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Gill’s problem in a sandwiched porous slab
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The classical Gill’s stability problem for stationary and parallel buoyant flow in a vertical
porous slab with impermeable and isothermal boundaries kept at different temperatures
is reconsidered from a different perspective. A three-layer slab is studied instead of a
homogeneous slab as in Gill’s problem. The three layers have a symmetric configuration
where the two external layers have a high thermal conductivity, while the core layer has
a much lower conductivity. A simplified model is set up where the thermal conductivity
ratio between the external layers and the internal core is assumed as infinite. It is shown
that a flow instability in the sandwiched porous slab may arise with a sufficiently large
Rayleigh number. It is also demonstrated that this instability coincides with that predicted
in a previous analysis for a homogeneous porous layer with permeable boundaries, by
considering the limiting case where the permeability of the external layers is much larger
than that of the core layer.

Key words: buoyancy-driven instability, convection in porous media

1. Introduction

The occurrence of convection heat transfer in a vertical porous layer saturated by a fluid
is a topic that has been widely studied over the last few decades due to its potential
interest for several applications. If the main practical use of this knowledge is for the
thermal insulation of buildings and for devices such as breathing walls, the topic of
convection in vertical porous layers may be important also for geophysics and for the
design of filtration systems. The pioneering paper on this topic was that by Gill (1969).
This author provided a straightforward and rigorous proof that a vertical porous layer with
a homogeneous structure and subjected to a side heating via isothermal boundaries cannot
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display a multicellular pattern of convection heat transfer however large the Rayleigh
number. This cornerstone result was obtained by modelling the flow through Darcy’s law,
the Boussinesq approximation and by assuming impermeable isothermal boundaries kept
at different temperatures. The analysis carried out by Gill (1969) is grounded on the linear
dynamics of perturbations superposed to the steady vertical buoyant flow in a conduction
regime induced by a horizontal temperature gradient in the basic state.

The paper by Gill (1969) is the starting point of several later studies including the
nonlinear extension of the stability proof (Straughan 1988; Flavin & Rionero 1999), as
well as variants involving the Prandtl–Darcy flow model (Rees 1988) and local thermal
non-equilibrium within the saturated porous material (Rees 2011; Scott & Straughan 2013).

The use of momentum balance models for the seepage flow in the porous layer that
include the velocity Laplacian term shows the possibility of a thermal instability and
the emergence of convection patterns in the porous layer (Chen 2004). This feature is
an expected consequence of a momentum balance model similar to that for a fluid clear of
porous material. In fact, linear convective instability emerges when a vertical and infinitely
tall slot of fluid is bounded by impermeable plane walls at different temperatures (Vest
& Arpaci 1969). Kwok & Chen (1987) present experimental evidence that convective
instability in a vertical porous layer may arise when a sufficiently large temperature
difference is forced across the layer boundaries. Those authors also propose possible
explanations of the observed phenomenon based either on Brinkman’s momentum transfer
model or on the inclusion of variable viscosity effects (Kwok & Chen 1987).

The papers by Barletta (2015) and by Shankar & Shivakumara (2022) offer apparently
different approaches showing up the emergence of convective instability in a vertical
porous slab subjected to side heating. The first one (Barletta 2015) focuses on the same
flow set-up assumed by Gill (1969), but turning the impermeability boundary conditions
into conditions of permeability by imposing a hydrostatic pressure distribution at the
boundaries. The second one (Shankar & Shivakumara 2022) considers a variant of Gill’s
set-up where the boundaries are impermeable, but the porous medium is heterogeneous
with a transverse continuous change of the permeability. Both Barletta (2015) and Shankar
& Shivakumara (2022) proved that their variants of Gill’s problem could lead to a
condition of linear instability for sufficiently large Rayleigh numbers. Further recent
explorations into different aspects of the onset of convection in porous vertical layers have
been carried out by Barletta & Celli (2021), Shankar, Shivakumara & Naveen (2021) and
Shankar, Naveen & Shivakumara (2022).

The aim of this paper is to show that a common physical mechanism underlies the
apparently different instabilities found by Barletta (2015) and by Shankar & Shivakumara
(2022). This task is achieved by envisaging a three-layer porous slab with impermeable
isothermal boundaries kept at different temperatures. In this sandwiched porous slab,
the two external layers are identical, while the core layer has different thermophysical
properties. In particular, the external layers are considered as much more thermally
conductive than the core. The basic buoyant flow in the internal core is identical to that
devised by Gill (1969). Although the basic state is stationary with a purely vertical velocity,
the core layer has interfaces to the external layers which may allow for a horizontal flow
contribution when the basic state is perturbed. This circumstance is a relaxation of Gill’s
impermeability condition at the boundaries, if just the core layer is considered. Such a
set-up is the link between the two studies by Barletta (2015) and Shankar & Shivakumara
(2022). In fact, the three-layer structure is effectively a horizontally heterogeneous medium
with a piecewise-constant permeability. Furthermore, the internal core is a homogeneous
porous layer with permeability conditions at the bounding interfaces to the external layers.

952 A32-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.919


Gill’s problem in a sandwiched porous slab

0 L/2−L/2

z

x

T 0
 +

 ∆
T/

2

T 0
 −

 ∆
T/

2

D/2−D/2

M1M2 M2

g

Figure 1. Two-dimensional cross-section of the sandwiched porous slab in the xz plane. The y axis is
perpendicular to the plane of the figure.

In this study, it is shown that the neutral stability condition is influenced by the
permeability ratio between the external layers and the core layer and by the ratio between
the thickness of the three-layer slab and that of the core layer. The role of such parameters
in determining the stabilisation or destabilisation of the basic buoyant flow is identified by
employing a numerical solution of the linear stability eigenvalue problem. This eigenvalue
problem, formulated for the core layer, turns out to coincide with that solved by Barletta
(2015) in the asymptotic case where the external layers are much more permeable than
the core. Hence, the neutral stability condition and the critical values of the wavenumber
and of the Rayleigh number found by Barletta (2015) are confirmed in the asymptotic
case. Such an asymptotic condition turns out to be the most unstable relative to cases
where the permeability ratio between the external layers and the core layer is finite. It
is shown that the stability eigenvalue problem studied by Gill (1969) is recovered in the
opposite asymptotic condition where the permeability ratio between the external layers
and the core layer tends to zero. This is an expected result as, in this asymptotic case, the
interfaces between the core layer and the external layers are effectively impermeable, thus
reproducing just the same Gill’s boundary conditions for the core layer.

2. Governing equations

Let us consider a vertical porous slab with a sandwiched structure. The x axis is horizontal
and perpendicular to the slab, the y axis is also horizontal and the z axis is vertical, so that
the gravitational acceleration is g = −g êz, where g is the modulus of g and êz is the unit
vector of the z axis.

As shown in figure 1, the core region −L/2 ≤ x ≤ L/2 is a layer of a porous material
M1, while the regions −D/2 ≤ x < −L/2 and L/2 < x ≤ D/2 are layers of a different
porous material M2. For the sake of simplicity, we assume that the slab extends without
bounds over the y and z directions. The external boundaries x = ±D/2 are impermeable
and isothermal at temperatures T0 ±�T/2, where T0 and�T are constants, with�T > 0.

The flow model is based on the local mass, momentum and energy balance equations
according to the Boussinesq approximation and to Darcy’s law:

∇ · um = 0, (2.1a)
μ

Km
um = −∇Pm + ρ0gβ(Tm − T0)êz, (2.1b)
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σm
∂Tm

∂t
+ um · ∇Tm = αm∇2Tm, m = 1, 2, (2.1c)

where the index m = 1, 2 identifies the physical properties and the fields either in the
core M1 layer or in the external M2 layers. Here, t is time, um is the velocity field, Pm
is the dynamic pressure field and Tm is the temperature field. We emphasise that Pm, the
dynamic pressure, is the local difference between the pressure and the hydrostatic pressure,
where the latter is evaluated with the reference fluid density ρ0. The fluid saturating the
three-layer slab is Newtonian with a dynamic viscosity μ, a reference density ρ0 and a
coefficient of thermal expansion β.

The average properties of the saturated porous media are, with m = 1, 2: the
permeability Km, the thermal diffusivity αm and the heat capacity ratio σm. The latter ratio
is evaluated by dividing the volumetric heat capacity of each saturated porous medium
by the volumetric heat capacity of the fluid. We also recall that the average thermal
diffusivities, α1 and α2, are defined through the ratio of the average thermal conductivity
of the fluid-saturated porous medium and the volumetric heat capacity of the fluid. The
volumetric heat capacity of the fluid is the same for both media M1 and M2. Hence, the
ratio α2/α1 is both a thermal diffusivity ratio and a thermal conductivity ratio.

2.1. Pressure–temperature formulation
Equation (2.1) can be expressed in a pressure–temperature formulation:

∇2Pm = ρ0gβ
∂Tm

∂z
, (2.2a)

σm
∂Tm

∂t
− Km

μ
∇Pm · ∇Tm + ρ0gβKm

μ
(Tm − T0)

∂Tm

∂z
= αm∇2Tm, m = 1, 2. (2.2b)

2.2. Boundary and interface conditions
The boundary and interface conditions are to be set at x = ±D/2 and at x = ±L/2,
respectively:

x = ±D/2 :
∂P2

∂x
= 0, T2 = T0 ± �T

2
, (2.3a)

x = ±L/2 : P1 = P2, K1
∂P1

∂x
= K2

∂P2

∂x
, T1 = T2, α1

∂T1

∂x
= α2

∂T2

∂x
. (2.3b)

In particular, the interface conditions reflect the momentum and energy balance across the
planes at x = ±L/2. They express the continuity of the pressure, of the normal component
of the velocity, of the temperature and of the normal component of the heat flux density.
The last interface condition (2.3) should employ the thermal conductivities instead of the
thermal diffusivities, but we have already pointed out that the ratio α2/α1 coincides with
the thermal conductivity ratio.

2.3. Dimensionless formulation
The mathematical model can be reformulated in dimensionless terms by scaling time,
coordinates and fields as

t∗ = t
σ1L2/α1

, (x∗, y∗, z∗) = (x, y, z)
L

, u∗
m = um

α1/L
, (2.4a)
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P∗
m = Pm

μα1/K1
, T∗

m = Tm − T0

�T
, (2.4b)

with the dimensionless parameters

R = ρ0gβ�TK1L
μα1

, a = D
L
, ξ = K2

K1
, γ = α2

α1
τ = σ2

σ1
. (2.5a–e)

Here, a > 1 and R is the Darcy–Rayleigh number, hereafter called the Rayleigh number
for conciseness. Equations (2.4) and (2.5a–e) allow one to rewrite (2.2) in a dimensionless
form for the medium M1:

∇2P1 = R
∂T1

∂z
, (2.6a)

∂T1

∂t
− ∇P1 · ∇T1 + RT1

∂T1

∂z
= ∇2T1, (2.6b)

and for the medium M2:

∇2P2 = R
∂T2

∂z
, (2.7a)

τ
∂T2

∂t
− ξ∇P2 · ∇T2 + RξT2

∂T2

∂z
= γ∇2T2, (2.7b)

while (2.3) reads

x = ±a/2 :
∂P2

∂x
= 0, T2 = ±1

2
, (2.8a)

x = ±1/2 : P1 = P2,
∂P1

∂x
= ξ

∂P2

∂x
, T1 = T2,

∂T1

∂x
= γ

∂T2

∂x
. (2.8b)

In (2.6)–(2.8) and in the forthcoming analysis, the dimensionless fields, coordinates and
time are denoted without the asterisks for simplicity of notation. This will not cause any
ambiguity as we will only deal with dimensionless expressions, except when explicitly
declared.

It is also worth saying that the second of equations (2.1) is rewritten in a dimensionless
form as

u1 = −∇P1 + RT1êz, (2.9a)

u2 = −ξ∇P2 + RξT2êz, (2.9b)

for media M1 and M2, respectively.

3. The basic stationary flow

A basic stationary flow solution of (2.6)–(2.8) can be found such that

P̄1 = 0 = P̄2,
∂T̄1

∂y
= 0 = ∂T̄2

∂y
, (3.1a,b)

where the bar over the fields stands for basic state. Equation (3.1a,b) describes a
two-dimensional, y-independent, flow regime where the pressure locally coincides with
the hydrostatic pressure or, equivalently, the dynamic pressure is everywhere zero. As a

952 A32-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.919


A. Barletta, M. Celli, S. Lazzari and P.V. Brandão
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Figure 2. Plots of T̄ versus x for a = 2 and different values of γ .

consequence of (3.1a,b), (2.6)–(2.8) allow one to infer that, in the three-layer slab, the
temperature profile T̄ is a piecewise linear function of x independent of y and z. In fact, in
the basic state, we have

T̄1 = γ

γ + a − 1
x, (3.2a)

T̄2 =

⎧⎪⎪⎨
⎪⎪⎩

1
γ + a − 1

x − γ − 1
2(γ + a − 1)

, −a
2

≤ x < −1
2
,

1
γ + a − 1

x + γ − 1
2(γ + a − 1)

,
1
2
< x ≤ a

2
.

(3.2b)

Another consequence of (3.1a,b) is that (2.9) yields

ū1 = (0, 0,RT̄1), ū2 = (0, 0,Rξ T̄2), (3.3a,b)

which describes a purely vertical flow driven only by the buoyancy force. If T̄ varies
continuously along the range −a/2 ≤ x ≤ a/2, this is not the case for the vertical velocity
component. Such a feature is a consequence of the different permeabilities of the porous
media M1 and M2, so that continuity of the velocity profile occurs only for the special case
ξ = 1.

Figure 2 illustrates the basic solution by showing some plots of T̄ versus x over the
whole range −a/2 ≤ x ≤ a/2. The geometrical ratio a = 2 is prescribed, while different
values of the conductivity ratio γ > 1 are considered. A focus on the case γ > 1 has been
made since, as is discussed in § 3.1, our aim is to explore a condition of extremely high
values of γ . It can be stressed that the case γ = 100 yields a temperature distribution
which is almost uniform in the external layers (−a/2 ≤ x < −1/2 and 1/2 < x ≤ a/2).
This behaviour is characteristic of the asymptotic case γ → ∞.

3.1. Infinite thermal conductivity ratio
There are several practical cases where the limit γ → ∞ is a fairly appropriate condition.
Porous media with a very high thermal conductivity are the metal foams often employed
in the design of heat exchangers, while the low-conductivity inner core can be devised
as a slab of any thermal insulation material employed in the building industry. In the
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forthcoming stability analysis of the basic buoyant flow, we focus on this asymptotic
condition. It is worth emphasising that the limit γ → ∞ of (3.2) yields

T̄1 = x, T̄2 =

⎧⎪⎨
⎪⎩

−1
2
, −a

2
≤ x < −1

2
,

1
2
,

1
2
< x ≤ a

2
.

(3.4a,b)

The basic state (3.4a,b) for the core layer M1 is exactly that considered in the papers by
Gill (1969) and by Barletta (2015). Finally, we reckon that also the governing equations,
the boundary and the interface conditions (2.7) and (2.8) undergo a marked simplification:

∇2P2 = R
∂T2

∂z
, ∇2T2 = 0, (3.5a,b)

with

x = ±a/2 :
∂P2

∂x
= 0, T2 = ±1

2
, (3.6a)

x = ±1/2 : P1 = P2,
∂P1

∂x
= ξ

∂P2

∂x
, T1 = T2,

∂T2

∂x
= 0. (3.6b)

4. Linearised perturbation dynamics

The onset of instability is studied by perturbing the basic state:

Pm = P̄m + εP̂m, Tm = T̄m + εT̂m, m = 1, 2, (4.1a,b)

where ε > 0 is a perturbation parameter and the hat identifies the perturbation
contributions to the pressure and temperature fields. The linear stability analysis is carried
out by substituting (4.1a,b) into (2.6), (3.5a,b) and (3.6) and by neglecting the terms O

(
ε2).

We obtain, for the inner layer M1,

∇2P̂1 = R
∂T̂1

∂z
,

∂T̂1

∂t
− ∂P̂1

∂x
+ Rx

∂T̂1

∂z
= ∇2T̂1, (4.2a,b)

and, for the external layers M2,

∇2P̂2 = R
∂T̂2

∂z
, ∇2T̂2 = 0, (4.3a,b)

with

x = ±a/2 :
∂P̂2

∂x
= 0, T̂2 = 0, (4.4a)

x = ±1/2 : P̂1 = P̂2,
∂P̂1

∂x
= ξ

∂P̂2

∂x
, T̂1 = T̂2,

∂T̂2

∂x
= 0. (4.4b)

Here, the features of the basic buoyant flow, defined by (3.1a,b) and (3.4a,b), have been
employed.
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4.1. Normal mode analysis

A normal mode expression of the perturbations (P̂m, T̂m) is given by[
P̂m

T̂m

]
=

[
fm(x)
hm(x)

]
ei(kyy+kzz−ωt), with ky ∈ R, kz ∈ R, ω ∈ C, m = 1, 2, (4.5)

where k = (0, ky, kz) is the wavevector and ω is a complex angular frequency. The
wavenumber is a positive quantity defined as the modulus of the wavevector, k = |k|. The
angular frequency is the real part of ω, while the temporal growth rate is the imaginary
part of ω. By substituting (4.5) into (4.2a,b)–(4.4), one obtains for M1

f ′′
1 − k2f1 − ikzRh1 = 0, (4.6a)

h′′
1 − (k2 − iω + ikzRx)h1 + f ′

1 = 0, (4.6b)

and for the external M2 layers

f ′′
2 − k2f2 − ikzRh2 = 0, (4.7a)

h′′
2 − k2h2 = 0, (4.7b)

with the boundary and interface conditions

x = ±a/2 : f ′
2 = 0, h2 = 0, (4.8a)

x = ±1/2 : f1 = f2, f ′
1 = ξ f ′

2, h1 = h2, h′
2 = 0. (4.8b)

We can eliminate the dependence on the orientation of the wavevector k in (4.6)–(4.8) by
defining a rescaled Rayleigh number, S, such that

kS = kzR. (4.9)

Hence, (4.6) and (4.7) read

f ′′
1 − k2f1 − ikSh1 = 0, (4.10a)

h′′
1 − (k2 − iω + ikSx)h1 + f ′

1 = 0 (4.10b)

and

f ′′
2 − k2f2 − ikSh2 = 0, (4.11a)

h′′
2 − k2h2 = 0, (4.11b)

respectively.

4.2. Eigenvalue problem for the core porous layer
Function h2 is a solution of the second of equations (4.11) which, on account of (4.8), must
satisfy the boundary conditions h2(±a/2) = 0. Then, it can be expressed as

h2 =

⎧⎪⎪⎨
⎪⎪⎩

Ch sinh
(

k
a + 2x

2

)
, −a

2
≤ x < −1

2
,

C̃h sinh
(

k
a − 2x

2

)
,

1
2
< x ≤ a

2
,

(4.12)

where (Ch, C̃h) are integration constants. However, (4.8) prescribes also the interface
conditions h′

2(±1/2) = 0. On account of (4.12), such conditions can be satisfied for k > 0
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only with Ch = 0 and C̃h = 0. Hence, one has

h2 = 0. (4.13)

Function f2 must be a solution of the first of equations (4.11) with h2 = 0. Furthermore,
on account of (4.8), f2 satisfies the boundary conditions f ′

2(±a/2) = 0, so that

f2 =

⎧⎪⎪⎨
⎪⎪⎩

Cf cosh
(

k
a + 2x

2

)
, −a

2
≤ x < −1

2
,

C̃f cosh
(

k
a − 2x

2

)
,

1
2
< x ≤ a

2
,

(4.14)

where (Cf , C̃f ) are integration constants.
Thus, from (4.14), the interface conditions f1(−1/2) = f2(−1/2) and f ′

1(−1/2) =
ξ f ′

2(−1/2) given by (4.8) yield

f1

(
−1

2

)
= Cf cosh

(
k

a − 1
2

)
, f ′

1

(
−1

2

)
= Cf ξk sinh

(
k

a − 1
2

)
. (4.15a,b)

By eliminating Cf , (4.15a,b) yields

f ′
1

(
−1

2

)
− ξk tanh

(
k

a − 1
2

)
f1

(
−1

2

)
= 0. (4.16)

By employing the same method, the interface conditions f1(1/2) = f2(1/2) and f ′
1(1/2) =

ξ f ′
2(1/2) given by (4.8) yield

f1

(
1
2

)
= C̃f cosh

(
k

a − 1
2

)
, f ′

1

(
1
2

)
= −C̃f ξk sinh

(
k

a − 1
2

)
. (4.17a,b)

By eliminating C̃f , (4.17a,b) yields

f ′
1

(
1
2

)
+ ξk tanh

(
k

a − 1
2

)
f1

(
1
2

)
= 0. (4.18)

On account of (4.10), (4.16) and (4.18), one can conclude that the linear stability analysis
can be now formulated by focusing just on the inner core region −1/2 ≤ x ≤ 1/2 and
solving the eigenvalue problem

f ′′
1 − k2f1 − ikSh1 = 0, (4.19a)

h′′
1 − (k2 − iω + ikSx)h1 + f ′

1 = 0, (4.19b)

x = ±1
2

: f ′
1 ± ξk tanh

(
k

a − 1
2

)
f1 = 0, h1 = 0. (4.19c)

After having solved (4.19) and determined f1, one can determine also f2 as

f2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1

(
−1

2

)[
cosh

(
k

a − 1
2

)]−1

cosh
(

k
a + 2x

2

)
, −a

2
≤ x < −1

2
,

f1

(
1
2

)[
cosh

(
k

a − 1
2

)]−1

cosh
(

k
a − 2x

2

)
,

1
2
< x ≤ a

2
,

(4.20)

where (4.14), (4.15a,b) and (4.17a,b) have been used.
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4.3. Features of the stability eigenvalue problem
We note that (4.16) and (4.18) are boundary conditions of the third kind for f1. However,
they are of a special type as the coefficient of the f1 term depends on the wavenumber k.
A similar circumstance occurs in the linear stability eigenvalue problems solved by Rees
& Mojtabi (2013) and by Mohammad, Rees & Mojtabi (2017), where third-kind boundary
conditions with a k-dependent coefficient were found for the temperature disturbances.
In particular, in Rees & Mojtabi (2013), Prats’ problem in a horizontal porous layer
(Prats 1966) was reconsidered by studying the effect of the non-zero thermal resistance of
the horizontal boundary walls. Thus, from a mathematical viewpoint, the circumstances
devised by those authors are comparable with those considered here and leading to (4.19).
In fact, we are studying a finite and non-zero hydraulic (instead of thermal) resistance of
the external porous layers. We mention that the case of third-kind boundary conditions
for the temperature was considered in the analysis of Gill’s problem for a vertical plane
slab with permeable boundaries by Barletta, Celli & Ouarzazi (2017), while third-kind
boundary conditions for the pressure were investigated by Barletta, Celli & Rees (2020).
However, in Barletta et al. (2017, 2020), the prescribed third-kind conditions feature
constant k-independent coefficients, unlike the case defined by (4.19). We mention that
third-kind boundary conditions with constant coefficients were also predicted for the
pressure field by Nygård & Tyvand (2010).

5. Discussion of the results

The basis for developing the stability analysis is the eigenvalue problem (4.19). Some
important characteristics of the onset of instability can be gathered by exploring three
significant asymptotic cases.

5.1. The limit ξ → ∞
The limiting condition ξ → ∞ embodies the case where the external M2 layers are much
more permeable than the core M1 layer. We note that the example of metal foams for the
M2 layers is quite close to this condition as such metal foams are generally endowed with
a large permeability. In any case, we assume that the large permeability of the M2 layers
is not so large as to suppress the validity of Darcy’s law. In this case, the only change in
the stability eigenvalue problem is a marked simplification of the boundary conditions.
Equation (4.19) thus reads

f ′′
1 − k2f1 − ikSh1 = 0, (5.1a)

h′′
1 − (k2 − iω + ikSx)h1 + f ′

1 = 0, (5.1b)

x = ±1
2

: f1 = 0, h1 = 0. (5.1c)

We emphasise that (5.1) coincides with the stability eigenvalue problem for a
homogeneous vertical porous layer with permeable boundaries solved by Barletta (2015).
This is an important result as the transition to instability in the limiting case ξ → ∞ is
defined by the neutral stability data obtained and discussed by Barletta (2015). On taking
the limit ξ → ∞, one loses also the dependence on a.

5.2. The limits ξ → 0 or a → 1
An asymptotic case completely different from that discussed in § 5.1 is defined by the limit
ξ → 0. This limit describes a situation where the M2 layers are much less permeable than

952 A32-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.919


Gill’s problem in a sandwiched porous slab

the core M1 layer. Strictly speaking, the external layers are quite close to impermeability
if compared with the core layer. In this case, (4.19) markedly simplifies to

f ′′
1 − k2f1 − ikSh1 = 0, (5.2a)

h′′
1 − (k2 − iω + ikSx)h1 + f ′

1 = 0, (5.2b)

x = ±1
2

: f ′
1 = 0, h1 = 0. (5.2c)

The stability eigenvalue problem (5.2) coincides with that analysed by Gill (1969).
This feature is completely unsurprising as Gill (1969) investigated the possible onset of
instability in a homogeneous porous layer with impermeable isothermal boundaries kept
at different temperatures. Gill (1969) proved that no instability is possible in this case.

It is significant that (5.2) represents also the limiting case a → 1 for any finite ξ . This
result is expected as a → 1 means that the thickness of the M2 layers tends to 0. Thus,
one has again a homogeneous porous layer, namely the M1 layer, with the impermeable
boundaries devised in Gill (1969).

5.3. The limit a → ∞
When the external M2 layers have an extremely large thickness, so that D 	 L, we have in
mind the core M1 layer surrounded by infinite M2 media. This condition yields the limit
a → ∞ and the stability eigenvalue problem (4.19) simplifies to

f ′′
1 − k2f1 − ikSh1 = 0, (5.3a)

h′′
1 − (k2 − iω + ikSx)h1 + f ′

1 = 0, (5.3b)

x = ±1
2

: f ′
1 ± ξkf1 = 0, h1 = 0. (5.3c)

5.4. The neutral stability curves
The solution of (4.19) leads to the determination of the neutral stability curves, namely
the curves drawn in the (k, S) plane which describe the condition of zero growth rate.
In other words, the neutral stability curves are isolines of the imaginary part of the
complex parameter ω corresponding to a zero value. Among the many neutral stability
curves existing in the (k, S) plane, our attention is focused on that displaying the lowest
values of S when input values of a and ξ are prescribed. In fact, the lowest neutral
stability curve in the (k, S) plane captures the parametric condition for the initiation of
the instability. As this curve usually features an absolute minimum of S for a given k, this
minimum yields the threshold for the linear convective instability. The values of k and S
for such a minimum are called critical and denoted with kc and Sc. In order to achieve
these results, (4.19) must be solved numerically. There are several techniques available
for the solution of stability eigenvalue problems formulated through systems of ordinary
differential equations. Comprehensive surveys of and comparisons among the methods are
available in Dongarra, Straughan & Walker (1996) and in Straughan & Walker (1996).

Our analysis of the neutral stability curves and of the critical values is carried out
by employing a shooting method solution of (4.19) for input values of (a, ξ). The code
employed for the implementation of such a method is just an adaptation to the diverse
boundary conditions of that described in Barletta (2015). In that paper, the test of the
numerical accuracy for this code is also discussed. An alternative and more extensive
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Figure 3. Neutral stability curves in the (k, S) plane for (a) ξ = 100 and (b) ξ = 10 with different values of a
(solid lines). The dashed grey line corresponds to the limit ξ → ∞, while the dotted black line describes the
limit a → ∞.

presentation of the shooting method for linear stability eigenvalue problems is also
available in Barletta (2019).

It is desirable to see the determined critical value of S, for given (a, ξ), formulated with
the Rayleigh number R in order to fully understand the mode selection at the onset of the
linear instability. This information is easily gathered from (4.9), as this equation clearly
shows that the least value of Rc able to reproduce a given Sc is obtained when kz = k.
This means that the preferred modes at the onset of instability are those with ky = 0, the
so-called transverse normal modes.

The numerical solution of (4.19) leads to a first important remark: the linear transition to
instability occurs with non-travelling modes. This means that the neutral stability curves,
defined by a zero imaginary part of ω, are characterised also by a zero real part of ω, so
that the phase velocity of the neutrally stable modes is zero. This feature is justified by the
numerical solution of the eigenvalue problem (4.19) for several input data (a, ξ).

Figures 3–5 display different frames for different values of ξ . In each frame, the neutral
stability curves are displayed for distinct values of a, with the asymptotic case a → ∞
reported for comparison as a dotted black line. Figures 3 and 4 also show the asymptotic
case ξ → ∞ as a dashed grey line for a comparison with the situation examined in Barletta
(2015). Figure 3, relative to ξ = 100 and 10, displays an evident cluttering of the curves
close to the asymptote a → ∞ for the largest values of a. For the case ξ = 100, the
largest values of a mean a > 1.5. In this case, there is no visible distinction between
the asymptotes ξ → ∞ and a → ∞. We can interpret these findings by saying that,
with ξ = 100, the analysis carried out in Barletta (2015) yields a fair description of the
linear onset of instability for thickness ratios a down to 2 or even smaller. Things are
different when ξ = 10 as one finds a marked difference between the asymptotes ξ → ∞
and a → ∞. This phenomenon turns out to be even more evident by exploring figure 4
with the cases ξ = 5 and ξ = 2. In figure 5, relative to ξ = 1 and 0.6, the dashed grey
line for ξ → ∞ is not even drawn, as such cases are too far from the condition of isobaric
boundary conditions, f1 = 0, devised in Barletta (2015).

There is a systematic trend gathered from figures 3–5 which ought to be emphasised.
The basic flow tends to be destabilised as a or ξ increases. This conclusion can be inferred
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Figure 4. Neutral stability curves in the (k, S) plane for (a) ξ = 5 and (b) ξ = 2 with different values of a
(solid lines). The dashed grey line corresponds to the limit ξ → ∞, while the dotted black line describes the
limit a → ∞.
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Figure 5. Neutral stability curves in the (k, S) plane for (a) ξ = 1 and (b) ξ = 0.6 with different values of a
(solid coloured curves). The dotted black curves describe the limit a → ∞.

from figures 3–5 as the neutral stability curve moves upward when the value of either
a or ξ decreases. In fact, if the neutral stability curve moves upward, larger and larger
values of S are needed to trigger the instability. There is a straightforward interpretation
for such a trend. When a gradually decreases, the overall width of the multilayer structure,
D, tends to approach the width of the core layer, L. As a consequence, the stabilising
effect of the impermeable external boundaries at x = ±D/2, proved by Gill (1969), tends
to affect directly the interfaces at x = ±L/2, so that the core layer boundaries become
gradually close to impermeability and, hence, to stability for every value of S. Just the
same condition happens when the permeability ratio, ξ , tends to zero as demonstrated
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Figure 6. Critical value of S versus ξ for a decreasing from 20 to 1.2 (solid coloured curves). The dotted
black curve describes the limit a → ∞, while the dashed grey line denotes the asymptotic value for ξ → ∞,
Sc = 197.0812.

mathematically in § 5.2. It is also evident from figures 3–5 that the instability tends to be
caused by smaller and smaller wavenumbers, k, for decreasing values of either a or ξ .

5.5. Critical conditions for the instability
The minimum of the neutral stability curve in the (k, S) plane identifies the onset of the
linear instability, with the least value of S needed for the convection cells to display a
growing amplitude in time. Such a minimum identifies the critical values k = kc and
S = Sc, which depend on both a and ξ . The critical data are presented graphically in
figures 6 and 7 where the trends of Sc and kc versus ξ are displayed. These figures reveal
that the cases a = 20, 10, 5 yield hardly distinguishable curves almost overlapped with
the asymptotic dotted black line corresponding to the limit a → ∞. A departure from this
behaviour is found only for small values of ξ in a range where the singularity of Sc is
displayed in figure 6 with a steep increase of the critical value of S as ξ decreases. We also
report that the asymptotic regime ξ → ∞ is approached by Sc more and more rapidly the
larger is the value of a. Thus, one can say that the case examined by Barletta (2015) is one
naturally emerging when both a and ξ are large enough. For instance, a glance at figure 6
may suggest a ≥ 5 and ξ ≥ 20 as a possible indication where the model of permeable
boundaries employed by Barletta (2015) can be considered as a fair enough approximation
for practical purposes. Figures 6 and 7 also reveal that, for every a > 0, Sc becomes infinite
and kc becomes zero when ξ → ξa > 0. The constant ξa is a decreasing function of a. The
evaluation of ξa is achieved by the solution of the stability eigenvalue problem in a large-S
range where the accuracy of the numerical solver significantly decreases. A few values
of ξa relative to the values of a considered in figures 6 and 7 are shown in table 1. Only
three significant figures could be reported in this table due to the mentioned decrease in
numerical accuracy. An important result is that no linear instability is found when ξ ≤ ξa.

Critical values k = kc and S = Sc are given in tables 2 and 3 versus ξ for different
decreasing values of a, from the asymptotic condition a → ∞ to a = 1.2. Critical data
are not reported for the cases where ξ ≤ ξa. In fact, as pointed out above, a threshold to
instability is found only for a ξ larger than ξa.

952 A32-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

91
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.919


Gill’s problem in a sandwiched porous slab
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Figure 7. Critical value of k versus ξ for a decreasing from 20 to 1.2 (solid coloured curves). The dotted
black curve describes the limit a → ∞, while the dashed grey line denotes the asymptotic value for ξ → ∞,
kc = 1.059498.

a ξa

∞ 0.000
20 0.138
10 0.290
5 0.653
2 2.61
1.5 5.22
1.2 13.0

Table 1. Values of ξa versus a.

a → ∞ a = 20 a = 10 a = 5

ξ kc Sc kc Sc kc Sc kc Sc

0.6 0.346043 513.2325 0.346630 514.3766 0.341008 557.9773 — —
0.8 0.428912 413.6608 0.429127 413.8280 0.429635 426.9214 0.309628 724.4452
1 0.496592 357.2767 0.496672 357.3117 0.498337 362.4913 0.439495 470.0357
2 0.696054 257.5909 0.696056 257.5912 0.696745 257.9235 0.689313 270.4812
5 0.880580 212.7840 0.880580 212.7840 0.880638 212.8010 0.878152 214.2687
10 0.961336 202.6737 0.961336 202.6737 0.961338 202.6766 0.959440 203.0420
20 1.007717 199.1513 1.007717 199.1513 1.007714 199.1520 1.006539 199.2567
50 1.038056 197.7046 1.038056 197.7046 1.038054 197.7047 1.037528 197.7294
100 1.048649 197.3556 1.048649 197.3556 1.048647 197.3557 1.048375 197.3653
∞ 1.059498 197.0812 1.059498 197.0812 1.059498 197.0812 1.059498 197.0812

Table 2. Critical values of k and S.

5.6. Streamlines and isotherms
The visualisation of the streamlines and isotherms associated with the perturbation modes
is quite important, especially at the critical conditions k = kc and S = Sc defining the
initiation of the convective instability. In fact, even if the flow patterns of convection
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a = 2 a = 1.5 a = 1.2

ξ kc Sc kc Sc kc Sc

5 0.731871 276.7961 — — — —
10 0.885192 218.3671 0.749783 271.2792 — —
20 0.962897 203.7273 0.895889 216.6798 0.663605 320.8838
30 0.992229 200.6034 0.943341 206.8434 0.806683 246.7193
40 1.007888 199.3752 0.968895 203.1681 0.865160 225.6955
50 1.017638 198.7474 0.985154 201.3538 0.898999 216.2033
60 1.024293 198.3750 0.996456 200.3078 0.921864 210.9843
80 1.032791 197.9620 1.011160 199.1856 0.951664 205.6243
100 1.037986 197.7425 1.020310 198.6121 0.970623 203.0113
∞ 1.059498 197.0812 1.059498 197.0812 1.059498 197.0812

Table 3. Critical values of k and S.

are evaluated according to the linear theory, it is generally retained that such patterns
are the starting point for the development of the nonlinear analysis of convection. This
is particularly evident in the formulation of the weakly nonlinear theory of convective
instability (Drazin & Reid 2004). In fact, the weakly nonlinear theory studies the
interaction between normal modes in the vicinity of the critical condition.

Starting from (2.9) and (4.1a,b), one can define the perturbation velocity:

û1 = −∇P̂1 + RT̂1êz, (5.4a)

û2 = −ξ∇P̂2 + Rξ T̂2êz. (5.4b)

We mentioned that the onset of instability occurs with transverse modes, i.e. the
two-dimensional perturbations in the (x, z) plane with ky = 0 and k = kz. Accordingly,
only the velocity components (ûm, ŵm), with m = 1, 2, are non-zero for such modes. The
mass balance constrains ûm to be solenoidal. Thus, one can introduce the streamfunction
Ψ̂m, so that the divergence of ûm is identically zero:

ûm = ∂Ψ̂m

∂z
, ŵm = −∂Ψ̂m

∂x
. (5.5a,b)

Following (4.5), we express the streamfunction as a normal mode:

Ψ̂m = ψm(x) ei(kz−ωt). (5.6)

Then, (4.5) and (5.4)–(5.6) yield

ikψ1(x) = −f ′
1(x), −ψ ′

1(x) = −ikf1(x)+ Rh1(x), (5.7a,b)

ikψ2(x) = −ξ f ′
2(x), −ψ ′

2(x) = −ikξ f2(x)+ Rξh2(x). (5.7c,d)

As a consequence, the interface conditions at x = ±1/2 expressed by (4.8) imply a
continuity of ψm across such interfaces with a discontinuity in its first derivative when
ξ /= 1:

x = ±1/2 : ψ1 = ψ2, ξψ ′
1 = ψ ′

2. (5.8a,b)

By employing (5.6) and (5.8), one realises that ∇Ψ̂m undergoes a cusp discontinuity at each
interface where its x component changes discontinuously, if ξ /= 1, while the z component
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Streamlines Isotherms

ξ = 50

ξ = 5

Figure 8. Perturbation streamlines and isotherms for transverse modes (ky = 0, kz = k and S = R) with a = 2
and either ξ = 5 or ξ = 50, at critical conditions k = kc and R = S = Sc. The dotted black line is at x = 0,
while the dashed lines denote the interfaces x = ±1/2. The vertical range is over a period 0 ≤ z ≤ 2π/kc.

is always continuous. Such cusp discontinuities of the streamlines at the interfaces are
clearly visible in figures 8 and 9, except for the case a = 5 and ξ = 1 reported in the upper
part of figure 9. These figures illustrate just four sample cases in order to display how
the convective instability induces a cellular flow which penetrates the M2 layers. In such
external layers, the saturated porous medium is otherwise isothermal, at equilibrium with
the external impermeable boundaries, x = ±a/2. The latter feature emerges quite clearly
from figures 8 and 9 as the cellular patterns for the isotherms are entirely confined in the
core M1 layer, that is, within the region −1/2 ≤ x ≤ 1/2. The red/blue colour code for the
different media introduced in figure 1 is used also in figures 8 and 9 for convenience. We
finally point out that the antisymmetry of the convection cells with respect to the vertical
midplane reflects the antisymmetric thermal boundary conditions and the antisymmetric
basic temperature profile triggering the onset of the convection cells.
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Streamlines Isotherms

ξ = 50

ξ = 1

Figure 9. Perturbation streamlines and isotherms for transverse modes (ky = 0, kz = k and S = R) with a = 5
and either ξ = 1 or ξ = 50, at critical conditions k = kc and R = S = Sc. The dotted black line is at x = 0,
while the dashed lines denote the interfaces x = ±1/2. The vertical range is over a period 0 ≤ z ≤ 2π/kc.

6. Conclusions

The onset of convection in a vertical porous slab has been analysed by assuming a
three-layer structure. In fact, an internal layer is sandwiched between two identical external
layers having properties different from those of the core. The multilayer slab is saturated
by a Newtonian fluid and the external layers are much more thermally conductive than
the inner core. The multilayer slab is bounded by impermeable isothermal walls kept at
different temperatures.

The dynamics of convection is governed by Darcy’s law and by the thermal buoyancy
modelled through the Boussinesq approximation. Being extremely conductive, the external
layers are thermally passive but they can be penetrated by the convection cells arising in
the core layer. The basic state features a vertical flow, with a piecewise-linear velocity
profile, in a thermal conduction regime. Such a basic state reproduces in the inner
layer that envisaged by both Gill (1969) and Barletta (2015). Those authors considered
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Gill’s problem in a sandwiched porous slab

a single-layer homogeneous slab with either impermeable boundaries (Gill 1969) or
permeable boundaries (Barletta 2015).

The linear perturbations of the basic flow have been studied by employing a modal
analysis. The neutral stability curves have been obtained in the (k, S) plane, where k is
the wavenumber and S is a suitably rescaled Rayleigh number, which coincides with the
Rayleigh number R in the special case of two-dimensional transverse modes. The neutral
stability condition depends on two governing parameters: the permeability ratio of the
outer layers to the inner layer, ξ ; and the width ratio of the whole slab to the inner layer, a.
The critical conditions k = kc and S = Sc, corresponding to the point of minimum S along
a neutral stability curve, have been also evaluated.

The main results obtained from the linear stability analysis are the following:

• The most unstable perturbation modes are transverse. The transverse modes are
two-dimensional lying in the vertical (x, z) plane, where the x axis is horizontal and
perpendicular to the slab and the z axis is vertical.

• The basic flow is destabilised by both the increase of a and the increase of ξ . The
most unstable parametric set-up is the limiting case ξ → ∞, where the neutral
stability condition is not influenced by the value of a as the stability eigenvalue
problem coincides with that laid out and solved by Barletta (2015).

• For every value of a, there exists a positive constant ξa such that no linear instability
is found for ξ ≤ ξa. The constant ξa is a decreasing function of a.

• The limiting case ξ → 0 drives the basic flow to linear stability for every a
and for every Rayleigh number. Such an asymptotic condition is that devised
in the rigorous proof of stability presented by Gill (1969) in his classic paper.
The interfaces between the internal layer and the external layers become, in fact,
perfectly impermeable in this case.

• Since the external layers have a thermal conductivity much larger than that of the
core layer, they are isothermal with the same temperature as the neighbouring
boundary. This happens both for the basic state and for the perturbed flow. Thus,
the external layers are thermally passive at onset of instability. When the convection
cells emerge at supercritical conditions, the streamlines of such cells penetrate the
external layers showing up cusp discontinuities at the interfaces. The origin of the
cusp discontinuities relies on the difference between the permeability of the external
layers relative to that of the core layer.

The analysis carried out in this paper points out that the multilayer structure of a
vertical porous slab with impermeable isothermal boundaries may induce the onset
of convective instability whereas a single-layer vertical slab with the same boundary
conditions displays no instability. This result points out a new connection between two
apparently different types of instability: the instability in a vertical porous slab with
a heterogeneous permeability structure and that in a homogeneous vertical slab with
permeable boundaries. The former case, relative to a continuous type of heterogeneity, has
been examined by Shankar & Shivakumara (2022). On the other hand, the latter case is
retrieved from our analysis when the asymptotic condition ξ → ∞ is examined, perfectly
matching the mathematical formulation and the numerical results presented in Barletta
(2015).
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