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A B S T R A C T 

Fragmentation of rotating gaseous systems via gravitational instability is believed to be a crucial mechanism in several 
astrophysical processes, such as formation of planets in protostellar discs, of molecular clouds in galactic discs, and of stars 
in molecular clouds. Gravitational instability is fairly well understood for infinitesimally thin discs. Ho we ver, the thin-disc 
approximation is not justified in many cases, and it is of general interest to study the gravitational instability of rotating fluids 
with different degrees of rotation support and stratification. We derive dispersion relations for axisymmetric perturbations, which 

can be used to study the local gravitational stability at any point of a rotating axisymmetric gaseous system with either barotropic 
or baroclinic distribution. Three-dimensional (3D) stability criteria are obtained, which generalize previous results and can be 
used to determine whether and where a rotating system of given 3D structure is prone to clump formation. For a vertically 

stratified gaseous disc of thickness h z (defined as containing ≈70% of the mass per unit surface), a sufficient condition for 
local gravitational instability is Q 3D 

≡ ( 
√ 

κ2 + ν2 + c s h 

−1 
z ) / 

√ 

4 πGρ < 1, where ρ is the gas volume density, κ the epicycle 
frequency, c s the sound speed, and ν2 ≡ ρ ′ 

z p 

′ 
z /ρ

2 , where ρ ′ 
z and p 

′ 
z are the v ertical gradients of, respectiv ely, gas density and 

pressure. The combined stabilizing effects of rotation ( κ2 ) and stratification ( ν2 ) are apparent. In unstable discs, the conditions 
for instability are typically met close to the mid-plane, where the perturbations that are expected to grow have characteristic 
radial extent of a few h z . 

Key words: galaxies: kinematics and dynamics – galaxies: star formation – instabilities – planets and satellites: formation –
protoplanetary discs – stars: formation. 

1  I N T RO D U C T I O N  

Rotating gaseous structures confined by gravitational potentials 
are widespread among astrophysical systems on a broad range 
of scales. Prototypical examples include g aseous g alactic discs, 
accretion discs, and protostellar and protoplanetary discs, but rotation 
can be non-negligible also in pressure-supported systems such as 
stars, molecular clouds, galactic coronae, and hot atmospheres of 
galaxy clusters. The confining gravitational potential can be due 
either only to the gas itself or to a combination of the gas self- 
gravity and of an external potential. Whenever the gas self-gravity 
is locally non-negligible with respect to the external potential, the 
evolution of the rotating fluid depends crucially on whether it is 
gravitationally stable or unstable. For instance, in galactic discs 
local gravitational instability is expected to lead to fragmentation, 
growth of dense gas clumps and eventually to star formation (see 
e.g. section 8.3 of Cimatti, Fraternali & Nipoti 2019 ). In protostellar 
discs, gravitational instability can contribute either directly (via gas 
collapse) or indirectly (via concentration of dust particles) to the 
process of planet formation (Kratter & Lodato 2016 ). It is thus not 
surprising that the study of gravitational instability of rotating fluids 
has a fairly long history in the astrophysical literature. 

Gravitational instability in infinitesimally thin discs has been 
widely studied with fundamental contributions dating back to more 
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than 50 years ago (e.g. Lin & Shu 1964 ; Toomre 1964 ; Hunter 1972 , 
and references therein). Ho we ver, the thin-disc approximation is not 
justified in many cases. In protostellar discs, the vertical extent of the 
gas can be substantial (e.g. Law et al. 2022 ). Also gaseous discs in 
present-day galaxies can have non-negligible thickness (Yim et al. 
2014 ), and there are indications that disc thickness increases with 
redshift (F ̈orster Schreiber et al. 2006 ), though dynamically cold 
disc are found also in high-redshift galaxies (Rizzo et al. 2021 ). 
Thick gaseous discs are observed in present-day dwarf galaxies (e.g. 
Roychowdhury et al. 2010 ) and expected in dwarf protogalaxies 
(Nipoti & Binney 2015 ). Moreover, the observational galactic vol- 
umetric star-formation laws (Bacchini et al. 2019 ) strongly suggest 
that the three-dimensional (3D) structure of discs has an important 
role in the process of conversion of gas into stars. 

Several authors have tackled the problem of the gravitational in- 
stability of non-razor-thin discs, essentially obtaining modifications 
of the thin-disc stability criteria that account for finite thickness 
(Toomre 1964 ; Romeo 1992 ; Bertin & Amorisco 2010 ; Wang 
et al. 2010 ; Elmegreen 2011 ; Griv & Gedalin 2012 ; Romeo & 

Falstad 2013 ; Behrendt, Burkert & Schartmann 2015 ). 3D systems 
have been studied only under rather specific assumptions: Chan- 
drasekhar ( 1961 ) analysed infinite homogeneous rotating systems, 
while Safronov ( 1960 ), Genkin & Safronov ( 1975 ), and Bertin & 

Casertano ( 1982 ) considered homogeneous rotating slabs of finite 
thickness. Goldreich & Lynden-Bell ( 1965a , b ) accounted in detail for 
the vertical stratification of the gas distribution, assuming polytropic 
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equation of state (and thus polytropic distributions) with specific 
values of the polytropic index (see also Meidt 2022 ). Mamatsashvili 
& Rice ( 2010 ) studied 3D models of discs with polytropic vertical 
structure and Keplerian rotation. 

In this work, we address the general problem of the local gravita- 
tional stability of rotating stratified fluids. Considering axisymmetric 
perturbations, we derive 3D dispersion relations and stability criteria 
for baroclinic and barotropic configurations, as well as for somewhat 
idealized models of vertically stratified discs. 

2  PRELIMINARIES  

We perform a linear stability analysis of rotating astrophysical 
gaseous systems taking into account the self-gravity of the pertur- 
bations. Here, we introduce the equations on which such analysis is 
based, and we define the general properties of the unperturbed fluid 
and of the disturbances. 

2.1 Fundamental equations 

For our purposes, the rele v ant set of equations consists of the adia- 
batic inviscid fluid equations combined with the Poisson equation. 
As it is natural when dealing with rotating system, we work in 
cylindrical coordinates ( R , φ, z). For simplicity, we consider only 
axisymmetric unperturbed configurations and perturbations, so all 
deri v ati ves with respect to φ are null. Under these assumptions the 
fundamental system of equations reads 

∂ρ

∂t 
+ 

1 

R 

∂( Rρu R ) 

∂R 

+ 

∂( ρu z ) 

∂z 
= 0 , 

∂u R 

∂t 
+ u R 

∂u R 

∂R 

+ u z 

∂u R 

∂z 
− u 

2 
φ

R 

= − 1 

ρ

∂p 

∂R 

− ∂	 

∂R 

− ∂	 ext 

∂R 

, 

∂u φ

∂t 
+ u R 

∂u φ

∂R 

+ u z 

∂u φ

∂z 
+ 

u R u φ

R 

= 0 , 

∂u z 

∂t 
+ u R 

∂u z 

∂R 

+ u z 

∂u z 

∂z 
= − 1 

ρ

∂p 

∂z 
− ∂	 

∂z 
− ∂	 ext 

∂z 
, 

p 

γ − 1 

(
∂ 

∂t 
+ u · ∇ 

)
ln ( pρ−γ ) = 0 , 

1 

R 

∂ 

∂R 

(
R 

∂	 

∂R 

)
+ 

∂ 2 	 

∂z 2 
= 4 πGρ, (1) 

where, ρ, u = ( u R , u φ, u z ), p , and 	 are, respectively, the gas density, 
velocity, pressure, and gravitational potential, γ is the adiabatic 
index, and 	 ext is an external fixed gravitational potential. 

2.2 Properties of the unperturbed system and of the 
perturbations 

Let us consider a generic quantity q = q ( R , z, t ) describing a property 
of the fluid (such as ρ, p , 	 or any component of u ): q can be written 
as q = q unp + δq , where the (time independent) quantity q unp describes 
the stationary unperturbed fluid and the (time dependent) quantity 
δq describes the Eulerian perturbation. From now on, without risk of 
ambiguity, we will indicate any unperturbed quantity q unp simply as 
q . 

We assume that the unperturbed system is a stationary rotating ( u φ
�= 0) solution of the system of equations ( 1 ) with no meridional 
motions ( u R = u z = 0). Limiting ourselves to a linear stability 
analysis, we consider small ( | δq / q | � 1) plane-wave perturbations 
with spatial and temporal dependence δq ∝ exp [i( k R R + k z z − ωt )], 
where ω is the frequency, and k R and k z are the radial and vertical 
components of the wav ev ector k , respectiv ely. 

3  LI NEAR  P E RTU R BAT I O N  ANALYSI S  A N D  

DI SPERSI ON  R E L AT I O N S  

Here, we present the linear analysis of the system of equations ( 1 ) for 
a rotating stratified fluid perturbed with disturbances with properties 
described in Section 2.2 . We derive the dispersion relations for gen- 
eral baroclinic and barotropic distributions, as well as for vertically 
stratified discs with negligible radial density and pressure gradients. 

3.1 Baroclinic distributions 

When the unperturbed distribution is baroclinic, surfaces of constant 
density and pressure do not coincide and 
 = 
( R , z), where 

 is the angular velocity defined by u φ = 
R . Perturbing and 
linearizing system of equations ( 1 ), under the assumption of a 
baroclinic unperturbed distribution, we get 

−i ωδρ + i 

(
k R − i 

R 

− i 
ρ ′ 

R 

ρ

)
ρδu R + i 

(
k z − i 

ρ ′ 
z 

ρ

)
ρδu z = 0 , 

−i ωδu R − 2 
δu φ = −i 
k R 

ρ
δp + 

p 

′ 
R 

ρ2 
δρ − i k R δ	, 

−i ωδu φ + 

∂( 
R ) 

∂R 

δu R + R 

∂


∂z 
δu z + 
δu R = 0 , 

−i ωδu z = −i 
k z 

ρ
δp + 

p 

′ 
z 

ρ2 
δρ − i k z δ	, 

−i ω 

δp 

p 

+ i γω 

δρ

ρ
+ σ ′ 

R δu R + σ ′ 
z δu z = 0 , 

−
(

k 2 − i 
k R 

R 

)
δ	 = 4 πGδρ, (2) 

where k = 

√ 

k 2 R + k 2 z , ρ ′ 
R ≡ ∂ρ/ d R, ρ ′ 

z ≡ ∂ρ/ d z, p 

′ 
R ≡ ∂ p/∂ R, 

p 

′ 
z ≡ ∂ p/∂ z, σ ′ 

R ≡ ∂ σ/∂ R, σ ′ 
z ≡ ∂ σ/∂ z, and σ ≡ ln ( p ρ−γ ) is the 

normalized specific entropy. In deriving the system of equations ( 2 ), 
we did not make any assumption on the wavelength of the distur- 
bance: Assuming now that k is large compared to 1/ R , the system of 
equations ( 2 ) leads to the dispersion relation 

ω 

4 + 

(
4 πGρ − κ2 − ν2 − c 2 s k 

2 
)
ω 

2 + N 

2 c 2 s k 
2 

+ c 2 s k z 

(
k z κ

2 − k R R 

∂
2 

∂z 

)
− 4 πGρ

k z 

k 2 

(
k z κ

2 − k R R 

∂
2 

∂z 

)

+ κ2 ν2 = 0 , (3) 

where c 2 s = γp/ρ is the adiabatic sound speed squared, κ is the 
epic ycle frequenc y, defined by 

κ2 ≡ 4 
2 + 

d 
2 

d ln R 

, (4) 

N 

2 ≡ − 1 

γρ

[
k 2 z 

k 2 
σ ′ 

R p 

′ 
R + 

k 2 R 

k 2 
σ ′ 

z p 

′ 
z −

k R k z 

k 2 

(
σ ′ 

R p 

′ 
z + σ ′ 

z p 

′ 
R 

)]
(5) 

is a generalized buoyancy (or Brunt–V ̈ais ̈al ̈a) frequency squared (see 
Balbus 1995 ), and we have introduced the frequency ν, defined by 

ν2 ≡ ρ ′ 
z p 

′ 
z 

ρ2 
= 

c 2 s 

γ

ρ ′ 
z 

ρ

p 

′ 
z 

p 

, (6) 

which is related to vertical pressure and density gradients. 

3.2 Bar otr opic distributions 

When the unperturbed distribution is barotropic, the isobaric and 
isop ycnic surf aces coincide, and 
 = 
( R ) (e.g. Tassoul 1978 ). The 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/518/4/5154/6840252 by U
niversità degli Studi di Bologna user on 20 D

ecem
ber 2022



5156 C. Nipoti 

MNRAS 518, 5154–5162 (2023) 

dispersion relation for the barotropic case, obtained from equation ( 3 ) 
substituting ∂ 
2 / ∂ z = 0, is 

ω 

4 + 

(
4 πGρ − κ2 − ν2 − c 2 s k 

2 
)
ω 

2 + N 

2 c 2 s k 
2 + κ2 c 2 s k 

2 
z 

− 4 πGρκ2 k 
2 
z 

k 2 
+ κ2 ν2 = 0 , (7) 

where, given that p = p ( ρ), N 

2 can be written as 

N 

2 = − 1 

γρ

d σ

d ρ

d p 

d ρ

(
k R 

k 
ρ ′ 

z −
k z 

k 
ρ ′ 

R 

)2 

. (8) 

3.3 Vertically stratified discs 

A gaseous disc with finite thickness can be approximately described 
o v er most of its radial extent by a stationary rotating fluid with 
negligible radial gradients of pressure and density compared to the 
corresponding vertical gradients. If we further assume that 
= 
( R ), 
the dispersion relation describing the evolution of axisymmetric 
perturbations in such a disc model can be obtained from equations ( 7 ) 
and ( 8 ), simply by imposing 1 ρ ′ 

R = 0. The resulting dispersion 
relation is 

ω 

4 + 

(
4 πGρ − κ2 − ν2 − c 2 s k 

2 
)
ω 

2 + N 

2 
z c 

2 
s k 

2 
R + κ2 c 2 s k 

2 
z 

−4 πGρκ2 k 
2 
z 

k 2 
+ κ2 ν2 = 0 , (9) 

where N 

2 
z ≡ −σ ′ 

z p 

′ 
z / ( γρ) is the vertical Brunt–V ̈ais ̈al ̈a frequency 

squared. 

4  STABILITY  C R ITERIA  

Here, we derive the stability criteria obtained analysing the dispersion 
relations of Section 3 , starting from the simplest case (vertically 
stratified discs) and then moving to more general barotropic and 
baroclinic distributions. The dispersion relations of Section 3 were 
derived without any assumption on the sign of κ2 , N 

2 
z , and ν2 . 

Ho we ver, gi ven that we are interested in the gravitational instabilities, 
in the following we perform the stability analysis assuming κ2 > 0 
and N 

2 
z > 0, to exclude, at least when 
 = 
( R ), rotational and 

conv ectiv e instabilities (e.g. Tassoul 1978 ). It is useful to note that 

N 

2 
z = − p 

′ 
z 

γρ

(
p 

′ 
z 

p 

− γ
ρ ′ 

z 

ρ

)
= ν2 − ( p 

′ 
z ) 

2 

γρp 

< ν2 , (10) 

so our assumption N 

2 
z > 0 implies ν2 > 0. 

The dispersion relations of Section 3 were derived using as only 
assumption on the perturbation wavenumber that k is larger than 1/ R . 
Further restrictions on k derive from the requirement that the size of 
the disturbance must be smaller than the characteristic length-scales 
of the unperturbed system. Thus, based on the arguments reported in 
Appendix A , the following stability analysis (with the only exception 
of Section 4.1.2 ) will be restricted to modes with 

k 2 > k 2 J + 

ν2 

c 2 s 

, (11) 

where k J = 

√ 

4 πGρ/c s is the Jeans wavenumber. In Section 4.1.2 , 
where the analysis is limited to radial modes in vertically stratified 
discs, we consider also longer -wa velength modes that do not satisfy 
the condition in equation ( 11 ). 

1 For the stationary hydrodynamic equations to be satisfied with 
 = 
( R ) 
and ρ′ 

R = 0, the gravitational potential must be separable in cylindrical 
coordinates. Though in general this is not the case globally, it can be locally 
a reasonable approximation for our idealized model. 

4.1 Criteria for vertically stratified discs 

Using the notation introduced at the beginning of Appendix B , the 
dispersion relation in equation ( 9 ) can be written in the form of 
equation ( B1 ). Analysing this dispersion relation, in Section B1 we 
show that for vertically stratified discs a sufficient condition for 
stability is equation ( B6 ), i.e. 

4 πGρN 

2 
z < 

(
ν2 − N 

2 
z 

)(
N 

2 
z − κ2 

)
(sufficient for stability) . (12) 

We recall that this criterion refers only to stability against short- 
wavelength perturbations (i.e. modes satisfying the condition in 
equation 11 ), so stability against longer wavelength modes is not 
guaranteed. In the following, we analyse the behaviour of specific 
families of modes, which could allow us to obtain sufficient criteria 
for instability. 

4.1.1 Modes with k R = 0 

F or v ertical modes the dispersion relation, obtained substituting k R = 

0 in equation ( 9 ), is 

ω 

4 + 

(
4 πGρ − κ2 − ν2 − c 2 s k 

2 
z 

)
ω 

2 + κ2 c 2 s k 
2 
z − 4 πGρκ2 

+ κ2 ν2 = 0 , (13) 

which is in the form of equation ( B7 ). In Appendix B2 , we show 

that all vertical modes satisfying the condition in equation ( 11 ) are 
stable. 

4.1.2 Modes with k z = 0 

Given that our disc model has no density or pressure radial gradients, 
when studying purely radial ( k z = 0) modes we can relax the assump- 
tion expressed by equation ( 11 ), so we consider here also smaller 
| k R | modes, requiring only 2 that | k R | is larger than 1/ R . Ho we ver, 
as pointed out by Safronov ( 1960 ) and Goldreich & Lynden-Bell 
( 1965a ), when considering radial modes with | k R | smaller than ∼1/ h z , 
where h z is the disc thickness, care must be taken when perturbing 
the Poisson equation, to a v oid the unphysical divergence for small 
| k R | that one would obtain from the last equation of the system of 
equations ( 2 ) when k z = 0. Following Goldreich & Lynden-Bell 
( 1965a ), here we consider a perturbed Poisson equation in the form 

− (
k 2 R + h 

−2 
z 

)
δ	 = 4 πGδρ, (14) 

which approximately accounts for the finite vertical extent of the 
disc (see also Toomre 1964 ; Shu 1968 ; V andervoort 1970 ; Y ue 1982 , 
for similar approaches in two-dimensional models). Combining this 
equation with the first five equations of the system of equations ( 2 ), 
assuming k z = 0 and ρ ′ 

R = p 

′ 
R = σ ′ 

R = 0, for wavenumbers larger 
than 1/ R we get the dispersion relation 3 

ω 

4 + 

(
4 πGρ

k 2 R 

k 2 R + h 

−2 
z 

− κ2 − ν2 − c 2 s k 
2 
R 

)
ω 

2 

+ N 

2 
z c 

2 
s k 

2 
R + κ2 ν2 = 0 , (15) 

which is in the form of equation ( B9 ). In Appendix B3 , we show 

that for this dispersion relation a sufficient condition for instability 

2 We must also require that | k R | is larger than (d κ2 /d R )/ κ2 , which ho we ver is 
typically of the order of 1/ R . 
3 When ρ′ 

z = 0 (and thus N z = 0 and ν = 0), this dispersion relation reduces to 
a quadratic dispersion relation, which is essentially that obtained by Safronov 
( 1960 ) for a homogeneous disc of finite thickness. 
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is given by equation ( B14 ), which can be rewritten as 

Q 3D ≡
√ 

κ2 + ν2 + c s h 

−1 
z √ 

4 πGρ
< 1 (sufficient for instability) . (16) 

When this condition is satisfied the instability occurs for interme- 
diate values of | k R | , i.e. those modes that satisfy the condition in 
equation ( B13 ), i.e. 

c 4 s k 
4 
R −

(
4 πGρ − κ2 − ν2 − c 2 s h 

−2 
z 

)
c 2 s k 

2 
R + c 2 s h 

−2 
z ( κ2 + ν2 ) < 0 , 

(17) 

consistent with the general finding that the short-wa velength distur - 
bances are stabilized by pressure and long-wavelength disturbances 
by rotation 4 (e.g. Toomre 1964 ; Goldreich & Lynden-Bell 1965a ). 

To gauge the parameter h z appearing in equations ( 14 –17 ), in 
Appendix C we compare the criterion in equation ( 16 ) with those ob- 
tained for two specific models by Goldreich & Lynden-Bell ( 1965a ). 
This comparison suggests adopting h 60% 

� h z � h 80% 

, where h X% 

is 
the height of a strip centred on the mid-plane containing X% of the 
mass per unit surface. h z ≈ h 70% 

can be taken as reference fiducial 
value. 

4.2 Criteria for bar otr opic distributions 

We consider here the dispersion relation (equation 7 ) obtained for 
barotropic distributions. We did attempt to analyse this dispersion 
relation with an approach similar to that of Appendix B1 ; ho we ver, 
we did not find simple general stability criteria independent of the 
wav ev ector. As in the case of vertically stratified discs (Section 4.1.2 ), 
a sufficient criterion for instability can be obtained by considering 
purely radial perturbations. When k z = 0, the dispersion relation for 
barotropic distributions (equation 7 ) becomes 

ω 

4 + 

(
4 πGρ − κ2 − ν2 − c 2 s k 

2 
R 

)
ω 

2 + N 

2 
z c 

2 
s k 

2 
R + κ2 ν2 = 0 , (18) 

which is in the form of equation ( B15 ). In Appendix B4 , we show 

that a sufficient condition for instability is given by equation ( B18 ), 
which can be rewritten as 

4 πGρN 

2 
z > ν2 ( ν2 − N 

2 
z ) + ( κ2 / 2) 2 (sufficient for instability) . 

(19) 

We note that equation ( 10 ) implies that the right-hand side of this 
inequality is al w ays positive, so stratification, as well as rotation, can 
contribute to counteract the instability. 

4.3 Criteria for baroclinic distributions 

The dispersion relation found for baroclinic distributions (equation 3 ) 
differs from the corresponding dispersion relation for barotropic dis- 
tributions (equation 7 ) only for the presence of terms ∝ k z k R ∂ 
2 / ∂ z. 
Thus, the behaviour of radial ( k z = 0) modes in baroclinic dis- 
tributions is determined by the dispersion relation in equation 
( 18 ). It follows that the sufficient criterion for instability given by 
equation ( 19 ) applies also to systems with baroclinic distributions. 

4 For an infinite homogeneous uniformly rotating medium ( h z → ∞ , ν = 0, 
κ2 = 4 
2 ), condition ( 17 ) reduces to c 2 s k 

2 
R < 4 πGρ − 4 
2 , which is the 

instability criterion found by Chandrasekhar ( 1961 ). 

5  A  CASE  STUDY:  DISCS  IN  VERTI CAL  

I SOTHERMAL  EQUI LI BRI UM  

As a case study, we consider here a simple model of a disc with 
the properties described in Section 3.3 , without external potential, 
assuming that the vertical density distribution is given by the self- 
gravitating isothermal slab (Spitzer 1942 ): 

ρ( z) = ρ0 sech 2 ˜ z , (20) 

where ρ0 = ρ(0) is the density in the mid-plane, ˜ z ≡ z/b, and b = 

c s , iso / 
√ 

2 πGρ0 , where c s, iso ≡ c s γ −1/2 is the position-independent 
isothermal sound speed (in this section we assume γ = 5/3). For this 
model we have 

ν2 = 8 πGρ0 tanh 2 ˜ z (21) 

and 

N 

2 
z = 

2 

5 
ν2 . (22) 

5.1 Sufficient criterion for instability 

Using equations ( 20 –22 ) and ρ0 = πG� 

2 / (2 c 2 s , iso ), where 

� = 

∫ ∞ 

−∞ 

ρ( z )d z (23) 

is the surface density, for the isothermal disc the sufficient condition 
for instability (equation 16 ) becomes 

Q 3D = 

√ 

Q 

2 

2 
cosh 2 ˜ z + 2 sinh 2 ˜ z + 

√ 

5 

6 

b 

h z 

cosh ̃  z < 1 (24) 

(sufficient for instability) , 

where 

Q ≡ κc s , iso 

πG� 

(25) 

is the classical two-dimensional (2D) Toomre ( 1964 ) instability 
parameter at a given radius. Fig. 1 shows Q 3D as a function of z for 
representati ve v alues of Q when h z = h 60% 


 1 . 4 b (left-hand panel) 
and h z = h 80% 


 2 . 2 b (right-hand panel), which should bracket 
realistic values of h z (see Section 4.1.2 and Appendix C ). Q 3D is an 
increasing function of | z| , so, at given radius, the disc is more prone 
to gravitational instability near the mid-plane. For both choices of 
h z , the Q = 1 model is stable and the Q = 0.25 model is unstable; 
the Q = 0.5 model is marginally stable for h z = h 60% 

and unstable 
for h z = h 80% 

. The o v erall condition to hav e instability at an y height 
at a given radius in the considered stratified disc is Q 3D,min = Q 3D (0) 
< 1, i.e. 

Q < Q crit = 

√ 

2 −
√ 

5 

3 

b 

h z 

(sufficient for instability) , (26) 

which gives Q crit 
 0.48 for h z = h 60% 

and Q crit 
 0.83 for h z = h 80% 

, 
broadly consistent with Toomre’s 2D criterion Q < 1, given the 
known stabilizing effect of finite thickness (see Section 5.3 ). 

When the conditions for instability are met, there is a range of 
unstable radial wavenumbers (satisfying the condition in equation 
17 ) centred at | k R | = k R ,inst (see Appendix B3 ). For the discs here 
considered k R ,inst is largest in the mid-plane, where it can be written 
as 

k 2 R, inst h 

2 
z = 

3 

5 

h 

2 
z 

b 2 

(
1 − Q 

2 

2 

)
− 1 

2 
, (27) 

which gives 0.7 � k R ,inst h z � 1.5 for h 60% 

� h z � h 80% 

and 0 � 

Q � Q crit . Thus, the typical unstable modes ( | k R | h z ≈ 1) have 
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Figure 1. The 3D instability parameter Q 3D as a function of height from the mid-plane | z| for a rotating, self-gravitating stratified disc in vertical isothermal 
equilibrium (equation 20 ) at a given radius, for different values of Toomre’s 2D instability parameter Q . Q 3D is calculated for γ = 5/3 and either h z = h 60% 

(thickness containing 60% of the mass per unit surface; left-hand panel) or h z = h 80% 

(thickness containing 80% of the mass per unit surface; right-hand panel). 
Our sufficient 3D instability criterion predicts instability where Q 3D < 1, but does not guarantee stability where Q 3D > 1. 

radial wavelength ≈2 πh z , consistent with estimates obtained in 
finite thickness-corrected 2D models (Kim, Ostriker & Stone 2002 ; 
Romeo & Agertz 2014 ; Behrendt et al. 2015 , see Section 5.3 ). We 
note that, provided that h z is smaller than R , k R ,inst is larger than 1/ R , 
consistent with our assumptions. 

5.2 Sufficient criterion for stability 

Combining the condition in equation ( 12 ) with equations ( 21 ) and 
( 22 ), we get that for the isothermal stratified disc a sufficient condition 
for stability is 

4 

3 cosh 2 ˜ z 

(
6 

5 
sinh 2 ˜ z − 1 

)
> Q 

2 (sufficient for stability) . (28) 

The left-hand side of this inequality is an increasing function of | z| . 
When Q � 1.27, this sufficient criterion guarantees stability at | z| 
> z crit,stab , where z crit, stab > b asinh 

√ 

5 / 6 
 0 . 82 b is an increasing 
function of Q . 

Fig. 2 shows, for a representative isothermal disc with Q = 0.4 
at a given radius, stability and instability regions, as a function of 
height from mid-plane, obtained combining our sufficient criteria 
for stability (equation 28 ) and instability (equation 24 ), taking for 
the latter as fiducial value h z = h 70% 


 1 . 7 b, such that Q crit 
 0.67 
(equation 26 ). The disc is unstable close to the mid-plane (at | z| < 

z crit,inst 
 0.25 b ) and stable at | z| > z crit,stab 
 0.9 b , while stability is 
not guaranteed at intermediate heights. 

5.3 Comparison with finite-thickness corrected 2D models 

Here, we compare our results on the isothermal disc with those 
obtained with modifications of the thin-disc stability criteria that 
account for finite thickness, which, as mentioned in Section 1 , are a 
complementary approach to study the local gravitational instability 
in realistically thick discs. These modified 2D criteria are based on 
2D models in which the self-gravity of the perturbation is corrected 
with a reduction factor F , depending both on the radial wavenumber 
of the perturbation and on the disc scale height. Different authors 
have adopted different functional forms of F ; ho we ver, for gi ven 
F , by computing the wavenumber of the most unstable mode, it 

Figure 2. Instability and stability regions as a function of height from the 
mid-plane | z| at a given radius for a rotating, self-gravitating stratified disc 
in vertical isothermal equilibrium (equation 20 ) with 2D Toomre’s parameter 
Q = 0.4 for γ = 5/3. The instability region ( | z| < z crit,inst ; red) is determined 
by the criterion Q 3D < 1 (equation 24 ) with h z = h 70% 

. The stability region 
( | z| > z crit,stab ; green) is determined by the condition in equation ( 28 ). In the 
yellow region stability is not guaranteed by our criteria. 

is al w ays possible to express the condition for instability as Q 

< Q crit , where Q crit depends on the unperturbed vertical density 
distribution. Focusing on the self-gravitating isothermal disc, we can 
thus compare the values of Q crit that we find using our 3D criterion 
( Q crit 
 0 . 5 , 0 . 7 and 0.8 for h z = h 60% 

, h 70% 

and h 80% 

, respectively; 
see Sections 5.1 and 5.2 ), with those obtained in the literature 
using modified 2D criteria: Q crit 
 0.65 (Kim et al. 2002 ), 0.6 � 

Q crit � 0.65 (Bertin & Amorisco 2010 , considering two different 
functional forms of F ; see also Bertin 2014 ), Q crit 
 0.69 (Wang 
et al. 2010 ), Q crit 
 0.67 (Romeo & Falstad 2013 , based on the 
calculations presented in Romeo 1992 ), and Q crit 
 0.70 (Behrendt 
et al. 2015 ). These values of Q crit are consistent with those found 
with our 3D criterion, with a remarkably good agreement when 
h z ≈ h 70% 

. 
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6  C O N C L U S I O N S  

In this paper, we have derived dispersion relations for axisymmetric 
perturbations, which can be used to study the local gravitational 
stability in stratified rotating axisymmetric gaseous systems with 
general baroclinic (equation 3 ) and barotropic (equation 7 ) distri- 
butions, as well as in vertically stratified discs (equations 9 , 13 , 
and 15 ). We have obtained 3D sufficient stability (equation 12 ) and 
instability (equations 16 and 19 ) criteria, which generalize previous 
results and can be used to determine whether and where a rotating 
system of given 3D structure is prone to fragmentation and clump 
formation. 

In the case of vertically stratified discs, we have expressed the 
sufficient instability criterion as Q 3D < 1 (equation 16 ), where the 
dimensionless parameter Q 3D = ( 

√ 

κ2 + ν2 + c s h 

−1 
z ) / 

√ 

4 πGρ can 
be seen as a 3D version of Toomre’s 2D Q parameter, in which 
the combined stabilizing effects of rotation ( κ2 ) and stratification 
( ν2 ) are apparent. A shortcoming of this 3D criterion is that the 
disc thickness parameter h z is not exactly defined. Ho we ver, the 
comparison with previous 2D and 3D models in the literature 
(Section 5 and Appendix C ) suggests using h z ≈ h 70% 

as fiducial 
value, where h 70% 

is the height of a strip centred on the mid- 
plane containing 70% of the mass per unit surface. Independent 
of the specific assumed definition of h z , applying our criteria 
to discs with isothermal vertical stratification, we have shown 
quantitatively that the conditions for gravitational instability are 
more easily met close to the mid-plane, while stability pre v ails 
far from the mid-plane. In the mid-plane of unstable discs, the 
typical perturbations that are expected to grow have radial extent of 
a few h z . 

When the conditions for gravitational instability are satisfied, the 
perturbations are expected to grow and enter the non-linear regime, 
which cannot be studied using the linearized equations considered 
in this work. Though numerical simulations would be necessary 
to describe quantitatively the non-linear growth of axisymmetric 
disturbances, qualitatively we expect that the outcome of the in- 
stability would be the formation of thick ring-like structures in 
the equatorial plane of the rotating gaseous systems, which might 
then fragment into spiral arms, filaments, and clumps (see Wang 
et al. 2010 ; Behrendt et al. 2015 ). These clumps are likely to be 
the sites of star formation in galactic discs and possibly of planet 
formation in protostellar discs. Collapsed o v erdense rings are not 
expected to form out of the mid-plane, not only because there the 
instability conditions are harder to meet (see Figs 1 and 2 ), but 
also because in the vertical direction the gravitational instability is 
essentially Jeans-like, with Jeans length is of the order of the vertical 
scale height (see Section 4.1.1 and Appendix A ), so there is no 
room to form vertically distinct rings. The 3D structure of filaments 
formed in the mid-plane of gravitationally unstable plane–parallel 
stratified non-rotating systems has been studied with hydrodynamic 
simulations by Van Loo, Keto & Zhang ( 2014 , see their figs 6 
and 7). Mutatis mutandis, the results of Van Loo et al. ( 2014 ) 
suggest that, in an unstable rotating stratified disc, the collapsed 
o v erdense rings will likely have vertical density distributions similar 
in shape to that of the unperturbed disc, but with smaller scale 
height. 
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APPENDI X  A :  RESTRI CTI ONS  O N  T H E  

PERTURBATI ON  WAVENUMBER  

For the perturbation analysis to be consistent, the size of the dis- 
turbance must be smaller than the characteristic length-scales of the 
unperturbed system. In particular, the properties of the background 
must not vary significantly o v er the size of the perturbations, so we 
must exclude from our analysis perturbations with k smaller than 
1/ � , where � ≡ | q | / ||∇q || is the characteristic length o v er which an y 
quantity q varies in the unperturbed configuration at the position of 
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the disturbance. An estimate of 1/ � 2 is ||∇ ρ||||∇ p || /( ρp ). In general, 
in the presence of rotation, the vertical density and pressure gradients 
are stronger than the corresponding radial gradients, so we can take 
1 /� 2 ≈ | ρ ′ 

z p 

′ 
z | / ( ρp). Of course, the underlying assumption is that the 

unperturbed gas distribution is sufficiently smooth, so that � can give 
a measure of macroscopic gradients and is not affected by small-scale 
inhomogeneities. 

As an additional restriction on the perturbation wavenumber, we 
also require k to be larger than 1 / L , where L is the macroscopic 
length-scale of the gaseous system. 5 In order to estimate L , let us 
consider a very general argument (e.g. Binney & Tremaine 2008 ; 
Bertin 2014 ): It follows from the virial theorem that an equilibrium 

self-gravitating gaseous system of mass M and sound speed c s 
has characteristic size L ≈ GM/c 2 s . This equation, combined with 
M ≈ ρL 

3 , where ρ is the mean density of the system, gives 
1 / L 

2 ≈ Gρ/c 2 s ≈ k 2 J , where k 2 J = 4 πGρ/c 2 s is the Jeans wavenum- 
ber squared. So the characteristic size of a self-gravitating gaseous 
system is of the order of the Jeans length. This has the sometime 
o v erlooked implication that, in the case of a gas cloud of finite size, 
the classical Jeans stability analysis pro v es that linear perturbations 
with k � k J are stable, but does not pro v e that modes with k 
� k J are unstable. For a rotating flattened system the shortest 
macroscopic scale is the vertical scale height, which is typically of 
the order 1/ k J (see e.g. the case of a vertical isothermal distribution; 
Section 5 ). 

The abo v e simple arguments indicate that we must exclude from 

our analysis modes with k 2 � | ρ ′ 
z p 

′ 
z | / ( ρp) and modes with k � k J . 

In practice, to approximately implement both these conditions, we 
find it convenient to limit our analysis to modes with k satisfying 
the condition given by equation ( 11 ). This restriction is adopted 
throughout Section 4 , with the only exception of Section 4.1.2 . 

APPENDIX  B:  ANALYSIS  O F  T H E  DISPERSI ON  

R E L AT I O N S  

In this appendix, we analyse dispersion relations in the form P ( ω, s ) = 

0, where ω is the frequency and s ≡ c 2 s k 
2 with k the wavenumber, 

which are biquadratic in ω. For given s , we indicate the zeros of 
P as ω 

2 
1 and ω 

2 
2 ≥ ω 

2 
1 , and the discriminant of P as � ω . In the 

analysis, when dealing with a quadratic polynomial of s , we indicate 
its discriminant as � s and its zeros as s 1 and s 2 ≥ s 1 . When ω 

2 is 
real, the condition for stability is ω 

2 
1 > 0. Modes such that ω 

2 is not 
real are unstable (o v erstable), because there is at least one solution 
with positive Im( ω). 

To simplify the notation we define the positive quantities A ≡
4 πG ρ, B ≡ κ2 , C ≡ ν2 , D ≡ N 

2 
z , and E ≡ c 2 s h 

−2 
z , all with dimensions 

of a frequency squared, as well as the dimensionless quantity ζ ≡
k 2 z /k 

2 , which is a measure of the relative contribution of the vertical 
component of the wav ev ector. The coefficients of the dispersion 
relations depend in general on A , B , C , D , E , and ζ . By definition 
0 ≤ ζ ≤ 1; we further assume A > 0, B > 0, C > 0, D > 0, and 
E > 0 (see Section 4 ). We recall that C > D (see equation 10 ) 
and that in all the following sections, with the only exception of 
Appendix B3 , we limit our analysis to modes with s > A + C 

(see equation 11 ). 

5 k > 1/ � does not necessarily imply k > 1 / L : e.g. � → ∞ where ||∇q || → 

0. 

B1 Dispersion relations in the form ‘ABCD ζ ’ 

We consider here dispersion relations in the form 

ω 

4 + ( A − B − C − s) ω 

2 + (1 − ζ ) Ds + ζBs − ζAB + BC = 0 . 

(B1) 

The discriminant of the dispersion relation is 

� ω = ( A − B − C − s) 2 − 4(1 − ζ ) Ds − 4 ζBs + 4 ζAB − 4 BC 

= s 2 − 2 [ A − B − C + 2(1 − ζ ) D + 2 ζB ] s 

+ ( A − B − C) 2 + 4 ζAB − 4 BC, (B2) 

which is positive for s → ∞ . The discriminant of � ω ( s ) is 

� s = 4[ A − B − C + 2(1 − ζ ) D + 2 ζB] 2 − 4( A − B − C) 2 

− 16 ζAB + 16 BC 

= 16(1 − ζ ) 
[
( A − B − C + D) D + BC − ζ ( B − D) 2 

]
. (B3) 

ω 

2 
1 is given by 

2 ω 

2 
1 = s − ( A − B − C) −

√ 

� ω . (B4) 

When � ω > 0, given that s > A + C > A − B − C , the condition for 
stability ω 

2 
1 > 0 can be written as 

s > 

A − ζ−1 C 

1 + ζ−1 (1 − ζ )( D/B) 
, (B5) 

which is al w ays satisfied. It follows that there is never monotonic 
instability. 

When ( A − B − C + D ) D + BC < 0, i.e. 

AD < ( C − D)( D − B) (sufficient for stability) , (B6) 

� s < 0 (and thus � ω > 0) ∀ ζ . Thus, the condition in equation ( B6 ) 
is sufficient for stability. 

B2 Dispersion relations in the form ‘ABC’ 

We consider here dispersion relations in the form 

ω 

4 + ( A − B − C − s) ω 

2 + Bs − AB + BC = 0 . (B7) 

The discriminant of the dispersion relation is 

� ω = ( A − B − C − s) 2 − 4 Bs + 4 AB − 4 BC 

= [ s − ( A + B − C)] 2 ≥ 0 , (B8) 

so ω 

2 is al w ays real. For stability ω 

2 
1 > 0, i.e. s − ( A − B − C) −√ 

[ s − ( A + B − C)] 2 > 0, which, for s > A + C > A − B − C 

becomes [ s − ( A − B − C )] 2 > [ s − ( A + B − C )] 2 > 0. If s > 

( A + B − C ) the latter inequality reduces to B > 0, which is al w ays 
satisfied; if s < A + B − C it reduces to s > A + C , which is al w ays 
satisfied. Thus all modes are stable. 

B3 Dispersion relations in the form ‘ABCDE’ 

We consider here dispersion relations in the form 

ω 

4 + 

(
As 

s + E 

− B − C − s 

)
ω 

2 + Ds + BC = 0 , (B9) 

with C > D . Different from the rest of Appendix B , here we consider 
also modes with s < A + C . The discriminant of the dispersion 
relation is 

� ω = 

(
A 

s 

s + E 

− B − C − s 

)2 

− 4 Ds − 4 BC, (B10) 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/518/4/5154/6840252 by U
niversità degli Studi di Bologna user on 20 D

ecem
ber 2022



Gravitational instability of rotating fluids 5161 

MNRAS 518, 5154–5162 (2023) 

whose sign is determined by the sign of a third order polynomial in 
s . Ho we ver, we can deri ve useful instability conditions even without 
determining the sign of � ω . When � ω < 0 we have overstability. 
When � ω > 0, the condition to have monotonic instability is ω 

2 
1 < 0, 

i.e. 

− g( s) < 

√ 

g 2 ( s) − 4 Ds − 4 BC , (B11) 

where 

g( s) ≡ A 

s 

s + E 

− B − C − s. (B12) 

The inequality is satisfied only when g ( s ) > 0. Thus, if g ( s ) > 0 
and � ω > 0, we have monotonic instability. If g ( s ) > 0 and � ω < 

0, we have overstability. This implies that a sufficient condition for 
instability is g ( s ) > 0, i.e. 

s 2 − ( A − B − C − E) s + E( B + C) < 0 

(sufficient for instability) , (B13) 

whose discriminant is � s = A 

2 − 2( B + C + E ) A + ( B + C − E ) 2 . 
The larger root s 2 of the polynomial is given by 2 s 2 = A − B − C −
E + 

√ 

� s . We have instability when � s > 0 and s 2 > 0. Imposing 
these two conditions we get 
√ 

B + C + 

√ 

E √ 

A 

< 1 (sufficient for instability) , (B14) 

which is thus a sufficient condition for instability. We note that, 
when combined with s 2 > 0, � s > 0 implies s 1 > 0: The interval 
of unstable wavenumbers s 1 < s < s 2 is centred at ( A − B − C −
E) / 2 > 

√ 

E( B + C) . 

B4 Dispersion relations in the form ‘ABCD’ 

We consider here dispersion relations in the form 

ω 

4 + ( A − B − C − s) ω 

2 + Ds + BC = 0 , (B15) 

with C > D . The discriminant of the dispersion relation is 

� ω = ( A − B − C − s) 2 − 4 Ds − 4 BC 

= s 2 − 2( A − B − C + 2 D) s + ( A − B − C) 2 − 4 BC. (B16) 

The discriminant of � ω ( s ) is 

� s = 4( A − B − C + 2 D) 2 − 4( A − B − C) 2 + 16 BC 

= 16[( A − B − C + D) D + BC] . (B17) 

When � ω > 0, the condition for instability ω 

2 
1 < 0 gives 

Ds + BC < 0, which is never satisfied, so there is no mono- 
tonic instability. The conditions to have overstability are � s 

> 0 and s 2 > A + C . Given that s 2 = A − B − C + 2 D + 

s 
√ 

( A − B − C + 2 D) D + BC , these conditions jointly lead to 

AD > C( C − D) + ( B/ 2) 2 (sufficient for instability) . (B18) 

When this condition is satisfied there are unstable (o v erstable) modes. 

APPEN D IX  C :  C O M PA R I S O N  WITH  CRITERI A  

F O R  V ERTICALLY  STRATIFIED  DISCS  WI TH  

POLY TROP IC  EQUATION  O F  STATE  

In order to gauge the disc thickness parameter h z appearing in 
our instability criterion (equation 16 ) for vertically stratified discs, 
here we compare our criterion with those found by Goldreich & 

Lynden-Bell ( 1965a ) for uniformly rotating self-gravitating discs 
with polytropic equation of state p ∝ ργ ′ 

, considering in particular 
values of the polytropic index γ

′ = 1 and γ
′ = 2. Our linear stability 

analysis, performed for adiabatic perturbations, can be adapted to the 
case of a polytropic equation of state simply imposing γ = γ

′ 
, when 

the unperturbed distribution is stratified with p ∝ ργ ′ 
. As a measure 

of the thickness h z , we can take the height h X% 

of a strip centred on 
the mid-plane containing a fraction ξ = 0.01 X of the mass per unit 
surface: h X% 

= 2 z ξ , with z ξ such that 

1 

� 

∫ z ξ

−z ξ

ρ( z)d z = ξ, (C1) 

where � is given by equation ( 23 ). The following analysis of the 
γ

′ = 1 (Appendix C1 ) and γ
′ = 2 (Appendix C2 ) cases suggests that 

a good range of values of h z should be h 60% 

� h z � h 80% 

. 

C1 Self-gravitating isothermal disc with equation of state p ∝ ρ

In the case of an isothermal disc, the vertical density distribution 
is ρ( z) = ρ0 sech 2 ( z/ b ), where ρ0 = ρ(0) and b = c s , iso / 

√ 

2 πGρ0 

(Spitzer 1942 ; see also Section 5 ), so 

h X% 

= 2 b atanh ξ. (C2) 

Goldreich & Lynden-Bell ( 1965a ) found that a uniformly rotating 
( κ2 = 4 
2 ), self-gravitating isothermal disc is unstable against 
isothermal perturbations when 6 πG ̄ρ/κ2 > 0 . 73, where 

ρ̄ ≡ 1 

� 

∫ ∞ 

−∞ 

ρ2 ( z)d z = 

2 

3 
ρ0 (C3) 

is the mean gas density. It is straightforward to show that for 
this disc model, at given radius, the parameter Q 3D ( z) defined in 
equation ( 16 ) attains its minimum at z = 0, so a sufficient condition 
to have instability at any height in the disc at the considered radius is 
Q 3D,min = Q 3D (0) < 1. For this model, imposing γ = 1, the instability 
condition Q 3D,min < 1 can be rewritten as 

πG ̄ρ

κ2 
> 

1 

6 

(
1 − 1 √ 

2 

b 

h z 

)−2 

(sufficient for instability) . (C4) 

Using h z = h X% 

and equation ( C2 ), the right-hand side of the abo v e 
equation equals 0.73 for ξ 
 0.59, i.e. h z ≈ h 60% 

. 

C2 Self-gravitating polytropic disc with equation of state p ∝ ρ2 

In this case, the vertical density distribution is given by (Goldreich & 

Lynden-Bell 1965a ) 

ρ( z) = ρ0 cos 
(π

2 

z 

a 

)
, (C5) 

for | z| ≤ a and ρ = 0 for | z| > a , where ρ0 = ρ(0) is the density in 
the mid-plane, a = 

√ 

πc s , 0 / (4 
√ 

Gρ0 ) is a characteristic scale-length, 
and c s , 0 = 

√ 

2 p 0 /ρ0 is the sound speed at z = 0 with p 0 the pressure 
in the mid-plane. For this model ρ̄ = ( π/ 4) ρ0 and 

h X% 

= 

4 a 

π
arcsin ξ. (C6) 

Goldreich & Lynden-Bell ( 1965a ) found that this model is unstable 
against polytropic γ

′ = 2 perturbations when πG ̄ρ/κ2 > 1 . 11. 
As for the isothermal disc (Appendix C1 ), also in this case, the 

6 Recently, Meidt ( 2022 ) claimed a lower threshold for instability 4 πG ρ0 / κ2 

> 1, i.e. πG ̄ρ/κ2 > 1 / 6, which is the limit of equation ( C4 ) for h z → 

∞ . Ho we ver, as far as we can tell, this threshold derives from including 
modes with | k z | < k J , which should instead be excluded for consistency (see 
equation 11 and Appendix A ). 
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condition to have instability at any height at a given radius in the disc 
is Q 3D,min = Q 3D (0) < 1, which, imposing γ = 2, can be rewritten as 

πG ̄ρ

κ2 
> 

π

16 

(
1 − 2 

π

a 

h z 

)−2 

(sufficient for instability) . (C7) 

Using h z = h X% 

and equation ( C6 ), the right-hand side of the abo v e 
inequality equals 1.11 for ξ 
 0.76, i.e. h z ≈ h 80% 

. 
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