005	0.795		
	10	0.010	0.790		
	15	0.015	0.785		
0.8	20	0.020	0.780	0.2	1
	40	0.040	0.760		
	60	0.060	0.740		
	100	0.100	0.700		
	5	0.005	0.495		
	10	0.010	0.490		
0.8	15	0.015	0.485		
	20	0.020	0.480	0.5	1
	40	0.040	0.460		
	60	0.060	0.440		
	100	0.100	0.400		
	5	0.005	0.695		
	10	0.010	0.690		
	15	0.015	0.685		
1.0	20	0.020	0.680	0.3	1
	40	0.040	0.660		
	60	0.060	0.640		
	100	0.100	0.600		
1.0	5	0.005	0.795		
	10	0.010	0.790		
	15	0.015	0.785		
	20	0.020	0.780	0.2	1
	40	0.040	0.760		
	60	0.060	0.740		
	100	0.100	0.700		
	5	0.005	0.495		
1.0	10	0.010	0.490		
	15	0.015	0.485		
	20	0.020	0.480	0.5	1
	40	0.040	0.460		
	60	0.060	0.440		
	100	0.100	0.400		

Table S1: Composition of LMW gels with α -tocopherol.

Figure S1: Gels of Boc-L-Dopa(Bn)₂-OH with α-tocopherol.

Figure S2. Time sweep analysis of the gel of Boc-L-Dopa(Bn)₂-OH 0.8% w/v (DMSO/H₂O 70/30) with 5 μ M concentration of α -tocopherol.

Figure S3: Amplitude sweeps of gels (0.8% w/v) of Boc-L-DOPA(Bn)₂-OH in DMSO:H₂O = 7:3 with incorporated α -tocopherol in a specific concentration.

Figure S4: Optical microscope images of gels (0.8% w/v) of Boc-L-DOPA(Bn)₂-OH in DMSO:H₂O = 7:3 with incorporated (a) 5 μ M or (b)100 μ M of α -tocopherol. Scalebar = 100 μ m.

Chemical reactions:

DPPH• + ArOH \rightarrow DPPH-H + ArO• (HAT mechanism) DPPH• + ArOH \rightarrow DPPH + [ArOH]• (SET mechanism)

where ArOH: phenolic AO

Mechanism of reaction: HAT

Gelator [% w/v]	PB [% v/v]	DMSO [mL]	PB [mL]	H ₂ O [mL]	Total V [mL]
0.5	30	0.5	0.3	0.2	1
0.5	50	0.5	0.5	-	1
0.5	60	0.4	0.6	-	1
0.5	70	0.3	0.7	-	1
0.5	80	0.2	0.8	-	1

Table S2: Composition of LMW gels with postbiotics (PB).

Figure S6. Gels of Boc-L-Dopa(Bn)₂-OH with postbiotics.

Figure S7. Time sweep analysis of the gel of Boc-L-Dopa $(Bn)_2$ -OH 0.5% w/v with 30% of Repair complex over 10 h (a) and over 10 minutes (b).

Figure S8. Time sweep analysis of the gel of Boc-L-Dopa $(Bn)_2$ -OH 0.5% w/v with 30% of ProRenew complex over 10 h (a) and over 10 minutes (b).

Figure S9. Optical microscope images showing gel fibers when postbiotics ProRenew Complex (a, b, c) or Repair Complex (d, e, f) is used to trigger gelation. a/d: gels with 30% of PBs; b/e: gels with 60% of PBs; c/f: gels with 80% of PBs; scalebar = $100 \mu m$.

Figure S10: Amplitude sweep of gels 0.5% of Boc-L-DOPA(Bn)₂-OH in DMSO:Postbiotics (Repair Complex) in specific concentrations.

Figure S11: Amplitude sweep of gels 0.5% of Boc-L-DOPA(Bn)₂-OH in DMSO:Postbiotics (ProRenew Complex) in specific concentrations.