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THE GENERALIZED ROOF F (1, 2, n): HODGE STRUCTURES AND DERIVED CATEGORIES

ENRICO FATIGHENTI, MICHAŁ KAPUSTKA, GIOVANNI MONGARDI, ANDMARCO RAMPAZZO

Abstract. We consider generalized homogeneous roofs, i.e. quotients of simply connected, semisimple Lie
groups by aparabolic subgroup,which admit two projective bundle structures. Given a general hyperplane
section on such a variety, we study the zero loci of its pushforwards along the projective bundle structures
and we discuss their properties at the level of Hodge structures. In the case of the flag variety F (1, 2, n)
with its projections to Pn−1 and G(2, n), we construct a derived embedding of the relevant zero loci by
methods based on the study of B-brane categories in the context of a gauged linear sigma model.

Keywords. 14J45 Fano varieties; 14J81 relationship with physics; 14F08 derived categories of sheaves,
dg categories, and related constructions in algebraic geometry; 14C30 transcendentalmethods, Hodge
theory (algebro-geometric aspects); 14M15 Grassmannians, Schubert varieties, flag manifolds.

1. Introduction

The existence of two different projective bundle structures on a Fano variety has recently raised atten-
tion: in [ORS20] a link with the Campana–Peternell conjecture has been highlighted, while in [Kan18]
the study of a broad class of K-equivalences has been reduced to the classification of roofs of projective
bundles, i.e. special Fano varieties of Picard rank two which admit two different projective bundle
structures of the same rank. In [KR20, R20] this idea has been related to the construction of pairs of
Calabi–Yau varieties and their Hodge and derived equivalences. In particular, when the roof is a ra-
tional homogeneous varietyG/P , the construction is greatly simplified: in this class fall, for instance,
the derived and Hodge equivalent Calabi–Yau pairs of [Muk98, IMOU19, Kuz16, KR19, R20].

In this paper, we introduce a generalization of Kanemitsu’s notion of roof: a generalized roof is a ra-
tional homogeneous variety of Picard rank two which admits two projective bundle structures and a
line bundle L restriciting to O(1) on both types of fibers. The original definition of roof is achieved
by asking for the two projective bundles to have the same rank. We then consider generalized roofs
which are homogeneous varieties and call these varieties generalized homogeneous roofs. LetX be a
generalized homogeneous roof with projective bundle structures hi : X −→ Bi for i ∈ {1; 2}. Given
a general section of L, which in the homogeneous case is O(1, 1) := h∗

1O(1) ⊗ h∗
2O(1), we construct a

pair of varieties Yi ⊂ Bi defined as the zero loci of the two pushforwards of that section along h1 and
h2. While in the case of a roof these varieties are Calabi–Yau, the vanishing of the first Chern class is
in general lost by our generalization. Instead, we provide examples of pairs where Y1 is general type
and Y2 is Fano.

Hodge-theoretical results: a Fano/general type duality. One of the main results of this paper is the iden-
tification of countably many families of varieties with very different geometrical properties, but the
same Hodge-theoretical core. In fact, our starting point was to notice a surprising coincidence between
the Hodge numbers of the zero loci of (a general global section of) the vector bundles Q∨(2) and
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U(2) on the Grassmannians G(k, V ) and G(k + 1, V ). These zero loci are subcanonical, with canoni-
cal class opposite in sign and equal in modulus. In particular, for any fixed k, they cut either a pair
of a (smaller dimensional) general type variety and a (higher dimensional) Fano variety, or a pair
of Calabi-Yau varieties. In the Calabi-Yau case the Hodge numbers are exactly the same. In fact this
can be considered a generalization of the G(2, 5) case, already studied in details by [KR19], [BPC20],
[OR18]. Perhaps more surprisingly, a similar phenomenon holds in the general type/Fano scenario,
with the (relevant) non-zero Hodge numbers of the latter being equal to the (relevant) Hodge num-
bers of the former. In order to explain this phenomenon, we give a slightly modified version of the
jump procedure in [BFM21], and produce an isomorphism of a (rational) Hodge sub-structure which
coincides with the vanishing cohomology in the known cases. This is the content of Theorem 3.6.
In the Calabi-Yau case, it is then natural to conjecture that (as in the G(2, 5) case) such a pair of va-
rieties are derived equivalent, but not isomorphic. In the general type/Fano case, our result can be
considered as a Hodge-theoretical approximation of the Fano visitor phenomenon, in the sense of, e.g.,
[KKLL17]. In fact, although we prove the derived categorical extension of Theorem 3.6 only when
k = 1, it is natural to speculate that the general type variety of the pair will be a visitor, and the Fano
the corresponding Host. In an upcoming work we will go even further in our speculation. We study
a more general conjecture formulated in terms of homological projective duality, and we support it
with some examples.

Generalized roofs and derived categories. In [KR20] it has been conjectured that a pair of Calabi–Yau
varieties arising from a roof should be derived equivalent, and such conjecture is supported by many
examples [Muk98, Kuz16, KR19, KR20]. It is natural to expect that in our generalization a derived
embedding should occur. We prove the existence of such embedding for the case of the generalized
roof F (1, 2, n) for every n (Theorem 4.26). The proof relies on the method ofwindow categories (see for
example [ADS15, Seg11]), i.e. identifying the derived categories of Y1 and Y2 with some categories
ofB-branes via Knörrer periodicity [Shi12], and constructing the embedding at the level of B-branes.
A possible, alternative proof of Theorem 4.26 could have been formulated in the spirit of Leung–
Xie’s approach to the related problem of the flip between total spaces [LX19], see Remark 4.27 for the
relation with our proof.

Interaction with physics. The proof of Theorem 4.26 requires the construction of a gauged linear sigma
model (GLSM). Such objects have been first introduced byWitten in [Wit93] to explain the correspon-
dence between two different quantum field theories via phase transition: a nonlinear sigma model
with a Calabi–Yau complete intersection as a vacuummanifold, and a Landau–Ginzburgmodel. This
framework proved to be a useful asset to formulate a physical proof of mirror symmetry in the context
of toric varieties (see for example [HK+03]). Furthermore, the choice of a non abelian gauge group
allows the coexistence of multiple geometric phases (i.e. with a smooth Calabi–Yau variety as vacuum
manifold)which are expected to be derived equivalent [HHP08]. This provides amethod to construct
candidate pairs of derived equivalent and non isomorphic Calabi–Yau varieties, which are in general
hard to find. On the other hand, Fano varieties can be interesting for the purpose of understanding
a possible generalization of mirror symmetry: while the existence of rigid Calabi–Yau varieties chal-
lenges the notion of mirror family, it has been proposed that the whole mirror construction should be
understood at the level of supermanifolds [Set94, GKN09] where Fano varieties appear as bosonic com-
ponents. In this context, a better understanding of the derived category of Fano manifolds can shed
some light on the super-Calabi–Yau formulation of homological mirror symmetry conjectures.

Acknowledgements. We would like to thank Sergio Cacciatori, Jacopo Gandini, Riccardo Moschetti
and Fabio Tanturri for sharing valuable insight. Wewould also like to express our gratitude to Akihiro
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[Pas09]. We thank the anonymous referee for pointing out a flaw in the proof of the main theorem,
and for the careful and thorough reading. EF and GM are members of the INDAM-GNSAGA. EF,
GM and MR are partially supported by PRIN2017 ”2017YRA3LK”, GM and MR are partially sup-
ported by PRIN2020 ”2020KKWT53”. MK is supported by the project Narodowe Centrum Nauki
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2. Construction

Wework over the field of complex numbers. In the following, wewill call projective bundle of rank r (or
Pr−1-bundle) on a smooth projective varietyX the projectivizationP(E) of a vector bundleE of rank r
overX , together with a map h : P(E) −→ X which itself will be called projective bundle structure. With
the expression Vd we will denote a vector space of dimension d, and we will use the notation Vd[−m]
for a complex equal to zero in every degree except for degreem, where it is isomorphic to Vd.

2.1. Generalized homogeneous roofs. In [Kan18], the notion of roof has been introduced. Instead
of the original definition, we will recall the following characterization which is the most suitable for
the purpose of this paper:

Proposition 2.1. [Kan18, Proposition 1.5] Let X be a smooth projective Fano variety of Picard rank two,
such that its extremal contractions are Pr−1-fibrations. Then the following are equivalent:

(1) X is a roof of Pr−1-bundles;

(2) the index of X is r;

(3) there exists a line bundle L such that L restricts toO(1) on the fibers of both the extremal contractions.

Clearly, if we allow the two contractions to be projective space fibrations with different relative di-
mensions, the only statement which is sucsceptible to generalization is the third one. Therefore we
introduce the following definition:

Definition 2.2. A generalized roof is a smooth projective Fano varietyX of Picard number two such that:

(1) X admits two projective bundle structures;

(2) there exists a line bundle L onX such that L restricts toO(1) on both the projective bundle structures.

Let us now consider the situation when a generalized roof is a quotient G/P of a simply connected
semisimple Lie group by a parabolic subgroup. We give the following definition:

Definition 2.3. A generalized homogeneous roof is a quotient G/P of a simply connected, semisimple Lie
group by a parabolic subgroup, which has Picard number two and admits two projective bundle structures.

By [MOSCWW15, Proposition 2.6], the only possible projective bundle structures are morphisms to
G-Grassmannians, hence the data of a generalized homogeneous roof can be represented by a diagram
like the following:
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(2.1)

G/P

G/P1 G/P2

h1 h2

Remark 2.4. Note that a generalized homogeneous roof is always a generalized roof: condition (2)
in Definition 2.2 is satisfied for every quotient G/P of a simply connected semisimple lie group by a
parabolic subgroup such thatG/P has Picard number two and it has two projective bundle structures,
by fixing L := O(1, 1) = h∗

1O(1) ⊗ h∗
2O(1). In fact, one has G/P ≃ P(hi∗O(1, 1)) for i ∈ {1; 2}, which

is equivalent to (2).

We can extend the classification [Kan18, Section 5.2.1] to generalized homogeneous roofs by means of
the same method which leads to the following result, where we adopt the same kind of nomenclature
used by Kanemitsu (listed in the column “type”):

Proposition 2.5. Let G/P be a generalized homogeneous roof. Then it falls in one of the following cases:

G type G/P G/P1 G/P2

SL(n) × SL(m) An−1 × Am−1 Pn−1
× Pm−1 Pn−1 Pm−1

SL(n) AM
n−1 F (1, n− 1, n) Pn−1 Pn−1

SL(n) AG
k,n−1 F (k, k + 1, n) G(k, n) G(k + 1, n)

SO(7) B∗

3 OF (1, 3, 7) OG(1, 7) OG(3, 7)
SO(n) Bn−1

2

OF (n−3

2
, n−1

2
, n) OG(n−3

2
, n) OG(n−1

2
, n)

Sp(n) (n even) Ck,n/2−1 IF (k − 1, k, n) IG(k − 1, n) IG(k, n)
Spin(n) (n even) Dn OG(n

2
− 1, n) OG(n

2
, n)+ OG(n

2
, n)−

F4 F4 F4/P
2,3 F4/P

2 F4/P
3

G2 G2 G2/P
1,2 G2/P

1 G2/P
2

Table 1: Generalized homogeneous roofs

Proof. A rational homogeneous variety G/P is uniquely determined by the data of a marked Dynkin
diagram (DG, IP ), where DG is the Dynkin diagram of G and IP is the set of nodes corresponding
to P . In fact, there is a one-to-one correspondence between parabolic subgroups of G and subsets of
the set IB of nodes of DG (see for instance [MOSCWW15, Section 2.2]). Moreover, an inclusion of
parabolic subgroups P ′ ⊂ P corresponds to a contraction G/P −→ G/P ′, and to an inclusion of sets
IP ′ ⊂ IP . The contraction is locally trivial, and the fiber is isomorphic to the rational homogeneous
variety identified by the pair (DG\IP ′ , IP \IP ′), whereDG\IP ′ is given by erasing fromDG the nodes
IP ′ and taking the connected component containing IP \ IP ′ [BE89, Recipe 2.4.1].

Let us now consider a roof G/P with projections hi : G/P −→ G/Pi for i ∈ {1; 2}. Call (DG, IP ),
(DG, IP1

) and (DG, IP2
) the marked Dynkin diagrams corresponding to respectively G/P , G/P1 and

G/P2. By the above, the fibers of hi are all isomorphic to the rational homogeneous variety defined
by the marked Dynkin diagram (DG \ IPi

, IP \ IPi
). Hence, we can check case by case the data
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(DG, IP , IP1
, IP2

) such that the rational homogeneous varieties associated to (DG \ IP1
, IP \ IP1

) and
(DG \ IP2

, IP \ IP2
) are isomorphic to projective spaces, i.e. falling in one of the following two cases:

where we crossed out the nodes correspond to IP \ IPi
. This explicit analysis eventually leads to Table

1, thus proving our claim. �

Remark 2.6. The same list of Table 1 has been obtained by Pasquier [Pas09, Theorem 1.7] in the context
of horospherical varieties of Picard rank one.

Remark 2.7. Note that the new cases listed in Table 1 with respect to [Kan18, Section 5.2.1] areAm−1×
An−1 for m 6= n, AG

k,n−1 for k 6= n−1
2 , Ck,n/2−1 for n = 3k−2

2 , the whole type Bn−1

2

construction and

the isolated case we denoted as B∗
3 .

In light of the definition of Calabi–Yau pairs associated to a roof [KR20, Definition 2.5], we formulate
the following:

Definition 2.8. A pair (Y1, Y2) associated to G/P is the data of two smooth varieties Y1 ⊂ G/P1 and Y2 ⊂
G/P2 such that there is a general section S ∈ H0(G/P,O(1, 1)) with Z(hi∗S) = Yi for i ∈ {1; 2}.

3. Hodge theoretical analysis for type Ak,n−1: Fano vs General type scenario

Let us consider a vector space V ≃ Cn. For any integer k < n, we call G(k, V ) the Grassmannian
of k-linear subspaces of V . More generally, given any r-tuple k1 < · · · < kr < n, we denote by
F (k1, . . . , kr, V ) the flag variety parametrizing the r-tuples V1 ⊂ · · · ⊂ Vr ⊂ V of flags of linear
subspaces of V . Every flag variety is Fano of Picard rank r, with anti-canonical class ω∨

F
∼= O(k2, k3 −

k1, . . . , n− kr−1), with respect to the basis given by the pullbacks of the Plücker classes. In particular,
for every k < n, G(k, V ) is a Fano kn− k2-fold of index n.

On G(k, V ) we have the tautological sequence

(3.1) 0 −→ U −→ V ⊗O −→ Q −→ 0

where U is the rank k tautological bundle, with determinant O(−1), which reduces to the dual Euler
sequence for k = 1.

The generalized roof of type Ak,n−1 is the flag variety F (k, k + 1, V ), which has two projections h1

and h2, respectively onto G(k, V ) and G(k + 1, V ). Given any point x ∈ G(k, V ), and the associated
k-linear space Wx ⊂ V , one has h−1

1 (x) = {Wy ∈ G(k + 1, V ) : Wx ⊂ Wy} ≃ G(1, V/Wx). Similarly
one has h−1

2 (y) = {x ∈ G(k, V ) : Wx ⊂ Wy} ≃ G(k,Wy). In particular, h1 is a Pn−k−1 bundle, and h2

a Pk bundle and one has h1∗O(1, 1) = Q∨(2) and h2∗O(1, 1) = U(2).

We obtain the diagram:
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Fl := F (k, k + 1, V )

G(k, V ) G(k + 1, V )

h1 h2

Consider now the zero locus M of a section S ∈ H0(Fl,O(1, 1)) ∼= Σ2k−1,1V , namely the cokernel of

the comultiplication map
∧k−1

V ⊗
∧k+2

V →
∧k

V ⊗
∧k+1

V . Moreover, the pushforwards of this
section with respect to the surjections h1 and h2 will give sections

S1 := h1∗S ∈ H0(G(k, V ),Q∨(2));

S2 := h2∗S ∈ H0(G(k + 1, V ),U(2)).

For i = 1, 2, denote by Yi the zero locus of the section Si on the respective Grassmannian and by hi

the restriction of hi toM . We have the following refined diagram:

(3.2)

M

Y1 ⊂ G(k, V ) G(k + 1, V ) ⊃ Y2

h1 h2

The fibers of h1 and h2 are, respectively, generically a Pn−k−2 and a Pk−1 bundle. The locus where the
dimension jumps, and the fiber coincides with the whole Pn−k−1 (resp. Pk) corresponds to the zero
loci of σ1 (resp. σ2), that is Y1 and Y2. We have the following equality in the Grothendieck ring.

Lemma 3.1. Let Y1 and Y2 be as above. Then:

[Lk][Y2]− [Ln−k−1][Y1] + [G(k + 1, V )][Pk−1]− [G(k, V )][Pn−k−2] = 0.

Proof. It follows from the above description ofM as a stratified projective bundle with respect to both
projections, and from the properties of the Grothendieck ring, e.g. [Pk]− [Pk−1] = [Lk]. �

Proposition 3.2. Y1 and Y2 (when of dimension ≥ 3) have Picard rank ρ = 1.

Proof. We show the proof for Y2. From the description of M as stratified projective bundle, we know
that the following equivalence holds in the Grothendieck ring:

(3.3) [Lk][Y2] + [Gr(k + 1, n)][Pk−1] = [M ].

In order to determine ρ, we can solve the equation and compare the appropriate degree. Namely, if
we denote βi := b2i(Gr(k + 1, n)) (i.e. the 2i Betti number of the Grassmannian), and we equate the
components of degree k + 1 in 3.3:

(3.4) b2(Y2) +

k+1∑

i=2

βi = γ.

ButM has dimension (k+1)(n−k−1)+k−1, whichwe need to be greater than 2(k+1). The equation
simplifies to (k + 1)(n− k − 2) > 2. This implies that either k = 1 and n > 4, or k ≥ 2 and any n. The
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only case excluded is therefore for the roof F (1, 2, 4), where Y2 is in fact a del Pezzo surface of degree
5. Notice that in all other cases, Y2 has dimension greater than 3, as requested.

We can then apply Lefschetz theorem on hyperplane section, and it follows that γ = b2(k+1)(F (k, k +

1, n)). On the other hand we know that F (k, k + 1, n) is a Pk-bundle over Gr(k + 1, n). Hence, by

Künneth formula, it follows that b2(k+1)(F (k, k+1, n)) =
∑k+1

j=1 βi. Substituting in 3.4 we get b2(Y2) =

β1 = 1. This implies in particular that ρ(Y2) = 1. The proof for Y1 is very similar, andwewill therefore
omit it. �

We can compute more invariants of Y1 and Y2, for example as follows.

Lemma 3.3. For general S, Y1 has dimension d1 := kn−k2−n+k and canonical class ωY1
∼= OY1

(n−2k−1).
Y2 has dimension d2 := kn+ n− k2 − 3k − 2 and canonical class ωY2

∼= OY2
(−n+ 2k + 1).

Proof. The canonical class can be easily computed by adjunction, since the two varieties can be ex-
pressed as zero loci of homogeneous vector bundles. �

Remark 3.4. For n = 2k + 1, the varieties Y1 and Y2 are Calabi–Yau of the same dimension k2 − 1.
However, for l > k + 1, Y1 is of general type and Y2 is Fano, with dim Y1 < dim Y2.

We want to understand the Hodge-theoretical relation between Y1 and Y2. The upshot is that the
Hodge structure of Y2 will be essentially the same as the one of Y1, up to some class from the ambient
Grassmannian(s). In order to do this, we introduce the following definition:

Definition 3.5. LetX be the n-dimensional smooth zero locus of a section of a globally generated vector bundle
F on G. If ι : X →֒ G denotes the inclusion morphism we will denote by

Hn
f (X,Q) := Im(ι∗ : Hn(G,Q) → Hn(X,Q)).

We will define the v-cohomology Hn
v (X,Q) as the orthogonal to Hn

f (X,Q) with respect to the cup product.
Namely we have

Hn(X,Q) ∼= Hn
f (X,Q)⊕Hn

v (X,Q).

The terminology v-cohomology is supposed to echo both the vanishing cohomology and the variable co-
homology, which are defined for smooth complete intersections, see [P19], [Voi03, 2.3.3] (similarly, its
orthogonal complement is supposed to echo the fixed part of the cohomology). It is worth noting that
if F splits as a sum of ample line bundles, then ι∗ is in fact injective as a consequence of the Lefschetz
hyperplane theorem, andHn

v coincides with the variable cohomology. Such property holds as well if
F|X is ample, see [Ott12, 5.2].

We will show the following theorem.

Theorem 3.6. Let Y1 and Y2 be as in Diagram 3.2. Then we have the following isomorphisms of rational Hodge
structures:

Hd1(Y1,Q) ∼= Hd1(G(k, V ),Q)⊕Hd1

v (Y1,Q),

Hd2(Y2,Q) ∼= Hd2(G(k + 1, V ),Q)⊕Hd2

v (Y2,Q).
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Moreover
Hd1

v (Y1,Q) ∼= Hd2

v (Y2,Q).

Proof. Observe that the first part of the theorem is equivalent to the injectivity of ι∗i , where ιi is the
embedding of Yi in the corresponding Grassmannian, for i ∈ {1; 2}. We start by applying [BFM21,
Prop. 48] to both sides of Diagram 3.2, where we do not write the shifts in cohomology for the sake
of clarity, and we always take the cohomology with Q-coefficients. We obtain

HdM (M) ∼=

k−1⊕

i=0

HdM−2i(G(k + 1, V ))⊕Hd2(Y2);(3.5)

HdM (M) ∼=

n−k−2⊕

i=0

HdM−2i(G(k, V ))⊕Hd1(Y1).(3.6)

By Künneth formula we compute HdM (Fl) in two different ways as

(3.7) HdM (Fl) ∼=

k⊕

i=0

HdM−2i(G(k + 1, V )) ∼=

n−k−1⊕

i=0

HdM−2i(G(k, V )).

On the other hand, M ⊂ Fl is cut by an ample divisor, hence by the Lefschetz hyperplane section
theorem we can combine Equations 3.7 and 3.5 to get injective maps

k⊕

i=0

HdM−2i(G(k + 1, V )) →֒
k−1⊕

i=0

HdM−2i(G(k + 1, V ))⊕Hd2(Y2);(3.8)

n−k−1⊕

i=0

HdM−2i(G(k, V )) →֒
n−k−2⊕

i=0

HdM−2i(G(k, V ))⊕Hd1(Y1).(3.9)

Since dM − 2k = d2 and dM − 2n+ 2k+ 2 = d1, this implies that ι∗2 : Hd2(G(k + 1, V )) −→ Hd2(Y2) is
injective, and ι∗1 as well, thus proving the first part of the statement.

We then write Hdi(Yi) ∼= Hdi(Gi)⊕Hdi
v (Yi). From 3.5 we get

B ⊕Hd1

v (Y1) ∼= A⊕Hd2

v (Y2),

where

A =

k−1⊕

i=0

HdM−2i(G(k + 1, V ))⊕HdM−2k(G(k + 1, V ))

and

B =

n−k−2⊕

i=0

HdM−2i(G(k, V ))⊕HdM−2l+2(G(k, V )).

Thanks to 3.7 we have A ∼= B. The result follows. �

Remark 3.7. The above proof, for dM odd, works also over Z as the decompositions in (3.5) are triv-
ial: this generalizes the result [KR20, Proposition 3.4] which worked only for the Calabi–Yau case.
However, when dM is even, the main difficulty is that the orthogonal decomposition in Definition 3.5
works only with rational coefficients: in fact, as pointed out in [BS21, 2.4], such decomposition in gen-
eral does not hold over Z as the sum of the two sublattices can be not saturated. However, many of
the tools used in the proof of 3.6 works over Z as well.
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Corollary 3.8. Both Y1 and Y2 have only middle Hodge cohomology (either horizontal or vertical). In other
words, for p+ q 6= di, Hp,q(Yi) = 0 unless p = q.

Proof. This holds true for M thanks to the Lefschetz hyperplane theorem. The result follows from
[BFM21, Prop. 48], applied as in 3.5 to all the other degrees in cohomology. �

Corollary 3.9. The middle cohomology of Y2 has Hodge co-level n− 2k − 1. In other words, for p+ q = d2,
hp,q(Y2) = 0 for p < n− 2k − 1, and hn−2k−1,k(n−k−1)−1(Y2) 6= 0 .

3.1. Examples. Computing Hodge numbers of a subvariety X of a Grassmannian G(k, n) cut by a
section of a homogeneous, completely reducible, globally generated vector bundle F is (almost) an
algorithmic procedure.

We briefly recall the strategy. Set rank(F) = r. Also, denote by G := G(k, n). For each j ∈ N, we have
the j-th exterior power of the conormal sequence
(3.10)
0 → Symj F∨|X → (Symj−1 F∨ ⊗ ΩG)|X → . . . → (Symj−k F∨ ⊗ Ωk

G)|X → . . . → Ωj
G|X → Ωj

X → 0.

Since we want to determine hi(Ωj
X), we can compute the dimensions of the cohomology groups of all

the other terms in (3.10), split it into short exact sequences and use the induced long exact sequences
in cohomology to get the result.

Each term (Symj−k F∨ ⊗ Ωk
G)|X is in turn resolved by a Koszul complex

0 →
r∧
F∨ ⊗ Symj−k F∨ ⊗ Ωk

G → . . . → F∨ ⊗ Symj−k F∨ ⊗ Ωk
G → Symj−k F∨ ⊗ Ωk

G,

so that we are led to compute the cohomology groups of the terms above. Since by hypothesis F
is completely reducible, then those terms are completely reducible as well: a decomposition can be
found via suitable plethysms. The cohomology groups can be then obtained via the usual Borel–Weil–
Bott Theorem. Most of these computations can be sped up by using computer algebra systems such
as Macaulay2 [GS].

To see explicit examples of these computations we refer to [DFT21, 3.3] or [FM21, 3.9.1].

3.1.1. The Calabi–Yau case. As we noted in Remark 3.4, for the choice n = 2k + 1 the two zero loci
are smooth Calabi–Yau varieties. This case has been investigated for k = 2 in [KR19] where the pair
has been proven to be derived equivalent, L-equivalent and non birational. For k > 2 the derived
equivalence is very difficult to settle. On the contrary, L-equivalence is simple to determine for every
k, as it follows from [KR20, Remark 2.8] and the fact that G(k, 2k + 1) ≃ G(k + 1, 2k + 1).

Notice that Theorem 3.6 gives an isomorphism betweenHk2−1(Y1,Q) ∼= Hk2−1(Y2,Q). It is therefore
natural to conjecture the following.

Conjecture 3.10. For Y1 and Y2 Calabi-Yau k2−1 as above, we have thatHk2−1(Y1,Z) ∼= Hk2−1(Y2,Z), but
generically Y1 6∼= Y2.

We remark that the dimension and the Hodge numbers grow quickly, although only in the central
part, thanks to 3.9. To give an example, for the F (3, 4, 7) case, the two Calabi-Yau 8-foldswhose Hodge
numbers are collected in the following lemma.
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Lemma 3.11. The non-zero Hodge numbers of the above 8-folds are:

• (for p+ q 6= 8): h0,0 = h1,1 = 1, h2,2 = 2, h3,3 = 3.

• (for p+ q = 8): h8,0 = 1, h7,1 = 735, h6,2 = 41161, h5,3 = 395626, h4,4 = 825751.

where we avoided the repetitions induced by the obvious Hodge symmetries.

3.1.2. 21 points and a Fano 6-fold. Let us consider now an example for which we have both a derived
categorical and a Hodge theoretical statement. Consider in fact the generalized homogeneous roof
F (1, 2, 6) and the associated pair (Y1, Y2) in the sense of Definition 2.8. Via the Euler sequence on P5,
one can immediately compute that Y1 consists of 21 points. On the other hand Y2 is a Fano 6-fold and
its Hodge numbers, which can be already found in [FM21, Appendix C], are as follows:

1
0 0

0 1 0
0 0 0 0

0 0 2 0 0
0 0 0 0 0 0

0 0 0 22 0 0 0
0 0 0 0 0 0

0 0 2 0 0
0 0 0 0

0 1 0
0 0

1

Since h0(P5) = 1 and h6(G(2, 6)) = 2 the two v-cohomology subspaces are both 20-dimensional,
and by Theorem 3.6, we have H0

v (Y1) ∼= H6
v (Y2). Also, by the results of the next section, we have an

embedding of the derived category of Y1 in the derived category of Y2.

3.1.3. A general type 4-fold and a Fano 6-fold. The last example we consider is pair (Y1, Y2) associated to
F (2, 3, 6): Y1 is a 4-fold of general type with ωY1

∼= OY1
(1), and that Y2 is a Fano 6-fold of index one.

The Hodge numbers for Y1 are:

1
0 0

0 1 0
0 0 0 0

15 672 2271 672 15
0 0 0 0

0 1 0
0 0

1

On the other hand the Hodge numbers for Y2 are:
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1
0 0

0 1 0
0 0 0 0

0 0 2 0 0
0 0 0 0 0 0

0 15 672 2272 672 15 0
0 0 0 0 0 0

0 0 2 0 0
0 0 0 0

0 1 0
0 0

1

We can immediately check that h4(G(2, 6)) = 2 and h6(G(3, 6)) = 3: hence the two v-cohomologies
subspaces have the same rank and by Theorem 3.6 one has:

H4(Y1,Q) ∼= Q2 ⊕H4
v (Y1)

H6(Y2,Q) ∼= Q3 ⊕H6
v (Y2),

withH4
v (Y1) ∼= H6

v (Y2).

We conjecture the categorical equivalent of this result: i.e we expect that Db(Y1) injects in Db(Y2).
Notice that this would make Y2 a Fano host for the visitor Y1 in the sense of, e.g. [KKLL17].

4. Derived embedding and window categories

4.1. Setup and general strategy. Hereafter we will heavily rely on the notion of gauged linear sigma
model (GLSM). Therefore, let us begin this section by recalling some general terminology.

Definition 4.1. We call gauged linear sigma model (W,G,C∗
R, f) the following data:

(1) A finite dimensional vector spaceW ;

(2) A linear reductive group G with an action on W ;

(3) An action of C∗ on W called R-symmetry, traditionally denoted by C∗
R;

(4) A polynomial f : W −→ C called superpotential.

Moreover, we require the following conditions to hold:

(1) The G-action and the C∗
R-action commute onW ;

(2) f is G-invariant and C∗
R-homogeneous with positive weight.

Definition 4.2. Let (W,G,C∗
R, f) be a GLSM. We call phase of the GLSM a chamber of the associated poly-

hedral fan (see [Hal04, Theorem 3.3] for details on the walls-and-chambers structure).

Definition 4.3. Let (W,G,C∗
R, f, I) be a GLSM phase, where I is the associated chamber. We call critical

locus of the superpotential:

(4.1) Crit(f) := Z(df)
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where df is the gradient of f . Moreover, we call vacuummanifold the GIT quotient:

(4.2) YI = Crit(f)//τG.

for any ρτ ∈ I .

Let us fix a complex vector space Vn of dimension n. The data of the generalized roof of type AG
1,n−1

is related to the flag variety F (1, 2, Vn), but for our purpose it will be more convenient to consider the
isomorphic roof AG

n−2,n−1 which can be summarized by the following diagram:

(4.3)

F (n− 2, n− 1, Vn)

G(n− 2, Vn) G(n− 1, Vn)

h2 h1

Fix a general global section S of O(1, 1): it cuts a smooth hypersurface M ⊂ F (n− 2, n− 1, V ), and
h1∗S and h2∗S define the pair (Y1, Y2), where Z(h1∗S) is a set of points and Z(h2∗S) is a Fano (2n−6)-
fold of index n− 3. Our goal now is to prove the existence of a fully faithful functor DbY1 −֒→ DbY2.
This will be done in several steps:

◦ Consider the varietiesX+ := tot(U∨(−2) −→ G(n− 1, Vn)) andX− := tot(Q(−2) −→ G(n−
2, Vn)), i.e. the total spaces ofU∨(−2) andQ(−2) respectively onG(n− 1, Vn) andG(n−2, Vn).
In Section 4.2, given an appropriate vector space W and affine subvarieties Z±, we will find
explicit GIT descriptions X± := (W \ Z±)/GL(Vn−1), and this will allow us to define two
birational maps i± : X± 99K X := [W/GL(Vn−1)] which are always isomorphisms outside
loci of codimension at least two.

◦ In Section 4.3 we fix the data (W,G,C∗
R, f) of a GLSM such that the vacuummanifolds of two

different phases are isomorphic to Y1 and Y2. This is necessary to identify DbY1 and DbY2

with the right B-brane categories via Knörrer periodicity [Shi12, Theorem 3.4].

◦ In Section 4.4 we identify a subcategory W0 ⊂ Db(X ) such that the functors i∗±|W0
: W −→

Db(X±) are fully faithful, and we defineW0 such that i∗±|W0
is also essentially surjective. This

determines a fully faithful functor DbX− −֒→ DbX+ which is lifted to a functor of B-brane
categories in Section 4.5. The latter yields the desired functorDbY1 −֒→ DbY2 once composed
with Knörrer periodicity.

4.2. Gauged linear sigma model and variation of GIT. Let us describe how the spaces X+ and X−

can be related by a variation of GIT.

Lemma 4.4. Let us consider the vector space W = Hom(Vk+1, Vn) ⊕ Hom(Vk+1, Sym
2(∧k+1V ∨

k+1)), with
GL(Vk+1) acting on Vk+1 via the fundamental representation and trivially on Vn. There exist two GIT quotients
ofW with respect to GL(Vk+1):

X+ = W//+GL(Vk+1) ≃ tot(U∨(−2) −→ G(k + 1, Vn))

X− = W//−GL(Vk+1) ≃ tot(Q(−2) −→ G(k, Vn)).
(4.4)
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Proof. By assumption, one has the following GL(Vk+1)-action on W :

(4.5)
GL(Vk+1)×W W

g, (B,ω) (Bg−1, ωg−1 det g2)

where B is a n × k matrix and ω is a row vector in V ∨
k+1, i.e. a linear map from Vk+1 to the one

dimensional space∧k+1Vk+1. Given a character ρ : GL(Vk+1) −→ C∗ we have theGL(Vk+1)-semistable
locus:

(4.6) V ss
ρ = {(B,ω) ∈ W : {0} ×W ∩ {(ρ(g)−1, g.(B,ω))|g ∈ GL(Vk+1)} = ∅}

and the unstable locuswill be simply the set Zρ := V \ V ss
ρ . Consider now the family of characters:

GL(Vk+1) C∗

g det(g)−τ .

ρτ

§We can describe the unstable locus for the chamber τ > 0 as the set Z+ of pairs (B,ω) ∈ W such that
there exists a one-parameter subgroup {gt} ⊂ GL(Vk+1) fulfilling the following conditions:

(1) The expression det(gt) converges to zero for t −→ 0 (so that ρ−1
τ (gt) converges to zero)

(2) The expression gt.(B,ω) has a limit in V for t −→ 0.

By applying such conditions to the action 4.5 we find Z+ = {(B,ω) ∈ W : rk(B) < k + 1}, and then
the corresponding GIT quotient with respect to the chamber τ > 0 is:

W//+GL(Vk+1) = (W \ Z+)/GL(Vk+1) = X+.

Let us now construct the GIT quotient with respect to the chamber τ < 0: here the analysis is slightly
more involved. For l = (l1, . . . , lk+1) ∈ Zk+1 we consider the following one-parameter subgroups:

(4.7) t gl(t) = diag({tl1 , . . . , tlk+1})

Here the unstable locus is given by pairs (B,ω) such that there exists a gl fulfilling the following
conditions:

(1) det(gl)
−1 converges to zero for t −→ 0;

(2) gl.(B,ω) has a limit in V for t −→ 0.
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The only possibility for a pair (B,ω) to admit such conditions is that either ω = 0 or there exist a
nontrivial intersection ker(ω) ∩ ker(B). Hence we find:

W//−GL(Vk+1) = {(B,ω) ∈ W : ω 6= 0, ker(ω) ∩ ker(B) = {0}}/GL(Vk+1).

For every ω 6= 0, there always exists an element gω ∈ GL(Vk+1) such that gω.ω = (1, 0, . . . , 0). Hence,
we can rewrite the quotient as

(4.8) W//−GL(Vk+1) = {(B,ω) ∈ W : ω = (1, 0, . . . , 0), ker(ω) ∩ ker(B) = {0}}/ Stab

with the stabilizer

(4.9) Stab =

{(
deth−2 0

κ h

)
∈ GL(Vk+1) : κ ∈ Ck, h ∈ GL(Vk)

}

Let us write B = (v|C), i.e. rename by v the first column of B and by C the rest of the matrix.: we

see that the kernel condition imposes that C must have maximal rank. Hence, once defined W̃ :=
{(v, C) ∈ Vn ⊕Hom(Vn−2, Vn) : rkC = n− 2} Equation 4.8 can be rewritten in the following way:

(4.10) W//−GL(Vk+1) = W̃/ Stab

where the Stab-action is:

(4.11) (g, v, C) 7−→ (v deth2 + Cκ,Ch−1).

Observe that v, up to the action of an element of Stab, lies in the orthogonal complement of the k-
dimensional subspace of Vn spanned by the columns of C: this identifies the variety of Equation 4.10
with the total space of Q(−2) on G(k, Vn).

�

In this way we constructed two open embeddings i± : X± −֒→ X . The varation of GIT we described
can be extended to vector bundles described byGL(Vk+1)-representations in the followingway:

Definition 4.5. Consider a representation Γ : GL(Vk+1) −→ End(VΓ), and the associated vector bundle
E+ = (W \ Z+ × VΓ) /GL(Vk+1) on X+. Then we define the variation of GIT of E to be the following vector
bundle on X−:

(4.12) v(E+) := i∗−E

where E is the vector bundle on X given by E = (W ⊕ VΓ) /GL(Vk+1).
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By the way we construct v(E+) in Definition 4.5, we see that:

(4.13) v(E+) = (W \ Z− × VΓ) /GL(Vk+1).

4.3. The critical loci. Let us now describe how the variation of GIT not only links the two total spaces
X+ andX−, but also Y2 and Y1 as GIT quotients of the critical locus of a suitable superpotential, where
Y1 := Y+ and Y2 := Y− in the language of in Definition 4.3. To this purpose, we need a very explicit
description of a general section S ∈ H0(F,O(1, 1)) and its two pushforwards.

We will denote points in G(k + 1, Vn) as classes [B] where B ∈ Hom(Vk+1, Vn) of maximal rank,
with respect to the equivalence relation given by the fundamentalGL(Vk+1)-action on Vk+1 Similarly,
points inG(k, Vn)will be represented as classes [A]with respect to an analogousGL(Vk)-action. Con-
sequently, points in F will be pairs ([A], [B])with the additional condition of the image ofA as a linear
map being contained in the image of B. In this language, a section S ∈ H0(F,O(1, 1)) will be defined
by an equivariant map:

(4.14) (A,B) Si1...ikj1...jk+1
A i1

[1 · · ·A ik
k] B j1

[1 · · ·B
jk+1

k+1]
S

where we used the “physicist’s” convention of summing up repeated higher and lower indices, and

enclosing by square brackets skew-symmetrized indices (e.g. B j
[1 B k

2] = B j
1 B k

2 −B j
2 B k

1 up to an

irrelevant constant).

In the following, consider the functions P : Hom(Vk, Vn) −→ V ∨
n and Q : Hom(Vk+1, Vn) −→ Vn,

where P (A) = (P1(A), . . . , Pn(A)) and Q(A) = (Q1(A), . . . , Qn(A))T are given by:

Pr(A) = Si1...ikj1...jk+1
A i1

[1 · · ·A ik
k] δj1[rA

j2
1 · · ·A

jk+1

k]

Qr(B) = Si1...ikj1...jk+1
B i1

[1 · · ·B ik
k B r

k+1]B
j1

[1 · · ·B
jk+1

k+1] .
(4.15)

Lemma 4.6. The pushforwards of S with respect to h1 and h2 are defined by the following functions:

(4.16)
A P (A),

B Q(B),

h1∗S

h∗2S

which are the images of h1∗S and h2∗S respectively insideH0(G(k, Vn), V
∨
n ⊗O(2)) andH0(G(k+1, Vn), Vn⊗

O(2)).

Proof. Note that moving A in [A] means sending A to Ag−1 for some g ∈ GL(Vk), and this rescales
P (A) by det g−2: hence, P (A) is clearly an element of the fiber V ∨

n ⊗O(2)[v]. Observe now that the dual
of the tautological embedding, V ∨

n ⊗ O(2) ։ U∨(2), acts on the fiber over [A] as the projection onto
im(A). Choose now v ∈ im(A). Since the wedge product of k + 1 vectors spanning a k-dimensional
space vanishes, one has:



16 ENRICO FATIGHENTI, MICHAŁ KAPUSTKA, GIOVANNI MONGARDI, AND MARCO RAMPAZZO

(4.17) Pr(A)v
r = Si1...ikj1...jk+1

A i1
[1 · · ·A ik

k] δj1[rA
j2

1 · · ·A
jk+1

k] vr = 0

and therefore P ([v]) lies in the image of Q∨(2)[A] in V ∨ ⊗O(2)[A]. The case of Q can be addressed in
a similar way: we see that Q([B]) ∈ Vn ⊗ O(2)[B] and we consider the projection Vn ⊗ O(2) ։ Q(2)

which acts on the [B]-fiber by projecting on the vector space im(B)⊥ ⊂ V . For any v ∈ im(B)⊥ we
observe that:

Qr(A)vr = Si1...ikj1...jk+1
B i1

[1 · · ·B ik
k B r

k+1]B
j1

[1 · · ·B
jk+1

k+1] vr = 0(4.18)

because we contract a column of B with v, and they are orthogonal. This proves that Q([B]) lies in
the image of U(2)[B] in Vn ⊗ O(2)[B]. By computing the zeroes in coordinates, the zero locus of S is
exactly the locus where the projections along h1 and h2 increase their dimension over the zeroes of
hi∗(S). �

Lemma 4.7. Consider the GLSM given by the data (W,GL(Vk+1),C∗
R, f)where theR-symmetry acts trivially

on Hom(Vk+1, Vn) and with weight two on Hom(Vk+1, Sym
2 ∧k+1V ∨

k+1), and the superpotential f is defined
as:

(4.19)
W C

(B,ω) φ(B) · ω

f

where φ is the section of U(2) whose image in V ⊗O(2) is Q. Then one has the following isomorphisms:

(4.20) Crit(f)//+GL(Vk+1) ≃ Y1, Crit(f)//−GL(Vk+1) ≃ Y2.

Proof. The statement about Y2 is simply a consequence of [OT21, Remark 1.2]. To prove the second
statement, let us begin by writing φ(B) explicitly. By the identity:

B r
α φα([B]) = Qr([B]) = Si1...ikj1...jk+1

B i1
[1 · · ·B ik

k B r
k+1]B

j1
[1 · · ·B

jk+1

k+1]

we deduce that, up to an overall sign independent of r:

φα([B]) = Si1...ikj1...jk+1
δα[1B

i1
2 · · ·B ik

k+1]B
j1

[1 · · ·B
jk+1

k+1] .

The superpotential is then given by:

(4.21) f(B,ω) = ωαSi1...ikj1...jk+1
δα[1B

i1
2 · · ·B ik

k+1]B
j1

[1 · · ·B
jk+1

k+1] .

The critical locus of f is defined by the following equations:
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(4.22)





Si1...ikj1...jk+1
δα[1B

i1
2 · · ·B ik

k+1]B
j1

[1 · · ·B
jk+1

k+1] = 0

ωαSi1...ikj1...jk+1

∂
∂B l

β

δα[1B
i1

2 · · ·B ik
k+1]B

j1
[1 · · ·B

jk+1

k+1] = 0

whichweneed to solve inW\Z−. Observe that, sinceω 6= 0, fulfilling the second equation is equivalent
to imposing that ω lies in the kernel of the Jacobian of φ. However, since φ is a regular section on the
locus of W where B has maximal rank, this cannot be: therefore, the only way to fulfill the second
equation in W \ Z− is to impose rkB = k. Then, the first equation is automatically satisfied because
of the skew-symmetry condition on the indices. Let us now turn our attention again on the second
equation (which is a set of (k+1)n equations). It can be remarkably simplified if we use theGL(Vk+1)-
action to impose the following conditions:

◦ ω1 6= 0; ω2 = · · · = ωk+1 = 0.

◦ the first column of B lies in the orthogonal complement of the remaining k columns.

Since kerω∩kerB = {0} and rkB = k, this implies that the first column ofB is zero and the remaining
ones are linearly independent. Most of the equations are therefore identically zero, except for the
following n:

ω1φ
α(B) = ω1Si1...ikj1...jk+1

∂

∂B l
1

B i1
[2 · · ·B ik

k+1]B
j1

[1 · · ·B
jk+1

k+1]

= ω1Si1...ikj1...jk+1
B i1

[2 · · ·B ik
k+1]δ

j1
[l B

j2
2 · · ·B

jk+1

k+1] = Pl(A)

(4.23)

where the last equality follows by calling A ∈ Hom(Vk, Vn) the matrix obtained by erasing the first
column fromB. We still have to quotient by the residual group action: the stabilizer is in factGL(Vk)×
C∗, where C∗ acts trivially on A and by multiplication on ω1, while GL(Vk) acts via the fundamental
representation on Vk and trivially on ω1. Quotienting by this action we obtain the zero locus of the
five quadrics P l inside G(k, Vn), which is isomorphic to Y2. �

4.4. Window categories. To fix the notation we will briefly review the representation algebra and
the Borel–Weil–Bott theorem for Grassmannians of type A. For a more detailed exposition on this
formulation of the Borel–Weil–Bott theorem, see [BPC20, Appendix A].

Fix a vector space Vn ≃ Cn. Given a rank r vector bundle E and a sequence λ = (λ1, . . . , λr) of non-
increasing integers, we denote by SλE the image of E through the Schur functor of GL(r) associated

to λ. For example, one has ∧kE = S(1k,0r−k)E and Symk E = S(k,0r−1)E .

Every completely reducible homogeneous vector bundle onG(k, V ) can be written as sum of terms of
the formSλU∨⊗SδQ∨, whereU andQ are the tautological and quotient vector bundles of the sequence
3.1. We associate to SλU∨ ⊗ SδQ∨ a double sequence of integers (λ|δ) := (λ1, . . . , λk|δ1 . . . , δn−k). In
this language, the Borel–Weil–Bott theorem can be rewritten as:

Theorem 4.8 (Borel–Weil–Bott for Grassmannians of typeA). Let Vn be a vector space of dimension n and
let λ and δ be non-increasing sequences of integers of lengths respectively k and n − k. Fix ρ = (n − 1, n −
2, . . . , 1, 0). Then one and only one of the following possibilities occur:
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◦ The sequence (λ|δ) + ρ contains a repeated number. Then SλU∨ ⊗ SδQ∨ has no cohomology.

◦ The sequence (λ|δ) + ρ contains no repeated numbers. Then there exists a permutation P of mini-
mal length l such that P ((λ|δ) + ρ) is non decreasing, and one has H•(G(k, Vn),SλU∨ ⊗ SδQ∨) =
SP ((λ|δ)+ρ)−ρVn[−l]whereSP ((λ|δ)+ρ)−ρVn is the representation ofGL(Vn) of highestweightP ((λ|δ)+
ρ)− ρ.

To each double weight (λ|δ) we can associate a double Young Tableau. For instance, on G(4, 6) one
has:

(4.24) (3, 2, 2, 1|2, 0)→ .

By Theorem 4.8 and the Littlewood–Richardson formula, we are able to compute cohomology for
all completely reducible homogeneous vector bundles on Grassmannians. Note that the Littlewood–
Richardson formula must be applied to the components above and below the bar separately, as illus-
trated by the following example on G(2, Vn) for n > 1:

⊗ = ⊕ .(4.25)

We introduce the following notation:

(4.26) Box(n− k, k) =
{
λ ∈ Zn−k : k ≥ λ1 ≥ · · · ≥ λn−k

}
.

Let us recall the following definition:

Definition 4.9. (cf. [HV07, Section 7]) LetX be a quasi-projective variety and T a finite rank vector bundle.
We say T is partially tilting if Ext>0

X (T, T ) = 0. Moreover, we say T is tilting if it is partially tilting and it
generates the unbounded category of quasi-coherent sheaves D(QcohX) (i.e. for any object E ∈ D(QcohX),
RHom(E, T ) = 0 implies E = 0).

It is well-known that the direct sum TK of the bundles appearing in Kapranov’s full exceptional col-
lection [Kapr88] is tilting onG(k, Vn). However, such property is in general not preserved by pullback
to the total space of a vector bundle, and it can be proven to not fit to our construction, therefore we
construct a different candidate:

Definition 4.10. We call mutated Kapranov’s bundle the vector bundle TM on G(n− 1, V ) given by:

(4.27) TM :=
⊕

λ∈Box(n−3,1)

SλU
∨ ⊕O(1)⊕O(2)
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Observe that aweightω (and its associated representation) definesnot only a vector bundle onG(Vn−2, Vn),
G(Vn−1, Vn) or the total spaces X± via pullback, but also on the space X . We will call Eω such object
on X . This motivates the following:

Definition 4.11. Define the set IW := {Box(n− 3, 1) ∪ {(1, . . . , 1); (2, . . . , 2)}}. We callmutatedwindow
the subcategory W0 ⊂ Db(X ) generated by the objects

{
E(λ|0) : λ ∈ IW

}
.

Moreover, we define:

(4.28) T :=
⊕

λ∈IW

E(λ|0)

Remark 4.12. The reason of these names in Definitions 4.10 and 4.11 is to recall the fact that while
Kapranov’s bundle is the direct sum of the objects appearing in Kapranov’s full exceptional collection:

(4.29) Db(G(n− 1, n)) = 〈O,U∨, . . . ,∧n−2U∨,O(1)〉,

the mutated Kapranov bundle is the direct sum of the objects appearing in the following collection:

(4.30) Db(G(n− 1, n)) = 〈O,U∨, . . . ,∧n−3U∨,O(1),O(2)〉.

The latter can be obtained by the former, mutating ∧n−2U∨ one step to the right: in fact, ∧n−2U∨ ≃
U(1), and by the tautological sequence RO(1)U(1) ≃ Q(1) ≃ O(2) up to an irrelevant shift. This also
tells that Equation 4.30 is indeed a full exceptional collection.

Proposition 4.13. The functor i+|∗W0
: W0 −→ Db(X+) is an equivalence of categories.

Proof. Wewill need a vanishing result (Lemma 4.14), which, in order to keep the proof readable, will
be discussed after it. Let us first prove that i+|∗W0

is fully faithful: this amounts to show that for every
λ, λ′ ∈ IW :

(4.31) Ext•X (E(λ|0), E(λ′|0)) = Ext•X+
(i+|

∗
W0

E(λ|0), i+|
∗
W0

E(λ′|0)).

First, observe that i+ is an isomorphism outside a locus of codimension at least two: hence, by Har-
togs’s lemma, it preserves global sections of sheaves, and therefore Equation 4.31 holds in degree zero.
This reduces the proof of fully faithfulness to showing that both sides of Equation 4.31 are zero in
higher degrees, i.e. that there are no higher extensions between direct summands of both T and π∗

+T ,
which can be rephrased saying that both bundles are partially tilting. Since X is a quotient algebraic
stack by a linear reductive group, [BFK19, Lemma 2.2.8] holds. In particular there are no higher Exts
between any two vector bundles in DbX , which implies that T , being a direct sum of vector bundles,
is partially tilting. On the other hand, by Lemma 4.14 the bundles i+|∗W0

T = π∗
+T is partially tilting

as well.
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Let us now prove that i+|∗W0
is essentially surjective. In the following, given a sheaf F on X+, we

will call a lift of F an object F on X such that F restricts to F .
Since i∗+|W0

: W0 −→ Db(X+) is fully faithful, one has an equivalence of categories W0 −→ Im,
where Im is the essential image of i∗+|W0

. Moreover, since i∗+|W0
is exact, and generators of Db(X+)

are contained in its essential image it follows that i∗+|W0
is essentially surjective.

More precisely, by definition ofW0, all direct summands of π∗
+T are objects of Im. On the other hand,

these summands generate the whole category Db(X+). Hence, to conclude the proof we just need to
show that also cones, shifts and direct sums of objects that can be lifted to W0 can also be lifted to
objects ofW0. Taking shifts and direct sums commutes with i∗+|W0

and thus shifts and direct sums lift
to shift and direct sums of their lifts. Consider now a morphism f : i∗+A −→ i∗+B, with A,B objects

from W0. Since i∗+|W0
is fully faithful, there is a map f̃ : A −→ B such that i∗+|W0

f̃ = f , and we

simply define the lift ofCone(f) to be Cone(f̃). This is indeed a lift since it comes with a distinguished
triangle

(4.32) A −→ B −→ Cone(f̃) −→ A[1]

which proves that Cone(f̃) ∈ W0 and by exactness of i∗+ we have i∗+|W0
(Cone(f̃)) = Cone(f).

�

Lemma 4.14. The bundle π∗
+T is partially tilting, where π+ : X+ −→ G(Vn−1, Vn) is the vector bundle

projection.

Proof. One has:

Ext•X+
(π∗

+SλU
∨, π∗

+Sλ′U∨) = Ext•G(Vn−1,Vn)(SλU
∨, π+∗(π

∗
+Sλ′U∨ ⊗OX+

))

= Ext•G(Vn−1,Vn)(SλU
∨,Sλ′U∨ ⊗ π+∗OX+

)

= Ext•G(Vn−1,Vn)(SλU
∨,Sλ′U∨ ⊗

⊕

m≥0

Symm(U(2)))

=
⊕

m≥0

H•(G(Vn−1, Vn), (SλU
∨)∨ ⊗ Sλ′U∨ ⊗ Symm(U(2))).

(4.33)

Observe now that if λ = (λ1, . . . λn−1) one has

(4.34) (SλU
∨)∨ = SλU

∨ = Sλ̄U
∨(−λ1)

where we defined λ̄ := (−λn−1 +λ1,−λn−2 +λ1, . . . ,−λ2 +λ1, 0). This allows us to rewrite Equation
4.33 as:

Ext•X+
(π∗

+SλU
∨, π∗

+Sλ′U∨) =
⊕

m≥0

H•(G(Vn−1, Vn),Sλ̄U
∨ ⊗ Sλ′U∨ ⊗ Symm U(2m−λ1))(4.35)
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We will first consider the situation when λ′ = (2, . . . , 2)which corresponds to computing:

Ext•X+
(π∗

+SλU
∨, π∗

+O(2)) =
⊕

m≥0

H•(G(Vn−1, Vn),Sλ̄U
∨ ⊗ Symm U(2m− λ1 + 2))(4.36)

The condition λi ≤ 2 for every i implies λ̄i ≤ 2, therefore the argument of the right hand side is a di-
rect sum of products of irreducible, globally generated homogeneous vector bundles on G(n− 1, Vn),
which cannot have higher cohomology.

Let us now check the case λi, λ
′
i ≤ 1 for every i. The condition λi ≤ 1 for every i implies λ̄i ≤ 1. Note

also that Symm U(k) = S(m,m,...,m,0)U
∨ ⊗O(k −m). We can recast Equation 4.35 once again, finding:

Ext•X+
(π∗

+SλU
∨, π∗

+Sλ′U∨) =
⊕

m≥0

H•(G(Vn−1, Vn),SδU
∨(m−λ1))(4.37)

where δ is a weight given by the product of two weights λ̄, λ′ with all entries lesser or equal than one,
together with a third weight (m,m, . . . ,m, 0) and the proof reduces to showing that each summand
in the right hand side of 4.37 has no higher cohomology.

Let us start by proving the statement for m = 0. The product Sλ̄U
∨ ⊗ Sλ′U∨(λ1) of Equation 4.35 can

be expanded by applying the Littlewoods-Richardson formula to diagrams of the following shape:

︸︷︷︸

λ1

⊗ ⊗
(4.38)

The result is a sum of diagrams with weights of the form (γ1, . . . γn−1|λ1) where γi ≤ 1 + λ1. Two
possibilities can occur:

◦ λ1 = 0. Let us apply Theorem 4.8: since γ1 ≥ · · · ≥ γn−1 ≥ λ1 = 0 the cohomology of the
associated bundle is concentrated in degree zero.

◦ λ1 = 1. If γn−1 ≥ 1 the cohomology is concentrated in degree zero as above, while if γn−1 = 0,
in the notation of Theorem 4.8, once we add ρ to the weight there is a repetition between the
last two entries and hence the cohomology is zero in all degrees.

The case m > 0 can be treated by multiplying to the decomposition of Equation 4.38 the following
diagram:
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(4.39)

2m
︷ ︸︸ ︷

In every summand of the decomposition of Equation 4.38, the length of the row above the bar is ei-
ther equal to the one below or shorter by one box. Therefore, by applying the Littlewood–Richardson
formula, multiplying with the diagram 4.39 for any positivem gives a non-decreasing weight: hence,
by Theorem 4.8, no cohomology can occur in degree higher than zero.

The remaining case to consider is the one where λ = (2, . . . , 2) and λ′ = (1, . . . , 1, 0, . . . , 0), i.e.

Ext•X+
(π∗

+O(2), π∗
+Sλ′U∨) =

⊕

m≥0

H•(G(Vn−1, Vn),Sλ′U∨ ⊗ Symm U(2m− 2))(4.40)

Each summand has an associated diagram of one of the following shapes (here illustrated for n = 7):

⊗

2m
︷ ︸︸ ︷

; ⊗

2m
︷ ︸︸ ︷

(4.41)

As above, for every value of m ≥ 0 we obtain either sections or a repetition.

�

4.4.1. Vector bundles and variation of GIT. The next step of our construction of a derived embedding
Db(X+) ⊂ Db(X−) is to prove the following statement:

Proposition 4.15. The functor i−|∗W0
: W0 −→ Db(X−) is fully faithful.

As in the proof of Proposition 4.13, we just need to show that i∗−T is partially tilting:

Proposition 4.16. The vector bundle i∗−T is isomorphic to v(π∗
+T ), and it is partially tilting, i.e one has:

(4.42) Ext>0
X−

(v(π∗
+T ),v(π

∗
+T )) = 0

Proof. This is an immediate consequence of the discussion below and the vanishings of Lemma 4.18
and Lemma 4.19 following it. �
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First, the bundle E(λ|0) can be described as follows:

(4.43) E(λ|0) = (W ⊕ Vλ)/GL(Vn−1)

where W is the vector space defined in Lemma 4.4 and Vλ is a vector space on which GL(Vn−1) acts
via the representation of weight λ. Clearly, by construction, i∗+E(λ|0) is the pullback fromG(n− 1, Vn)
of SλU∨, i.e. the following:

(4.44) π∗
+SλU

∨ = (W \ Z+ × Vλ) /GL(Vn−1)

ByEquation 4.43we see that i∗−E(λ|0) will be the bundle describedas the quotient by the sameGL(Vn−1)-
action, but restricted to W \ Z− × Vλ. This bundle is nothing but the image of π∗

+SλU∨ under the
variation of GIT described in Definition 4.5, hence one has:

(4.45) i∗−E(λ|0) = v(π∗
+SλU

∨) = (W \ Z− × Vλ) /GL(Vn−1)

By our definition of W0, we are mainly interested in describing v(π∗
+ ∧p U∨) and v(π∗

+O(m)) as ex-
plicitly as possible. Let us start with the former: by the discussion of Section 4.2, we can reduce

the GL(Vn−1)-action on W \ Z− to the action of a subgroup Stab ⊂ GL(Vn−1) on W̃ := {(v, C) ∈
Vn ⊕Hom(Vn−2, Vn) : rkC = n− 2}. If we apply the same procedure to v(π∗

+ ∧p U∨) we find:

(4.46) v(π∗
+ ∧p U∨) =

(
W̃ ×Hom(∧pVn−1,C)

)
/ Stab

where the action of g ∈ Stab on the second factor is by precomposition (i.e. multiplication from the
right) with the matrix ∧pg−1 of minors of g with order p. Given the decomposition of g−1 ∈ Stab as

in Equation 4.9, the Stab-action on (v, C,w) ∈ W̃ ×Hom(∧pVn−1,C) is:

(4.47) g, (v, C,w) 7−→ (v deth2 + Cκ,Ch−1, w ∧p g−1).

By Equation 4.9 we can deduce the following decomposition:

(4.48) ∧p g−1 =

(
deth2 ∧p−1 h−1 0

P (κ, h−1) ∧ph−1

)
∈ GL(∧pVn−1)

where P (κ, h−1) is the matrix consisting of those minors of order p (κ|h−1) which depend on the
entries of κ. Let us now consider the following bundles, where GL(Vn−2) ⊂ Stab acts on Vn−2 via the
fundamental representation:

(4.49) π∗
− ∧p Ũ∨ =

(
W̃ ×Hom(∧pVn−2,C)

)
/ Stab
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(4.50) π∗
− ∧p−1 Ũ∨(−2) =

(
W̃ ×Hom(∧p−1Vn−2, Sym

2(∧n−2V ∨
n−2))

)
/ Stab

where we recall that Ũ is the tautological bundle of G(n− 2, Vn). We will now show that v(π∗
+ ∧p U∨)

is an extension of these bundles above.
Given v = (v1, . . . , v(n−2

p−1)
, 0, . . . , 0) := (w, 0) ∈ ∧pV ∨

n−1, the action by right-multiplication of ∧pg−1 will

be (w, 0) 7−→ (w deth2 ∧p−1 h−1, 0). If we see w as an element of ∧pVn−2 ⊗ Sym2 ∧n−2Vn−2, this gives
an equivariant embedding of vector spaces ∧pVn−2 ⊗ Sym2 ∧n−2Vn−2 −֒→ ∧pV ∨

n−1 which defines an

embedding of vector bundles π∗
−∧p−1 Ũ∨(−2) −֒→ v(π∗

+∧p U∨) onX−. By the same kind of argument

we see that v(π∗
+∧pU∨) surjects on the cokernel π∗

−∧p Ũ∨, yielding the following short exact sequence
of vector bundles on X−:

(4.51) 0 −→ π∗
− ∧p−1 Ũ∨(−2) −→ v(π∗

+ ∧p U∨) −→ π∗
− ∧p Ũ∨ −→ 0

On the other hand, since π∗
+O(m) = π∗

+ Symm ∧n−1U∨, by recasting Equation 4.45 in terms of a quo-
tient by Stab, with the appropriate λ, we obtain:

(4.52) v(π∗
+O(m)) =

(
W̃ × Symm ∧n−1V ∨

n−1

)
/ Stab .

The action of g ∈ Stab in this case is:

(4.53) g, (v, C,w) 7−→ (v deth2 + Cκ,Ch−1, w det g−m),

and by det g = deth−1 this allows to conclude that v(π∗
+O(m)) = π∗

−O(−m).

In the following Lemmas 4.18 and 4.19 we will need to prove some vanishing results about coho-
mology of vector bundles onX−. We will extensively make use of the following sequence for 1 ≤ p ≤
q ≤ n− 1:

0 −→ π∗
−(∧

n−p−2Ũ∨ ⊗ ∧q−1Ũ∨(−3)) −→ (v(π∗
+ ∧p U∨))∨ ⊗ π∗

− ∧q−1 Ũ∨(−2) −→

−→ π∗
−(∧

n−p−1Ũ∨ ⊗ ∧q−1Ũ∨(−1)) −→ 0
(4.54)

which is the tensor product of the dual of the sequence 4.51 with π∗
− ∧q−1 Ũ∨(−2). Let us begin with

a technical statement, which will be crucial in the proof of the vanishings.

Lemma 4.17. Consider the sequence 4.54 and suppose the following conditions hold:

◦ U(0) := H0
(0)(X−, π

∗
−(∧

n−p−1Ũ∨ ⊗ ∧q−1Ũ∨(−1))) ≃ H1(X−, π
∗
−(∧

n−p−2Ũ∨ ⊗ ∧q−1Ũ∨(−3)))

◦ H>0(X−, π
∗
−(∧

n−p−1Ũ∨ ⊗ ∧q−1Ũ∨(−1))) = 0

◦ H>1(X−, π
∗
−(∧

n−p−2Ũ∨ ⊗ ∧q−1Ũ∨(−3))) = 0
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where the left hand side of the first equation denotes the space of sections which are constant on the fibers of π−.

ThenH1(X−, (v(π
∗
+ ∧p U∨))∨ ⊗ π∗

− ∧q−1 Ũ∨(−2)) = 0.

Proof. By the conditions above, the long exact sequence of cohomology associated to the sequence 4.54
reads:

0 −→ H0(∧n−p−2Ũ∨ ⊗ ∧q−1Ũ∨(−3)) −→ H0((v(π∗
+ ∧p U∨))∨ ⊗ ∧q−1Ũ∨(−2))

β0
−−→

H0(∧n−p−1Ũ∨ ⊗ ∧q−1Ũ∨(−1)) −→ U(0) −→ H1((v(π∗
+ ∧p U∨))∨ ⊗ ∧q−1Ũ∨(−2)) −→ 0

(4.55)

which tells us that cokerβ0 ⊆ U(0). If we prove that the space of all global sections of π∗
−(∧

n−p−1Ũ∨ ⊗

∧q−1Ũ∨(−1)) which are constant of the fibers of π− is isomorphic to a subspace of cokerβ0, we find

cokerβ0 ≃ U(0), and thereforeH1((v(π∗
+ ∧p U∨))∨ ⊗ ∧q−1Ũ∨(−2)) = 0.

The second morphism in the sequence 4.54 can be also rewritten as follows:

(4.56) β : Hom(v(π∗
+ ∧p U∨), π∗

− ∧q−1 Ũ∨(−2)) −→ Hom(π∗
− ∧p−1 Ũ∨, π∗

− ∧q−1 Ũ∨)

Let us give a very explicit description of Hom(v(π∗
+ ∧p U∨), π∗

− ∧q−1 Ũ∨(−2)):

Hom(v(π∗
+ ∧p U∨), π∗

− ∧q−1 Ũ∨(−2)) = W̃ ×Hom(∧pV ∨
n−1,∧

q−1Vn−2 ⊗ (∧n−2V ∨
n−2)

⊗2)/ Stab

(4.57)

Therefore, a section of such bundle will be defined by a Stab-equivariant function

(4.58) F : W̃ −→ Hom(∧pV ∨
n−1,∧

q−1Vn−2 ⊗ (∧n−2V ∨
n−2)

⊗2)

where the equivariancy condition on F is:

(4.59) F (v deth2 + Cκ,Ch−1) = ∧pgF (v, C) ∧q−1 h−1.

Note that ∧pg decomposes as ∧pg−1 does in Equation 4.48. This allows to decompose F of Equation
4.59 in two functions F1 and F2, and the Stab-action reads:

(
F1(v deth

2 + Cκ,Ch−1)
F2(v deth

2 + Cκ,Ch−1)

)
=

=

(
∧p−1hF1(v, C) ∧q−1 h−1

P (κ, h−1)F1(v, C) ∧q−1 h−1 deth2 + ∧phF2(v, C) ∧q−1 h deth2

)
.

(4.60)

From the expression above, we see β0 as a map which sends a function F as above (and hence the
associated section) to its first component F1. In the following, wewill use the superscript (0) to denote
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a function which is independent on v (and therefore constant on fibers of π−). Let us now consider a

section F such that F1 is independent on v, i.e. F1 = F
(0)
1 . Then we have:

(4.61) F =

(
F

(0)
1

F2

)
=

(
F

(0)
1

F
(0)
2

)
+

(
0

F
(>0)
2

)
.

Note that this decomposition is preserved by the action of Stab, and this implies that both the sum-

mand of the right hand side are sections of Hom(v(π∗
+ ∧p U∨), π∗

− ∧q−1 Ũ∨(−2)). Since the second

summand is clearly not in β−1
0 (F1), the proof reduces to show thatHom(v(π∗

+∧pU∨), π∗
−∧q−1 Ũ∨(−2))

cannot have sections which are independent on v and such that F1 6= 0, or in other words:

(4.62) {F ∈ H0(X−,Hom(π∗
− ∧p−1 Ũ∨, π∗

− ∧q−1 Ũ∨) : F does not depend on v} * imβ0.

In fact, from this and the long exact sequence of cohomology associated to the sequence 4.54wewould
get that the left hand side of the equation above is isomorphic to cokerβ0, hence proving our claim.

To this purpose, let us act on such F with gλ := diag(λ−n+2, λ, . . . , λ): the action on F2 = F
(0)
2 is

(4.63) F
(0)
2 (Cλ−1) = λ2n−3+p−qF

(0)
2 (C)

Since 2n − 3 + p − q > 0 for 0 ≤ p ≤ q ≤ n − 1, F
(0)
2 is a matrix of polynomial, hence it must be the

zero matrix. Let us now act on F = (F
(0)
1 , 0) by the full Stab:

(4.64)

(
F

(0)
1 (Ch−1)

0

)
=

(
∧p−1hF

(0)
1 (C) ∧q−1 h−1

P (κ, h−1)F
(0)
1 (C) ∧q−1 h−1 deth2

)
.

Since ∧q−1h−1 is invertible, the condition P (κ, h−1)F
(0)
1 (C) ∧q−1 h−1 deth2 = 0 is fulfilled if and only

if P (κ, h−1)F
(0)
1 (C) = 0, i.e. the columns of F

(0)
1 (C) must lie in the kernel of P (κ, h−1) for every

κ ∈ Vn−2. But varying κ, the kernels of the associated P (κ, h−1) span the whole domain and therefore

F
(0)
1 = 0, and this concludes the proof. �

Lemma 4.18. The following vanishing holds for 0 ≤ p, q ≤ n− 3:

Ext>0(v(π∗
+ ∧p U∨),v(∧qU∨))) = 0.

Proof. One has the following diagram, which is a consequence of the sequence of Equation 4.51 and
its dual:
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(4.65)

π∗

−(∧
n−p−2

Ũ
∨
⊗ ∧

q−1
Ũ

∨(−3)) π∗

−(∧
n−p−2

Ũ
∨
⊗ π∗

− ∧
q
Ũ

∨(−1))

(v(π∗

+ ∧
p
U

∨))∨ ⊗ π∗

− ∧
q−1

Ũ
∨(−2) (v(π∗

+ ∧
p
U

∨))∨ ⊗ v(π∗

+ ∧
q
U

∨)) (v(π∗

+ ∧
p
U

∨))∨ ⊗ π∗

− ∧
q
Ũ

∨)

π∗

−(∧
n−p−1

Ũ
∨
⊗ ∧

q−1
Ũ

∨(−1)) π∗

−(∧
n−p−1

Ũ
∨
⊗ π∗

− ∧
q
Ũ

∨(1))

Since π∗
−(∧

n−p−1Ũ∨⊗∧qŨ∨(1)) is a tensor product of globally generated vector bundles it decomposes
in a direct sum of globally generated, irreducible homogeneous vector bundles, and therefore it has
no higher cohomology.

Both ∧n−p−1Ũ∨ ⊗ ∧q−1Ũ∨(−1) and ∧n−p−2Ũ∨ ⊗ ∧qŨ∨(−1) decompose as direct sums of bundles
associated to weights of the form (λ1, . . . , λn−2|1, 1) with λi ≤ 2 for every i. The product of such a
summand with Symm Q∨(2m) can be described by the following diagrams:

⊗

2m
︷ ︸︸ ︷

(4.66)

Clearly, if λn−2 = 0 there is no cohomology form = 0 and only sections form > 0, while for λn−2 > 0
there are again only sections. For further relevance, we note that the only contribution with m = 0

to the sections of ∧n−p−1Ũ∨ ⊗ ∧q−1Ũ∨(−1) is a vector space isomorphic to ∧q−pVn: in other words,

there is such a vector space of global sections of ∧n−p−1Ũ∨⊗∧q−1Ũ∨(−1)which are independent on v.

The bundle π∗
−(∧

n−p−2Ũ∨ ⊗ ∧q−1Ũ∨(−3)) requires a more careful analysis. Let us first consider the

contribution for m = 0: ∧n−p−2Ũ∨ ⊗ ∧q−1Ũ∨(−3) decomposes in direct summands which can have
the following shapes:

;

.

.

.

;

.

.

.

;

.

.

.

;

.

.

.

;

.

.

.

.
(4.67)
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All of them give repetitions, except for the third one. However, that configuration can happen only if
n− p− 2 = q − 1 = n− 3, which implies q = n− 2, and this is against our assumptions.

Consider now the summands with m = 1. Here the only possibilities are

;

.

.

.

;

.

.

.

;

.

.

.

;

.

.

.

;

.

.

.

.
(4.68)

Clearly, higher cohomology can occur only in the second and third configurations, but the fourth one
never happens for 0 ≤ p, q ≤ n − 3 as we argued above. However, the second one does appear

whenever p ≤ q, yielding a contribution of ∧q−pVn to H1(X−, π
∗
−(∧

n−p−2Ũ∨ ⊗ ∧q−1Ũ∨(−3))). A
quick check for m > 1 ensures that there are no additional contributions to higher cohomology for

this bundle. This, together with the fact that the only m = 0 contribution to H0(X−,∧n−p−1Ũ∨ ⊗

∧q−1Ũ∨(−1)) is isomorphic to ∧q−pVn, allows to conclude by Lemma 4.17. �

Lemma 4.19. One has Ext>0(v(O(k)),v(π∗
+ ∧p U∨)) = Ext>0(v(π∗

+ ∧p U∨),v(O(k))) = 0 for 0 ≤ p ≤
n− 3 and 0 ≤ m ≤ 2.

Proof. Recall that v(O(k)) = O(−k): proving our claim amounts to show that v(π∗
+∧pU∨)⊗O(k) and

(v(π∗
+ ∧p U∨))∨ ⊗O(−k) have no higher cohomology. The first bundle is realized as an extension in:

(4.69) 0 −→ ∧p−1Ũ∨(k − 2) −→ v(π∗
+ ∧p U∨)⊗O(k) −→ ∧pŨ∨(k) −→ 0.

Here the third bundle is the pullback of a homogeneous, irreducible and globally generated bundle,

and hence it has no cohomology in higher degree. Consider now ∧p−1Ũ∨(k − 2)⊗ Symm Q̃∨(2m) for
m ≥ 0. Since p ≤ n− 3, the last entries of the associated weight will be

(. . . , 2m, 2m|m− k + 2,−k + 2)

which always yield a repetition or sections.

On the other hand, the cohomology of (v(π∗
+ ∧p U∨))∨ ⊗O(−k) is computed by

(4.70) 0 −→ ∧n−p−2Ũ∨(−1− k) −→ (v(π∗
+ ∧p U∨))∨ −→ ∧n−p−1U∨(1 − k) −→ 0.

The third is the pullback of a globally generated bundle for k ≤ 1, while for k = 2 the weight of any
direct summand of its pushforward is (. . . λn−4 + 2m,λn−3 + 2m|m+ 1, 1), which again cannot have

higher cohomology. Let us now turn our attention to ∧n−p−2Ũ∨(−1 − k). Here all direct summands
of the pushforward will have weight (. . . λn−4 + 2m,λn−3 + 2m|m+ 1 + k, 1 + k). A careful analysis
permits to conclude that the only higher cohomology occurring is H1 ≃ C for k = 2, p = 1,m = 1.
We can treat this situation exactly as we did in Lemma 4.18, once we observe that the contribution
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for m = 0 to H0(X−,∧n−2U∨(−1)) is one dimensional. The rest of the proof follows exactly as in the
previous lemma, i.e. by applying Lemma 4.17 for q = 0, p = 1. �

Summing all up, we find:

Proposition 4.20. There is a fully faithful functor Db(X+) −→ Db(X−).

Proof. By Proposition 4.13 we already know that i+|∗W0
is an equivalence, while by Proposition 4.16

i−|
∗
W0

is fully faithful hence we get the desired result in the form of a functor

(4.71) i−|
∗
W0

◦ (i+|
∗
W0

)−1 : Db(X+) −→ Db(X−).

�

4.5. Turn on the superpotential: B-brane categories. The goal of this section is to lift the derived
embeddingDbX+ ⊂ DbX− to a fully faithful functor of B-brane categories. Wewill slightly specialize
the definitions of [Seg11, Section 2] to the present setting and terminology. In the following, letX be a
smooth scheme (or stack), together with a function (superpotential) f : X −→ C. For the moment we
do not need to have a G-action on X which leaves f invariant, but just a C∗-action on X with weight
two on f and such that −1 ∈ C∗ acts trivially on X . As above, we denote this action “R-symmetry”
and we use the traditional notation C∗

R. We will denote this data by the expression (X, f), without
explicitly referring to the R-symmetry.

Definition 4.21. We call B-brane on (X, f) a pair (E, dE) where E is a vector bundle on X and dE is an
endomorphism of E with C∗

R-weight one, such that d2 = IEf , where IE ∈ HomX(E,E) is the identity
morphism.

Definition 4.22. We call Br(X, f) the category whose objects are B-branes on (X, f) and Hom-sets are defined
as

(4.72) HomBr(X,f)((E, dE), (F, dF )) := (HomX(E,F ), dE,F )

where dE,F := I∨E ⊗ dF − d∨E ⊗ IF .

Note that Br(X, f) is not a dg-category, but rather it is enriched over the category of B-branes on the
model (X,G,C∗

R, G, 0), i.e. with a trivial superpotential (this category has been defined in [Seg11,
Definition 2.7]). Now we are ready to recall the definition of B-brane category:

Definition 4.23. We callBr(X, f) the category whose objects are B-branes on (X, f) and Hom-sets are defined
as

(4.73) HomBr(X,f)((E, dE), (F, df )) = RΓ((HomX(E,F ), dE,F )),

where the functor RΓ on a B-brane is defined in [Seg11, Definition 2.7].
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Computing morphisms in Br(X, f) is simplified by the existence of a spectral sequence which degen-
erates at its first page:

(4.74) (Hp(X,HomX(E,F )), dE,F ) =⇒ RΓ((HomX(E,F ), dE,F )).

Here the vertical grading on the right hand side is given by the R-symmetry.

Let us denote by W the subcategory of Br(X , f) generated as direct sums by the objects

{
E(λ|0) : λ ∈ IW

}

togetherwith appropriate endomorphisms dEλ
. Recall that the samevector bundles generateW0.

Proposition 4.24. The functors ι∗±|W : W −→ Br(X±, f) are fully faithful.

Proof. In light of the spectral sequence 4.74, we just need to compare the following bicomplexes:

(4.75)
(
Hp(X±,HomX±

(ι∗±E, ι∗±F )), dι∗
±
E,ι∗

±
F

)
,

(4.76) (Hp(X ,HomX (E,F )), dE,F ) .

Both of them are nonzero only on the row p = 0. The claim for the first one simply follows from the
fact that there are no higher Exts between vector bundles on X , while for the first one the statement is
just a consequence of Proposition 4.20. By Hartogs’s lemma we conclude that:

(4.77) Hp(X±,HomX±
(ι∗±E, ι∗±F )) ≃ Hp(X ,HomX (E,F )).

therefore, we get an isomorphism between the first pages of two spectral sequences, which in turn
gives an isomorphism RΓ((HomX±

(ι∗±E, ι∗±F ), dι∗
±
E,ι∗

±
F )) ≃ RΓ((HomX (E,F ), dE,F )). �

Proposition 4.25. ι∗+|W is essentially surjective.

Proof. The proof is an adaptation of the one of [Seg11, Lemma 3.6] to the present setting, hence we
will keep it concise. Let us consider a brane (E, dE) ∈ Br(X+, f). Then, since E is a vector bundle on
X+, it admits a resolution of the form

(4.78) 0 E−s E−s+1 · · · E−1 E0 E 0
∂E ∂E ∂E ∂E q

where every Ei is a direct sum of bundles of the form SλU∨ with λ ∈ IW . Out of this resolution, we
can construct a complex
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(4.79) E :=
⊕

i

E−i[i].

Observe that ∂E , as an endomorphism of E , has C∗
R-weight one.

Claim. There exists a map dE with the property d2E = If and such that the corresponding brane (E , dE ) is
homotopy-equivalent to (E, dE).

Suppose this claim is true. Call Ê the complex of vector bundles onX such that E is its restriction toX−.
As noted in the proof of Proposition 4.20, it follows byHartogs’s lemma thatH0(X+,HomX+

(E , E)) =

H0(X ,HomX (Ê , Ê)). In particular, dE is the restriction of an endomorphism dÊ of Ê : this proves that
every brane (E, dE) in Br(X+, f) is homotopically equivalent (and hence identified in Br(X+, f)) to

the restriction to X+ of a brane (Ê , dÊ) in Br(X , f), and this concludes the proof.

The proof of the Claim is rather technical, but it is identical to the second part of [Seg11, proof of
Lemma 3.6], hence it will be omitted. �

Theorem 4.26. Let S ∈ H0(F (1, 2, n),O(1, 1)) be a general section, fix M := Z(σ) and Yi := Z(hi∗(S) for
i ∈ {1; 2}. Then there is a fully faithful functor Db(Y1) −֒→ Db(Y2).

Proof. By Propositions 4.24, 4.25 there is a fully faithful functor Br(X+, f) −֒→ Br(X−, f). By Knörrer
periodicity [Shi12, Theorem 3.4], there are equivalences Db(Crit(f)//±G) ≃ Br(X±, f). The proof
follows by the isomorphisms Crit(f)//+G ≃ Y1 and Crit(f)//−G ≃ Y2 developed in Lemma 4.7. �

Remark 4.27. Note that in [LX19] an embeddingDb(X+) ⊂ Db(X−) is constructed with a completely
different method: in fact Leung and Xie provide semiorthogonal decompositions of the total space of
O(−1,−1) on F (1, 2, V ) and by an inductive method based on mutations of exceptional object they
prove thatDb(X+) is equivalent to a subcategory ofDb(X−), hence proving the DK conjecture for this
example. However, their result cannot be directly applied to ourmethod since it is not compatible with
the construction of the window category. However, one could proceed in the spirit of [LX19] by con-
structing semiorthogonal decompositions of the zero locusM of a general section ofO(1, 1) bymeans
of [Orl03]. These decompositions are formally identical to the ones given by [LX19], and a similar
approach based on mutations is a possible way to recover the embeddingDb(Y1) ⊂ Db(Y2). However,
the current proof, despite providing the embedding in a very abstract fashion, is considerably shorter
and more suitable to generalizations.

The authors have no competing interests to declare that are relevant to the content of this article. Data
sharing not applicable to this article as no datasets were generated or analysed during the current
study. Corresponding author: Marco Rampazzo.
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