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A B S T R A C T 

Next-generation telescopes, like Euclid , Rubin /LSST, and Roman , will open ne w windo ws on the Uni verse, allo wing us to infer 
physical properties for tens of millions of galaxies. Machine-learning methods are increasingly becoming the most efficient 
tools to handle this enormous amount of data, because they are often faster and more accurate than traditional methods. We 
investigate how well redshifts, stellar masses, and star-formation rates (SFRs) can be measured with deep-learning algorithms 
for observed galaxies within data mimicking the Euclid and Rubin /LSST surv e ys. We find that deep-learning neural networks 
and convolutional neural networks (CNNs), which are dependent on the parameter space of the training sample, perform well 
in measuring the properties of these galaxies and have a better accuracy than methods based on spectral energy distribution 

fitting. CNNs allow the processing of multiband magnitudes together with H E -band images. We find that the estimates of stellar 
masses impro v e with the use of an image, but those of redshift and SFR do not. Our best results are deriving (i) the redshift 
within a normalized error of < 0.15 for 99.9 per cent of the galaxies with signal-to-noise ratio > 3 in the H E band; (ii) the stellar 
mass within a factor of two ( ∼0 . 3 dex) for 99.5 per cent of the considered galaxies; and (iii) the SFR within a factor of two 

( ∼0 . 3 dex) for ∼70 per cent of the sample. We discuss the implications of our work for application to surv e ys as well as how 

measurements of these galaxy parameters can be impro v ed with deep learning. 

Key words: galaxies: evolution – galaxies: general – galaxies: photometry – galaxies: star formation. 

1  I N T RO D U C T I O N  

Understanding the physical processes driving galaxy evolution is 
one of the most outstanding issues in astronomy today. It is clear that 
galaxies are assembling through star formation and mergers through 
cosmic time (e.g. Conselice et al. 2014 ; Madau & Dickinson 2014 ), 
and morphologically evolve from irregular/peculiar galaxies at z > 

1 to more normal regular systems at lower redshifts (e.g. Mortlock 
et al. 2013 ). Whilst these basic features are now well understood in 
a generalized way within an evolving galaxy population, the exact 
details of this process are still unknown but there will be significant 
impro v ements in their understanding in the next decade with large 
telescope projects such as the Euclid Space Telescope (Laureijs et al. 
2011 ), the Vera C. Rubin Observatory ( Rubin /LSST; Ivezic et al. 
2008 ), and the Nancy Roman Space Telescope (Akeson et al. 2019 ). 

One of the most important ways for carrying out the analysis of 
galaxy evolution is through measuring properties of galaxies, like 
stellar mass and star-formation rates (SFRs), at different distances 
(or redshifts). These properties of galaxies can be difficult to measure 
accurately even through standard methodologies (e.g. Bisigello et al. 
2016 , 2017 ; Ciesla, Elbaz & Fensch 2017 ), which are generally 
based on fitting the galaxy spectral energy distribution (SED) with 
theoretical or empirical models. In the epoch of large data projects 
such as Euclid and LSST the use of these standard techniques will 
require huge computing power in order to measure these properties 
for the hundreds of millions of galaxies that will be observed 
within these data. Therefore, these large surv e ys will require the 
use of methods that go beyond the traditional ones for an efficient 
and accurate data analysis (i.e. statistical methods, including those 
based on machine learning). This shows the necessity of improving 
machine-learning algorithms in the near future. 

Ho we v er, e xcept for some pioneering works (e.g. Tagliaferri et al. 
2003 ; Hoyle 2016 ; Stensbo-Smidt et al. 2016 ; D’Isanto & Polsterer 
2018 ; Delli Veneri et al. 2019 ; Surana et al. 2020 ; Mucesh et al. 2021 ; 
Razim et al. 2021 ), the measurements of redshift, stellar mass, and 
SFR in an automatic way with machine learning is still largely under 
development. Other measurements, such as the galaxy morphology 
and structure, e.g. CAS parameters (i.e. concentration, asymmetry, 
and clumpiness; Conselice 2003 ), have been more extensively tested 
and can indeed be retrieved through deep-learning methods (e.g. 
Cheng et al. 2020 ; Tohill et al. 2021 ). 

In a recent work by the Euclid Collaboration: Desprez et al. 
( 2020 ), a careful comparison was performed between the photomet- 

ric redshift obtained with different standard and machine-learning 
techniques, showing the strengths and weaknesses of both methods. 
In particular, the photometric redshift measurement obtained with 
machine learning is challenging where the colour space regions of the 
training sample are not well co v ered; while, traditional methods hav e 
issues at very low z (i.e. z < 0.5), at least when considering optical 
and near-infrared (IR) filters, perhaps because of a lack of a valid set 
of templates or priors. Thus, various methods should be investigated 
to determine the optimal ways to measure these properties. 

In general, galaxy images can contain more information than 
integrated magnitudes, as the morphology, size, and the presence of 
companions hold information about their nature. SED fitting methods 
and machine-learning networks used to derive physical properties are 
mainly based on integrated quantities. Ho we ver, recent works (Hoyle 
2016 ; Pasquet et al. 2019 ) have shown the power of using images to 
derive photometric redshifts and the improvement caused by adding 
morphological information when estimating stellar masses (Dobbels 
et al. 2019 ). A similar analysis on the direct use of images to estimate 
stellar masses and SFR is ho we ver still missing. 

In this paper, we discuss if we can retrieve the most basic galaxy 
properties from deep-learning neural networks (DLNNs) 1 and from 

convolutional neural networks (CNNs), which indeed can make use 
of galaxy images. We make use of the Cosmos Evolution Surv e y 
(COSMOS; Scoville et al. 2007 ) field and the catalogue from Laigle 
et al. ( 2016 ) as well as imaging from the COSMOS-Drift And SHift 
(COSMOS-DASH; Mowla et al. 2019 ) surv e y with the Hubble Space 
Telescope ( HST ) Wide Field Camera 3 (WFC3). Thanks to these 
data, we verify if we are able to retrieve with Euclid ( I E previously 
called VIS, Y E , J E , H E ; Euclid Collaboration: Schirmer et al. 2022c ) 
and Rubin /LSST filters ( u , g , r , i , and z) the same SFRs and stellar 
masses derived through SED fitting, but based on a larger number of 
filters [i.e. 30 from ultraviolet (UV) to near-IR]. This would mean 
that the machine-learning networks are able to correctly interpolate 
between filters to retrieve the same output quantities using less input 
information. In this work, we perform a first step by deriving the 
point estimates of redshift, stellar mass, and SFR; while, we leave 
to a future work the complex analysis of the uncertainties and the 
probability distribution functions associate to each of them. 

1 A DLNN is similar to a multilayer perceptron; ho we ver, it has more than 
one fully connected layer, as it happens in our case. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/520/3/3529/6979829 by guest on 26 M
arch 2024



Euclid galaxy property with machine learning 3531 

MNRAS 520, 3529–3548 (2023) 

Figure 1. Workflow illustrating the different steps considered in this work. 
We highlight in blue the parts derived from the COSMOS2015 catalogue and 
in orange the part derived from the COSMOS-DASH survey. The green part 
indicates the two machine-learning networks considered (see Section 3 ). 

This paper is organized as follows. In Section 2 , we introduce 
the mock Euclid catalogue and the simulated H E -band images. In 
Section 3 , we describe the machine-learning algorithms considered; 
while, Section 4 contains the redshift, stellar mass, and SFR es- 
timates. The main findings are summarized in Section 5 . In this 
paper, we consider a Lambda cold dark matter cosmology with 
H 0 = 70 km s −1 Mpc −1 , �m 

= 0.27, and �� 

= 0 . 73, a Chabrier 
( 2003 ) initial mass function (IMF), and all magnitudes are in the AB 

system (Oke & Gunn 1983 ). 

2  M O C K  OBSERVATIONS  

In the next sections, we report the procedure considered to derive 
mock Euclid magnitudes and Euclidized H E -band images starting 
from observed galaxies. These are the inputs required by the two 
neural networks analysed in this work, which are described in details 
in Section 3 . In Fig. 1 , we report the full workflow to guide the reader. 

2.1 Mock catalogue and SED fitting pr ocedur e 

In this work, we made use of an updated version of the mock 
catalogue of the Euclid Wide Surv e y presented by Bisigello et al. 
( 2020 ). This mock catalogue was created starting from multiwave- 
length observations of real galaxies in the 2 deg 2 surv e y of the 
COSMOS field. These multiwavelength observations consist of 30 
filters, ranging from the UV to near-IR wav elengths, and the y are 
part of the public COSMOS2015 catalogue (Laigle et al. 2016 ). We 
remo v ed from the original COSMOS2015 catalogue stars and X- 
ray sources, the latter corresponding to < 1 per cent of the galaxy 
sample. 

Each observed galaxy was fitted comparing theoretical templates 
with the fluxes available in the 30 COSMOS15 filters, performing 
a χ2 fitting procedure using the LePhare code (Arnouts et al. 1999 ; 

Ilbert et al. 2006 ). For these fits we considered a broad set of SED 

templates from Bruzual & Charlot ( 2003 ) with exponentially declin- 
ing star-formation histories with e-folding time-scale τ between 0.1 
and 10 Gyr, Solar and subsolar metallicity (Z �, 0.04 Z �), ages from 

0.1 to 12 Gyr, 12 values of colour excess from E ( B − V ) = 0 to 1, 
and the Calzetti et al. ( 2000 ) reddening law. The redshift was fixed 
to the value reported in the COSMOS2015 catalogue. 

This fitting procedure allowed us to derive, for each observed 
galaxy, the best theoretical template and the g alaxy ph ysical proper- 
ties associated to it. In particular, for this work we are interested in the 
redshift, the stellar mass, and the SFR, while the best-fitting templates 
were used to derive mock Euclid magnitudes (see next section). We 
considered the previously mentioned associated physical properties 
to be the ground truth. 

We highlight that the considered physical properties have an 
associate uncertainty derived from the SED fitting procedure. In par- 
ticular, as mentioned by Laigle et al. ( 2016 ), the normalized median 
absolute deviation (NMAD) of the redshift, derived comparing the 
photometric redshift with available spectroscopic ones, varies from 

0.007 to 0.057 moving from bright galaxies (16 < i < 21) to faint 
galaxies (25 < i < 26). At the same time, the median error on the 
stellar mass and SFR, which are derived from the output probability 
distribution of each object, is 0.07 and 0.16 dex, respectively. These 
errors are stated here, but are not considered when showing, in the 
next sections, the results for the different networks, as they depend 
on the number of filters and the method used to derived the physical 
properties used as the ground truth. 

2.2 Mock magnitudes 

The original catalogue from Bisigello et al. ( 2020 ) was derived to 
mimic the Euclid Wide Surv e y (Euclid Collaboration: Scaramella 
et al. 2022b ) and consists of five filters, i.e. I E , Y E , J E , H E , and the 
Canada–France Imaging Surv e y (CFSI) u band. To these filters we 
add complementary magnitudes in the Sloan Digital Sky Survey 
(SDSS; Gunn et al. 1998 ), the g , r , i , and z filters. Observations in 
similar filters, such as the ones that will be used by Rubin /LSST, will 
be available to complement Euclid observations (Euclid Collabora- 
tion: Scaramella et al. 2022b ). 

The inclusion of filters bluewards of the Euclid bands, such as 
the previously mentioned u , g , r , i , and z filters, may impro v e 
the reconstruction of the o v erall SED template by broadening the 
wav elength co v erage. In particular, such filters are e xpected to 
impro v e the deri v ation of the SFR, by tracing UV wavelengths (Pforr, 
Maraston & Tonini 2012 , 2013 ), as well as the Lyman break (i.e. 912 
Å), which is one of the most prominent feature in a galaxy spectra. 

We included photometric errors by scattering each magnitude 
around its true v alue, deri ved from its best-fitting SED, and consider- 
ing the respective survey noise. We did not include any other source 
of error. In Table 1 we report the observational depths considered, 
as expected for the Euclid Wide Survey, to perturb the original 
COSMOS2015 photometry and to perform the SED fitting procedure 
using Euclid and Rubin /LSST filters. These depths in the Euclid 
bands correspond to the values presented in the Euclid definition 
study report (Laureijs et al. 2011 ) and are different from the more 
recent values presented in Euclid Collaboration: Scaramella et al. 
( 2022b ). 2 Ho we ver, as photometric errors are not included in the 
machine-learning networks, we do not expect these differences to 

2 Their median 10 σ values are 25.45, 23.55, 23.74, and 23.65 for I E , Y E , J E , 
and H E , respectively. 
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Table 1. Observational depth (point source, 10 σ ) in AB magnitude, central 
wavelength, and full width at half-maximum (FWHM) of the filters consid- 
ered in our Euclid Wide mock catalogue. 

Band 10 σ Depth λcen ( Å) FWHM ( Å) 

I E 24.50 7150 3640 
NISP/ Y E 23.24 10 850 a 2660 a 

NISP/ J E 23.24 13 750 a 4040 a 

NISP/ H E 23.24 17 725 a 5020 a 

CFSI/ u 24.20 3715 510 
SDSS/ g 24.50 4700 1263 
SDSS/ r 23.90 6174 1149 
SDSS/ i 23.60 7534 1239 
SDSS/ z 23.40 8782 994 

Note . a The central wavelengths and FWHMs of the NISP filters are slightly 
( < 0.6 per cent and < 1.3 per cent, respectively) different from the more recent 
values reported in Euclid Collaboration: Scaramella et al. ( 2022c ). 

impact the results presented in this paper. Photometric errors are not 
included as inputs because the feature analysis on a similar machine- 
learning algorithm have shown they provide little or no information 
compared to just using magnitudes (Euclid Collaboration: Humphrey 
et al. 2022a ) . At this stage, we did not apply any magnitude cut, as 
this will be performed later on the images; ho we ver, we assigned a 
value of −1 to all magnitudes below S / N < 3. 

2.3 H E -band Euclidized images 

In this work, we consider machine-learning networks that have as 
inputs not only magnitudes, but also images. In particular, we make 
use of simulated images in the H E filter instead of images in the I E 
filter. On one hand, the I E filter is more sensitive, as it covers a wide 
530-920 nm wavelength range (equi v alent to r , i , and z together), 
and it has three times higher angular resolution, together implying 
more complex modelling. On the other hand, observations in filters 
similar to the Euclid H E band are already available from HST . 

We derived our simulated H E -band images from the HST -WFC3 
Imaging Surv e y in the COSMOS field (COSMOS-DASH; Mowla 
et al. 2019 ), which co v ers a large fraction of the COSMOS field. We 
consider the HST / F 160 W images because they correspond to a filter 
close in wavelength to the H E filter. We did not apply any k -correction 
to convert from the HST / F 160 W filter to the H E band. This would 
imply the use of a SED model and would change the flux values of 
each pixel but not the morphological features, which are the ones 
rele v ant for the CNN analysis. 

We created H E -band images starting from HST / F 160 W thumbnails 
of 51 × 51 pixels centred around each galaxy. We derive the signal- 
to-noise ratio (S/N) of each image by retrieving the background flux 
and the noise from the median and standard deviation of the fluxes 
on an area of 51 × 51 pixels, with the central 18 × 18 pixels masked 
to remo v e the source. F or the noise, we deriv e the value present 
in the image by calculating the standard deviation after applying a 
3 σ -clipping procedure. We then add an additional noise, applying 
a scatter from a Gaussian distribution, in order to reproduce the 
expected Euclid noise. The signal on the source was then roughly 
derived from the central 6 × 6 pixels, which correspond to a square of 
∼0 . 7 arcsec × 0 . 7 arcsec . 3 The S/N was then derived by subtracting 
the background from the signal and dividing the result by the retrieved 

3 This procedure, applied to the original HST images, is expected to underes- 
timate the flux of local extended galaxies, for which a specific analysis on the 
estimation of physical properties will be considered in a future work. 

noise. We restricted our analysis to galaxies with an S/N > 3, to a v oid 
training the networks with images dominated by noise. 

As a second step, we apply the Euclid NISP H E -band point spread 
function (PSF), 4 photometric noise, and spatial resolution. Both the 
Euclid ( ∼0 . 7 arcsec ) and HST PSFs were approximated by two- 
dimensional (2D) Gaussian functions. In reality, both PSFs are highly 
non-Gaussian in the wings, we do not expect this to impact extremely 
our results, as the central small spatial resolution should dominate 
the training; ho we ver, it is recommended to train the network on real 
images in the future. In this way, we start from an HST / F 160 W image 
of 51 × 51 pixels centred on each observed galaxy and we obtain an 
H E -band-simulated image of 25 × 25 pixels. These sizes generally 
include the entire galaxy in each image and allow for a sample 
augmentation through rotation without image loss. In Fig. 2 , we give 
an example of the transformation from an observed HST / F 160 W 

image to a H E -band-simulated image. 
In the last step, we matched the COSMOS-DASH catalogue with 

the COSMOS2015 catalogue, considering a matching radius of 1 
arcsec . In this way, we linked each H E -band simulated image to the 
set of mock magnitudes described in the previous section. We then 
separate the catalogue into two subsamples with different S/N cuts, 
i.e. S/N > 3 and S/N > 10, with the S/N derived, as mentioned before, 
on the H E -band-simulated images. These subsamples correspond to 
27 340 and 9799 COSMOS-DASH galaxies with an S/N > 3 and 
10, respectively. The redshift, stellar mass, and SFR distributions of 
both samples are reported in Fig. 3 . 

2.4 Sample augmentation 

Sample augmentation is necessary to increase the number of objects 
and impro v e the training of the different algorithms. This was 
done for the magnitudes in the training and validation samples 
(see Section 3 ) randomly extracting their values from a Gaussian 
distribution centred on the true flux values and with a dispersion 
equal to the photometric noise, as expected for the Euclid Wide 
Surv e y. We then conv ert flux es to magnitudes. On the other hand, 
to increase the number of images available, we rotated each of them 

by 10 ◦ for a maximum of 35 times, this change is sufficient to make 
the network recognize each image as a new one. This method has 
been often applied in the literature (e.g. Dieleman, Willett & Dambre 
2015 ; Huertas-Company et al. 2015 ) and it has been demonstrated 
to impro v e machine-learning classifications (Cheng et al. 2020 ). 

For the redshift deri v ation, we increased the number of sources 
in the catalogue by a factor of 10; while, for the stellar mass and 
SFR, whose measurements are more challenging, we increased the 
number of objects up to a factor of 35 in order to obtain a flat 
distribution (Fig. 3 ). This is performed to a v oid biases on the training 
(i.e. most present galaxy having the best estimation) and to obtain 
an estimation that is similar o v er a range in mass or SFR as large as 
possible. Ho we ver, the number of galaxies with S/N > 3 (10) and 
log 10 [ SFR / (M � yr −1 )] < −2 . 5 ( −3) or log 10 ( M ∗/ M �) < 8 (8.5) 
are very low and the resulting SFR and stellar mass distributions 
are flat only abo v e these values. In addition, we applied a rough 
conversion of the 3 σ I E photometric depth (i.e. I E = 25 . 81, see 
Table 1 ) to SFR by using the relation by Kennicutt ( 1998 ), which links 
the UV luminosity to the unobscured component of the SFR, and 
converting it to Chabrier ( 2003 ) IMF. This conversion is not possible 
at z < 1, as the I E does not trace the UV light; ho we ver, it is useful 

4 In order to have a final image consistent with the Euclid PSF, we apply a 
PSF with a standard deviation σ 2 = σ 2 

Euclid − σ 2 
HST . 
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Figure 2. Example of the transformation from an HST / F 160 W image (a) to a Euclid H E -band-simulated image (d) of a galaxy at z = 0.2. In the first step, we 
include the Euclid PSF (b), we then include the expected photometric noise (c), and finally we apply the Euclid angular resolution (d). The colour scale is linear 
and it is the same for all panels. 

Figure 3. Distribution of the galaxies in the COSMOS field with imaging S/N > 3 (top panel) and S/N > 10 (bottom panel) in redshift (left-hand panel), stellar 
mass (centre panel), and SFR (right-hand panel). The distributions are for the training sample (filled purple) and the validation sample (solid red) after applying 
sample augmentation, and for the test sample (dashed yellow) and the original sample (dotted black) without augmentation. Sample augmentation for SFR and 
stellar mass is performed to obtain a distribution which is as flat as possible, to avoid biases when training. 

to give a rough estimate of the limits imposed by the photometric 
noise to the SFR estimation. Indeed, we expect the photometric noise 
to limit the SFR estimates to log 10 [ SFR / (M � yr −1 )] > −0 . 9 (0.3) 
at z = 1 (3). In the following analysis we take into account these 
ef fects, sho wing the results for the full sample and for the subsample 
with a completely flat distribution in stellar mass. For the SFR, we 
instead show the results for the full sample and for the sample with 
log 10 [ SFR / (M � yr −1 )] > 0. 

After augmentation, the training samples used for the redshift 
measurements have 91 130 galaxies with S/N > 3 and 32 660 with 
S/N > 10. The augmented samples for the stellar mass (SFR) have 
instead 63 295 (82 899) galaxies with S/N > 3 and 24 296 (29 065) 
objects with S/N > 10. Each S/N cut refers to the H E -band images, 
as mentioned in the previous section. The sizes of the samples 
correspond to the maximum size possible given the input data set 
and the augmentation procedure explained. 

3  M AC H I N E - L E A R N I N G  A L G O R I T H M S  

In this work, we considered two different machine-learning algo- 
rithms, a DLNN, which has as input e xclusiv ely tabular data, and a 
CNN, which includes also images. We investigate these two different 

machine-learning algorithms to determine the performance of both 
for measuring different physical parameters of galaxies and how they 
compare with each other. In the future, this work may be extended 
considering a 1D CNN instead of a DLNN, which may better capture 
features in the SED, and a more complex CNN with multiple input 
images. 

3.1 Deep-Learning Neural Network 

In the DLNN, we used two different sets of inputs, namely (i) 
the four Euclid magnitudes and (ii) the four Euclid magnitudes 
complemented with the magnitudes in the u CHFT and g , r , i , 
and z SDSS ground-based filters. These ground-based filters will be 
available through ancillary surv e ys with different facilities (Euclid 
Collaboration: Scaramella et al. 2022b ). In both cases, we considered 
the sample with H E -band images with S/N > 3 and the subsample 
with S/N > 10, training the network separately for each S/N cut. 

The architecture of the DLNN is summarized in Table 2 and 
consists of four linear layers with the number of neurons ranging 
from 500 to 2000. Each neuron of each layer is fully connected 
with the neurons of the previous and the following layer and these 
connections are updated during the training in order to derive the 
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Table 2. The DLNN architecture used in this paper. Linear is a fully 
connected layer that applies a linear transformation. We also include a ReLU 

function between each linear layer. 

Layer N input N output 

Linear N 

a 2000 
Linear 2000 1000 
Linear 1000 500 
Linear 500 1 

Note . a N is equal to the number of input filters (i.e. four or nine) for the single 
runs, and it is equal to the number of runs, i.e. 10, for the Meta-learner. 

Table 3. The CNN architecture used in this paper. Conv2d indicates a 2D 

con volutional layer , Max pool corresponds to a pooling layer using the 
maximum value to downsample each image, Linear is a fully connected layer 
that applies a linear transformation. We included a ReLU function between 
each convolutional or linear layer. Galaxy images are introduced in the first 
Con v2d layer , while fluxes are included in the first Linear layer. 

Layer Kernel size N input N output 

Conv2d 3 × 3 1 × 18 ×18 64 × 16 ×16 
Conv2d 3 × 3 64 × 16 ×16 64 × 14 ×14 
Max pool 2 × 2 64 × 14 ×14 64 × 13 ×13 
Conv2d 3 × 3 64 × 13 ×13 128 × 11 ×11 
Conv2d 3 × 3 128 × 11 ×11 128 × 9 ×9 
Max pool 2 × 2 128 × 9 ×9 128 × 8 ×8 
Conv2d 3 × 3 128 × 8 ×8 256 × 6 ×6 
Conv2d 3 × 3 256 × 6 ×6 256 × 4 ×4 
Conv2d 3 × 3 256 × 4 ×4 256 × 2 ×2 
Max pool 2 × 2 256 × 2 ×2 256 × 1 ×1 
Linear – 256 + N 

a 2000 
Linear – 2000 1000 
Linear – 1000 500 
Linear – 500 1 

Note . a N is equal to the number of input filters (i.e. four or nine). 

optimal way to map the input integrated magnitudes into the desired 
physical properties. Among each linear layer there is a Rectified 
Linear Unit (ReLU; Nair & Hinton 2010 ), such that f ( x ) = 0 if x < 0 
and f ( x ) = x if x ≥ 0. A similar architecture has been previously used, 
even if with different inputs, number of neurons and hidden layers, 
to derive photometric redshift (e.g. Firth, Lahav & Somerville 2003 ; 
Collister & Lahav 2004 ). 

As a simple and direct test, in this work we kept the same 
architecture when changing the set of inputs (e.g. Euclid only versus 
Euclid + LSST filters). Ho we v er, we hav e not fully explored all 
the possible combinations of number of neurons and hidden layers, 
so there may be some architectures that optimize the use of the 
different set of inputs separately. This would have an impact on the 
absolute precision of the networks, but this is expected to leave the 
qualitative statements of the paper untouched. A full optimization 
will be performed in the future, once real data become available. 

3.2 Convolutional Neural Network 

The CNN has as input either of the sets of magnitudes of the DLNN 

(i.e. only Euclid filters or Euclid and ancillary filters), but it also 
includes the simulated H E -band images. The architecture of this 
second network is summarized in Table 3 . It consists of a series of 
convolutional layers applied to the H E -band images, whose outputs 
are then combined with the magnitudes and processed through a set of 
linear layers. The convolutional layers are key for identifying features 
and shapes inside each H E -band image. We chose a deep network with 

3 × 3 kernels, instead of a network with less layers but larger kernels, 
as this architecture makes the decision function more discriminative 
and reduces the number of free parameters (Simonyan & Zisserman 
2015 ). 

After every two convolutional layers we applied a max-pooling 
layer, which is used for down-sizing the images which reduces the 
number of parameters of the network. As for the DLNN, the linear 
layers are interspersed with ReLU functions. The CNN is trained 
separately with the two sub-samples with different S/N cuts in the 
H E -band images. 

As a preliminary approach, we decided to derive, in both the CNN 

and DLNN runs, the redshift, stellar mass, and SFR independently. 
In this way we can investigate the challenges of the deri v ation of 
the three properties separately. We leave the combined analysis to a 
future work, but as reported in Appendix A (available online), we 
do not find evidence of galaxies with unrealistic combinations of 
physical properties, e.g. very-low-mass galaxies at very high z. 

3.3 Re-scaling 

We re-scaled all input parameters, i.e. stellar mass, SFR, redshift, 
and magnitudes, in order to have values between 0 and 1. This is 
performed by subtracting from each parameter its minimum value 
and dividing it by the difference between its maximum and minimum 

values. This is performed in logarithmic scale for the stellar mass 
and SFR and in linear scale for the redshift. We do not consider 
magnitudes below S/N < 3 in the re-scaling, as we assigned a value of 
−1 to all of them (Section 2.2 ). A similar re-scaling is also applied to 
each simulated H E -band image in order to have pixel values between 
0 and 1. The same re-scaling is applied to the entire sample; ho we ver, 
it is calculated using only the galaxies considered for the training (see 
later). This re-scaling is an important step in machine learning as the 
inputs and outputs may differ o v er orders of magnitude and, therefore, 
the largest one may dominate the training process. It is necessary to 
keep in mind, when comparing the CNN to the DLNN in the next 
sections, that because of the re-scaling performed separately for each 
galaxy, each H E -band image has lost information about the o v erall 
galaxy flux and mainly contains the information on features and 
shapes, which is what we aim to train on. 

3.4 Hyperparameters 

We also divide the full sample into batches of 200 objects, which are 
used serially to update the training process, to increase stochasticity, 
and reduce the problem of local minima. In both the CNN and DLNN 

runs we implement an Adam algorithm (Kingma & Ba 2014 ), which 
is an optimization function based on stochastic gradient descent, 
to optimize the hyperparameters of the networks. To e v aluate the 
difference between the data and the predictions, for each update of the 
network we derived a loss function based on the mean squared error 
(MSE), i.e. l( x , y ) = 

∑ N 

n = 0 ( x n − y n ) 2 /N , where x are the predicted 
values, y the target ones, and N is the total number of galaxy in input. 

3.5 The training, the validation, and the test samples 

We randomly split all the samples in three subsamples, of equal 
numbers, and we then apply augmentation only to the training and 
validation samples (see Fig. 3 and Section 2.4 ). Each network is 
trained with the first subsample (training sample), while the second 
subsample (validation sample) is used to estimate in an independent 
way the loss function and stop the training when it converges to 
a v oid o v erfitting (i.e. o v er learning features specific of the training 
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sample), which may happen if we only analyse the loss function 
derived with the subsample used for training. The third subsample 
(test sample) is never seen by the networks, and is only used to 
e v aluate the results. This subsample is not augmented so that the 
final statistics corresponds to a realistic galaxy sample. The split is 
performed once for all networks and is done before augmentation to 
a v oid ha ving the same object present in the training and in the test 
sample. 

3.6 Networks combination methods 

All networks are run 10 times using different random seeds. This 
number was chosen as a compromise between computational time 
and stochasticity. We then combine these runs with three different 
approaches. We report the results for the following: 

(i) The best network, defined as the network with the smallest 
outlier fraction considering the full sample for the redshift estimation, 
then the subsample with a flat stellar mass distribution for the stellar 
mass deri v ation, and then the subsample abo v e SFR > 1 M � yr −1 

for the SFR measurements. 
(ii) The median of the outputs of the 10 networks. 
(iii) A Meta-learner (Wolpert 1992 ; Euclid Collaboration: 

Humphrey et al. 2022a ) that is an additional machine-learning 
network used as a linear discriminant among the different runs. This 
allows us to take into account the fact that some runs may have 
identified features peculiar to a subset of data. This Meta-learner 
consists of a DLNN with the architecture shown in Table 2 ; ho we ver, 
it uses the results of the 10 runs, instead of the magnitudes, as inputs. 

4  G A L A X Y  PROPERTIES  D E R I V E D  WITH  

M AC H I N E  L E A R N I N G  

In this section, we report and discuss the results for the redshift, stellar 
mass, and SFR estimates based on machine-learning methods. We 
highlight that in order to train the machine-learning algorithms we 
need to have a sample with known output values. In this work, 
we rely on simulated data and with real data we could rely on 
spectroscopic redshifts and SFRs derived from a combination of 
different tracers (e.g. UV and IR stellar continuum). Ho we ver, there 
is not an equi v alent method to deri ve the true stellar mass of galaxies 
and we need to rely on the SED fitting applied to a subsample of 
galaxies with plenty of ancillary data. The power of machine learning 
is the capability of deriving the properties with a better accuracy. 

For comparison, we also report the results derived with the same 
SED fitting procedure used to retrieve mock magnitudes, but using 
both the four Euclid filters and the nine Euclid and ancillary filters, 
as inputs. This of course corresponds to an ideal situation, as the 
same code and the same set of templates are used to retrieve the 
mock magnitudes and to estimate physical properties. It is, ho we ver, 
necessary to take into account that other SED fitting codes may 
perform differently, not only because of different SED libraries, but 
also because of the use of priors, which are instead not used here. 
This test is anyway useful for a direct comparison with the machine- 
learning algorithms considered. 

4.1 Computational performance 

One of the main advantages of machine-learning algorithms is 
the time necessary to derive the desired results. In general, the 
time necessary to apply a SED fitting procedure, regardless of the 
considered code, depends on the number of templates considered. 

F or e xample, with the set-up considered in this work, i.e. 14 SED 

templates (see Section 2.2 ), 12 dust extinction values, 23 age values, 
and with redshift steps of 0.05 up to z = 6, LePhare takes 0.23 s per 
object, 5 requiring more than 4 h for ∼63 × 10 3 objects. Conversely, 
the DLNN training requires around 20–40 min, depending on the 
sample size (e.g. ∼24 or 63 × 10 3 objects); while, the e v aluation 
requires less than a minute in total for the same 63 × 10 3 objects and 
using the same machine. The CNN, using a graphics processing unit, 
requires a longer time for training, up to 13 h, and for e v aluating ( ∼15 
min), given the larger complexity of the set of inputs. There is in any 
case a huge impro v ement on time cost moving from SED fitting codes 
to DLNN or CNN, as machine-learning networks, once the training 
is performed, require only to apply a set of linear transformations, 
or convolution for the CNN, to calculate the output values; while, a 
SED fitting procedure requires more complex steps, e.g. chi-square 
deri v ation for each combination of SED template and object. 

4.2 Redshift deri v ation 

In Table 4 , we report the fraction of outliers ( f out ), defined as 
objects with | z out − z in | > 0 . 15 (1 + z in ) as commonly defined in 
the literature (e.g. Ilbert et al. 2010 ; Laigle et al. 2016 ), the bias 

〈 	z〉 = median [( z out − z in ) / (1 + z in )] , (1) 

and the NMAD 

6 

NMAD = 1 . 48 [ | z out − z in | / (1 + z in )] , (2) 

of the reco v ered redshifts for all networks. In the same table, we list 
results for the best and the median of the 10 runs of each network, as 
well as the results derived considering the Meta-learner. The latter 
are also shown in Figs 4 and 5 , for the four (i.e. two sets of inputs 
and two S/N cuts) DLNN and the four CNN runs, respectively. 

First, when focusing on each network to compare the 10 different 
runs, it is evident that the Meta-learner (see Section 3 ) gives in general 
better results than both the best of the 10 runs and the median of them. 
The fraction of outliers of the Meta-learner is al w ays the smallest, 
even if for some networks with nine input filters the other two 
approaches give comparable results. The improvement in the fraction 
of outliers goes up to 	 f out = 0 . 016 (0.027), when comparing with 
the best (median) of the 10 runs with four input filters. When we 
considered the networks with nine input filters, both for the DLNN 

and the CNN, the fraction of outliers are very small in all cases 
and the difference is, at maximum, 	 f out = 0.003. In addition, the 
NMAD of the Meta-learner is al w ays the smallest, showing that this 
approach not only generally decreases the fraction of outliers, but 
also impro v es the o v erall redshift accurac y. As an additional test, we 
analyse the impact of including at the end of the network a dropout 
layer, which randomly set to zero some of the elements of the inputs 
during training with probability 0.5 using samples from a Bernoulli 
distribution. This method, whose results are not sho wn here, e ven if 
it can identify different trends present in the data, as the Meta learner, 
does not have the advantage of using the results from multiple runs. 
Indeed, it performs worse than the Meta learner (e.g. f out = 0.129, 
〈 	z〉 = 0.005, and NMAD = 0.066 for the DLNN with four input 
filters and images with S/N > 3) even when doubling the nodes of 
the last hidden layer (i.e. f out = 0.111, 〈 	z〉 = −0.005, and NMAD 

= 0.058). 

5 This is using a machine with 12 central processing units of 3.20 GHz and a 
16 GB random access memory. 
6 This is equi v alent to the standard deviation for a normal distribution. 
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Table 4. Statistics of the redshift deri v ation. Columns are (1) considered algorithms, (2) numbers of 
input filters N in , (3) S/N cuts, (4) method used to combine the 10 runs of each network, (5) fraction of 
outliers, (6) bias, (7) NMAD, and (8) MSE. For the combination method, we include the results of the 
best run, the median among the 10 runs, and the results for the Meta-learner applied to the 10 runs. The 
first four lines correspond to results derived with SED fitting. 

Algorithm N in S/N Combination f out 〈 	z〉 NMAD MSE 

(1) (2) (3) (4) (5) (6) (7) (8) 

SED 4 3 – 0.604 0 .090 0.327 0.442 
SED 4 10 – 0.596 0 .105 0.315 0.280 
SED 9 3 – 0.127 − 0 .002 0.045 0.081 
SED 9 10 − 0.040 − 0 .003 0.029 0.028 

DLNN 4 3 Best 0.099 0 .011 0.052 0.014 
Median 0.103 0 .011 0.050 0.014 

Meta-learner 0.088 0 .005 0.050 0.014 
DLNN 4 10 Best 0.076 0 .005 0.050 0.010 

Median 0.081 0 .003 0.050 0.010 
Meta-learner 0.068 0 .004 0.048 0.010 

CNN 4 3 Best 0.133 0 .015 0.073 0.017 
Median 0.138 0 .009 0.071 0.017 

Meta-learner 0.119 0 .008 0.064 0.015 
CNN 4 10 Best 0.133 − 0 .012 0.077 0.014 

Median 0.144 − 0 .001 0.081 0.015 
Meta-learner 0.117 0 .013 0.071 0.013 

DLNN 9 3 Best 0.001 − 0 .002 0.008 0.000 
Median 0.002 − 0 .001 0.010 0.001 

Meta-learner 0.001 0 .001 0.006 0.000 
DLNN 9 10 Best 0.002 0 .001 0.013 0.001 

Median 0.002 0 .001 0.014 0.001 
Meta-learner 0.002 0 .000 0.010 0.000 

CNN 9 3 Best 0.002 0 .005 0.028 0.001 
Median 0.003 − 0 .001 0.022 0.001 

Meta-learner 0.002 − 0 .003 0.017 0.001 
CNN 9 10 Best 0.003 − 0 .009 0.030 0.001 

Median 0.005 0 .000 0.027 0.001 
Meta-learner 0.002 − 0 .003 0.023 0.001 

Figure 4. Top panel: Comparison between the reco v ered redshift and the input one for the DLNN methods. Points are coloured depending on the number of 
galaxies with the same combination of input and output redshift, following a linear scale from blue to yellow corresponding to 1 and 450 (200) galaxies with S/N 

> 3 (S/N > 10). The red dashed line is the identity and the red dotted lines indicate the outlier limits, i.e. | 	z| = 0 . 15 (1 + z in ). On the top left of each panel, 
we report the fraction of outliers, the bias, and the NMAD. On the bottom right, we report the number of objects in the test sample. Bottom panel: Distribution 
of the absolute normalized redshift difference. The red vertical dashed line shows a null difference and the red dotted lines correspond to values of 0.15 and 
−0.15. From left-hand to right-hand panel: Redshift reco v ered using DLNN with four Euclid filters considering objects with S/N > 3 and with S/N > 10, and 
redshift reco v ered using DLNN with nine input filters considering objects with S/N > 3 and with S/N > 10. The 10 runs of each network are combined using a 
Meta-learner. 
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Figure 5. Same as Fig. 4 , but for the runs using the CNN. 

Figure 6. Difference between the reco v ered redshift in the CNN and DLNN 

with respect to the number of pixels that are three times abo v e the noise 
level. Solid circles show the median difference, while the error bars show the 
central 25 per cent of the distribution. 

We now compare the results of the DLNN and the CNN methods. 
First, if we run the CNN without including any additional flux, but 
only the H E -band images, the fraction of outliers, averaging the 
10 runs, is quite large: i.e. f out = 0.601 when limiting the sample 
to images with S/N > 3. Second, the CNN does not show an 
impro v ement with respect to the DLNN with any combination of 
S/N cuts or the number of input filters. Even in the cases where the 
fraction of outliers remains similar, which happens in networks with 
nine input filters, the NMAD increases. The inclusion of the H E -band 
image adds information about the size of the objects, which could in 
principle impro v e the redshift estimation; ho we ver, this is probably 
limited by the H E -band spatial resolution (0 . 3 arcsec , ∼2.5 kpc at 
z = 1.5). Indeed, as can be seen in Fig. 6 , as the number of pixels 
abo v e the noise level increases there is an increase of objects for 
which the CNN gives better results than the DLNN. In the future, 
the inclusion of images in multiple filters could be tested to allow 

the CNN to identify features in the SED, like the 4000 Å break, 
and to take advantage of the higher angular resolution of the I E filter 
(0 . 1 arcsec , ∼0.8 kpc at z = 1.5). 

We now focus on the results of the DLNN runs combined using the 
Meta-learner, which gives the best redshift estimation. By comparing 
the two samples of galaxies with S/N > 10 and S/N > 3, the redshift 
estimation is impro v ed only when four filters are considered as input. 
This shows that, in the case with nine input filters, the impro v ement 
in data quality given by selecting only S/N > 10 is shadowed by 

a decrease of the number of objects in the training sample (see 
Section 4.3 for further discussion). The inclusion of the additional 
five ground-based filters, i.e. u , g , r , i , and z, decreases the fraction 
of outliers from 0.066–0.088 to 0.001–0.002, depending on the S/N 

limit. The bias is al w ays very small, below 0.001, while the NMAD 

decreases from ∼0.05 to < 0.01, when changing from four to nine 
input magnitudes. 

When four input filters are considered as input, there are galaxies 
at z ∼ 1.7 for which the redshift is underestimated. In particular, in 
this redshift range the 4000 Å break is inside the I E filter, so galaxies 
generally have a red I E - I Y colour. These outliers are intermediate- 
mass ( 〈 M ∗〉 = 10 9 . 8 M �) star-forming galaxies that, given they have 
high relativ e sSFRs, hav e I E - I Y colours similar to galaxies at lower 
redshifts. For these galaxies, LSST filters are probably necessary to 
add information bluewards the 4000 Å break. The importance of the 
optical filters is highlighted also by the sensitivity analysis reported 
in Appendix B (available online). 

4.2.1 Comparison with the Euclid photometric-redshift challenge 

The Euclid photometric-redshift challenge presented in Euclid Col- 
laboration: Desprez et al. ( 2020 ) compared the photometric redshift 
estimation derived using 13 different methods, nine of which are 
based on machine-learning techniques. The considered machine- 
learning networks are based on the nearest neighbour (i.e. Directional 
Neighborhood Fitting by De Vicente, S ́anchez & Sevilla-Noarbe 
2016 ; FRANKENZ and the Nearest-Neighbour Photometric Redshift 
by Tanaka et al. 2018 ), boosted decision trees, random forest 
(Pedregosa et al. 2011 ), Gaussian processes, and neural networks 
(ANNz by Collister & Lahav 2004 ; Machine-learning Estimation 
Tool for Accurate PHOtometric Redshifts by Cavuoti et al. 2017 ; 
Amaro et al. 2019 ). We refer to each specific papers and the work by 
Euclid Collaboration: Desprez et al. ( 2020 ) for all the details about 
these methods. 

A precise comparison between our work and their results needs to 
be considered with caution, given the differences in the considered 
input samples and filters; ho we ver, it can still be used to put our work 
into contest. In particular, their work uses-in input magnitudes in 
eight optical-to-near-IR filters (no u band) derived from observations 
available in the COSMOS field. Their analysis is restricted to 
galaxies with available spectroscopic redshifts and the derived one- 
point statistics, such as outlier fraction and NMAD, are calculated 
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weighting the spectroscopic sample in order to match the colour- 
space of the parent photometric catalogue. Therefore, on one hand, 
their sample may be prone to biases due to the spectroscopic 
selection; ho we ver, on the other hand, our input sample may be 
missing some galaxy populations not included in the considered 
SED templates. 

Taking these differences in mind, results obtained with their 
machine-learning algorithms correspond to a fraction of outliers 
and NMAD varying from 0.031 to 0.326 and from 0.053 to 0.114, 
respectively. Both quantities are smaller than the ones derived in this 
work considering nine input filters; ho we ver, at least some of them 

are better than our results derived with only Euclid filters. 

4.2.2 Comparison with the LePhare SED fitting 

Results obtained with the CNN or DLNN all outperformed results 
from the SED fitting, using their same set of input magnitudes, even 
in the ideal case where both the code and the SED templates are 
the same, and are thus used to create the mock magnitudes. The 
fraction of outliers with the SED fitting corresponds to 0.604 and 
0.127, when considering the sample with S/N > 3 and four and nine 
filters as input, respectiv ely. F or comparison, Euclid Collaboration: 
Desprez et al. ( 2020 ) used eight input filters (no u filter), the same 
SED fitting code, but a different input sample not corresponding to 
the templates used to generate photometric magnitudes (see previous 
section), finding an outlier fraction of 0.134 and a NMAD of 0.056. 
The outlier fractions we find range between four and 100 times 
more than the fraction of outliers derived with any CNN or DLNN 

runs. The impro v ement of the machine-learning algorithms o v er SED 

fitting has also been shown by Euclid Collaboration: Humphrey et al. 
( 2022a ) when selecting passive galaxies. These authors argued that 
this is due to the machine-learning networks’ capability to optimally 
weight the different input data points; while, the SED fitting methods 
generally use a more direct weighting method, based on the S/N. 
More details on the SED fitting results are reported in Appendix C 

(available online). 
Overall, among the different cases tested here, the best network 

for redshift estimation consists of the DLNN with nine input filters 
and S/N > 3, combined using a Meta-learner. 

4.3 Stellar masses 

The results for the stellar mass retrie v al with machine learning are 
summarized in Table 5 for both the CNN and the DLNN methods, 
considering all the different inputs, both S/N cuts and the different 
methods to combine the 10 runs of each network. We remind the 
reader that the redshift is not among the inputs when deriving the 
stellar mass, as the two quantities are derived with separate networks. 
We estimate for the entire sample the fraction of outliers, arbitrary 
defined as galaxies for which the stellar mass is o v erestimated or 
underestimated by a factor of two ( ∼0 . 3 dex). In addition, we 
estimate for each method the bias 

〈 	M ∗〉 = median [ log 10 ( M ∗, out /M ∗, in )] (3) 

and the NMAD of the reco v ered stellar mass 

NMAD = 1 . 48 median [ | log 10 ( M ∗, out /M ∗, in ) | ] . (4) 

Figs 7 and 8 show the results for the DLNN and CNN runs, after 
combining the results using a Meta-learner. 

As for the redshift, we first focus on the three methods to combine 
the 10 runs of each network. In general, the differences among the 

methods are less evident than for the redshift, with the three methods 
alternating on what gives the best results. However, the fraction of 
outliers derived with the Meta-learner is the smallest, except for the 
DLNN with nine filters as input and S/N > 3, with a difference in 
the fraction of outliers 	 f out ≤ 0.042 with respect to the best and the 
median of the 10 runs. Given the improvement, even if small, offered 
by the Meta-learner, we will focus on the results obtained with this 
method in the rest of this section. 

We now compare the results of the DLNN, which includes only 
integrated magnitudes, and the CNN, which contains both integrated 
magnitudes and H E -band images. We remind the reader that the H E - 
band images include information about the features and shapes, but 
not the o v erall H E -band magnitude. The use of only H E -band images, 
without an y inte grated flux, is not sufficient to estimate the stellar 
mass, as it results, e.g. in a large outlier fraction f out = 0.668 when 
averaging the results of the 10 runs of the sample limited to images 
with S/N > 3 and log 10 ( M ∗/ M �) > 8. Using the H E -band images 
together with the integrated fluxes reduces instead the outlier fraction 
in the stellar mass with respect to the results obtained with the DLNN 

(see Table 5 ). An exception is the case with only four input filters 
and the sample limited to images with S/N > 10. The impro v ement 
in the fraction of outliers using the CNN is generally 	 f out < 0.014; 
ho we ver, it is present even when the fraction is already very small. 
This happens, e.g. in the networks with nine input filters, for which 
the fractions of outliers in the DLNN are belo w 0.007; ho we ver, 
the inclusion of the H E -band images produces an impro v ement by 
	 f out = 0.001–0.002. 

The H E -band filter traces light from a relatively old stellar 
population, at least at low redshift, so we expect it to be a good 
tracer of the stellar mass and drive the improvement when adding 
the H E -band images. To verify this point, we analyse the fraction 
of outliers which are evolved galaxies, also called quiescent, (i.e. 
number of galaxies that are outlier and quiescent divided by the total 
number of quiescent) and the fraction of outliers which are galaxies 
currently forming stars and, therefore, including a younger stellar 
population (i.e. number of galaxies that are outlier and star-forming 
divided by the total number of star-forming galaxies). The first 
population is defined as galaxies with input specific star-formation 
rates (sSFRs) log10[sSFR/(yr −1 )] < −10.5, while the second has 
log10[sSFR/(yr −1 )] ≥ −10.5. 

The comparison between star-forming and quiescent outlier galax- 
ies is shown for the stellar mass and for the redshift (Fig. 9 ). The 
inclusion of H E -band images results on an impro v ement on the 
measurements of the stellar mass, but not of the redshift (see Sec- 
tion 4.2 ). While for redshift the outlier fraction of evolved galaxies 
generally increases for CNN with respect to DLNN, the opposite 
happens for the stellar mass. Moreo v er, there is no impro v ement 
in the stellar mass measurement of star-forming galaxies between 
DLNN and CNN when there are four input filters and S/N > 10. 
There is instead an impro v ement, ev en if small, in the mass outlier 
fraction for evolved galaxies, even if they are less than 30 per cent 
of star-forming galaxies in the training sample. This explains the 
impro v ement on the stellar mass measures introduced by the CNN. 

In addition, we investigate the impact of galaxy size in the H E -band 
images on the stellar mass deri v ation, by examining the number of 
pixels that are above three times each image’s noise level, or S/N > 

3. It is necessary to consider that a compact and unresolved structure 
is information that the network is using, therefore the introduction 
of the H E -band images may also impro v e the stellar mass deri v ation 
of unresolved galaxies. Indeed, comparing DLNN and CNN with 
S/N > 3, galaxies for which the stellar mass measurement impro v ed 
adding the H E -band images have on average 35 pixels that are three 
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Table 5. Same as Table 4 , but for the stellar mass. The results correspond to the mass range where the sample distribution is flat, i.e. log 10 ( M ∗/ M �) > 

8 for S/N > 3 and 8.5 for S/N > 10; while, values in parentheses correspond to the full sample. The first five lines correspond to results derived with 
a constant M / L H ratio and with a SED fitting. 

Algorithm N in S/N Combination f out 〈 	 M ∗〉 NMAD MSE 

(1) (2) (3) (4) (5) (6) (7) (8) 

M / L H = 0.62 1 3 – 0.298(0.300) 0 .000 a (0.003) 0.300(0.302) 0.084(0.085) 
SED 4 3 – 0.403(0.412) 0 .134(0.140) 0.341(0.348) 0.215(0.268) 
SED 4 10 – 0.432(0.436) 0 .193(0.196) 0.375(0.378) 0.181(0.217) 
SED 9 3 – 0.128(0.135) 0 .001(0.002) 0.120(0.121) 0.112(0.130) 
SED 9 10 – 0.048(0.051) 0 .012(0.012) 0.094(0.095) 0.040(0.051) 

DLNN 4 3 Best 0.132(0.139) − 0 .037( −0.036) 0.146(0.148) 0.073(0.089) 
– – Median 0.123(0.129) − 0 .025( −0.024) 0.129(0.131) 0.067(0.082) 
– – Meta-learner 0.121(0.128) − 0 .033( −0.031) 0.133(0.135) 0.068(0.085) 

DLNN 4 10 Best 0.217(0.228) − 0 .034( −0.031) 0.208(0.212) 0.079(0.098) 
– – Median 0.223(0.231) − 0 .057( −0.052) 0.221(0.223) 0.082(0.099) 
– – Meta-learner 0.217(0.228) − 0 .076( −0.071) 0.209(0.213) 0.093(0.103) 

CNN 4 3 Best 0.128(0.136) − 0 .034( −0.032) 0.141(0.144) 0.079(0.097) 
– – Median 0.131(0.139) − 0 .024( −0.022) 0.134(0.136) 0.068(0.083) 
– – Meta-learner 0.111(0.119) − 0 .022( −0.020) 0.127(0.129) 0.062(0.079) 

CNN 4 10 Best 0.252(0.262) − 0 .086( −0.082) 0.235(0.240) 0.093(0.112) 
– – Median 0.263(0.273) − 0 .087( −0.082) 0.239(0.242) 0.099(0.117) 
– – Meta-learner 0.221(0.230) − 0 .020( −0.015) 0.220(0.226) 0.088(0.103) 

DLNN 9 3 Best 0.005(0.008) − 0 .017( −0.017) 0.054(0.054) 0.008(0.013) 
– – Median 0.005(0.008) 0 .003(0.003) 0.041(0.041) 0.008(0.014) 
– – Meta-learner 0.006(0.010) 0 .011(0.011) 0.042(0.042) 0.009(0.014) 

DLNN 9 10 Best 0.007(0.012) − 0 .001(0.000) 0.066(0.066) 0.013(0.022) 
– – Median 0.009(0.012) − 0 .019( −0.019) 0.068(0.070) 0.009(0.016) 
– – Meta-learner 0.007(0.010) 0 .004(0.004) 0.054(0.054) 0.007(0.015) 

CNN 9 3 Best 0.006(0.011) 0 .006(0.006) 0.050(0.050) 0.008(0.015) 
– – Median 0.006(0.010) − 0 .001( −0.001) 0.045(0.045) 0.007(0.012) 
– – Meta-learner 0.005(0.009) − 0 .024( −0.023) 0.051(0.051) 0.009(0.015) 

CNN 9 10 Best 0.006(0.010) − 0 .013( −0.013) 0.057(0.058) 0.008(0.015) 
– – Median 0.023(0.025) − 0 .030( −0.030) 0.081(0.082) 0.019(0.026) 
– – Meta-learner 0.005(0.009) − 0 .022( −0.022) 0.056(0.057) 0.008(0.015) 

Note . a The bias is null by construction, as the used M / L H is equal to the median value of the sample. 

times abo v e the noise lev el. On the other hand, galaxies for which 
the H E -images worsen the stellar mass deri v ation have on average 
36 pixels above the noise. Such a small difference indicates that 
the stellar mass estimation is not affected by the galaxy size. This 
is further visible in Fig. 10 , where we analyse the impro v ement in 
the stellar mass measurement as a function of the number of pixels 
that are three times abo v e the noise level. The median difference 
is al w ays quite small, and is almost constant with the number of 
pix els abo v e the noise lev el, e xcept for the largest galaxies, which 
are probably only partially included inside the cut-out image (i.e. 
18 × 18 pixel). We will analyse these extended galaxies in a future 
work focused on local galaxies. In the same figure it is also shown 
that when four filters are used as input the stellar mass impro v es when 
adding the H E -band images for more than 50 per cent of galaxies at 
each size bin, except for the largest galaxies, justifying the additional 
computational effort of including images. The impro v ement is below 

	 log 10 ( M ∗/ M �) = 0 . 08 for most (68 per cent ) of the galaxies. 
Limiting the sample to those objects with a H E -band image at S/N 

> 10 produces different results, depending on the number of input 
filters. Indeed, when only the four Euclid filters are considered as 
inputs, the fraction of outliers increases from f out ∼ 0.107–0.128 to 
f out ∼ 0.217–0.230 for samples with S/N > 10. On the contrary, 
the fraction of outliers remains stable when nine filters are used as 
input; while, the bias impro v es by 0.002–0.007, depending on the 
considered network architecture. 

To investigate the cause of the different impacts of limiting the 
sample to S/N > 10, we explore how the size of the training sample 
impacts the resulting fraction of outliers (Fig. 11 ), using the DLNN 

as an example and varying the size of the training sample down to 
1 per cent of the complete one. This test is performed by randomly 
removing galaxies from the training sample after augmentation, 
therefore the stellar mass distribution, with some limitation once 
the sample size is very small, should be similar to the one of the 
training sample (see in Fig. 3 , top central panel). 

First, the fractions of outliers in both the S/N > 10 and the S/N 

> 3 samples with nine filters as inputs are consistent within the 
errors with the fractions of samples of similar size, but with S/N > 

3. Second, the outlier fraction increases with decreasing sample size. 
Ho we ver, this decrease, when nine magnitudes are used as input, 
becomes rele v ant (e.g. 	 f out > 0.02) at smaller sample sizes (i.e. 
< 3 × 10 3 objects) than in the case of four input magnitudes (i.e. 
< 3 × 10 4 objects). Therefore, when only four filters are used as 
input, there is not enough information available, and it is preferable 
to have a larger, even if more noisy, sample. On the contrary, when 
more information is available, i.e. nine input filters, it is possible to 
focus on quality o v er quantity. 

We now focus on the impro v ement of the stellar mass retrie v al 
given by the inclusion of the u , g , r , i , and z ground-based filters, 
focusing again on the results obtained with the Meta-learner. The 
impro v ement is evident by looking at the fraction of outliers that 
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Figure 7. Top panel: Comparison between the reco v ered stellar mass and the input one for the DLNN methods. Points are coloured depending on the number 
of galaxies with the same combination of input and output stellar mass, following a linear scale from blue to yellow corresponding to 1 and 100 (40) galaxies 
with S/N > 3 (S/N > 10). The grey shaded area indicate the stellar mass range in which the input stellar mass distribution is not flat but underrepresented in the 
training sample, i.e. M ∗ < 10 8 . 5 M � for S/N > 3 and M ∗ < 10 8 M � for S/N > 10. The red dashed line is the identity and the red dotted lines indicate output 
stellar mass equal to twice or half the input one, which corresponds to the definition of an outlier. On the top-left side of each panel we report the fraction of 
outliers, bias, and NMAD of the sample with M ∗ > 10 8 . 5 M � or M ∗ > 10 8 M �, depending on the S/N cut. In parentheses, we reported the same values for 
the full sample. On the bottom-right side, we report the number of objects in the test sample. Bottom panel: Distribution of the difference between the output and 
input stellar mass, for the full sample (blue dashed line) and for galaxies with M ∗ > 10 8 . 5 M � or M ∗ > 10 8 M � (black solid line), depending on the S/N cut. 
The red vertical dashed line shows a null difference and the red dotted lines indicate output stellar mass equal to twice or half the input one. From left-hand to 
right-hand panel: Stellar mass reco v ered using DLNN with four Euclid filters considering objects with S/N > 3 and with S/N > 10, and stellar mass reco v ered 
using DLNN with four Euclid filters and five ancillary bands considering objects with S/N > 3 and with S/N > 10. The 10 runs of each network are combined 
using a Meta-learner. 

Figure 8. Same as Fig. 7 , but for the runs using the CNN. 

varies between f out = 0.107–0.230 when only Euclid filters are used 
as input; while, it never exceeds f out = 0.010 when all nine filters are 
used as input. The presence of long-wavelength filters, such as the 
H E band at least up to z ∼ 1.5, is indeed fundamental for obtaining 
a reliable stellar mass, as evident by the relative good stellar mass 
estimation when only four Euclid filters are used as input. Ho we ver, 
the inclusion of shorter wavelength filters probably helps anchor the 
o v erall SED template to estimate very accurately the stellar mass. 
As for the redshift, the importance of the optical filters is highlighted 
also by the sensitivity analysis reported in Appendix B (available 
online). 

4.3.1 Variation with redshift and I E magnitude 

In Figs 12 and 13 , we show the variation of the stellar mass measures 
with redshift and I E magnitude, respectively. There is a clear trend 
with redshift, as the fraction of outliers is below 0.28 and the 
NMAD is below 0.06 at z < 1.5. This trend with redshift is at 
least partially driven by the small number of galaxies available 
at z > 3 for the training, i.e. galaxies at lower redshift are more 
numerous and, therefore, they dominate the training process of the 
network. A similar effect is seen when looking at the variation 
with the I E magnitude, as the fraction of outliers and the NMAD 

value increases at the brightest magnitudes, i.e. I E < 18, that are 
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Figure 9. Fraction of outliers which are quiescent (i.e. 
log 10 [ SFR / (M � yr −1 )] < −10 . 5, black squares) and star-forming 
galaxies (i.e. log 10 [ SFR / (M � yr −1 )] > −10 . 5, yello w circles) for dif ferent 
networks, as derived for the redshift (top panel) and the stellar mass (bottom 

panel). Arrows in the top panel correspond to f out = 0. 

poorly represented in the sample. In the future, a larger sample with 
a flat multidimensional (i.e. z, stellar mass, SFR, and magnitude) 
distribution may help impro v e the measurement of these objects. 

The deterioration of the stellar mass measurement with redshift 
may also be explained with the H E band, which is the filter at 
the longest wavelength among the analysed ones, tracing shorter 
wavelengths at larger redshift and, therefore, are less sensitive to the 
light emitted by the old stellar populations which make up most 
of the stellar mass. The stellar mass measurement at magnitude 
I E > 18 is instead generally constant, except for the networks with 
four input filters and at S/N > 10, for which it becomes worse 
between I E = 22 and 24. The decrease visible at fainter magnitudes 
is probably spurious and driven by the limited number of galaxy in 
the sample ( < 100 at I E > 25) caused by the S/N cut. 

4.3.2 Comparison with the LePhare SED fitting 

Finally, to put these results into context, we derived the stellar mass 
directly from H E -band magnitudes assuming a single mass-to-light 
ratio, which is a simplistic but direct method, and using a SED 

fitting procedure. For the first case, we considered an ideal situation 

Figure 10. In the main panel, we have shown the difference between the 
absolute stellar mass errors in the CNN and DLNN with respect to the number 
of pixels that are three times abo v e the noise level. Solid symbols show the 
median errors, while the error bars show the central 68 per cent ( ±1 σ ) of the 
distribution. The difference is shown for the networks when using four (black 
circles) and nine input filters (red squares) and for the sample with images 
having S/N > 3. In the top panel, we report the distribution of the objects as 
a function of the number of pixels that are three times above the noise level. 

Figure 11. Difference in the outlier fraction of the stellar mass with 
decreasing size of the training sample. The difference is derived for the 
DLNN with four input magnitudes and S/N > 3 (black circles) and for the 
DLNN with nine input magnitudes and S/N > 3 (red squares), considering 
as zero point the fraction of outlier of the complete sample. For comparison, 
we report also the difference in the outlier fraction of the sample with S/N > 

10 with respect to the sample with S/N > 3, considering the DLNN with four 
(purple diamond) and nine input magnitudes (yellow pentagon). Fractions are 
deriv ed av eraging the results of the 10 runs and the shaded areas show the 
standard variation within the 10 runs. 

where we calculate the H E -band luminosity from the true redshift 
and we assumed a mass-to-light ratio equal to the median value 
(i.e. M/ L H ∼ 0.6), obtained by comparing the H E -band luminosity 
directly with the true stellar mass. For the full sample with S/N > 

3 and log 10 ( M ∗/ M �) > 8, we obtained a fraction of outliers of 
0.298, 〈 	 log 10 ( M ∗ M 

−1 
� ) 〉 = 0, by construction, and NMAD = 0.3 

(Table 5 ), which is o v erall a worse result than that obtained with both 
the DLNN and CNN methods for the same sample. 

With the SED fitting (more details in Appendix C, available 
online), when considering only the four Euclid filters as input, results 
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Figure 12. Redshift variation of the bias (top panel), NMAD (centre), 
and outlier fraction (bottom panel) of the reco v ered stellar mass. Different 
symbols indicate different algorithm architectures and different inputs (see 
le gend). The gre y area (black vertical dashed line) shows the redshift bins 
with < 100 objects for the training samples which have S/N > 10 (S/N > 3). 

Figure 13. Same as Fig. 12 , but focusing on the variation with I E magnitude. 

are even worse than with a constant M / L H ratio, which is, ho we ver, 
derived considering the true median M / L H . These results, ho we ver, 
impro v e when nine filters are used as input, but these still perform 

less well than the best CNN or DLNN results. Indeed, with the 
SED fitting we obtain f out = 0.128–0.048 compared with f out ≤ 0.02, 
considering all combinations methods, or f out ≤ 0.007 focusing on 
results derived with the Meta-learner. In the SED fitting, redshift 
is kept free and the impro v ement when adding the u , g , r , i , and z 
filters is also driven by the impro v ement in the redshift estimation 
(see Section 4.2 ). 

Finally, in Fig. 12 , we also report the variation of bias, NMAD, 
and outlier fraction with redshift for one of the best SED estimates, 

i.e. nine filters used as input and S/N > 3. Surprisingly, machine 
learning results are more precise and accurate than SED fitting ones 
at all redshifts, even in the situation when the training sample is 
limited in number. This may also be linked to a difficult redshift 
estimation (see Appendix C, available online). 

4.4 SFR deri v ation 

In this section, we report the results for the SFR retrie v al with 
machine learning, which are summarized in Table 6 for all networks, 
and are plotted in Figs 14 and 15 , for the DLNN and CNN runs 
combined with the Meta-learner. Neither the redshift nor the stellar 
mass is among the inputs when deriving the SFR. As for the stellar 
mass, outliers are arbitrary defined as galaxies with SFR which are 
incorrect by, at least, a factor of two ( ∼0 . 3 dex). The bias is defined 
as 

〈 	 SFR 〉 = median [ log 10 ( SFR out / SFR in )] (5) 

and the NMAD for the SFR corresponds to 

NMAD = 1 . 48 median [ | log 10 ( SFR out / SFR in ) | ] . (6) 

We find that the SFR is much more challenging to estimate than 
the stellar mass, as is evident by looking at the fraction of outliers, 
which ranges from 0.310 to 0.715, and the NMAD, which is al w ays 
abo v e 0.28, i.e. ∼32 per cent of the sample have a SFR wrong by 
at least 0.28 dex. The results obtained with the three methods to 
combine the 10 runs of each network are generally similar, with the 
Meta-learner and the best of the 10 runs giving slightly better results 
than the median of 10 runs. This is probably due to the large variation 
between the different runs, whose output SFRs have a mean standard 
deviation between 0.16 and 0.43. In the rest of this section, we focus 
on results obtained with the Meta-learner, for consistency with the 
redshift and stellar mass measures. 

The DLNN gives in general a more precise value of the SFR than 
the CNN. This impro v ement is mainly driv en by a reduction in the 
outlier fraction, down to 	 f out = 0 . 11, but also by a small decrease 
of the NMAD (i.e. 	 NMAD ≤ 0 . 15). One exception is the case 
with S/N > 3 and using nine input filters, for which the CNN results 
slightly impro v es (i.e. 	 f out = 0 . 015) o v er the DLNN ones. Not 
surprisingly, the use of only H E -band images alone is not sufficient 
to estimate the SFR, as it results, e.g. in an outlier fraction of f out = 

0.887 when averaging the output of the 10 runs of the sample limited 
to images with S/N > 3 and SFR > 1 M � yr −1 . In the future, the 
inclusion of images at wavelength shorter than the H E band, which 
are more sensitive to the SFR and which will likely impro v e the 
predictions of this physical property, can be tested. 

On one hand, for the SFR estimation it is not useful to limit 
the sample to galaxies with a high S/N, as the fraction of outliers 
increases by 0.07–0.16 when comparing the results of the samples 
with S/N > 3 and S/N > 10, similarly to what has been seen for 
the stellar mass (Section 4.3 ). On the other hand, it is evident that 
the inclusion of filters at short w avelengths, lik e the u , g , r , i , and 
z ground-based filters, impro v es the SFR estimates, lowering the 
outlier fraction by 	 f out = 0 . 15–0.25. The importance of the optical 
filters is also evident by performing a sensitivity analysis of the 
input features (Appendix B, available online). This is not surprising 
considering that UV wavelengths are better tracers of the SFR than 
near-IR ones (Pforr et al. 2012 , 2013 ). Ho we ver, e ven with nine input 
filters, the SFR measures remain more challenging than measuring 
the stellar mass or the redshift with the set-up we use. 
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Table 6. Same as Table 4 , but for the SFR. The results correspond to all galaxies with SFR > 1 M � yr −1 , while values in parentheses correspond 
to the full sample. The first four lines correspond to results derived with SED fitting. 

Algorithm N in S/N Combination f out 〈 	 SFR 〉 NMAD MSE 

(1) (2) (3) (4) (5) (6) (7) (8) 

SED 4 3 – 0.752(0.814) 0 .151(0.500) 0.997(1.412) 6.331(7.758) 
SED 4 10 – 0.784(0.856) 0 .286(0.807) 1.142(1.890) 5.036(10.887) 
SED 9 3 – 0.560(0.622) − 0 .115( −0.065) 0.521(0.637) 1.577(5.680) 
SED 9 10 – 0.511(0.629) − 0 .053( −0.028) 0.459(0.669) 1.313(9.075) 
DLNN 4 3 Best 0.515(0.587) − 0 .155( −0.136) 0.467(0.592) 0.810(0.956) 

– – Median 0.530(0.598) − 0 .157( −0.125) 0.484(0.605) 0.791(0.920) 
– – Meta-learner 0.512(0.581) − 0 .079( −0.056) 0.456(0.563) 0.697(0.904) 

DLNN 4 10 Best 0.677(0.737) − 0 .183( −0.143) 0.715(0.931) 1.207(1.463) 
– – Median 0.708(0.756) − 0 .300( −0.233) 0.840(0.989) 1.462(1.559) 
– – Meta-learner 0.607(0.699) − 0 .250( −0.248) 0.626(0.859) 1.263(1.479) 

CNN 4 3 Best 0.553(0.619) − 0 .162( −0.157) 0.516(0.634) 0.956(1.067) 
– – Median 0.559(0.625) − 0 .185( −0.141) 0.528(0.656) 0.841(0.986) 
– – Meta-learner 0.582(0.628) − 0 .333( −0.278) 0.562(0.657) 0.803(0.976) 

CNN 4 10 Best 0.682(0.749) − 0 .355(0.255) 0.775(0.997) 1.137(1.503) 
– – Median 0.715(0.761) − 0 .459( −0.334) 0.891(1.065) 1.273(1.473) 
– – Meta-learner 0.692(0.746) − 0 .381( −0.301) 0.777(0.972) 1.180(1.533) 

DLNN 9 3 Best 0.310(0.411) − 0 .023( −0.021) 0.280(0.350) 0.235(0.453) 
– – Median 0.319(0.419) − 0 .033( −0.0046) 0.292(0.363) 0.246(0.461) 
– – Meta-learner 0.349(0.432) − 0 .145( −0.144) 0.314(0.375) 0.249(0.478) 

DLNN 9 10 Best 0.419(0.545) 0 .028(0.016) 0.374(0.495) 0.369(0.730) 
– – Median 0.453(0.563) − 0 .039( −0.072) 0.393(0.529) 0.367(0.752) 
– – Meta-learner 0.415(0.526) − 0 .073(0.087) 0.365(0.475) 0.369(0.780) 

CNN 9 3 Best 0.325(0.440) − 0 .046(0.016) 0.293(0.383) 0.265(0.546) 
– – Median 0.342(0.446) − 0 .056( −0.065) 0.304(0.390) 0.249(0.493) 
– – Meta-learner 0.334(0.434) 0 .040(0.028) 0.300(0.380) 0.245(0.524) 

CNN 9 10 Best 0.443(0.547) − 0 .111( −0.112) 0.386(0.505) 0.395(0.822) 
– – Median 0.472(0.588) − 0 .047( −0.067) 0.417(0.562) 0.378(0.795) 
– – Meta-learner 0.523(0.593) − 0 .262( −0.259) 0.471(0.572) 0.412(0.888) 

Figure 14. Top panel: Comparison between the reco v ered SFR and the input one for the DLNN methods. Points are coloured depending on the number of 
galaxies with the same combination of input and output SFR, following a linear scale from blue to yellow corresponding to 1 and 25 (10) galaxies with S/N 

> 3 (S/N > 10). The grey shaded area indicates SFR < 1 M � yr −1 . The red dashed line is the identity and the red dotted lines indicate output SFR equal to 
twice or half the input SFR. On the top-left side of each panel, we report the fraction of outliers, bias, and NMAD of the sample with SFR > 1 M � yr −1 and, 
in parentheses, the values for the full sample. On the bottom-right side, we report the number of objects in the test sample. Bottom panel: Distribution of the 
difference between the output and input SFR, for the full sample (blue dashed line) and for galaxies with SFR > 1 M � yr −1 (black solid line). The red vertical 
dashed line shows a null difference and the red dotted lines indicate output SFR equal to twice or half the input SFR. From left-hand to right-hand panel: SFR 

reco v ered using DLNN with four Euclid filters considering objects with S/N > 3, SFR reco v ered using DLNN with four Euclid filters and five ancillary bands 
considering objects with S/N > 3, SFR reco v ered using DLNN with four Euclid filters considering objects with S/N > 10, and SFR reco v ered using DLNN 

with four Euclid filters and five ancillary bands considering objects with S/N > 10. The 10 runs of each network are combined using a Meta-learner. 
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Figure 15. Same as Fig. 14 , but for the runs using the CNN. 

Figure 16. Redshift variation of the bias (top panel), NMAD (centre), and 
outlier fraction (bottom panel) of the reco v ered SFR. Solid and dashed lines 
indicate the statistics of CNN and DLNN, respecti vely, with dif ferent colours 
depending on the set of inputs (see legend). The grey area (black vertical 
dashed line) shows the redshift bins with < 100 objects in the training samples 
which have S/N > 10 (S/N > 3). 

4.4.1 Variation with redshift and I E magnitude 

In Figs 16 and 17 , we show the variation with redshift and I E 
magnitude of the fraction of outliers, the bias, and the NMAD of the 
reco v ered SFR. As for the stellar mass, there is a rapid deterioration 
of the SFR estimation as soon as the number of objects available for 
training is relative small, i.e. z > 4 and I E < 18. In addition, for some 
of the most accurate networks, i.e. CNN and DLNN with nine input 
filters and S/N > 3 (purple solid and dashed lines line in Fig. 16 ), 
the fraction of outliers decreases at increasing redshift, ranging from 

f out = 0.52–0.55 at z = 0.125 to f out ∼ 0.13–0.33 at z = 3.6. For 
these networks, the outlier fraction also decreases towards fainter 
I E magnitudes. We can speculate on dif ferent ef fects dri ving these 
dependencies. First, at increasing redshifts our filters trace shorter 
rest-frame wavelengths, which are more sensitive to SFR. Second, 
the average SFR of star-forming galaxies increases with redshift (i.e. 

Figure 17. Same as Fig. 16 , but focusing on the variation with the I E 
magnitude. 

Brinchmann et al. 2004 ; Noeske et al. 2007 ; Bisigello et al. 2018 ), 
making the SFR easier to estimate for the networks. In the future the 
SFR estimation at low redshift can be further analysed with a sample 
more focused on low- z galaxies than the one analysed in this work. 
The dependence of the outlier fraction with I E magnitude can be 
linked with the dependence with redshift, as high-redshift galaxies 
are expected to be fainter than lower redshift ones. 

4.4.2 Comparison with the LePhare SED fitting 

Finally, as done for redshift and stellar mass, we compare the results 
obtained with the CNN and DLNN methods with the results derived 
with a SED fitting procedure, for which we give more details in 
Appendix C (available online). Our machine-learning algorithms 
perform better than the SED fitting; ho we v er, the impro v ement is 
not as pronounced as it is for the redshift and the stellar mass, with 
a difference 	 f out < 0.250. It is, however, worth noticing that the 
fraction of outliers derived with the DLNN with S/N > 3 and four 
filters as input ( f out = 0.512) is lower than the fraction of outliers 
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derived with the SED fitting method for the same sample, but when 
using nine input filters ( f out = 0.560). 

Finally, in Fig. 16 , we investigate the variation of bias, NMAD, 
and outlier fraction with redshift, in the case of SED fitting applied 
to galaxies with S/N > 3 and nine input filters. As for the stellar 
mass, the SFR estimation derived with SED fitting is al w ays w orse 
than the one derived with DLNN or CNN at any given redshift. This, 
ho we ver, may be due to a wrong redshift estimation (see Appendix 
C, available online). 

5  SU M M A RY  

This paper is a general exploration of using machine learning 
to determine and measure the most basic properties of galaxies, 
particularly those at higher redshifts. This will be a critical process 
for the next generation of galaxy surveys as Euclid , Rubin /LSST, 
and the Roman Space Telescope . We investigate this problem in 
several ways, including different machine-learning methods and by 
using as input different forms of data. We use information from the 
Euclid Space Telescope as a baseline for understanding how these 
estimates can be done on other telescopes with similar data. We 
thus investigate how well machine learning does in retrieving three 
main features of galaxies – redshifts, stellar masses, and SFRs. This 
work presents only point estimates for all these quantities and the 
inclusion of probability distribution functions or statistical errors will 
be investigated on a future work. 

Our main results are the following: 

(i) Our machine-learning algorithms perform better than tradi- 
tional methods. In particular, to estimate the stellar mass we consider 
a simple but direct method consisting on a constant M / L H , which is 
derived from the true median mass-to-light ratio of the sample. As a 
second method we test a SED fitting procedure, using the same code 
and templates considered to derive the mock magnitudes, for redshift, 
stellar mass, and SFR. The redshift and stellar mass machine-learning 
runs outperformed the other methods; while, the impro v ement in the 
SFR estimation is more limited. It is, ho we ver, necessary to keep in 
mind that machine-learning networks, on the contrary of SED fitting 
procedure, are limited to the parameter space of the sample used for 
training. 

(ii) We verify that it is preferable to combine the results of different 
runs using a Meta-learner, i.e. an additional DLNN which uses the 
results of the other networks as inputs. The Meta-learner outperforms 
the median of the results and the best among the different runs for 
the redshift predictions, with an impro v ement in the outlier fraction 
even up to 	 f out = 0 . 029. 

(iii) The inclusion of H E -band images, in addition to the integrated 
magnitudes, is particularly useful for the stellar mass estimation, due 
to the fact that the H E -band filter traces the light from relatively old 
stellar populations, at least at low redshift, and it is therefore a good 
tracer of stellar mass through structure. The inclusion of images in 
this filter has a small impact on the redshift estimation; while, it 
mainly introduces noise in the SFR deri v ation. In the future, the 
impact of images on the SFR and redshift retrie v al may be further 
tested by including images at shorter wavelengths, which are more 
sensitive to on-going star formation, and SED features useful for 
redshift estimation, such as the 4000 Å, or images with a smaller 
angular resolution than the ones tested. 

(iv) Limiting the input sample only to galaxies with S/N > 10 in 
the H E band impro v es the results only in a few cases. This selection 
impro v es the quality of the input data; ho we ver, at the same time, it 
reduces the number of galaxies in the training sample. 

(v) We compare results obtained using only the four Euclid filters 
and complementing them with additional five LSST-like filters. The 
impro v ement is evident in all cases, with the fraction of outliers 
decreasing by 	 f out = 0 . 15–0.25 for the SFR estimation; while, it 
decreases to below f out ≤ 0.020 and 0.005 for the stellar mass and 
the redshift, respectively. These results indicate the necessity of an 
eventual coordinated effort from Rubin /LSST and Euclid to impro v e 
the measurement of physical properties such as redshift, stellar mass, 
and SFR. 
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