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Approximate Nonlinear Regulation via
Identification-Based Adaptive Internal Models

Michelangelo Bin, Pauline Bernard, and Lorenzo Marconi

Abstract—This paper concerns the problem of adaptive output
regulation for multivariable nonlinear systems in normal form.
We present a regulator employing an adaptive internal model
of the exogenous signals based on the theory of nonlinear
Luenberger observers. Adaptation is performed by means of
discrete-time system identification schemes, in which every al-
gorithm fulfilling some optimality and stability conditions can
be used. Practical and approximate regulation results are given
relating the prediction capabilities of the identified model to
the asymptotic bound on the regulated variables, which become
asymptotic whenever a “right” internal model exists in the
identifier’s model set. The proposed approach, moreover, does
not require “high-gain” stabilization actions.

I. INTRODUCTION

In this paper we consider the problem of adaptive output
regulation for multivariable nonlinear systems of the form

ż = f(w, z, x)
ẋ = Ax+B

(
q(w, z, x) + b(w, z, x)u

)
y = Cx,

(1)

in which (z, x) ∈ Rnz × Rnx is the state of the plant, u
and y, both taking values in Rny , are the control input and
the measured output, w ∈ Rnw is an exogenous input, f :
Rnw ×Rnz ×Rnx → Rnz , q : Rnw ×Rnz ×Rnx → Rny and
b : Rnw × Rnz × Rnx → Rny×ny are continuous functions
and, for some r ∈ N, A B and C are matrices defined as

A :=

(
0rny×ny

I(r−1)ny

0ny×(r−1)ny)

)
, B :=

(
0(r−1)ny×ny

Iny

)
,

C :=
(
Iny 0ny×(r−1)ny

)
.

Namely, nx = rny and x is a chain of r integrators of
dimension ny . The output regulation problem associated to
system (1) consists in finding an output-feedback controller
that (i) ensures boundedness of the closed-loop trajectories
whenever w is bounded, and (ii) asymptotically removes the
effect of w on the regulated output y, thus ideally obtaining
y(t) → 0 as t → ∞. Output regulation is representative
of many problems of practical interest depending on the
role played by the exogenous signal w. For instance, simple
stabilization is obtained when w is not present, disturbance
rejection is achieved when w models disturbances acting on
the plant, tracking is obtained when y represents the “error”
between a given plant’s output and a reference trajectory de-
pendent of w, and some robust control problems are obtained
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whenever w represents uncertain parameters or unmodeled
dynamics. As customary in the output regulation literature,
we assume here that the exogenous signal w belongs to the
set of solutions of an exosystem of the form

ẇ = s(w), (2)

originating in a compact invariant subset W of Rnw .
Output regulation is subject to the following taxonomy.

Asymptotic regulation denotes the case in which the control
objective is to ensure limt→∞ y(t) = 0. Approximate regula-
tion denotes the case in which the control objective is relaxed
to lim supt→∞ |y(t)| ≤ ε?, with ε? that represents some
performance specification or optimality condition. Practical
regulation refers to the case in which lim supt→∞ |y(t)| can
be reduced arbitrarily by opportunely tuning the regulator.
When one of the above control objectives is achieved in
spite of uncertainties in the plant’s model, we call it robust
regulation. When some learning mechanism is introduced to
compensate for uncertainties in the exosystem, the problem
is typically referred to as adaptive regulation. Asymptotic
output regulation is a rich research area with a well-established
theoretical foundation. For linear systems a complete for-
malization and solution of the problem has been given in
the mid 70s in the seminal works by Francis, Wonham and
Davison (see e.g. [1], [2]), where the well-known internal
model principle was first stated. Asymptotic output regulation
for (single-input-single-output) nonlinear systems has been
under investigation since the early 90s, first in a local context
[3]–[6], and lately in a purely nonlinear framework [7]–[9]
based on the “non-equilibrium” theory [10]. In more recent
times, asymptotic regulators have been also extended to some
classes of multivariable nonlinear systems (see e.g. [11]–[13]).

One of the major limitations of the existing asymptotic
regulators is their complexity: the sufficient conditions under
which asymptotic regulation is ensured are typically expressed
by equations whose analytic solution becomes a hard (if
not impossible) task even for “simple” problems, with the
consequence that the construction of the regulation quickly
becomes unfeasible. As conjectured in [14], moreover, even if
a regulator can be constructed, asymptotic regulation remains
a fragile property that is lost at front of the slightest plant’s or
exosystem’s perturbation. This, in turn, motivates the interest
towards approximate, practical and adaptive solutions, sacri-
ficing asymptotic convergence to gain robustness and practical
feasibility. Among the approaches to approximate regulation
it is worth mentioning [15], [16], whereas practical regulators
can be found in [13], [17], [18]. Adaptive designs of regulators
can be found, e.g., in [19]–[21], where linearly parametrized



internal models are constructed in the context of adaptive
control, in [22] where discrete-time adaptation algorithms are
used in the context of multivariable linear systems, and in
[23]–[25] where adaptation of a nonlinear internal model is
approached as a system identification problem.

A further limitation, present in most of the aforementioned
designs and representing a major obstacle to practical im-
plementation, is that the stabilization techniques used in the
regulator employ control “gains” that need to be taken very
large to ensure closed-loop stability, resulting in undesired
“peaking” phenomena in the transitory, amplification of noise,
and exaggerate strength and rigidity in the counteraction of
disturbances. Moreover, the introduction of internal model
units and adaptation mechanisms typically leads to a further
increase of the gain, namely one has to “pay” in terms of
stabilization for introducing additional complexity potentially
leading to better asymptotic performance. This, in turn, makes
more naive controllers preferable despite the lower asymp-
totic performance. In the practical approach of [18], initially
developed to robustify ideal feedback-linearization designs,
the stabilizing action does not necessarily employ high gains,
and the high-gain part is shifted to an additional extended
observer, with the result that the typical problems linked to
high-gain control mentioned above are mitigated. Extended
observers have also been extensively studied in the context of
disturbances attenuation, see for instance [26]. The approach
of [18], originally dealing with practical stabilization, has been
extended in [12] to a class of multivariable systems, where
the controller is augmented by an internal model which also
allows one to deal with (possibly asymptotic) output regulation
problems. Although theoretically appealing, the design of [12]
is not constructive, in the sense that only an existence result
of the internal model unit is given and no constructive design
conditions are given even for simple problems.

In this paper we start from the idea of [12] and [18]
to construct a regulator for multivariable nonlinear systems
embedding an internal model unit that is adapted at run time
on the basis of the measured closed-loop signals. Compared
to [18], we consider multivariable regulation problems rather
than single-variable practical stabilization. Compared to [12],
we confer on the internal model unit the ability to adapt
online, thus proposing a control solution which is constructive
and does not rely on fragile analytical conditions as typically
required by non-adaptive designs. Besides, unlike in [12], we
ensure that the parameters of the controller are fixed a priori
independently from the added internal model. On the heels of
[22]–[24], and contrary to canonical adaptive control designs,
adaptation is not carried by means of “ad hoc” algorithms
developed under structural assumption on the internal model
unit and by means of Lyapunov-like arguments; rather we
approach the adaptation of the internal model as a system
identification problem, where the best model matching with
the measured data and performance needs to be identified. We
thus allow for different identification schemes to be used, by
individuating a set of sufficient stability conditions that they
need to satisfy to be used within the framework. As in [22], we
consider here identifiers that are discrete-time, which turn the
closed-loop system into a hybrid system. Despite the additional

complexity in the analysis, this choice is motivated by the fact
that identification schemes are typically discrete-time, and that
in this way we also structurally support adaptive mechanisms
working on sampled data.

The paper is organized as follows. In Section II we describe
the standing assumptions and we further discuss the previous
results and the contribution of the paper. In Section III we
present the proposed regulator and in Section IV we state
the main result of the paper, proved later in Section VII.
In Section V we construct some identifiers for linear and
nonlinear parametrizations and, finally, in Section VI we
present a numerical example.

Notation: We denote by R and N the sets of real and
natural numbers, R+ := [0,∞) and N∗ := N \ {0}. When
the underlying metric space is clear, we denote by B% the
open ball of radius % and, if B is a set, we denote by BB%
the open ball of radius % around B. If S is a set, S denotes
its closure. If B is another set, S ⊆ B (resp. S ⊂ B)
means S is contained (resp. strictly contained) in B. Norms
are denoted by | · |. If A ⊂ Rn, |x|A := infa∈A |x − a|
denotes the usual distance of x ∈ Rn to A. For x : N → Rn
(resp. x : R → Rn), we let |x|j := ess. supi≤j |x(i)| (resp.
|x|t := ess. sups≤t |x(s)|). If A ⊂ Rn, we let for convenience
|x|A,j := ||x|A|j (resp. |x|A,t := ||x|A|t). If A1, . . . , Am are
matrices, we let diag(A1, . . . , Am) and col(A1, . . . , Am) their
block-diagonal and column concatenation respectively. We
denote by SPDn the set of positive semi-definite symmetric
matrices of dimension n. A function κ : R+ → R+ is
said to be of class-K (κ ∈ K) if it is continuous, strictly
increasing, and κ(0) = 0. A function κ ∈ K is said to be
of class-K∞ (κ ∈ K∞) if lims→∞ κ(s) = ∞. A function
β : R+ × R+ → R+ is said to be of class-KL if β(·, t) ∈ K
for each t ∈ R+ and, for each s ∈ R+, β(s, ·) is continuous
and strictly decreasing to zero as t → ∞. By F : A ⇒ B
we denote set-valued maps. A function f : Rn → Rm is Ck
if k times continuously differentiable. If h : Rn → R is C1

and f : Rn → R, for each i ∈ {1, . . . , n} we denote by
L

(xi)
f h the map x 7→ L

(xi)
f(x)h(x) := ∂h/∂xi(x) · f(x). When

the superscript (xi) is obvious, it is omitted.
In this paper we deal with hybrid systems, i.e., systems

that combine discrete- and continuous-time dynamics. They
are formally described by equations of the form [27]

Σ :

{
ẋ = F (x, u) (x, u) ∈ C
x+ = G(x, u) (x, u) ∈ D (3)

where F and G denote the flow and jump maps and C and D
the sets in which flows and jumps are allowed. Solutions to (3)
are defined over hybrid time domains. A compact hybrid time
domain is a subset of R+×N of the form T = ∪J−1

j=0 [tj , tj+1]×
{j} for some finite J ∈ N and 0 = t0 ≤ t1 ≤ · · · ≤ tJ ∈ R+.
A set T ⊆ R+×N is called a hybrid time domain if for each
(T, J) ∈ R+×N T ∩ [0, T ]×{1, . . . , J} is a compact hybrid
time domain. If (t, j), (s, i) ∈ T , we write (t, j) � (s, i) if
t+j ≤ s+i. For any (t, j) ∈ T , we let tj = supt∈R(t, j) ∈ T ,
tj := inft∈R(t, j) ∈ T and jt and jt in similar way. A function
x : T → X defined on a hybrid time domain T is called a
hybrid arc if x(·, j) is locally absolutely continuous for each
j. A hybrid input is a hybrid arc that is locally essentially



bounded and Lebesgue measurable. A solution pair to (3) is
a pair (x, u), with x a hybrid arc and u a hybrid input, that
satisfies such equations. We call a solution pair complete if its
time domain is unbounded. We let domx denote the domain
of x, and domj x ⊆ N the set of j such that (t, j) ∈ domx
for some t ∈ R. In order to simplify the notation, we omit
the jump (resp. flow) equation when the considered system
has only continuous-time (resp. discrete-time) dynamics. If x
is constant during flows, we neglect the “t” argument and we
write x(j), which we identify with the map j 7→ x(tj , j). In
the same way we write x(t) for hybrid arcs that are constant
during jumps, and we identify x with the map t 7→ x(t, jt).
For a hybrid input u : domu → U , Γ(u) := {(t, j) ∈
domu | (t, j + 1) ∈ domu}, and for (t, j) ∈ domu we
let |u|(t,j) := max{sup(s,i)∈Γ(domu), (0,0)�(s,i)�(t,j) |u(s, i)|,
ess. sup(s,i)∈domu\Γ(domu),(0,0)�(s,i)�(t,j) |u(s, i)|}. We also
let |u|A,(t,j) :=

∣∣|u|A∣∣(t,j) and |u|∞ := lim supt+j→∞ |u|(t,j).
In the paper, “ISS” stands for “input-to-state stability”.

II. THE FRAMEWORK

A. Standing Assumptions

We consider the problem of adaptive output regulation for
systems of the form (1), (2) under a set of assumptions detailed
hereafter.

A1) The function f is locally Lipschitz and the functions q
and b are C1 with locally Lipschitz derivative. /

A2) There exists a C1 map π : Rnw → Rnz satisfying

Ls(w)π(w) = f(w, π(w), 0)

in an open set including W, such that the system

ẇ = s(w), ż = f(w, z, x) (4)

is ISS relative to the compact set A = {(w, z) ∈W × Rnz :
z = π(w)} with respect to the input x with locally Lipschitz
asymptotic gain. More precisely, there exist β0 ∈ KL and a
locally Lipschitz ρ0 ∈ K such that every solution pair to (4)
originating in W × Rnz satisfies

|(w(t), z(t))|A ≤ max {β0(|(w(0), z(0)|A, t), ρ0(|x|t)} ,

for every t ∈ R+. /

A3) There exist a known nonsingular matrix b ∈ Rny×ny and
a known scalar µ ∈ (0, 1) such that the following holds

|(b(w, z, x)− b)b−1| ≤ 1− µ (5)

for all (w, z, x) ∈W × Rnz × Rnx . /

Assumption A2 is a minimum-phase assumption, asking that
the zero dynamics of (1), (2), described by

ẇ = s(w), ż = f(w, z, 0), (6)

has a steady state of the form z = π(w) that is compatible
with the control objective y = 0 and that is robustly asymp-
totically stable. Minimum-phase is a customary (although not
necessary) assumption in the literature and, in this respect,
A2 represents a strong minimum-phase assumption, where the
adjective “strong” refers to the ISS requirement. Nevertheless,

we remark that, by means of well-known arguments (see e.g.
[9], [10]), A2 could be relaxed to assume that A is “just”
locally exponentially stable for (6), provided that the only
component of x that affects f is y = Cx. A3 is instead a
stabilizability assumption taken from [12], [18] and asking the
designer to have available an estimate b of b(w, z, x) which
captures enough information on its behavior. A3, in particular,
implies that b(w, z, x) is nonsingular at each (w, z, x). We
also remark that A3 could be weakened to a “local” version,
i.e. requiring that a pair (b, µ) fulfilling (5) exists for each
compact subset of W × Rnz × Rnx .

B. Previous Approaches

There follows by the structure of (1), (2) that, under A2, the
problem of asymptotic regulation could be in principle solved
by a control law of the kind

u = −b(w, z, x)−1q(w, z, x) + b(w, z, x)−1k(x), (7)

where the term −b(w, z, x)−1q(w, z, x) represents a non-
vanishing “feedforward” action compensating for the influence
of the dynamics of (w, z) on ẋ, and k(x) is a stabilizing
control action vanishing with x. However, (7) cannot be
directly implemented even if the whole state (z, x) were
accessible, as it anyway would require w to be measured and
the functions q and b to be perfectly known. To overcome
those issues, in [18] the authors proposed a dynamic regulator
in a single-variable context (i.e. ny = 1) where b and q in (7)
are approximated by functions x 7→ q̂(x) and x 7→ b̂(x) of
x only, and an extended observer is introduced to provide an
estimate x̂ of x and to compensate for the mismatch of b̂ and
q̂ with the actual quantities. The control action was taken as

u := sat
(
b̂(x̂)−1

(
− q̂(x̂) + k(x̂)− σ̂

))
, (8)

where sat is a suitably chosen saturation function and σ̂ is
the term of the extended observer compensating for the mis-
match between (q̂(x̂), b̂(x̂)) and (q(w, z, x), b(w, z, x)). This
regulator was proved to recover the performance of the ideal
control law (7) theoretically as closely and quickly as desired,
by increasing the observer gains accordingly. Nevertheless, the
regulator of [18] does not embed any process which is able to
generate the ideal feedforward term −b(w, z, x)−1q(w, z, x),
which indeed can be only approximated by the extended
observer. Therefore, the attained regulation result is only
practical, with the observer gains that must be taken high
enough to accommodate the desired asymptotic bound. This
design thus has two main drawbacks. First, the ideal steady
state in which y = 0 is not a trajectory of the system and,
as such, it is not stable, so that a considerable transitory is
possible even if the system is initialized close to the desired
operating point. Second, good performance are only obtained
by increasing the observer gains accordingly. As the observer
gains grow, however, the peaking and the noise amplification
grow, so that a compromise between regulation performance
and high gain must be sought. A remarkable property of this
approach is that the stabilizing action k(x) is not forced to be
“high-gain” and is fixed a priori in the “ideal” controller (7).



On the other side, when nx = ny = 1, it was shown in [9]
that, under A2 and if b(w, z, x) is lower bounded by a positive
constant, the problem of asymptotic output regulation for (1),
(2) can always be solved by means of a controller of the form

η̇ = Fη +Gu
u = γ(η) + κ(x),

(9)

with state η ∈ Rnη , nη = 2(nz+nw+1), (F,G) a controllable
pair with F a Hurwitz matrix, and with γ : Rnη → R
and κ : R → R suitably defined continuous functions. The
term κ(x) plays here the same role as k(x) in (7), while
the term γ(η) is meant to reproduce the feedforward action
−b(w, z, x)−1q(w, z, x) at the steady state. For this reason,
the restriction of (9) to the set in which x = 0, namely

η̇ = Fη +Gγ(η), u = γ(η),

is called the internal model unit, as it is able to generate the
ideal feedforward action making the set where y = 0 invariant
(property that the regulator of [18] does not have). This
approach, however, has two main drawbacks: the stabilizing
action k(x) is necessarily high-gain to bring the system close
to the steady state where γ(η) behaves as desired, and even if
γ always exists, no analytical or numerical method exists to
construct it even for simple problems.

In [12], the authors extended both the approaches of [9],
[18] described above to the class of systems (1), (2). The
approach of [12], in particular, is based on an extension of
the extended observer of [18] to multivariable systems, where
b̂ is taken constant in (8) and equal to b of A3, and the term
b̂(x̂)−1q̂(x̂) is substituted by the output γ(η) of an internal
model unit of the kind (9), appropriately extended to fit the
multivariable setting. Then, u is taken as

u = γ(η) + b−1
(
− sat(σ̂) + k(x)

)
. (10)

Compared to [18], this design is potentially asymptotic (when-
ever (9) is chosen correctly), thus possibly achieving y → 0
without taking the observer gains inconveniently large. Com-
pared to [9], apart from the extension to multivariable normal
forms, the approach of [12] allows one to use stabilization
control actions that are not high-gain. However, the problems
related to the construction of γ inherited from [9] persist, with
the consequence that, although theoretically appealing, the ap-
proach of [12] is not constructive. Besides, the saturation level
of the map sat depends on the choice of internal model, and in
particular of γ itself, and on the initial error in the initialization
of η relative to its (unknown) ideal steady state. Some existing
methods to approximate γ have been proposed in [15], yet
their implementation remains tedious and the computational
complexity easily grows with the desired precision and the
dimension of the problem. Otherwise, adaptive designs exist
that tune γ online (see [21], [25]), yet they are far from a
definite answer and are all based on high-gain stabilization.

C. Contribution of the paper

In this paper we present a regulator embedding an adaptive
internal model unit and non-high-gain stabilization actions,
by thus merging all the desired properties mentioned before.

Adaptation is cast as a discrete-time system identification
problem [28] defined over samples of the closed-loop system
trajectories. Instead of developing a single ad hoc adaptation
algorithm, we give sufficient conditions under which arbi-
trary identification schemes can be used. We then specif-
ically develop the relevant case of weighted least squares
for linear parametrizations and mini-batch algorithms for
nonlinear parametrizations, thus embracing many existing and
frequently-used techniques performing white- and black-box
identification. The proposed regulator is proved to achieve
both practical and approximate regulation, with an asymptotic
bound that is directly related to the prediction capabilities of
the identifier. Hence, the result becomes asymptotic whenever
the identified model is perfect. Compared to [18], the proposed
regulator has the ability to learn and employ an internal
model unit reproducing the ideal feedforward action making
the set in which y = 0 asymptotically stable. Compared
to [9], the proposed approach does not rely on high-gain
stabilization and, compared to [9] and [12], we introduce
adaptation of the internal model, which provides a constructive
method to compute γ online. Besides, unlike in [12], the
parameters of the controller are fixed a priori based on the
plant and exosystem dynamics, and independently from the
added internal model, identification and observer units.

III. THE REGULATOR

The proposed regulator is a hybrid system described by

ς̇ = 1
η̇ = Fη +Gu
˙̂x = Ax̂+B(σ̂ + bu) + Λ(`)H(y − x̂1)
˙̂σ = −bψ(θ, η, u) + `r+1Hr+1(y − x̂1)

ξ̇ = 0

θ̇ = 0

(ς, η, x̂, σ̂, ξ, θ, y) ∈ Cς × Rnη+nx+ny × Ξ×Θ× Rny
ς+ = 0, η+ = η
x̂+ = x̂, σ̂+ = σ̂
ξ+ = ϕ(ξ, η, u)
θ+ = ϑ(ξ)

(ς, η, x̂, σ̂, ξ, θ, y) ∈ Dς × Rnη+nx+ny × Ξ×Θ× Rny
(11)

and with output

u = b−1 sat
(
− σ̂ + κ(x̂)

)
, (12)

in which b, A, and B are the same matrices of A3 and (1),
(2) respectively, nη ∈ N, Ξ and Θ are finite-dimensional
normed vector spaces, (F,G) ∈ Rnη×nη × Rnη×ny and
(Λ(`), H,Hr+1) ∈ Rnx×nx ×Rnx×ny ×Rny×ny are matrices
to be defined, ` ∈ R+ is a control parameter, ψ : Θ× Rnη ×
Rny → Rny , ϕ : Ξ × Rnη × Rny → Ξ, sat : Rny → Rny ,
κ : Rnx → Rny , ϑ : Ξ→ Θ are functions to be designed and,
with T, T ∈ R+ satisfying 0 < T ≤ T

Cς := [0,T], Dς := [T,T]. (13)

The regulator, whose block-diagram is depicted in Fig-
ure 1, is composed of: a) a purely continuous-time subsystem
(η, x̂, σ̂), whose dynamics depends on a parameter θ that is
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Figure 1. Block-diagram of the regulator.

constant during flows; b) a purely discrete-time subsystem
(ξ, θ) updated at jump times; c) a hybrid clock ς whose
tick triggers the updates of the parameter θ. The definition
of the flow and jump sets Cς and Dς allows the usage of
any arbitrary, and possibly aperiodic, clock strategy in which
the distance of two successive jumps is lower bounded by T
and upper bounded by T. The subsystem η, taking values in
Rnη , plays the role of an internal model unit, and is taken of
the same form as (9). The subsystem (x̂, σ̂), taking values in
Rnx+ny , is an extended observer similar to that of [29], but
with an additional “consistency term” −bψ(θ, η, u) which, as
better clarified later, represents the output of the internal model
unit. The subsystem ξ, taking values in Ξ, is the identifier,
whose updates take place at jump times. The variable θ, taking
values in Θ, is the identifier’s output, and it is included as a
state in (11) to formalize the fact that it only changes at jump
times. In the rest of the section we detail the construction of
all these subsystems, along with all the degrees of freedom
introduced in (11). In doing so, we make reference to a given
arbitrary set of initial conditions for (1), (2) of the form
W × Z0 ×X0 ⊂ Rnw × Rnz × Rnx .

Remark 1: We underline that, contrary to [9], [12], the
output η of the internal model unit does not enter directly in
the definition of u (compare (12) with (9), (10)), but only in the
dynamics of σ̂ through the map ψ. As it will be clarified in the
next subsection, unlike [12], this allows us to fix the saturation
level of (12) independently from the extended observer, the
internal model and the identifier. /

A. The Clock Subsystem

The clock dynamics is described by the following equations

ς̇ = 1 ς ∈ Cς
ς+ = 0 ς ∈ Dς

(14)

in which the sets Cς and Dς are defined in (13). By construc-
tion, each solution to (14) has infinite flow intervals and jump
times, and each two successive jump times are separated by
at least T and at most T seconds. Furthermore, by definition
of the flow and jump sets of (11), and since the plant (1) is
a purely continuous-time system, the flow and jump times of
the solutions to the resulting closed-loop system (1), (11) are
the same as the clock subsystem.

We stress, moreover, that the equations (14) do not corre-
spond to the implementation of a single clock strategy. Rather,
they model an uncountable family of possible strategies that

the designer can implement in the proposed framework to trig-
ger the updates of the discrete-time dynamics of (11). By way
of example, a periodic clock strategy with period T ∈ [T,T]
is a solution to (14) and, thus, it is a suitable clock strategy.
More in general, every clock strategy which can be described
by the dynamic equations (14) can be used in the proposed
framework. Developing the analysis on (14), in turn, permits
us to capture all these possible clock strategies at once, without
needing to know which one in particular will be implemented.
The constants T and T, which are the only degrees of freedom
characterizing the clock subsystem, are arbitrary. However,
as specified in the forthcoming Theorem 1, the rest of the
regulator depends on their value. Moreover, we also underline
that a given clock strategy strongly affects the data set that will
be made available to the identifier, thus potentially affecting
its performance. In this respect, there is no a “best way” to
choose the clock strategy, which is left here as a degree of
freedom to the designer.

B. The Stabilizing Action

In this section we fix the functions κ and sat in (12). The
function κ is chosen as any C1 function such that the system

ẋ = Ax+Bκ(x) +Bδ (15)

is ISS relative to the origin and with respect to δ with locally
linear asymptotic gains. Namely, such that there exist βx ∈ KL
and a locally Lipschitz ρx ∈ K for which (15) satisfies

|x(t)| ≤ max{βx(|x(0)|, t), ρx(|δ|t)}

for all t ∈ R+. For instance, κ can be chosen as κ(x) = Kx,
with K ∈ Rny×nx such that A+BK is Hurwitz. There follows
from A2 that the system (4), (15) is ISS relative to the set

B := A× {0} =
{

(w, z, x) ∈ A× Rnx | x = 0
}

and with respect to the input δ. Let (Z0,X0) be the sets of
initial conditions for (1) and %0 > 0 such that (W×Z0×X0) ⊆
BB%0 . With δ̄ and %1 > %0 arbitrary positive scalars, there exists
a compact set Ω0 ⊂ Rnw × Rnz × Rnx satisfying

(W × Z0 ×X0) ⊆ BB%0 ⊂ BB%1 ⊂ Ω0, (16)

and such that every trajectory of the system (4), (15) originat-
ing in BB%1 and with an input δ satisfying |δ|∞ ≤ δ̄ is complete,
and fulfills (w(t), z(t), x(t)) ∈ Ω0 for all t ∈ R+.

Let c : W × Rnz × Rnx → Rny be defined as

c(w, z, x) := −b(w, z, x)−1q(w, z, x),

and, with %2 > 0 arbitrary, let M be any constant fulfilling

M ≥ max
(w,z,x)∈Ω0

∣∣bc(w, z, x)+bb(w, z, x)−1κ(x)
∣∣+%2. (17)

Then we define sat(·) as any C1 bounded function satisfying1

0 ≤ | sat′(s)| ≤ 1 ∀s ∈ Rny

sat(s) = s ∀s ∈ BM.
(18)

1All the subsequent results can be proved even if sat is differentiable a.e.;
the C1 requirement, in turn, is asked to simplify the forthcoming analysis.



Remark 2: The definition of M requires the knowledge of
a bound on the maximum value that the functions bc(w, z, x)
and bb(w, z, x)−1κ(x) attain in Ω0. While knowing a bound
of c(w, z, x) is a quantitative information related to the plant,
and in particular on the ideal feedforward control action in
a neighborhood of set B, the knowledge of a bound for
bb(w, z, x)−1κ(x) does not ask for any additional informa-
tion. In fact, κ is known to the designer, while we have
|bb(w, z, x)−1| ≤ µ−1 for all (w, z, x) ∈ W × Rnz ×
Rnx with µ defined in A3. Indeed, bb(w, z, x)−1 = (I +
(b(w, z, x) − b)b−1)−1, so that by [30, Proposition 10.3.2],
|bb(w, z, x)−1| ≤ (1− |(b(w, z, x)− b)b−1|)−1 ≤ µ−1. /

C. The Internal Model Unit

The restriction of c on B, which we denote by

u?(w) := c(w, π(w), 0), (19)

represents the steady-state value of the ideal feedforward
action c when y vanishes, i.e., u?(w) is the control action
that makes the set B invariant for (1), (2). The internal model
unit η is a system constructed to generate u?(w) when y = 0,
and its construction follows the approach (9) of [9], where the
dimension nη of the state η is chosen as nη = 2(nw+nz+1),
and the pair (F,G) is taken as a real realization of any complex
pair (Fc, Gc) of dimension nw + nz + 1, with Gc a matrix
with non zero entries and Fc a matrix whose eigenvalues
have sufficiently negative real part. More precisely, this choice
is legitimated by the following lemma, which is a direct
consequence of [9].

Lemma 1: Suppose that A2 holds and let nη = 2(nw+nz+
1). Then there exist a controllable pair (F,G) ∈ Rnη×nη ×
Rnη×ny , with F a Hurwitz matrix, and continuous maps τ :
Rnw → Rnη and γ : Rnη → Rny such that

γ ◦ τ(w) = u?(w) ∀w ∈W (20)

and, for every input (x, δ1, δ2) ∈ Rnx ×Rnη ×Rnη satisfying
|δ1| ≤ ρδ1 |(w, z, x)|B for some ρδ1 > 0, the system

ẇ = s(w)
ż = f(w, z, x)
η̇ = Fη +Gu?(w) + δ1 + δ2

(21)

is forward complete and it is ISS relative to the set

D :=
{

(w, z, η) ∈ A× Rnη | η = τ(w)
}
,

with respect to the input (x, δ2) with locally Lipschitz asymp-
totic gains. /

Lemma 1 implies the existence of β1 ∈ KL and a locally
Lipschitz ρ1 ∈ K such that every solution pair to (21)
originating in W × Rnz × Rnη satisfies

|(w(t),z(t), η(t))|D
≤ max

{
β1(|(w(0), z(0), η(0))|D, t), ρ1(|(x, δ2)|t)

}
,

for all t ∈ R+. System (21) is the zero dynamics, relative to
the input-output pair (u, y), of the plant augmented with the
system η, and the result of Lemma 1 states that, in the zero
dynamics set D, we have γ(η) = u?(w), i.e., the set

E :=
{

(w, z, x, η) ∈ B × Rnη | (w, z, η) ∈ D
}

(22)

is made invariant for the augmented system with δ2 = 0
by the input u = γ(η). The role of the input δ2 will be
clarified in the forthcoming sections. The map γ in (20),
which is the same as in (9), is introduced here to support
the subsequent analysis and we stress that it is not used in the
construction of the regulator. The actual term through which η
affects the extended observer is given by the consistency term
−bψ(θ, η, u), defined later in Section III-E.

D. The Identifier

The identifier is a discrete-time system aimed to produce an
estimate of the map γ introduced in the previous section. The
estimation of γ is cast here as a system identification problem
[28], and the particular design of the degrees of freedom
(Ξ, ϕ,Θ, ϑ) corresponds to a choice of a given identification
algorithm. What is the right identification algorithm to use,
in turn, is a question whose answer strongly depends on the
a priori information that the designer has on the plant, on
the exosystem, and on the kind of uncertainties expected in
the different models. In this paper we do not intend to limit
to a single choice, which may be good in some settings and
inappropriate in others, and we rather give a set of sufficient
conditions, gathered in what we called the identifier require-
ment, representing the stability and optimality properties that
any identification algorithm needs to possess to be used in the
framework. We postpone examples of identifiers to Section V.

The identification problem underlying the design of the
identifier is cast on the samples of the following core process{

ς̇ = 1
ẇ = s(w)

(ς, w) ∈ Cς ×W{
ς+ = 0
w+ = w

(ς, w) ∈ Dς ×W,

(23)

with outputs

αin(j) := τ(w(tj , j)), αout(j) := u?(w(tj , j)), (24)

where u? and τ are defined respectively in (19) and (20).
According to Lemma 1, αin and αout are linked by

αout = γ(αin), (25)

and the aim of the identifier is thus to find the model γ̂ for
which the input-output data pairs {(αin(j), αout(j))}j∈N fit at
best (in a way made precise later) the regression (25).

The first step in the construction of the identifier is the defi-
nition of a model setM, which is a space of functions where γ̂
is supposed to range. As customary in the system identification
literature, and due to clear implementation constraints, we
limit here to the case in which M is finite-dimensional. This,
in turn, allows us to parametrize γ̂ by a parameter θ ranging
in a finite-dimensional vector space Θ, obtaining

M =
{
γ̂(θ, ·) : Rnη → Rny | θ ∈ Θ

}
. (26)

The choice of the model set, and hence of Θ, is guided by
the available knowledge on the core process (23)-(24) and,
in particular, on the expected relation (25) between αin and
αout, ideally given by the unknown map γ (see Lemma 1).
Depending on the amount of information available, M may



range from a very specific set of functions, such as linear
regressions, to a space of universal approximators, including
for instance Wavelet bases or Neural Networks [31].

Once M and Θ are fixed, a cost function is defined on the
input-output data set generated by (23)-(24), so as to assign to
each model γ̂(θ, ·) a quantitative value describing how well it
fits. In particular, for each solution (ς, w) to the core process
(23) and for each j ∈ dom(ς, w) we define the functional

J(ς,w)(j, θ) :=

j−1∑
i=0

g
(
ε(θ, w(ti)), i, j

)
+ ρ(θ), (27)

in which
ε(θ, w) := u?(w)− γ̂(θ, τ(w)) (28)

denotes the prediction error attained by the model γ̂(θ, ·) ∈M
along the solution (ς, w) of (23), g : Rny × N2 → R+ is a
positive function representing the local weight assigned to the
term (ε(θ, w(ti)), i, j) in the sum, and ρ : Θ → R+ is a
(possibly zero) regularization function. The particular choice
of g and ρ, which is left as a degree of freedom to the designer,
characterizes the selection criteria for the best model γ̂(θ, ·).
With (27) we associate the set-valued map

Opt(ς,w)(j) := argmin
θ∈Θ

J(ς,w)(j, θ),

representing, at each j, the set of optimal parameters according
to (27). In these terms, the identifier goal reduces to find, at
each j ∈ N, an optimal parameter θ?(j) ∈ Opt(ς,w)(j) whose
corresponding map γ̂(θ?(j), ·) ∈ M is thus the best model
relating αin and αout according to (27).

The main difficulty in the design of the identifier, is that
the signals αin and αout are not available for feedback. In
turn, in the overall regulator (11) the identifier is fed with the
input (η, u) in place of (αin, αout). In this way, η plays the
role of a “proxy variable” for αin, and u for αout (notice that
η = τ(w) = αin and u = u?(w) = αout in the ideal steady
state in which y = 0). In turn, this is equivalent to provide the
identifier with the “corrupted input”

αin + din αout + dout

in which din = η−αin and dout = u−αout, and the resulting
interconnection between the identifier and the core process
(23)-(24) reads as follows.

ς̇ = 1
ẇ = s(w)

ξ̇ = 0, θ̇ = 0

(ς, w, ξ, θ, din, dout) ∈ Cς ×W × Ξ×Θ× Rnη × Rny
ς+ = 0
w+ = w
ξ+ = ϕ(ξ, αin(w) + din, αout(w) + dout)
θ+ = ϑ(ξ)

(ς, w, ξ, θ, din, dout) ∈ Dς ×W × Ξ×Θ× Rnη × Rny ,
(29)

The choice of the remaining degrees of freedom (Ξ, ϕ, ϑ) is
then made to satisfy a set of robust (with respect to din and
dout) stability and optimality conditions relative to the cost
functional (27). This conditions are formally expressed within

the forthcoming requirement, in which we make reference to
the interconnection (29) where, for the sake of generality, the
disturbance (din, dout) ∈ Rnη × Rny is treated as a generic
exogenous input.

Definition 1: The tuple (M,Ξ, ϕ,Θ, ϑ) is said to satisfy
the identifier requirement relative to J , if there exist βξ ∈
KL, locally Lipschitz ρξ, ρθ ∈ K, a compact set Ξ? ⊂ Ξ
and, for each solution pair ((ς, w, ξ, θ), (din, dout)) to (29),
a pair (ξ?, θ?) : dom(ξ, θ) → Ξ × Θ and a j? ∈ N, such
that ((ς, w, ξ?, θ?), (0, 0)) is a solution pair to (29) satisfying
ξ?(j) ∈ Ξ? for all j ≥ j?, and the following properties hold:

1) Optimality: for each j ≥ j?

θ?(j) ∈ Opt(ς,w)(j).

2) Stability: for each j ∈ domj(ς, w)

|ξ(j)− ξ?(j)|
≤ max

{
βξ(|ξ(0)− ξ?(0)|, j), ρξ (|(din, dout)|j)

}
3) Regularity: The function ϑ satisfies

|ϑ(ξ)− ϑ(ξ?)| ≤ ρθ(|ξ − ξ?|)

for all (ξ, ξ?) ∈ Ξ×Ξ?, the map (θ, η) 7→ γ̂(θ, η) is C1

in the argument η, and ∂γ̂/∂η is locally Lipschitz. /

Examples of identifiers that fulfill these conditions are given in
Section V. The identifier requirement asks for the existence of
a steady state ξ? for the identifier such that the corresponding
output θ? is optimal relative to (27) (optimality item). The
optimal steady state ξ? is required to be a solution to (29)
whenever (din, dout) = 0, i.e. when the identifier is fed by the
ideal inputs (αin, αout), and it is required to be robustly stable
when (din, dout) is present (stability item).

Given a tuple (M,Ξ, ϕ,Θ, ϑ) fulfilling the identifier re-
quirement relative to a given cost functional J , and with ε
given by (28), with each solution pair ((ς, w, ξ, θ), (din, dout))
of (29) we associate the optimal prediction error

ε?(w) := ε(θ?, w), (30)

which represents the prediction error attained by the optimal
model in the model set of the identifier computed along the
ideal input-output data pair (αin, αout) = (τ(w), u?(w)).

Remark 3: We stress that the signals αin and αout are not as-
sumed to be measured, nor they are used in the regulator (11).
They have the sole role of posing a well-defined optimization
problem, for which they serve as “nominal” data set, leading
to a set of well-defined sufficient conditions for the design of
the identifier (the identifier requirement).

E. The Extended Observer

In this section we detail the choice of the degrees of free-
dom (Λ(`), H, `,Hr+1) characterizing the extended observer
subsystem (x̂, σ̂) of (11), thus concluding the design of the
regulator. The scalar ` is a positive control parameter that has
to be taken large enough to ensure closed-loop stability, and
it will be fixed in the forthcoming Theorem 1. The matrix
Λ(`) is chosen as Λ(`) := diag(`Iny , `

2Iny , . . . , `
rIny ). For

each i = 1, . . . , r + 1 and j = 1, . . . , ny , let hji ∈ R be such



that, for each j = 1, . . . , ny , the roots of the polynomials
λr+1 + hj1λ

r + · · · + hjrλ + hjr+1 are all real and negative.
Then, the matrices H and Hr+1 are defined as follows

H := diag(H1, . . . ,Hr), Hi := diag(h1
i , . . . , h

ny
i )

Hr+1 := diag(h1
r+1, . . . , h

ny
r+1).

Finally, with Ξ? given by the identifier requirement, we define
Θ? = ϑ(Ξ?) and we let H? ⊂ Rnη and U? ⊂ Rny be any
compact sets satisfying τ(W) ⊆ H? and u?(W) ⊆ U?. Then,
we let ψ be any continuous function satisfying2

ψ(θ, η, u) =
∂γ̂(θ, η)

∂η
(Fη +Gu)

for all (θ, η, u) ∈ Θ? ×H? × U? and, for some ψ̄ > 0,

|ψ(θ, η, u)| ≤ ψ̄ (31)

for all (θ, η, u) ∈ Θ× Rnη × Rny .

IV. MAIN RESULT

The closed-loop system, obtained by interconnecting the
plant (1), (2) with the regulator (11)-(12), results in the
following hybrid system

ς̇ = 1
ẇ = s(w)
ż = f(w, z, x)
ẋ = Ax+B

(
q(w, z, x) + b(w, z, x)u

)
η̇ = Fη +Gu
˙̂x = Ax̂+B(σ̂ + bu) + Λ(`)HC(x− x̂)
˙̂σ = −bψ(θ, η, u) + `r+1Hr+1C(x− x̂)

ξ̇ = 0, θ̇ = 0

(ς, w, z, x, η, x̂, σ̂, ξ, θ) ∈ C
ς+ = 0
w+ = w, z+ = z, x+ = x,
η+ = η, x̂+ = x̂, σ̂+ = σ̂
ξ+ = ϕ(ξ, η, u)
θ+ = ϑ(ξ)

(ς, w, z, x, η, x̂, σ̂, ξ, θ) ∈ D

(32)

with u given by (12) and with flow and jump sets given by
C := Cς ×W×Rnz ×Rnx ×Rnη ×Rnx ×Rny ×Ξ×Θ and
D := Dς ×W × Rnz × Rnx × Rnη × Rnx × Rny × Ξ×Θ.

In the remainder of the paper we let

O :=
{

(ς, w, z, x, η, x̂, σ̂, ξ, θ) ∈ C ∪D | (w, z, x, η) ∈ E ,
x̂ = x, σ̂ = −bu?(w)

}
,

(33)
with E the set defined in (22). Furthermore, for every solution
x := (ς, w, z, x, η, x̂, σ̂, ξ, θ) of (32), and with (ξ?, θ?) the
trajectory produced by the identifier requirement relative to
the solution pair ((ς, w, ξ, θ), (0, 0)) to (29), we let for conve-
nience

|x|O? := max {|x|O, |ξ − ξ?|} . (34)

Then, the following theorem is the main result of the paper.

2We observe that a function ψ with such properties can be simply obtained
by saturating the map ∂γ̂(θ, η)/∂η (Fη +Gu) with a saturation level larger
or equal to ψ̄.

Theorem 1: Suppose that Assumptions A1, A2 and A3 hold,
and let Z0 ⊂ Rnz and X0 ⊂ Rnx be arbitrary compact subsets.
Consider the regulator (11)-(12) constructed in Section III.
Then the following holds:

1) For each compact set S0 ⊂ Rnx × Rny of initial
conditions for (x̂, σ̂), there exists `?s > 0 such that, if
` ≥ `?s , then for every solution of the closed-loop system
(32) originating in X0 := (Cς ∪Dς)×W× Z0 ×X0 ×
Rnη × S0 × Ξ × Θ, (w, z, x, η, x̂, σ̂) is bounded and
satisfies (w(t), z(t), x(t)) ∈ Ω0 for all t ≥ 0, with Ω0

given in (16).
2) In addition, for each compact set S0 and each ε, T > 0,

there exists `?p(ε, T ) ≥ `?s such that, if ` ≥ `?p(ε, T ),
then the trajectories x of the closed-loop system (32)
originating in X0 also satisfy

|x̂− x| ≤ ε, |q(w, z, y) + b(w, z, y)u− κ(x)| ≤ ε
(35)

for all t ≥ T , and

lim sup
t+j→∞

|x(t, j)|O ≤ ε. (36)

3) If in addition (M,Ξ, ϕ,Θ, ϑ) satisfies the identifier
requirement relative to a cost functional J , then for
every solution x of the closed-loop system (32), also
(ξ, θ) is bounded, and there exists αx > 0 and, for each
compact set S0 and each T > 0, an `?ε(T) > `?s , such
that if ` > `?ε(T) then

lim sup
t+j→∞

|x(t, j)|O? ≤ αx lim sup
t+j→∞

|ε?(t, j)|, (37)

in which ε?(t, j) := ε(θ?(t, j), w(t, j)). /

Theorem 1 is proved in Section VII. The first claim of the
theorem is a boundedness result stating that if the observer
gain ` is taken large enough, then all the trajectories origi-
nating in the chosen set of initial conditions are bounded and
they have a common asymptotic bound. The second claim is
a practical regulation result extending that of [18] and stating
that, no matter how wrong the internal model and/or the identi-
fier are, arbitrarily small error is eventually achieved by tuning
the gain accordingly. The third claim is instead an approximate
regulation result relating the identifier prediction capabilities
evaluated along the ideal data (αin, αout) = (τ(w), u?(w)) to
the regulation performances in terms of asymptotic bound on
the regulated variables. In particular, (37) implies that

lim sup
t→∞

|y(t)| ≤ αx lim sup
t+j→∞

|ε?(t, j)|

lim sup
j→∞

|θ(j)− θ?(j)| ≤ αθ
(

lim sup
t+j→∞

|ε?(t, j)|
)
,

with αθ = ρθ ◦ αx, which explicitly express the asymptotic
bound of the regulated variable y and the parameter estimation
error θ − θ? in terms of the optimal prediction error. Hence,
as a consequence of the third claim, we also conclude that,
whenever ε? = 0, i.e. when the actual internal model belongs
to the identifier model set, then asymptotic regulation and
asymptotic parameter estimation are achieved, thus extending
the existence result of [12] to the adaptive case.



Remark 4: In summary, the degrees of freedom of the
regulator (11) that have to be designed are: (i) the clock’s
upper and lower bounds T and T (Section III-A); (ii) the
stabilization and saturation functions κ and sat, designed
to robustly stabilize system (15) (Section III-B); (iii) the
internal model pair (F,G), taken, according to [9], so as F
is Hurwitz and (F,G) controllable (Section III-C); (iv) the
identifier data (M,Ξ, ϕ,Θ, ϑ), chosen to satisfy the identifier
requirement (Section III-D); (v) the extended observer data
(Λ(`), H, `,Hr+1, ψ), fixed by following [18] with an addi-
tional “consistency term” ψ which is designed as a saturated
version of the derivative of the identified model γ̂ (Section
III-E). The control gain `, which needs to be chosen suffi-
ciently large according to Theorem 1, and depends on all the
other quantities.

Remark 5: We underline that the choice of the map κ
and sat detailed in Section III-B are independent from the
observer, the internal model and the identifier. Besides, the
result is global in (η, ξ), which differs from [12] where the
result is semi-global with respect to η, with the saturation in
the controller that must be adapted to the initialization compact
set of the internal model. On the other hand, the result is semi-
global with respect to the observer, since the gain ` must be
adapted to the observer initialization set S0. /

Remark 6: Assumptions A1-A2, the consequent claim of
Lemma 1, and the identifier requirement in Definition 1 all ask
or state some Lipschitz conditions on maps that play primary
roles in the stability analysis. Nevertheless, we observe that all
these regularity conditions may be relaxed to less restrictive
Hölder continuity requirements by substituting the high-gain-
based extended observer presented in Section III-E with an
homogeneous observer of appropriate degree. The reader is
referred to [32] for further details. /

V. ON THE DESIGN OF IDENTIFIERS

A. Least-Squares Identifiers for Linear Parametrizations

In this section we present a construction of the identifier
when the model set M consists of functions γ̂ that are linear
in the parameters θ and the cost functional (27) is a (weighted)
least-squares norm of the past prediction errors. For ease of
notation we focus here on the single-variable case (i.e. with
ny = 1), as a multivariable identifier can be obtained by
concatenating of ny single-variable identifiers. We consider
a model set M containing functions of the form

γ̂(θ, ·) :=

nθ∑
i=1

θiσi(·) = θ>σ(·),

with nθ ∈ N arbitrary, θ = col(θ1, . . . , θnθ ) ∈ Rnθ , and
σ = col(σ1, . . . , σnθ ), with σi : Rnη → R differentiable
functions with locally Lipschitz derivative. The “least-squares”
cost-functional is obtained by letting in (27) g(s, i, j) :=
µj−i−1|s|2, with µ ∈ (0, 1) a design parameter playing the
role of a forgetting factor, and ρ(θ) := θ>Ωθ, in which
Ω ∈ SPDnθ . Thus, J reads as

J(ς,w)(j)(θ) :=

j−1∑
i=0

µj−i−1|ε(θ, w(ti, i))|2 + θ>Ωθ. (38)

We design an identifier satisfying the identifier requirement
relative to (38) as follows. First, we let Θ := Rnθ and Ξ :=
SPDnθ × Rnθ . For a ξ ∈ Ξ we consider the partition ξ =
(ξ1, ξ2) with ξ1 ∈ SPDnθ and ξ2 ∈ Rnθ , and we equip Ξ
with the norm |ξ| := |ξ1| + |ξ2|. We consider the following
persistence of excitation condition, in which we let msv(·)
denote the minimum non-zero singular value.

A4) There exists ε > 0 and, for each solution (ς, w) of the
core process (23), a j? ∈ N, such that

msv

(
Ω +

j−1∑
i=0

µj−i−1σ
(
τ(w(ti))

)
σ
(
τ(w(ti))

)>) ≥ ε.
(39)

for all j ≥ j?. /

With H? ⊂ Rnη and U? ⊂ Rnu compact subsets such that
τ(W) ⊆ H? and u?(W) ⊆ U?, let

ρ1 := (1− µ)−1 sup
η∈H?

|σ(η)σ(η)>|,

ρ2 := (1− µ)−1 sup
(η,u)∈H?×U?

|σ(η)u|,

Ξ? :=
{
ξ ∈ Ξ | msv(Ω + ξ1) ≥ ε, |ξ1| ≤ ρ1, |ξ2| ≤ ρ2

}
.

Then, with ·† denoting the Moore-Penrose pseudoinverse, we
let Σ : Rnη → SPDnθ , λ : Rnη × Rnu → Rnθ and ϑ : Ξ →
Rnθ be any uniformly continuous functions satisfying

Σ(η) = σ(η)σ(η)>

λ(η, u) = σ(η)u
ϑ(ξ) = (ξ1 + Ω)†ξ2

respectively on the compact sets H?, H? × U? and Ξ?, and

|Σ(η)| ≤ ρΣ, |λ(η, u)| ≤ ρλ, |ϑ(ξ)| ≤ cϑ

everywhere else, for some ρΣ, ρλ, ρϑ > 0. Then the identifier
is described by the following equations

ξ+
1 = µξ1 + Σ(αin)
ξ+
2 = µξ2 + λ(αin, αout)
θ+ = ϑ(ξ),

(40)

and the following result holds.
Proposition 1: Assume A4. Then, the identifier (40) satisfies

the identifier requirement relative to (38). /
The proof of Proposition 1 can be deduced by the same

arguments of [24] and it is thus omitted. It is worth observing
that, whenever the regularization matrix Ω is positive definite,
A4 always holds with j = 0 and ε the smallest eigenvalue3

of Ω. The importance of regularization is well understood in
system identification (see e.g. [33]), although it is also well-
known that it introduces a bias on the parameter estimation,
in the sense that in case a “true map” γ relating αin and αout

exists and belongs toM, the “true parameter” θ? is a minimum
of (38) only if θ? ∈ ker Ω, so that having Ω nonsingular makes
the identifier (40) converge “only” to a neighborhood of θ?

whose size is related to the eigenvalues of Ω (and thus can be

3 To see this, pick any M ∈ SPDnθ and let ν be an eigenvalue of M + Ω
and e an associated eigenvector. Then, ε|e|2 ≤ e>(M + Ω)e = ν|e|2, and
thus ν ≥ ε. This, in turn shows that M+Ω > 0 and msv(M+Ω) ≥ ε. Thus,
the claim follows by noticing that the sum appearing in A4 is in SPDnθ .



made arbitrarily small). Therefore, the regularization matrix
Ω is a degree of freedom that must be chosen to weight
well-conditioning of the problem and asymptotic estimation
performances. If Ω is chosen singular (possibly the zero
matrix), the identifier requirement is still satisfied along the
trajectories of w that are persistently exciting according to
A4. In this respect, we observe that A4 is a property of the
ideal input signal αin = τ(w) and of chosen clock strategy,
as the sampling time of the core process (23) depends on it.

B. “Mini-Batch” Algorithms for Nonlinear Parametrizations

In this section we present a construction of the identifier
fulfilling the identifier requirement when the model set M
assumes the generic form (26), with Θ = Rnθ for some
nθ ∈ N, and with η 7→ γ̂(θ, η) which is C1 for all θ and
such that ∂γ̂/∂η is locally Lipschitz. We start by assuming
to have available a batch identification algorithm working on
a data set of finite size N , and we define an identifier fitting
in our framework that repeatedly executes the algorithm on a
“moving window” of size N .

More precisely, with Sn the space of functions
{1, . . . , N} → Rn, for any two signals sin ∈ Snη and
sout ∈ Sny we define the window cost

IN(sin,sout)
(θ) :=

N∑
i=1

$
(
sout(i)− γ̂(θ, sin(i)), i

)
+ ρ(θ),

for some integral cost $ : Rny × {1, . . . , N} → R+ and
regularization term ρ : Rnθ → R+.

Then we assume the following.

A5) There exists a Lipschitz map G : Snη × Sny → Rnθ such
that, for every solution (ς, w) to the core process (23) and for
every j ≥ N , with

sjin(i) := τ
(
w(tj+i−N−1)

)
, sjout(i) := u?

(
w(tj+i−N−1)

)
,

for all i = 1, . . . , N , it holds that

G(sjin, s
j
out) ∈ argmin

θ∈Rnθ
IN

(sjin,s
j
out)

(θ).

/

The map G represents any optimization algorithm that
extracts the optimal model ofM from the finite data set repre-
sented by the “windowed samples” (sin, sout) of (αin, αout) =
(τ(w), u?(w)). With λn : RNn → Sn the linear operator
mapping the vector v = (v1, . . . , vN ), vi ∈ Rn, to the signal
s ∈ Sn satisfying s(i) := vi, we construct an identifier starting
from G by letting Θ := Rnθ , Ξ := RNnη × RNny , and
(ϕ, ϑ) such that the state ξ := (ξ1, ξ2), with ξ1 ∈ RNnη and
ξ2 ∈ RNny , and output θ of the identifier satisfy

ξ+
1 = H1ξ1 +B1αin

ξ+
2 = H2ξ2 +B2αout

θ+ = ϑ(ξ),
(41)

in which, for i = 1, 2, (Hi, Bi) have the “shift” form

Hi :=

(
0Nmi×mi

I(N−1)mi

0mi×(N−1)ny)

)
, Bi :=

(
0(N−1)mi×mi

Imi

)

where we let m1 = nη and m2 = ny , and

ϑ(ξ) := G(λnη (ξ1), λny (ξ2)). (42)

The identifier (41) consists of a pair of “shift registers”
propagating and accumulating the new values of (αin, αout) =
(τ(w), u?(w)) and forming in this way a moving window. The
output map (42) assigns to the parameter θ the value given by
the algorithm G corresponding to the current data set stored
in the state ξ. This construction has the following property,
proved in Appendix A.

Proposition 2: Assume A5, then the identifier (41)-(42) sat-
isfies the identifier requirement relative to the cost functional

J(ς,w)(j)(θ) :=

j−1∑
i=max{0,j−N}

$
(
ε(θ, w(ti)), i−j+N+1

)
+ρ(θ)

and with j? = N for each solution (ς, w) of (23). /

VI. EXAMPLE

We consider the problem of synchronizing the output of
a Van der Pol oscillator with unknown parameter, with a
triangular wave with unknown frequency. The plant, which
consists in a forced Van der Pol oscillator, is described by the
following equations

ṗ1 = p2

ṗ2 = −p1 + a(1− p2
1)p2 + u,

(43)

with a an unknown parameter known to range in [a, a] for
some constants ā > a > 0. According to [34], a triangular
wave can be generated by an exosystem of the form

ẇ1 = w2, ẇ2 = −%w1 (44)

with output

p?1(w) := 2
√
w2

1 + w2
2 arcsin

(
w1√

w2
1 + w2

2

)
,

and in which % is the unknown frequency, assumed to lie
in the interval [%, %̄] with %̄ > % > 0 known constants. The
control goal thus consists in driving the output p1 of (43) to
the reference trajectory p?1(w). With s(w) := (w2,−%w1), we
define the error system x as

x :=

(
x1

x2

)
=

(
p1 − p?1(w)

p2 − Ls(w)p
?
1(w)

)
,

which is of the form (1), without z, with

y = x1 = p1 − p?1(w)

q(w, x) := −x1 − p?1(w)− L2
s(w)p

?
1(w)

+ a
(
1− (x1 + p?1(w))2

)(
x2 + Ls(w)p

?
1(w)

)
,

and with b(w, x) := 1. The ideal steady-state error-zeroing
control action that the regulator should provide is given by

u?(w) = −q(w, 0)/b(w, 0)

= p?1(w) + L2
s(w)p

?
1(w)− a(1− p?1(w)2)Ls(w)p

?
1(w),

and no analytic technique is known to compute the right
function γ of the internal model of [9], [12] for which the
regulator is able to generate u?(w).



Regarding the exosystem (44), we observe that the quantity
V%(w1, w2) := %w1/2 + w2/2 remains constant along each
solution. Hence, the set W :=

⋃
%∈[%,%̄] V

−1
% ([0, c]) is invariant

for (44). Furthermore, assumptions A1, A2 and A3 hold by
construction, with b = 1 and any µ ∈ (0, 1), and hence, the
problem fits into the framework of this paper, and the proposed
regulator is used with:

(i) κ(x) = −Kx, with K ∈ R2×2 such that σ(A−BK) =
{−1,−2}, and sat implements the standard saturation
function with level M = 100;

(ii) nη = 2(nw + 1) = 6 and

F :=


−1 1 0 0 0 0
0 −1 1 0 0 0
0 0 −1 1 0 0
0 0 0 −1 1 0
0 0 0 0 −1 1
0 0 0 0 0 −1

 , G :=


0
0
0
0
0
1

 ;

(iii) the identifier is chosen as a least-squares identifier of the
kind presented in Section V-A, in which the regressor
vector σ is defined to perform a polynomial expansion
of γ with a polynomials of odd order. More precisely,
with N ∈ N, for n ≤ N we let

In :=
{

(i1, . . . , in) ∈ {1, . . . , 6}n | i1 ≤ · · · ≤ in
}

be the set of non-repeating multi-indices of length n,
and with I ∈ In, we let σI(η) := ηi1 · . . . · ηin . The
regressor σ is then defined as

σ = col
(
σI | I ∈ In, n ≤ N, n odd

)
.

In the forthcoming simulations we have taken N =
1, 3, 5. To ensure that the persistence of excitation condi-
tion of A4 holds, we have taken a diagonal regularization
matrix Ω = 10−3I . The forgetting factor is instead
chosen as µ = 0.99.

(iv) the extended observer is implemented with ` = 20, h1 =
6, h2 = 11, h3 = 6 and with φ that is obtained by
saturating the function (θ, η, u) 7→ (∂γ̂(θ, η)/∂η)(Fη+
Gu) with a saturation level of 100.

(v) finally, a periodic clock strategy is employed, obtained
by letting T = T = 0.1.

The following simulation shows the regulator applied with
a = % = 2 in four cases: (1) without internal model4, i.e. with
φ = 0; (2) with the adaptive internal model obtained by setting
N = 1 (i.e., with σ(η) = η); (3) with N = 3, i.e. with σ(η) =
col(η1, . . . , η6, η

3
1 , η

2
1η2, η1η2η3 . . . , η

3
6) and (4) with N = 5,

i.e. with σ(η) = col(η1, . . . , η6, η
3
1 , . . . , η

3
6 , η

5
1 , . . . , η

5
6). In

particular, Figure 2 shows the steady-state evolution of the
tracking error y(t) = p1(t) − p?1(w(t)) in the four cases
described above. The error obtained by introducing a linear
adaptive internal model (N = 1) is reduced by more than
15 times compared to the case in which the adaptive internal
model is not present (i.e. φ = 0). Adding to the model set the
polynomials of order 3 (N = 3), reduces the maximum error
of more than 120 times compared to the first case without

4We stress that this is equivalent to implement an extended observer as that
proposed in [18] (see also Section II-B).

208 210 212 214 216 218 220
0

0.05

0.1

208 210 212 214 216 218 220
0

2

4

10-3

208 210 212 214 216 218 220
0

2

4

6
10-4

N=1
N=3

N=3

N=5

N=5

without

with

Figure 2. Top: steady-state time evolution of the tracking error y in the four
cases obtained without adaptive internal model and with N = 1, 3, 5. Center
and Bottom: zoom-in to highlight the difference between the four cases. In
abscissa: time (in seconds).
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Figure 3. Transitory of the tracking error y in the four cases obtained without
adaptive internal model and with N = 1, 3, 5. In abscissa: time (in seconds).

internal model. Finally, with N = 5, the maximum error is
reduced by more than 200 times.

Figure 3 shows the transitory of the tracking error trajec-
tories corresponding to the four cases described above. It can
be noticed that the settling time increases with the number
N . This is due to the fact that an increase of N leads to an
increase of the overall number of parameters, each one having
its own transitory. From Figures 2 and 3 we can thus conclude
that a larger model complexity is associated with a smaller
steady-state error but with a longer transitory.

Finally, Figure 4 shows the time evolution of the ideal
steady-state control law u?(w) and of its approximation given
by γ̂(θ(j), η(t)) in the three cases in which N = 1, 3, 5.

VII. PROOF OF THEOREM 1
We subdivide the proof in three parts, coherently with the

three claims of the theorem. For compactness, in the following
we will write p := (w, z, x) in place of (w, z, x), and we let

f(p, u) := col
(
s(w), f(p), Ax+B(q(p) + b(p)u)

)
.

Moreover, we also use the symbol ? in place of the arguments
of functions that are uniformly bounded (we refer in particular
to (18) and (31)).

A. Stability analysis

Since T > 0 and T < +∞, then all the complete trajectories
of (32) have an infinite number of jump and flow times. Since
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Figure 4. Time evolution of u?(w(t)) and of its approximation γ̂(θ(t), η(t))
for N = 1, 3, 5. In abscissa: time (in seconds).

η is a Hurwitz linear system driven by a bounded input u, its
solutions are complete and bounded. Regarding the subsystem
(w, z, x, x̂, σ̂), let

σ := q(p) + (b(p)− b)u(x, σ̂),
u(x, σ) := b−1 sat(−σ + κ(x)).

(45)

In view of (12), u = u(x̂, σ̂). Hence the dynamics of x can
be rewritten as

ẋ = Ax+B
(
σ + bu+ (b(p)− b)(u(x̂, σ̂)− u(x, σ̂))

)
.

Following the standard high-gain paradigm, define

ex := `Λ(`)−1(x̂− x), eσ := `−r(σ̂ − σ) (46)

and change coordinates according to

(x̂, σ̂) 7→ e := col
(
ex, eσ

)
.

In the new coordinates, (12) reads as

u = b−1 sat(−`reσ − σ + κ(Λ(`)`−1ex + x)), (47)

and (45) gives rise to the implicit equation

Tσ(p, eσ, σ) = 0, (48)

where Tσ(p, eσ, σ) := σ− q(p)− (b(p)−b)b−1 sat(−`reσ −
σ + κ(x)). We observe that

∂Tσ
∂σ

(p, eσ, σ) = I + (b(p)− b)b−1 sat′(?).

Thus, A3 and (18) give |(b(p) − b)b−1 sat′(?)| ≤ 1 − µ, so
that ∂Tσ/∂σ is uniformly nonsingular. This, in turn, suffices
to show that there exists a unique C1 function φσ(p, eσ)
satisfying Tσ(p, eσ, φσ(p, eσ)) = 0, and such that

σ = φσ(p, eσ). (49)

We further notice that, Tσ(p, eσ, σ) = 0 also implies

∂Tσ
∂p

(p, eσ, σ)f(p, u)+
∂Tσ
∂eσ

(p, eσ, σ)ėσ+
∂Tσ
∂σ

(p, eσ, σ)σ̇=0

which in turn yields

σ̇ = ∆1 + ∆2`
r ėσ,

where, with m(p, ?) := (b(p)− b)b−1 sat′(?), we let

∆1 = −(I +m(p, ?))−1 ∂Tσ
∂p

(p, eσ, σ)f(p, u),

∆2 = −(I +m(p, ?))−1m(p, ?).

Due to A3 and (18), |m(p, ?)| ≤ 1 − µ, so that I + m(p, ?)
is always invertible. Moreover, in view of [30, Proposition
10.3.2], |(I +m(p, ?))−1| ≤ µ−1, so that we obtain

∆2 ≤ µ−1 − 1 (50)

for all (p, eσ, σ) ∈W×Rnz×Rnx×Rny×Rny . The variable
e jumps according to e+ = e and flows according to

ėx = `(A−HC)ex +B(`eσ + ∆3,`) (51)
ėσ = −`Hr+1Cex −∆2ėσ + `−r∆4 (52)

where ∆3,` := −`1−r(b(p)−b)(u(x̂, σ̂)−u(x, σ̂)) and ∆4 :=
−bψ(?)−∆1. Since I+∆2 = I− (I+m(p, ?))−1m(p, ?) =
(I + m(p, ?))−1 and |m(p, ?)| ≤ 1 − µ < 1, then I + ∆2 is
uniformly invertible, and solving (52) for ėσ yields

ėσ = −`Hr+1Cex −m(p, ?)`Hr+1Cex + `−r∆5.

with ∆5 := (I + m(p, ?))∆4. Hence, by letting e :=
col(ex, eσ) and

A :=

(
A−HC B
−Hr+1C 0ny

)
, Bx :=

(
B

0ny

)
, Bσ :=

(
0nx×ny
Iny

)
we obtain

ė = `Ae+Bx∆3,` +Bσ
(
−m(p, ?)`Hr+1Cex + `−r∆5

)
.

Let Ω0 be the compact set introduced in Section III-B and
fulfilling (16). In view of A1 and (18), there exists a0 > 0 such
that |∆1| ≤ a0 holds for all p ∈ Ω0 and all (eσ, σ̂) ∈ (Rny )2.
In view of (31) and (50), |∆5| ≤ a1 with a1 := |b|ψ̄ + a0.
Moreover, since κ and sat are C1, and u is bounded, then it
is C1 and Lipschitz. Thus, A3 and (46) imply the existence
of a2 > 0 such that |∆3,`| ≤ a2|ex| for all ` ≥ 1 and all
(p, eσ, σ̂). The stability properties of e then follow by the
Lemma below, proved in Appendix B.

Lemma 2: Consider a system of the form

χ̇ = `Aχ− `α(t)BσHr+1Cχ1 +Bxδ1 + δ2 (53)

With χ = col(χ1, χ2), χ1 ∈ Rnx , χ2 ∈ Rny , δ1 : R+ → Rny
and δ2 : R+ → Rnx+ny locally integrable inputs such that,
for some π1 > 0, |δ1| ≤ π1|χ|, and α : R+ → R a continuous
function satisfying |α(t)| ≤ ᾱ < 1 for all t ∈ R+. Then there
exist `?0, π2, π3, π4 > 0 such that, if ` ≥ `?0, then

|χ(t)| ≤ max
{
π2e−π3`t|χ(0)|, π4`

−1|δ2|t
}

for all t ∈ R+ for which the solution is defined. /
In particular, since |m(p, ?)| ≤ 1− µ < 1, Lemma 2 yields

the existence of `?0, a3, a4, a5 > 0 such that, if ` ≥ `?0, then

|e(t)| ≤ max
{
a3e−a4`t|e(0)|, a5`

−(r+1)|∆5|t
}
. (54)

Moreover, the following Lemma holds.
Lemma 3: Suppose that, for some T0, a1 > 0, |∆5|t ≤ a1

for all t ∈ [0, T0). Then, for each T ∈ (0, T0) and each ε > 0,



there exists `?1(T, ε) ≥ `?0 such that, if ` ≥ `?1(T, ε), then for
each solution of (32) originating in X0, it holds that

max{|x(t)− x̂(t)|, |σ(t)− σ̂(t)|} ≤ ε
for all t ∈ [T, T0). /

Lemma 3 is proved in Appendix C. Let

b1 := sup
(p,s)∈Ω0×Rny

∣∣Ax+B
(
q(p) + b(p)b−1 sat(s)

)∣∣ .
Then, as long as p ∈ Ω0, we have |ẋ| ≤ b1. Thus, for all
t ∈ R+ such that p(t) ∈ Ω0, it holds that |x(t)| ≤ |x(0)| +
b1t. In view of (16), |x(0)| ≤ %0, so that |x(t)| ≤ %1 for
all t ≤ t̄1 := (%1 − %0)/b1. Furthermore, (16) also yields
|w(0), z(0)|A ≤ %0. As A2 implies that (w, z) exhibits no
finite escape time in [0, t̄1], then by continuity there exists
t̄ ∈ (0, t̄1) such that max{|x(t)|, |(w(t), z(t))|A} ≤ %1, for
all t ∈ [0, t̄]. This, with (16), implies that p(t) ∈ BB%1 ⊂ Ω0

for all t ∈ [0, t̄] along the trajectories originating inside X0.
Lemma 4: The unique solution (49) of (48) satisfies

φσ(p, eσ) = bb(p)−1q(p)+(I−bb(p)−1)
(
κ(x)−`reσ

)
(55)

for all (p, eσ) ∈ Ω0×Rny such that |`reσ| ≤ µ%2, with µ and
%2 the constants given respectively in A3 and (17). /

Lemma 4 is proved in Appendix D. Pick ν > 0 and let

Xν =
{
x̂ ∈ Rnx | |x− x̂| ≤ ν, (w, z, x) ∈ Ω0

}
.

Then Xν is compact and, by continuity of κ, there exists ρκ ∈
K such that |κ(x̂)−κ(x)| ≤ ρκ(|x̂−x|) for all (x̂, x) ∈ (Xν)2.

With %2 and δ̄ defined in Section III-B, let `?s be taken equal
to the `?1(T, ε) produced by Lemma 3 for T ∈ (0, t̄) and

ε = min
{
ν, µ%2/2, ρ

−1
κ (%2/2), ρ−1

κ (µδ̄/2), δ̄/2
}
, (56)

and pick ` > `?s . As p(t) ∈ Ω0 in [T, t̄), then Lemma 3
and (56) imply |`reσ| ≤ µ%2 in [T, t̄). Thus, by Lemma 4
σ(t) = φσ(p(t), e(t)) satisfies (55) in [T, t̄). Moreover, for
t ∈ [T, t̄), x̂(t) ∈ Xν and the argument of sat in (47) satisfies

| − σ − `reσ + κ(Λ(`)`−1ex + x)|
≤ max
p∈Ω0

|bc(p) + bb(p)−1κ(x)|+ |bb(p)−1`reσ|

+ |κ(Λ(`)`−1ex + x)− κ(x))|
≤ max
p∈Ω0

|bc(p) + bb(p)−1κ(x)|+ µ−1|`reσ|+ ρκ(|x̂− x|)

≤ M,

in which we let c(p) = −b(p)−1q(p) and we used (56) and the
fact that |bb(p)−1| ≤ µ−1 for all p (see Remark 2). Hence, for
all t ∈ [T, t̄), the control u = u(x̂, σ̂) is out of the saturation,
and similar arguments show that u(x, σ̂) is too. Thus, for all
t ∈ [T, t̄), (47) and (55) yield

q(p) + b(p)u = κ(x) + δ, (57)

where

δ := −`reσ + b(p)b−1(κ(Λ(`)`−1ex + x)− κ(x)) (58)

which, in view of (56), satisfies |δ(t)| ≤ δ̄ in [T, t̄). Since
p(T ) ∈ BB%1 , we conclude by definition of Ω0 in Section III-B,
that for every trajectory of the closed-loop system (32) orig-
inating in X0, (w, z, x, η, x̂, σ̂) is bounded, defined on R+,
and such that (w(t), z(t), x(t)) ∈ Ω0 for all t ∈ R+. Thus,
the first claim of the theorem holds.

B. Practical Regulation

Equations (57)-(58) and p ∈ Ω0 imply |q(p) + b(p)u −
κ(x)| ≤ ρx(max{|σ − σ̂|, |x − x̂|}) for all t ≥ T and for
some ρx ∈ K, so that (35) follows by Lemma 3 by noticing
that T can be taken arbitrarily small.

Regarding (36), we observe that (47) and (55) imply

|u− u?(w)| ≤
∣∣c(p)− u?(w) + b(p)−1(κ(x)− `reσ)

+ b−1(κ(Λ(`)`−1ex + x)− κ(x))
∣∣

≤ ρu max{|p|B, |σ̂ − σ|, |x̂− x|}
|σ + bu?(w)| ≤ ρσ max{|p|B, |σ̂ − σ|, |x̂− x|}

for t ≥ T and for some ρu, ρσ > 0. Therefore, Lemma 1
implies that, for some ρO ∈ K, lim supt→∞ |x(t)|O ≤
ρO(lim supt→∞max{|σ(t) − σ̂(t)|, |x(t) − x̂(t)|}), so that
the second claim follows by Lemma 3.

C. Asymptotic Behavior

We can write

η = τ(w) + din, u = u?(w) + dout

with u? given by (19) and

din := η − τ(w), dout := u− u?(w) (59)

that are bounded. Hence, if (M,Ξ, ϕ,Θ, ϑ) satisfies the identi-
fier requirement, also the identifier has complete and bounded
solutions. Pick a solution x = (w, z, x, η, x̂, σ̂, ξ, θ) to (32),
let (ξ?, θ?) : domx → Ξ × Θ be the trajectory produced by
the identifier requirement for (din, dout) given by (59), and
let j? ∈ N be such that ξ?(j) ∈ Ξ? for all j ≥ j?. With
ε? the optimal prediction error defined in (30), let for brevity
ε? := ε(θ?, w) and change variables as e 7→ ζ, where

ζ := (ζx, ζσ) = (ex, eσ − `−rb(p)ε?).

In view of (51), ζx jumps as ζ+
x = ζx and flows according to

ζ̇x = `(A−HC)ζx + `B(ζσ + `−rb(p)ε?) +B∆3,` (60)

with |∆3,`| ≤ a2|ζx|. In view of the stability analysis of
Section VII-A, if ` > `?s then for all t ≥ T , σ assumes the
expression (55), so that the quantity σ? := σ+b(p)ε? satisfies
ζσ = `−r(σ̂ − σ?) and, for all t ≥ T ,

σ? = −bc(p) + bε? +m(p)
(
κ(x)− `rζσ

)
(61)

where we let m(p) := I − bb(p)−1. Since

ε̇? = Ls(w)u
?(w)− ∂γ̂

∂η
(θ?, τ(w)) (Fτ(w) +Gu?(w))

and, by definition of ψ,

ψ(θ?, τ(w), u?(w)) =
∂γ̂

∂η
(θ?, τ(w)) (Fτ(w) +Gu?(w)),

for all (t, j) � (T, j?), then

σ̇? = −bψ(θ?, τ(w), u?(w)) +K1 +K2,` +K3,`−m(p)`r ζ̇σ

for all (t, j) � (T, j?), where

K1 := b
(
Ls(w)u

?(w)− Lf(p,u)c(p)
)



K2,` := bb(p)−1(Lf(p,u)b(p))b(p)
−1
(
κ(x)− `rζσ

)
K3,` := m(p)κ′(x)(κ(x) + δ)

with δ defined in (58). Thus, ζσ jumps according to

ζ+
σ = ζσ + `−rb(p)(ε? − ε?+) (62)

in which we let ε?+ := ε(ϑ(ξ?), w), and, for all (t, j) �
(T,j

?), it flows according to

ζ̇σ = −`Hr+1Cζx +m(p)ζ̇σ + `−rK (63)

in which

K := −K1−K2,`−K3,`−b
(
ψ(θ, η, u)−ψ(θ?, τ(w), u?(w))

)
.

Notice that I −m(p) = bb(p)−1 is uniformly invertible and
bounded (see Remark 2). Then, solving (63) for ζ̇σ yields

ζ̇σ = −`Hr+1Cζx−(b(p)−b)b−1`Hr+1Cζx+`−rb(p)b−1K.
(64)

Hence, ζ satisfies ζ+ = ζ + Bσ`
−rb(p)(ε? − ε?+) during

jumps and, in view of (60) and (64),

ζ̇ = `Aζ +Bσ
(
− α`Hr+1Cζx + `−rb(p)b−1K

)
+Bx(`1−rb(p)ε? + ∆3,`)

during flows, with α := (b(p)−b)b−1 that due to A3 satisfies
|α| ≤ 1− µ everywhere. In view of A1 and since p ∈ Ω0 for
all t ∈ R+, there exist ν1, ν2, ν3 > 0 such that

|b(p)b−1K1| ≤ ν1

(
|p|B + |u− u?(w)|

)
,

|b(p)b−1K2,`| ≤ ν2

(
|p|B + `r|ζ|

)
,

|b(p)b−1K3,`| ≤ ν3

(
|p|B + `r|ζ|+ |ε?|

)
for t ≥ T . Regarding the term ψ(θ, η, u)−ψ(θ?, τ(w), u?(w)),
we notice that for all j ≥ j?, θ?(j) ∈ Θ? = ϑ(Ξ?), while
(τ(w), u?(w)) ∈ H? × U? holds everywhere by construction.
Thus, since in view of the identifier requirement ∂γ̂/∂η is
locally Lipschitz and |θ − θ?| ≤ ρθ(|ξ − ξ?|) with ρθ locally
Lipschitz for all (θ, θ?, ξ, ξ?) ∈ Θ×Θ? × Ξ× Ξ?, and since
ψ is globally bounded, there exists ν4 > 0 such that

|ψ(θ, η, u)− ψ(θ?, τ(w), u?(w))|
≤ ν4

(
|ξ − ξ?|+ |η − τ(w)|+ |u− u?(w)|

)
holds for each (t, j) � (T, j?). In view of (47) and (61), and
since for t ≥ T the control is out of saturation, then

|u− u?(w)| ≤ ν5

(
|p|B + |ε?|+ `r|ζ|

)
(65)

for some ν5 > 0. Therefore, the last term of (64) satisfies

|`−rb(p)b−1K| ≤ ν6|ζ|+ `−rν7

(
|(p, η)|E + |ξ − ξ?|+ |ε?|

)
for all (t, j) � (T, j?), with ν6 := max{ν2 +ν3, (ν1 +ν4)ν5}
and ν7 := max{ν1 +ν2 +ν3, (ν1 +ν4)ν5, ν3, ν4} and with E
given by (22). Hence, Lemma 2 and (62) yield the existence
of constants ν8, ν9, ν10, ν11 > 0 such that

|ζ(t, j)| ≤ max
{
ν8e−`ν9(t−tj)|ζ(tj , j)|, ν10`

−r|ε?|(t,j)

ν10`
−(r+1)|(p, η)|E,t, ν10`

−(r+1)|ξ − ξ?|j
}

|ζ(tj , j + 1)| ≤ 2 max
{
|ζ(tj , j)|,

ν11`
−r|(ε?(tj , j), ε?+(tj , j))|

}
(66)

for all (t, j) � (T, j?). We then observe that, since for each
(t, j) ∈ domx, tj − tj ≥ T, then for each constant ν̄ > 0,
sufficiently large values of ` yield

lim
t+j→∞, (t,j)∈domx

ν̄j+1e−`ν9t ≤ lim
j→∞

ν̄j+1e−`ν9jT = 0.

Thus, there follows from (66) by induction and standard ISS
arguments that there exist ν12 > 0 and `?3(T) > `s such that
` > `?3(T) implies

lim sup
t→∞

|ζ(t)| ≤ν12`
−(r+1) max

{
lim sup
t→∞

|(p(t), η(t))|E ,

lim sup
j→∞

|ξ(j)− ξ?(j)|, ` lim sup
t+j→∞

|ε?(t, j)|
}
,

(67)
in which we used the fact that lim supt+j→∞ |ε?(t, j)| =
lim supt+j→∞ |ε?+(t, j)|. We now observe that (65) implies
that the flow equation of (w, z, η) can be written as (21),
with δ1 + δ2 = u − u?(w) such that |δ1| ≤ ν5|p|B and
|δ2| ≤ ν5(|ε?|+ `r|ζ|). Moreover, substituting (47), (61) into
the equation of x yields (15) for all t ≥ T , with δ defined in
(58) that, for some ν13 > 0, fulfills |δ| ≤ ν13(|ε?| + `r|ζ|).
Hence, Lemma 1 and the ISS property of (15) yield the
existence of ν12 > 0 such that

lim sup
t→∞

|(p(t), η(t))|E ≤ ν13 max
{

lim sup
t+j→∞

|ε?(t, j)|,

`r lim sup
t→∞

|ζ(t)|
} (68)

where we recall that E is given by (22). On the other hand,
the identifier requirement, the expression (59) and the bounds
above yield the existence of a ν14 > 0 such that

lim sup
j→∞

|ξ(j)− ξ?(j)| ≤ ν14 max
{

lim sup
t+j→∞

|ε?(t, j)|,

lim sup
t→∞

|(p(t), η(t))|E , `r lim sup
t→∞

|ζ(t)|
}
(69)

Denote |(p, η, ξ)|E? := max{|(p, η)|E , |ξ − ξ?|}. Then, with
ν15 := max{ν13, ν14, ν13ν14}, (68) and (69) yield

lim sup
t+j→∞

|(p(t), η(t), ξ(j))|E?

≤ ν15 max
{
`r lim sup

t→∞
|ζ(t)|, lim sup

t+j→∞
|ε?(t, j)|

}
.

(70)

With O and | · |O? defined respectively in (33) and (34), we
observe that |x|O? ≤ ν16 max{|(p, η, ξ)|E? , `r|ζ|} for some
ν16 > 0. Therefore, substituting (67) into (70) and using |ζ| ≤
|x|O? and |(p, η, ξ)|E? ≤ |x|O? yields

lim sup
t+j→∞

|x(t, j)|O?

≤ ν17 max
{
`−1 lim sup

t+j→∞
|x(t, j)|O? , lim sup

t+j→∞
|ε?(t, j)|

}
.

with ν17 := ν16 max{ν12, ν15, ν12ν15}, and the claim follows
with αx = ν17 by taking `?ε(T) > max{`?3(T), ν17}. �

VIII. CONCLUSION

In this paper we proposed a regulator design for a class
of multivariable nonlinear systems which employs an adap-
tive internal model unit and an extended high-gain observer



to solve instances of practical, approximate and asymptotic
output regulation problems. The proposed design employs
system identification algorithms to carry out the estimation
of an optimal internal model, and does not rely on high-
gain stabilization techniques. Future research directions will
be aimed at exploiting the additional freedom on the stabilizer
to deal with non minimum-phase systems, and at investigating
further identification algorithms that fits in the framework, thus
developing further the bridge with the system identification
literature. We also aim to study the robustness of the proposed
scheme in the formal framework of [14], by connecting the
identifier’s validation to classical robustness concepts.

APPENDIX

A. Proof of Proposition 2

Consider the interconnection (29) with (Ξ, ϕ,Θ, ϑ) given in
SectionV-B and (αin, αout) = (τ(w), u?(w)). Define ξ?1(j) =
col(τ j1 , . . . , τ

j
N ) and ξ?2(j) = col(u?1

j , . . . , u?N
j) in which

τ ji =

{
0 if j + i−N − 1 < 0

τ(w(tj+i−N−1)) otherwise

u?i
j =

{
0 if j + i−N − 1 < 0

u?(w(tj+i−N−1)) otherwise

and let θ?(j) := G(λnη (ξ?1(j)), λny (ξ?2(j))). Then, in view
of (41), for each solution pair ((ς, w, ξ), (din, dout)) to (29),
((ς, w, ξ?), (0, 0)) is a solution pair to (29). Moreover, for j ≥
j? := N , J(ς,w)(j)(θ) = IN

(sjin,s
j
out)

(θ) with sjin := λnη (ξ?1(j))

and sjout = λny (ξ?2(j)). Hence the optimality and regularity
items of the identifier requirements follow by A5. Finally, the
stability item follows by the fact that the system ξ̃ := ξ − ξ?
is an asymptotically stable linear system driven by the input
(din, dout), and hence it is ISS relative to the origin and with
respect to the input (din, dout) with linear gains. �

B. Proof of Lemma 2

The proof follows by the same arguments of [18]. In
particular, we first consider the system

χ̇ = `Aχ+ `BσHr+1δ0 +Bxδ1 + δ2 (71)

with |δ1| ≤ π1|χ|. Since A is Hurwitz there exists P = P> >

0 fulfilling A
>
P + PA = −I and such that the Lyapunov

candidate V (χ) :=
√
χ>Pχ satisfies λ|χ| ≤ V (χ) ≤ λ̄|χ|,

with λ and λ̄ respectively the smallest and largest eigenvalues
of P . Then, there exist b1, b2, b3 > 0 such that, for all χ 6= 0,

V̇ (χ) ≤ −b1`V (χ) + b2(`|δ0|+ |δ1|+ |δ2|)
≤ −(b1`− b3)V (χ) + b2(`|δ0|+ |δ2|)

Let `?0 := 2b3/b1. Then b3− b1` ≤ −b1`/2 for all ` ≥ `?0, and
this shows that χ is ISS relative to the origin and with respect
to the inputs δ0 and δ2. Moreover, the asymptotic gain between
δ2 and |χ| is of the form b4/`, for some b4 independent on `.

Regarding the asymptotic gain between δ0 and |χ|, we
observe that (71) is a linear system, and there follows from
the structure of A, B and C, that when δ1 = 0 and δ2 = 0,

Cχ
(r+1)
1 +H1Cχ

(r)
1 + · · ·+HrCχ̇1 +Hr+1Cχ1 = Hr+1δ0.

Thus, the transfer function from δ0 to Cχ1 has the form

(sr+1I +H1s
r + · · ·+Hrs+Hr+1)−1Hr+1.

Since all the poles are real and negative by construction, and
since each Hi is diagonal, it follows that the gain between
δ0 and |Cχ1| is unitary. Finally the proof follows by standard
small-gain arguments by observing that system (53) is ob-
tained as the interconnection of (71) and the algebraic system
δ0 = −αCχ1 and that, since |α| ≤ ᾱ < 1 the overall gain is
less than one. �

C. Proof of Lemma 3

In view of (46), if ` ≥ `?0 (54) leads to the existence of
π1, π2 > 0 such that

max{|x(t)− x̂(t)|, |σ(t)− σ̂(t)|}

≤ max
{
`rπ1e

−a4`t max{|x(0)− x̂(0)|, |σ(0)− σ̂(0)|},

π2`
−1|∆5|t

}
.

As X0 is compact, there exists b > 0 such that max{|x(t)−
x̂(t)|, |σ(t)− σ̂(t)|} ≤ max{b`r exp(−`a4t), π2a1`

−1} for all
t ∈ (0, T0). Pick T ∈ (0, T0) and ε > 0 arbitrarily, and let

t̄(`, ε) :=
r

`a4
log
(
` r
√
b/ε
)
.

Then lim`→∞ t̄(`, ε) = 0, so that there exists ¯̀(ε, T ) > 0
such that, for all ` ≥ ¯̀(ε, T ), t̄(`, ε) ≤ T , and t ≥ t̄(`, ε)
yields b`r exp(−`a4t) ≤ b`r exp (− log (`rb/ε)) = ε. Hence,
the claim holds with `?1(T, ε) := max{`?0, ¯̀(ε, T ), π2a1/ε}. �

D. Proof of Lemma 4

We want to show that φσ(p, eσ) = φ with φ the quantity
defined by φ := bb(p)−1q(p) + (I − bb(p)−1)

(
κ(x)− `reσ

)
.

First, notice that the quantity s := −φ− `reσ + κ(x) satisfies

s = −bb(p)−1q(p) + bb(p)−1
(
κ(x)− `reσ

)
.

In view of Remark 2, |bb(p)−1| ≤ µ−1 for all p. If p ∈ Ω0

and |`reσ| ≤ µ%2, in turn, we get

|s| ≤ max
p∈Ω0

|bc(p) + bb(p)−1κ(x)|+ µ−1|`reσ|

≤ max
p∈Ω0

|bc(p) + bb(p)−1κ(x)|+ %2 ≤ M.

Hence, sat(s) = s, and it is easy to see that Tσ(p, eσ, φ) = 0.
By uniqueness of solutions of (48), we conclude φ =
φσ(p, eσ) which is the claim. �
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