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Abstract: Single-cell biology has revolutionized the way we understand biological processes. In
this paper, we provide a more tailored approach to clustering and analyzing spatial single-cell
data coming from immunofluorescence imaging techniques. We propose Bayesian Reduction for
Amplified Quantization in UMAP Embedding (BRAQUE) as an integrative novel approach, from data
preprocessing to phenotype classification. BRAQUE starts with an innovative preprocessing, named
Lognormal Shrinkage, which is able to enhance input fragmentation by fitting a lognormal mixture
model and shrink each component towards its median, in order to help further the clustering step in
finding more separated and clear clusters. Then, BRAQUE’s pipeline consists of a dimensionality
reduction step performed using UMAP, and a clustering performed using HDBSCAN on UMAP
embedding. In the end, clusters are assigned to a cell type by experts, using effects size measures to
rank markers and identify characterizing markers (Tier 1), and possibly characterize markers (Tier
2). The number of total cell types in one lymph node detectable with these technologies is unknown
and difficult to predict or estimate. Therefore, with BRAQUE, we achieved a higher granularity than
other similar algorithms such as PhenoGraph, following the idea that merging similar clusters is
easier than splitting unclear ones into clear subclusters.

Keywords: multiplex immunostaining; Gaussian mixture; lognormal; single-cell; Bayesian; dimensionality
reduction; cell type; clustering; lymphoid tissue; effect size

1. Introduction

Single-cell biology (whenever we speak of “single-cell” acquired from imaging tech-
niques, it would be appropriate to remind ourselves that, in reality, we are talking about
computational approximations of cell-segmentation boundaries and spatial-mappings of
features to DAPI stained nuclei) has revolutionized the way we understand biological
processes [1]. Prior to 2013, very few biological assays were indicative of single-cells (e.g.,
FlowCytometry); the introduction of single-cell RNA sequencing changed the paradigm.
In a few words, it can be explained as the detection of the same traits in every single-cell
in a sample, not just as the mean value of the bulk. Starting from the year 2000, a large
group of technologies—“single-cell multi-omic technologies”—were rapidly developed.
Each of them provides a very specific kind of information for every cell analyzed based on
genomics, transcriptomics, proteomics, and metabolomics signals, not to mention spatial
approaches that associate with the cell identity its x and y localization within the tissue.
This latter, together with information related to neighboring cells [2], is crucial information
because cell identity and role are determined by the spatial context. Integration of them
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into “single-cell multimodalomics” [3–5] is the next step to fully characterize cells and
cell types.

While these technologies were flourishing, many global research efforts have been
made to collect and share an enormous amount of single-cell data and to make them
publicly available. Some large consortia have been created and now represent the standard
and the repository to which we refer. Among them, the most important are the Human
Cell Atlas (HCA) [6], BRAIN Initiative Cell Census Network (BICCN) [7] and Human
Biomolecular Atlas (HuBMAP) [8].

This revolution has added a new level of resolution to what we can capture and
enables us to better understand the cell phenotypes, the dynamics, the trajectory of their
development, and ultimately the complexity of a sample. In medicine, the single-cell ap-
proach is particularly helpful, revealing unknown mechanisms in healthy and pathological
tissues, and improving healthcare [9,10].

New bioinformatics tools have become more and more indispensable in order to
explore single-cell data [11]. Moreover, single-cell analysis was intrinsically born as a
discipline that has to face big data sets, with thousands of entities (i.e., cells) and tens
of thousands of columns. All of this had to be managed with unsupervised/supervised
approaches, and required different expertise. Therefore, these kinds of data are complex to
deal with.

Thanks to global initiatives and to the commercialization of these technologies, the
need to approach these big data from a computing point of view, in order to standard-
ize analysis and make them available, grew exponentially. In the last few years, more
than 1000 bioinformatic tools have been developed, mainly in the two world-wide used
interpreted languages, R and Python [12].

High-plex spatial proteomic represents a small but crucial niche for many reasons: it
has a single-cell resolution associated with spatial localization, it evaluates the presence
of protein and not RNA signal (bypassing post transcriptional modification), it analyses
whole cells without losing any types of them [13]—as often happens in tissue disaggrega-
tion [14] or other single-cell technologies—and it allows retrospective study on Formalin-
Fixed Paraffin-Embedded (FFPE) sample collection, which is easily integrated with other
‘‘-omics” technologies.

In this project, we consider single-cell proteomics data extracted from the lymphoid
tissue, which is a very dense type of tissue (approximately 1 to 2× 106 cells per mm3 of
tissue [15]).

Among the big repositories of single-cell data, it is not very often represented. When
available, it contained only a selected population of cells, such as stromal cells [16] or
a single organ, such as tonsils [17]. Unfortunately, with the exception of the HuBMAP
project [8], there are no other lymph nodes data sets from “imaging technologies” available
and, at the moment, shared data have no more than 30∼40 Antibodies.

Moreover, in the single-cell field, the majority of the most valid and interesting de-
veloped tools are specifically created for single-cell RNA sequencing data analysis [18,19]
or flow cytometric data [20,21]. One of the few methods widely applied outside the origi-
nal scRNAseq data is PhenoGraph [22]. The evolution of technologies [23,24] has added
modules for data integration, annotation, spatial distribution, and neighborhood anal-
ysis; however, a dedicated part to approach data sets coming from single-cell imaging
technologies is still missing or preliminary [25].

In short, many methods are tuned and perform clustering for high dimensional
complex data, but very few of them are suited for spatial transcriptomics and the continuous
property of its data. Moreover, the price to pay for spatial information is represented by a
stronger neighborhood effect on each cell signal, since in some cases, cells can be tightly
packed, resulting in their surface markers being picked by neighboring cell signals as well.
This implies marker distributions in which the transition between different subpopulations
is smoothed out, and such subpopulations are harder to split. Lastly, the high number
of markers included in most databases presented during this analysis (seven out of eight
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datasets have 70+ markers) adds a further level of information that can and should be
analyzed together. It is for all the above mentioned reasons that we aimed to develop
BRAQUE, a complete pipeline tailored for spatial Immunofluorescence data sets.

2. Materials and Methods
2.1. Datasets and Data Acquisition

The data used for the analysis consisted of eight different data sets (per number of
markers and cells) of normal lymphoid tissue, which were obtained with the Multiple
Iterative Labeling by Antibody Neodeposition (MILAN) technology [26] (seven samples)
and CODEX (one sample). MILAN datasets consist of three tonsils and three lymph
nodes cores (each of 2 mm in diameter) and one whole lymph node, all of them were
sections of 5 µm. The number of cells ranged from ∼25 k to ∼65 k for the six cores,
while the whole lymph node dataset had ∼730 k cells. Each of these datasets counted 70+
markers after a marker selection step performed by the experts, all of them acquired with
8-bits channels. Cores belonged to three different tissue microarrays (TMA) constructed
with a Tissue Microarrayer Galileo CK4500 (Tissue Microarrayer Model TMA Galileo
CK4500; Integrated Systems Engineering srl, Milan, Italy). Sections were stained by using
MILAN technology [26], which consists of multiple stainings, imaging and stripping cycles
in immunofluorescence. Images were acquired with a NanoZoomer S60 slide scanner
(Hamamatsu, Japan) at 20× magnification. This method has been shown to preserve
tissue integrity and provide high stainings reproducibility (less than 10% variation) over
30 cycles [27].

Primary antibodies were validated for in-situ use on FFPE sections [28]. Highly ex-
pressed, partially overlapping, lineage-defining markers were preferred, including nuclear
transcription factors. Multiplex staining and image optimization were performed according
to a published protocol (MILAN [26]). The CODEX dataset was downloaded from the
repository Globus (of the HubMAP project) and counted ∼109 k cells. This dataset counted
only 28 markers acquired in 16-bits channels, and therefore there was no marker selection
step, in order to not enlarge the already considerable difference with MILAN datasets in
terms of dimensionality.

DAPI-based image segmentation was performed by means of the algorithm “CyBorgh,”
developed by S. Borghesi (available upon request to the same author). It is a Matlab code
which can handle very large images (in excess of 250 megapixels) in a reasonable time
(it took less than 3 h on an Intel Xeon 6130 2.1 2.6 GHz 16 core, 192 GB RAM machine to
segment a 1 terapixel 8-bit gray scale image with 2.2 million cells found and to generate
its dataset with 92 filters). CyBorgh operates in two steps: it initially searches for the
boundaries of individual tissue cells in the DAPI image after having applied to it a series
of filters which must be carefully tuned to specific image features such as noise, cell size,
shape and inner structure details. Once the segmentation of the DAPI image is produced,
the connected components of its complement (which are expected to correspond to tissue
cells) are sorted out in a Matlab cell array, each of its objects containing the coordinates of
the pixels of one component. If n is the number of filtered images of the same portion of
tissue, a stack of n accurately registered images is used to read out the pixel values of each
component in every image. Let k be the number of pixels of a component. This way, the
algorithm associates to that component n sets of k integers between 0 and 255. By fixing
a metric (in our case it was the mean), we can “merge” each of the n sets of integers in a
rational number, thereby producing a vector in the n dimensional Euclidean space. The
data points comprise all such vectors, each representing one tissue cell/component in the
DAPI image in such a space. Their coordinates are the “raw” data. Summing up, CyBorgh
takes n registered images as input, one of which is declared to be DAPI, and outputs a
.csv file with rows corresponding to coordinates of data points and columns to filter the
response on tissue cells.

It was at this point that the continuous nature of data came in play. When the pixel is
acquired, for every marker, it has a usual 8-bit discrete value. But after the segmentation
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step, every identified cell was made of multiple pixels, and therefore their value needed to
be averaged to extract a single value for a single-cell for each marker, giving the continuous
nature to our data. Moreover, single-cell data from CODEX dataset have already been
observed to behave as a continuum regarding protein expression [29], reinforcing the
concept that we are not dealing anymore with discrete data as in a single-cell RNA seq.

2.2. Data Preprocessing and Lognormal Shrinkage

In the preprocessing, we introduced a new method to improve the capability of
identifying clusters in the successive steps of the pipeline.

The core idea is to look at each marker distribution within a dataset (e.g., considering
only one dataset at a time) and find possible subpopulations with a similar distribution but
shifted in location (therefore having a higher or lower marker expression). This concept
resembles quite well the working principle of distribution mixture models.

First, we have to highlight that one of the main differences between transcriptomic
and fluorescence data resides in the distribution followed by their values. In both cases,
values are non-negative, but transcriptomic data follow a discrete distribution, while the
data used for this study are continuous. Therefore, many algorithms and packages built
for discrete data, such as Poisson, or Negative-Binomial distribution, are not suited for
continuous data.

Since mixture models are often computationally heavy, to deal with our data, we had
to find a distribution exhibiting the following properties: continuous, non-negative, and
fast to compute and model. Therefore, we chose to use the lognormal distribution as the
basic element for our mixture model. This also allowed the use of pre-built and optimized
Gaussian mixture models, still for computational reasons, instead of a slower mixture
model with customizable distribution.

To perform this task, we used the Bayesian Gaussian Mixture (BGM) algorithm from
the scikit learn python library. The reason behind this choice is that it allows us to use
variational inference, not just to infer the mixture parameters but also to infer from the
data the most suited number of components to use, where each component is a Gaussian
distribution with its own independent mean and variance (if “full” covariance_type is
specified). We selected the Dirichlet process prior due to the fact that it is a priori probability
distribution characterized by an infinite, unbounded number of partitions. Even if, for
computational reasons, we must work with an approximation with a finite number of
components, we need to specify an upper bound. This upper bound, assuming it is higher
than the “true” number of components, affects only algorithmic complexity, and not the
actual number of used components, since this algorithm gives a non-zero weight only to
the components that are needed [30]. This property should be properly taken into account.
On one hand, the higher this number is and the more accurate the algorithm estimates are
(until a certain upper limit is reached). On the other hand, the smaller the number, the
faster the convergence of the algorithm.

We will further show values for this parameter but, in order to generalize, we suggest
a procedure to properly tune a good trade-off between accuracy and computation time: if
time is not a concern, choose the smallest number of components for which every feature
(or at least 95% of features ) ends up having at least one discarded component after the
BGM fit procedure. If, instead, time is a concern and the previous suggested value ends up
making the algorithm too slow, we suggest using the highest value that meets your time
requirements, since the lower the value, the more subpopulations will risk being merged
with each other (making it harder for the next steps to split them). This recommendation is
not strict, using slightly bigger values for the number of components will simply imply a
waste of time but equally good results, using slightly smaller values will risk sacrificing a
bit of quantization, but the core of this step is just to guess possible initial subpopulations;
the successive pipeline is in charge of validating and tuning this guess.

In the BGM algorithm, the data points are assumed to be generated from a mixture of K
Gaussian distributions, where K is the number of components. Each Gaussian distribution
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is characterized by its mean µk and covariance matrix Σk (which has its most general free
form if we specify the “full” value for the covariance_type parameter). The mixture weights
are represented by πk, where ∑K

k=1 πk = 1.
In the Bayesian framework, prior distributions are specified for the parameters of the

Gaussian mixture model, including the means, covariances, and mixture weights. The
Dirichlet process prior is a non-parametric prior defined as πk ∼ DP(α, G0), where α is a
hyperparameter called a scale parameter, and G0 is the base distribution.

Blei and Jordan proposed an algorithm for inferring the posterior distribution of the
parameters of BGM using a Dirichlet process prior, as described in detail in Section 3 of
their paper [31]. This can be briefly summarized in two steps:

1. Sample from the posterior distribution of the cluster assignments given the current
parameter estimates;

2. Sample from the posterior distribution of the parameters given the current cluster
assignments.

The algorithm is repeated until the parameter estimates converge to their stationary
distribution.

For further details about the updates of the parameters mixture, or their bounds,
please refer to the sci-kit learn documentation and see Section 2.1.3.2., “Variational Gaussian
Mixture Models” [30].

When the fitting algorithm converged, all points were assigned to a Gaussian distri-
bution by the algorithm. This procedure was possible by considering for each value the
probability of belonging to the i-th Gaussian, computed as:

P(x ∈ gi) =
|x−mi|/σi

∑i |x−mi|/σi
, (1)

where gi is the i-th Gaussian component, characterized by mean mi and standard deviation
σi. The point x was assigned to the Gaussian with the highest P(x ∈ gi).

Once all points were assigned to a Gaussian distribution, every point was then shrunk
towards the mean of the belonging Gaussian, using

xnew = mi + (x−mi)/γ, (2)

where γ is a properly tuned contraction factor. This step dismembers the original distri-
bution, but preserves the order. Doing so, values rankings are maintained but gaps are
created in correspondence of where we could have a good separation between two different
subpopulations.

A small incompatibility could be that the lognormal distribution is strictly positive
instead of non-negative, but this problem was easily solved by adding a very small constant
before fitting the mixture model. Doing so, one of the Gaussian components from the
mixture model was always going to account for the values at the very small value, basically
identifying as a separate subpopulation all those values that started as a zero in the original
distribution.

A summary of the preprocessing algorithm for each single marker could be as follows:

1. Robustly scale the marker distribution, dividing it by the median absolute deviation
(MAD). This step is suggested so all the parameters for the Bayesian Gaussian mixture
algorithm are going to be the same for every marker;

2. Sum a small positive constant to every value to avoid taking the logarithm of 0;
3. Compute the logarithm of the shifted and robustly scaled distribution;
4. Perform a Bayesian Gaussian mixture fit using variational inference algorithm;
5. Once the final Gaussians are identified, shrink every value towards its belonging

Gaussian, then back transform the values by exponentiation;
6. Subtract the minimum of the distribution and (optionally) scale robustly, dividing

again by the new MAD of the final distribution.
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We named this preprocessing Lognormal Shrinkage (LNS).
Two final considerations regarding the LNS method:

• The shrinking factor was tuned based on the quality of results, but no big difference
in the range from 2 to 10 was observed, therefore, a value of 5 was chosen;

• The base for the logarithm does not affect the performances, only scales the log
transformed distribution; therefore, we used base 2 logarithm and, in the case of
different choices, the shrinking factor should be tuned accordingly (e.g., the base 10
logarithm should use a contraction factor of 5/ ln(10) ∼ 2).

An example of the effect of the LNS procedure on the distribution of data is reported
in Figure 1.

(a)

(b)
Figure 1. Cont.
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(c)
Figure 1. This Figure shows the Lognormal Shrinkage effect on the log2 of the vWF distribution. As
we can see, the algorithm automatically selects the best number of components instead of using all of
the available ones. Then a clear separation between different subpopulations is achieved, in order to
help further UMAP embedding in creating a more fragmented output for an easier and more precise
clusterization. (a) Bayesian Gaussian Mixture fit. (b) Assignment step. (c) Shrinkage step.

2.3. Dimensionality Reduction Step

The dimensionality reduction step has the aim of moving data from a high-dimensional
space to a lower-dimensional space, called embedding, in order to tackle data sparsity and
other problems caused by the course of dimensionality.

For this step, Uniform Manifold Approximation and Projection (UMAP) [32] was
chosen due to its huge advantages in terms of memory and computation time with respect
to t-SNE (t-distributed stochastic neighbor embedding) [33], and its capability of wrap-
ping more information than older methods such as multidimensional scaling (MDS) [34].
Two main parameters that must be fixed before running UMAP are the number of nearest
neighbors K and the metric used to compute the distance. For the first, higher values aim
to produce a much more characterized embedding by the global structure. A value of 50
(instead of the default 15) was used to have a good trade-off between global structure and
computational efficiency. Regarding the metric, after many considerations and few trials,
we decided to use the default Euclidean metric.

The UMAP algorithm can be summarized into two main phases. First, a weighted
directed graph is built to represent the data neighborhood relations in the starting high
dimensional space. A graph is made of nodes (which represents data points) and edges
which connect two nodes, where in our case this connection represents a proximity relation
between the two connected nodes. The fact that the graph is weighted means that not all
edges are equal; in fact, they might be more or less strong according to an intensity value
called weight, which resembles higher or lower proximity among the connected nodes.
Directed simply implies that the weight wij of the link connecting node i to node j can differ
from the weight wij connecting j to i. In UMAP the weight wij between point i and j is
computed using the equation:

wij = e−max(0;dij−ρi)/σi , (3)

where σi is tuned such that

k

∑
j=1

wij = log2(k) and ρi = min
j∈{1,...,k}

(dij > 0). (4)
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Here, dij is the distance according to the metric in the high-dimensional space, σi is
called the scaling factor for point i and it is used to normalize the sum of the outgoing
weighted edges, and finally ρi is the smallest strictly positive distance between point i and
its neighbors j ∈ {1, . . . , k} (and therefore ρi > 0).

The second phase of the algorithm is the low-dimensional space (called embedding)
optimization. This is needed to reproduce as correctly as possible the weighted directed
graph structure. This procedure is achieved by placing the data points in the embedding
space (either with random starting positions or with coordinates initialized by some criteria,
for example via spectral embedding or, if not possible, with PCA coordinates), and then
alternatively apply to every point i attractive forces towards its nearest neighbors and
repulsive forces towards its non-nearest neighbors. The intensity of both attractive and
repulsive forces can be tuned among the initial set of UMAP parameters. The final output
of the algorithm is a low-dimensional space which replicates the proximity observed in
the original high-dimensional space among the data points, but with a considerable boost
for clustering algorithms performances and with the advantage of possibly visualizing the
new data space.

2.4. Clustering Step

All clustering algorithms have advantages and disadvantages, but we will try to briefly
explain the reason for our suggested choice. Hierarchical clustering brings the obvious
advantage of producing a hierarchical structure that can be investigated, allows the plotting
of dendrograms, and follows the very simple intuition of merging the two closest elements
together iteratively.

One of its possible drawbacks is related to the linkage method, which affects the
shapes of the resulting clusters [35]. In fact, it is well known that single linkage produces,
for example, narrow line-like clusters, while complete linkage produces more spherical
clusters. In general, even if more and more linkage methods can be found, all of them imply
some kind of assumption regarding the resulting cluster’s shape. One possible solution to
this drawback is switching to a density-based clustering algorithm. The most renown of
this kind is Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [36],
which requires two input parameters: ε and min_samples. The first defines what is close,
the second defines more or less the number of points needed to start the formation of
a cluster.

Thanks to the usage of a distance parameter and a certain number of points that must
be contained in this distance, DBSCAN uses density to form its clusters, allowing any
possible shape with no restrictions. The big downside in this case becomes the fact that
now the threshold is imposed on the density, and therefore identifying clusters of different
densities could become a problem, where the bigger the difference between densities and
the fewer the chances to identify both clusters at the same run.

To briefly explain DBSCAN for further purposes, its procedure could be summarized
in the following way:

• Given the two parameters, epsilon and min_samples, a point x is defined as a “core
point” if and only if at least min_samples points are within ε distance from x;

• Connect all “ε-reachable” points. Where two points are said to be “ε-reachable” if
they are in each other’s neighborhood, and points are “density-connected” if they are
directly or transitively “ε-reachable”;

• We conclude labeling as a cluster every maximal “density-connected” subset of
the data, while the remaining unlabeled points are relabeled as noise at the end
of the algorithm.

The HDBSCAN algorithm [37] is the hierarchical improvement of DBSCAN, and
basically provides advantages from both approaches, while limiting their drawbacks. It
allows the detection of clusters with generic shapes and possibly very different densities,
as long as such densities are higher than the respective neighborhood. Therefore, this
last algorithm is the suggested algorithm for the clustering phase. HDBSCAN’s working
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principle is similar to running DBSCAN for all ε ∈ [0,+ inf[ , then uses the different values
of ε (or more precisely, a new distance, called Mutual Reachability Distance and based on
the centroid of the neighborhood) to connect points in a hierarchical dendrogram fashion.
Finally, clusters are extracted, not by cutting the dendrogram at a given depth, but instead
considering cluster stability at varying depth. This last step is performed using λ = ε− 1,
and then identifying for each candidate clusters their birth (the λ at which cluster forms)
and their death (the λ at which the cluster splits into separate clusters).

Now, for each point in the cluster we can define λp as the value at which that given
point leaves the cluster. Therefore, λp ∈]λbirth, λdeath] , since each point either leaves the
clusters before death or exactly when the cluster splits into minor clusters. Now, we can
calculate the stability of cluster C as follows:

∑
∀p∈C

λp − λdeath. (5)

The cluster extraction is then performed by starting from leaves clusters, and replacing
some of them with their roots cluster every time that root cluster stability is bigger than the
sum of the leaves cluster stability.

Last but not least, one could choose to select much simpler methods such as DBSCAN
for computational reasons, but it turns out that, for big databases, the performances of
HDBSCAN are better in terms of computation time [38], and therefore HDBSCAN is also
preferable under this point of view.

2.5. Cluster Characterization Step

After the clusters are identified, a method to describe which markers are mostly
expressed from the clusters is needed. A first step was to perform a Welch t-test for each
marker, using the null hypothesis of the cluster mean being not significantly greater than
the mean of remaining cells in the sample. Here, we would like to underline that we
considered a one-tailed p-value, since we are not interested in significantly least expressed
markers, but only in the significantly most expressed ones.

An important digression should be made regarding the p-values at this point. It is
quite common to find in the literature the usage of a standard threshold of 0.05, but we have
to notice how the p-value is always a function of the number of samples used in the test. In
particular, the more samples, the smaller the p-value (if a difference between the groups
is present). Therefore, samples with a considerably high number of cells (e.g., 105 ∼ 106)
would end up emphasizing even very small differences, often producing p-values < 10−100.

It seems indispensable to understand if a marker is significantly more expressed in
a cluster with respect to the whole sample, but it is also important to properly quantify
the magnitude of such difference. For this reason, together with a Welch’s t-test with a
Bonferroni multiple test correction, a measure of effect size was used to quantify how
much a marker is more expressed in the considered cluster. Thanks to this measure, it was
possible to rank for every cluster the markers from most expressed to least expressed.

A further advantage of this approach was the capability of looking for gaps in the
ranked effect sizes, and defining markers probably expressed by the cluster, called tier
1 markers, and clusters possibly expressed by the cluster, called tier 2. The tiers were
identified by first looking for the two biggest gaps in the positive ranked effect sizes, and
then calling tier 1 the markers whose effect size was higher than the first gap, and tier 2 the
markers whose effect size was between the two identified gaps.

To calculate the effect size, a robust version of the Cohen’s d was used [39], which is
computed as:

d :=

√√√√ (m2 −m1)2

σ2
1 ·

N1 + N2
N1

+ σ2
2 ·

N1 + N2
N2

, (6)

where mi, σi and Ni indicate respectively the mean, the variance, and the number of samples
from group i, having usually that group 2 was the analyzed cluster, and group 1 was the
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whole sample excluding the analyzed cluster. One last detail to notice is that the formula
is symmetric with respect to the two groups, therefore from this version of d it was not
possible to understand if a marker was more or less expressed than the whole sample; for
this reason, the final metric used the formula:

dsigned = sign(m2 −m1) ·

√√√√ (m2 −m1)2

σ2
1 ·

N1 + N2
N1

+ σ2
2 ·

N1 + N2
N2

, (7)

allowing negative values of dsigned when m2 < m1.

2.6. Comparison with Other Existing Algorithms and Final Validation

As last step, we compared the outcomes obtained by BRAQUE with the ones obtained
using PhenoGraph [22] R package, which was run on RStudio (R version 4.0.2).

The cell type assignment for each BRAQUE cluster was based on a list of its most
significant markers in terms of ranked effect size. For PhenoGraph, a heatmap of marker
expression by cluster was used to assign a cell type, as performed in previous work using
the same algorithm [27]. Then the evaluation considered the number of noisy/unclear
clusters, rare populations correctly clustered as separate clusters, and the number of
redundant clusters (where this was considered as a minor side effect as far as the clusters
were explainable as a correct cell type).

The corresponding Python3 code for BRAQUE will be available at https://github.
com/LorenzoDallOlio/BRAQUE from 1 March 2023.

3. Results

In this section, we will show the results that can be achieved using BRAQUE’s pipeline.
For clarity purposes, we will not show every produced plot (since in total we produced at
least three plots for each of the 620 clusters), but we will focus on explaining the key steps
and showing the results for: one preprocessed marker, one whole sample analysis, one cell
type across different samples, and a comparison with the PhenoGraph algorithm.

For the analysis, a server with Intel(R) Xeon(R) CPU E5-2620 v4 2.10 GHz was used,
with 32 cores, 252 GB of RAM and Python version 3.9.12. In terms of memory consumption,
the average memory required for the analysis was around 30 GB for the biggest database
(∼730 k rows × 80 columns). Moreover, the usage of UMAP’s parameter “low_memory”
set equal to “true” allowed it to never exceed 100 GB of RAM usage, required only for
the nearest neighbor search phase of the algorithm (which took approximately 1 h). In
terms of time required to run the analysis on the biggest database, approximately 95%
of the computation time of the pipeline resides in the Bayesian Gaussian Mixture fitting
procedure, which took around 2 h per column, resulting in a week of computation time for
the whole analysis. It is important to underline that both memory and time consumption
are not linear with respect to the number of rows in the database; therefore, the smallest
databases (the cores with a number of rows between 20 k and 70 k) were computed with
around 10 GB of memory, a peak of 30 GB, and with the whole analysis completed in
approximately 3∼8 h.

Fine tuning of the parameters was obtained by a continuous and mutual feedback
between bioinformatics and pathologists regarding computational needs, results clarity
and interpretability. As in every machine learning tool, parameters should be tuned based
on the nature of the data, the desired result quality, and computational efficiency. In Table 1,
we briefly report suggested ranges and values that were tuned during this analysis.

https://github.com/LorenzoDallOlio/BRAQUE
https://github.com/LorenzoDallOlio/BRAQUE
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Table 1. Main pipeline tunable parameters, together with their suggested values/ranges according to
our experiments.

Algorithm Parameter Name Suggested Value 1 Suggested Range 2

BGM w.c._prior_type dirichlet_process -

BGM covariance_type full -

BGM n_components - [10, 30]

BGM tol 10−2 [10−5, 10−1]

Lognormal Shrinkage contraction factor 5 [2, 10]

UMAP metric euclidean -

UMAP nn 50 [30, 500]

UMAP min_dist 0.0 [0.0, 0.1]

UMAP init spectral -

HDBSCAN min_samples max(0.005% of cells,
10) -

HDBSCAN cluster_selection_eps ∼ 0.1 [0.0, 0.3]

HDBSCAN cluster_selection_met eom / leaf -
1 A value is reported only if it does not vary over different datasets; if that is not the case, a brief explanation of
how to tune it is reported in the result section. 2 A range is reported only if different values could be suggested for
different datasets.

Some small clarifications about the values reported in Table 1:

• Regarding BGM covariance_type, UMAP’s init, and HDBSCAN cluster_selection_method
should be fixed to the suggested value, since any alternative could only imply worse
results in terms of correctness and generalization;

• Regarding BGM n_components and tol, the best values would be as high as possible
for the first and as low as possible for the second, but what we observed is that such
exaggeration has strong computational drawbacks, and therefore a suggestion is to use
a relatively low tol and tune the number of Gaussians following the criteria described
in the methods section;

• All the other parameters should be tuned dataset-wise for better performances, but
we can point out that, as long as values are in the suggested range, contraction_factor,
UMAP’s metric, min_dist and nn should not strongly affect the results;

• Regarding HDBSCAN min_samples, we suggest it could be tuned as a proportion
of the considered dataset. At the same time, to avoid finding excessively small
clusters, we suggest to put a lower limit on such parameter, such as 10, to avoid
micro-clusterization that could lead to huge number of clusters (e.g., ≥ 10, 000);

• Unreported parameters were used with their default value.

Lastly, if time is again not a concern, we strongly recommend fixing BGM’s max_iter as
high as possible to always reach convergence criteria, otherwise compute for the maximum
amount of time possible and set this parameter consequently.

Given the structural similarities that few very spatially near populations presented,
we found more correct results separating the cluster into two phases. The first phase
uses ‘excess of mass’ (’eom’) parameter to find more connected components in the UMAP
embedding. The second phase was a clustering repeated on the biggest cluster, and used
‘leaf’ as the cluster selection method and the suggested min_samples value times 10. This
second step improved separation between some CD4+ T-cells and some B-cells populations,
which consistently ended up in the same cluster for BRAQUE and PhenoGraph. This
expedient could be significant to the whole pipeline or just needed to compensate the
extremely tight spatial distribution that these cells had in considered data sets. Since this
was the case also for the CODEX dataset, we decided to mention this approach, and the
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publicly available code will have a specific parameter to turn on or off this particular
behavior, since we still do not know if the two populations are generating a strong cross-
contamination in other tissues or only/mostly in Lymphoid tissues.

3.1. Lognormal Shrinkage on a Marker

Now, to show the way BRAQUE preprocessing works, we will show step-by-step the
effect of Lognormal Shrinkage on the marker vWF, a marker used to identify “Endothelium”
kind of cells, a rare, sparse but well-defined cell type.

As previously mentioned in the methods section, the procedure is performed on every
marker separately. For each marker, a robust scaling is performed, dividing by the MAD.
This to have all the markers in similar ranges, and therefore having the fitting parameters
behave similarly among them. Then, a small constant is added (to avoid further logarithms
of 0) the logarithm is taken for every value, the Bayesian Gaussian mixture algorithm
is fitted using variational inference algorithm (Figure 1a). When the fit converges, each
cell is assigned to the component to which it is most likely it belongs (Figure 1b), and
its marker value is modified by shrinking it towards the mean of the assigned Gaussian
distribution (Figure 1c). The same effect can be observed on the backtransformed marker
distribution (Figure 2), reminding us that every normal distribution in the log2 space
becomes a lognormal distribution in the backtransformed space, with new mean and
standard deviation given by

µlognormal = e(µnormal+
1
2 σ2

normal) (8)

σlognormal =

√
(eσ2

normal − 1) · e(2µnormal+σ2
normal), (9)

where the pedix normal indicates the normal distribution in the log2 space, while the pedix
lognormal indicates the lognormal distribution in the original data space.

(a)
Figure 2. Cont.
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(b)

(c)
Figure 2. This Figure shows the Lognormal Shrinkage effect on the original distribution of the vWF
marker in the dataset L2. As we can see, the algorithm automatically selects the best number of
components instead of using all of the available ones. Then a clear separation between different
subpopulation is achieved, in order to help further UMAP embedding in creating a more fragmented
output for an easier and more precise clusterization. (a) Bayesian Gaussian Mixture fit. (b) Assignment
step. (c) Shrinkage step.

3.2. Analysis of a Sample

To provide a broad view of the analysis, we will now show the step-by-step pipeline
application to a whole sample, in this case specifically to the dataset L2.

First of all, in Figure 3, we show that the number of Gaussians used (i.e., 15) was
sufficient, given that no marker exceeds the 14 different Gaussians with non-zero weight
after the fitting procedure.
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Figure 3. Distribution of the number of components selected for a single marker after the Bayesian
Gaussian Mixture fit on dataset L2. Please notice how no marker had 15 components, showing that
the upper limit of 15 given as input to the algorithm was appropriate.

The main results are, after the application of the Lognormal shrinkage preprocessing to
every marker, the application of UMAP on the preprocessed dataset, and the application of
HDBSCAN clustering on the UMAP embedding (Figure 4). For evaluation, we ran UMAP
with the same identical parameters, but on the data which did not undergo the LNS step
(Figure 5). From the comparison of these two figures, it seems clear how the Lognormal
shrinkage procedure added a considerably higher separation in the UMAP embedding, that
is not depending on UMAP’s parameters. Moreover, it seems that LNS-driven clusters are
still neighboring cells even in the embedding not affected by LNS preprocessing (meaning
that those cells are preserved in respective neighborhoods), while the non LNS-driven
ones result in being much more difficult to separate from each other. As can be noticed in
Figure 5b, at the same time there are big clusters merging plausibly different things, many
small clusters, and a higher noise (unlabeled cells), therefore any tuning of the algorithm
would lead to either more noise, bigger cluster, or even more small clusters, making its
proper tuning much harder and complicated to reproduce/generalize.
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Figure 4. HDBSCAN clusters computed over UMAP’s embedding of dataset L2 (left) and reported
on the real spatial coordinates of the cells (right).

Once the clusters are identified, it is possible to perform the validation for both, single
clusters and global results. Since the single cluster step will be the focus of the next
subsection, now we will focus on the global result. This step can be performed with a
scatter plot on the real space, where every cluster has an assigned explanatory label. Such a
label could be the list of the main expressed markers in terms of size effect (Figure 6).

The spatial reconstruction of the clusters can help clinicians in the global evaluation.
For example, according to the experts Figure 6 highlights a dense lymphoid tissue, bisected
by a stromal streak and containing four lymphoid follicles, surrounded by interfollicular
spaces. Moreover, it is possible to observe that three of the follicles are centered by rounded
Germinal Centers (proliferating B cells).

(a)
Figure 5. Cont.
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(b)
Figure 5. UMAP’s embedding of non LNS preprocessed dataset L2. This figure should be compared
with Figure 4 to understand the higher separation that is clearly achieved at a visual level by
UMAP’s embedding thanks to the insertion of BRAQUE’s preprocessing. Moreover, it is possible to
compare clusters found after applying LNS (a) with clusters that can be find without LNS (b). From
such comparison it seems that LNS-driven clusters are still neighboring cells in this much compact
embedding, but the non LNS-driven ones result in being much more difficult to separate. (a) UMAP
embedding of L2 with no LNS preprocessing. Clusters from the LNS preprocessed scenario for
comparison. (b) UMAP embedding of L2 with no LNS preprocessing. Clusters from application of
HDBSCAN on this embedding, please notice bigger clusters, more noise, and more clusters with
respect to figure (a).

Figure 6. Global validation plot for dataset L2, list of most expressed markers per cluster (according
to robust effect size measure). In this case, the validation is not in depth but at a global level, since
the clinicians can look for known biological structures.

3.3. Clusters Analysis

After the pipeline is performed, it is possible to analyze the single identified clusters.
We will show the results for four clusters that were labeled as “Endothelium,” considering
four different samples: L2, whole lymph node, T3, and CODEX, in order to show different
organs and different datasets in terms of data acquisition.

The usual cluster report consists of three plots for each cluster, comprising the most
expressed markers for each cluster (Figure 7), the expression of some selective diagnostic
markers including transcription factors (Figure 8), and cluster location on UMAP plot
and on the tissue (Figure 9). The last one also contained a summary of Tier 1 and Tier 2
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markers, and was used by experts for a fast classification, given the fact that contained
both spatial information and phenotype information. The first two were used to adjust the
classification by analyzing deeply markers expression, either to better visualize the gaps
between Tier 1, Tier 2, and the rest, or to inspect possible incongruities such as CD4 and
CD8 both expressed by the same cluster. Cell type assignment was based on all of them
and performed by experts.

(a) (b)

(c) (d)
Figure 7. This Figure reports markers expression of 4 clusters whose cells were identified as En-
dothelium. The markers are ranked according to the robust effect size metric dsigned, and colored
according to their Welch t-test p-value. In every plot it is possible to notice gaps in the descending
order of markers, such gaps were used to suggest important (i.e., “Tier 1”) and possibly useful (i.e.,
“Tier 2”) markers for the experts following classifications. (a) 2 mm core of lymph node (56,962 cells).
(b) Whole Lymph node dataset (727,729 cells). (c) 2 mm core of tonsil (65425 cells). (d) CODEX
Dataset (188,450 cells).

(a) (b)
Figure 8. Cont.
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(c) (d)
Figure 8. This Figure reports the comparison between whole dataset marker distribution (blue) and
the cluster’s one (red). This plot is intended to help the experts in comparisons, to better show them
where the actual difference comes from, and help them estimating/validating the cellular type of the
cluster. The difference on the x-axis range for CODEX dataset is a consequence of that data being
acquired over 16-bits channels, while MILAN data were acquired with 8-bits channels, therefore they
can span from to 0 to, respectively, 216 − 1 and 28 − 1. Plots are resized consequently. (a) 2 mm core
of lymph node (56,962 cells). (b) Whole Lymph node dataset (727,729 cells). (c) 2 mm core of tonsil
(65,425 cells). (d) CODEX Dataset (188,450 cells).

(a) (b)

(c) (d)
Figure 9. This Figure reports spatial positions in UMAP embedding (left plots) and in real space
(right plots). This plots are enriched by the subtitle, which reports Tier 1 and Tier 2 markers, together
with their effect size. This kind of plot was considered as the main tool for the experts to rapidly
assign a cell type to the cluster, using all of the available information in one plot. (a) 2 mm core of
lymph node (56,962 cells). (b) Whole Lymph node dataset (727,729 cells). (c) 2 mm core of tonsil
(65,425 cells). (d) CODEX Dataset (188,450 cells).

3.4. Clustering Algorithms Comparison

After running the complete BRAQUE analysis on the eight datasets, the experts
evaluated every cluster interpretability and the most suited cell type (where possible). Then
the PhenoGraph algorithm was run, the clusters analyzed similarly, and the two algorithms
were compared.

Among all the datasets, experts identified a total of 46 cell types, 15 of which were
considered as infrequent due to their low total clusters count (≤10, among 620 clusters in
total). The properties considered in the algorithms comparison were: number of different
infrequent populations identified, number of different common populations identified,
percentage of unclear clusters cells, percentage of T cells that are unseparated between
CD4+ and CD8+ (meaning that within the same cluster we have CD4 positive T cells mixed
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with CD8 positive T cells). Obviously, the first two properties should be as high as possible,
since identifying more cell types after expert validation is better. Moreover, these properties
were considered, since validating and counting cluster-wise cell types is easier to check
than verifying the correct cell type, cell-wise, for more than a million cells. On the other
hand, the last two properties should be as low as possible, given that clearly separated T
cells are better than merged ones, and identifying a cluster of potentially interesting cells
should ideally always end up being recognized as a cell type.

On this last point, an important focus should be pointed to the noise cluster that
density-based clustering methods always have, i.e., the cluster labelled as “−1”. This
cluster collects all the unclear cells, acting as a proper bin.

The noise-cluster of HDBSCAN helps to remove cells that would average cluster
properties, making them less clear. As long as this cluster’s size is relatively small
(e.g., <20% of the sample cells), this property was preferred by the experts as a trade-
off for having clearer and faster interpretation. Given that all of the important cell types
were found during the analysis, the noise cluster was not considered a strong negative
downside, while a strong negative property was labelling a cluster as potentially interest-
ing and then having the experts labelling it as junk. Therefore, the percentage of unclear
clusters cells ignores the “−1” cluster, since it does not steal time for a useless evaluation
by the experts.

Clustering comparison results are reported in Table 2.

Table 2. Clustering table summarizing performances for BRAQUE (BR) and PhenoGraph (PH) on the
8 different datasets. Where a comparison can clearly be better or worse, the bold value indicates the
best algorithm.

Dataset Whole
Lymph Node L1 L2 L3 T1 T2 T3 CODEX 2 Normalized

Algorithm BR PH BR PH BR PH BR PH BR PH BR PH BR PH BR PH Average
Difference (%) 3

Infrequent populations
(# out of 15) 9 6 1 1 1 2 5 4 4 4 4 1 5 3 2 2 +5.8

Common populations
(# out of 31) 27 17 19 14 23 16 17 13 24 16 22 20 20 15 14 12 +17.3

% of unclear clusters cells 0.2 7.0 2.8 14.2 0.3 16.5 1.2 36.6 1.9 3.8 2.5 15.1 0.0 1.9 0.9 0.0 −10.7

% of T cells not separated 6 25 1 0 0 0 15 0 20 15 0 58 28 62 3 0 −11.3

number of clusters 243 48 89 32 73 29 59 27 106 33 78 35 73 33 89 22 X

2 This publicly available dataset had only usable 20 markers. 3 This measure indicates the average of (BRAQUE
metric—PhenoGraph metric) divided by the maximum possible for that specific metric, may it be 15 for Infrequent
populations, 31 for Common populations, or 1 for percentages.

4. Discussion

In single-cell analysis, many efforts have been made to standardize the process of data
analysis. However, even if the majority of the tools available share the same goals, each
type of technique presents its own peculiarities and involves different approaches.

In this paper, we addressed the need to have a more tailored approach to analyze
single-cell data coming from imaging technologies revealed with immunofluorescence
technology. We proposed BRAQUE, an integrated and novel approach spreading from data
pre-processing to phenotype classification. We tested it on lymphoid tissue (tonsils and
lymph nodes), which is one of the densest and most challenging tissues [15].

We introduced two innovations that we hope will become standards in the field
of single-cell analysis: to “fragment” data input distribution in order to help clustering
even small differences in separate clusters, and the usage of effect size measures to rank
markers according to their importance in characterizing every cluster. The former could be
performed in different ways. The aim of the method we chose (i.e., Lognormal Shrinkage)
is not to correctly find all the subpopulations in each marker, but to guess where most
relevant differences could lie and make them more evident. For instance, if two subsets are
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slightly different by just one marker, they will probably end up in the same cluster anyway.
However, if these hypothetical subsets are slightly different on 30+ markers, then our
approach helps to increase such discrepancies, making it more likely to split those subsets
into separate clusters. Therefore, the key point is not finding the perfect subpopulation
split, but rather finding multiple reasonable guesses, which will end up confirmed or not
by UMAP embedding.

Thanks to its preprocessing, BRAQUE detects more clusters than other established
methods such as PhenoGraph. Comparing between Figures 4 and 5 highlights, feed-
ing UMAP with our preprocessed data results in a higher number of clearly isolated
data clusters.

Since the number of total cell types in one lymph node detectable with these tech-
nologies is difficult to estimate, we suggest an over-fragmentation rather than an under-
fragmentation. This follows the principle that it is easier to merge similar clusters than
to split unclear clusters into clear subsets. Therefore, BRAQUE may be the most suited
available tool for the task of cell type clustering, with no contraindications stopping it from
being extended to other types of tissues acquired with similar techniques. Therefore, we
also strongly suggest privileging granularity over its opposite, in the development of a new
method that will come.

Another key advantage of BRAQUE is that, in some cases, groups who dealt with
analogous databases [29,40] relied on prior knowledge of markers known to have high or
low expression in specific cell types, discard of non-contributory markers, neighboring
cell definition, hand-gating, etc. BRAQUE instead proposes a marker-agnostic and spatial-
agnostic approach with top level granularity, which we believe is more adapted to analyzing
very dense and complex spatial protein data with no strong assumption or predefined bias.

An interesting further work could be applying only BRAQUE preprocessing
(i.e., Lognormal Shrinkage) to the input of other clustering methods and assessing the
effective gain that could come from it.

Nowadays, we too often see the usage of just p-values without their respective ef-
fect size. This trend should be highly reconsidered, since p-values are good only for
Boolean/threshold-like answers regarding the statistical significance of possible differences.
The problem is that, in medicine, biology, and many other fields, after the statistical sig-
nificance is achieved the important question becomes “How much is it different?”, and
p-values are not adequate for addressing such an issue [41–43]. For this reason, when it
comes to defining which markers mostly characterize a cluster, we strongly suggest using
effect size measures, whether they be of a different or similar nature to the one used in
BRAQUE’s pipeline. Furthermore, the choice to classify each cluster not just by listing
absolute value normalized markers, but by ranking the most significant ones, has produced
a more precise classification with more cell types and more accurate phenotypes, according
to the experts.

Lastly, since most of the computation time comes from the Bayesian Gaussian Mixture
fitting procedure, it is important to reduce the number of maximum Gaussians as much as
possible, as previously remarked in the methods section. However, in order to maintain
the correctness of the approach and the quality of the results, this number should never,
or almost never, “saturate” (meaning that the final number of fitted Gaussians with a
weight different from 0 is equal to the starting number of Gaussians, thus implying that
all Gaussian components are useful for the final fit). This could imply that the possible
ideal number of subpopulations in a distribution is higher than the found value, and the
procedure could not be as efficient as it was shown to be in our results.
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Abbreviations
The following abbreviations are used in this manuscript:

BICCN BRAIN Initiative Cell Census Network
BGM Bayesian Gaussian Mixture
BRAQUE Bayesian Reduction for Amplified Quantization in UMAP Embedding
CyBorgh (not an abbreviation, onomatopoeic similarity with Simone Borghesi)
DBSCAN Density-Based Spatial Clustering of Applications with Noise
Dirichlet process DP
FFPE Formalin-Fixed Paraffin-Embedded
HCA Human Cell Atlas
HDBSCAN Hierarchical Density-Based Spatial Clustering of Applications with Noise
HubMAP Human Biomolecular Atlas
LNS Lognormal Shrinkage
MAD Median Absolute Deviation
MDS Multidimensional Scaling
MILAN Multiple Iterative Labeling by Antibody Neodeposition
PCA Principal Component Analysis
t-SNE t-distributed Stochastic Neighbour Embedding
TMA Tissue microarray
UMAP Uniform Manifold Approximation & Projection
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