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ABSTRACT
It is shown that all minimally superintegrable Hamiltonian systems in a three-dimensional flat space derived in the work of Evans [Phys.
Rev. A 41, 5666–5676 (1990)] possess hidden symmetries leading to their linearization.
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I. INTRODUCTION
The superintegrability of Hamiltonian systems is classically analyzed in terms of the separability properties of the corresponding

Hamilton–Jacobi equation and the algebraic relations among the corresponding constants of the motion. However, as shown in recent works
(see, e.g., Refs. 1–4 and references therein), superintegrable systems are deeply related to the linearization problem of differential equations.
In this context, several types of superintegrable Hamiltonian systems can be linearized using their hidden symmetries, obtained by application
of various reduction techniques and transformations that are more general than point symmetries.5,6 The analysis of hidden symmetries and
the subsequent linearization does not depend upon the degree of the constants of the motion, or the particular class of separating coordinates.
Along these lines, it was shown in Ref. 3 that all maximally superintegrable systems in a flat three-dimensional space as classified in Ref. 7 by
Evans are linearizable by hidden symmetries.

In this work, we continue with the analysis begun in Ref. 3 concerning the linearizability of superintegrable systems in a three-
dimensional flat space, according to the classification given in Ref. 7. While the case of maximally superintegrable Hamiltonians was covered
in Ref. 3, it remains to inspect the eight classes of minimally superintegrable potentials described in Ref. 7. It turns out that, of these eight
systems, only one is genuinely three-dimensional, while the other seven cases correspond to a (separable) extension of the superintegrable
potentials on the real plane described in Ref. 8, the linearizability of which has been shown in earlier works (see, e.g., Refs. 2 and 9 and
references therein).

We briefly recall the classification in Ref. 8, where all plane systems admitting two quadratic first integrals in addition to the Hamiltonian
were determined. Four classes were found, and it was proven that the corresponding Hamilton–Jacobi equation was separable in at least two
different coordinate systems.

1. Type I:

H1 =
1
2
(p2

1 + p2
2) +

ω2

2
(w2

1 +w
2
2) +

β1

w2
1
+
β2

w2
2

. (1)

2. Type II:

H2 =
1
2
(p2

1 + p2
2) +

ω2

2
(4w2

1 +w
2
2) + β1w1 +

β2

w2
2

. (2)

J. Math. Phys. 63, 123510 (2022); doi: 10.1063/5.0086431 63, 123510-1

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp
https://doi.org/10.1063/5.0086431
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0086431
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0086431&domain=pdf&date_stamp=2022-December-16
https://doi.org/10.1063/5.0086431
https://orcid.org/0000-0003-1453-0988
https://orcid.org/0000-0003-2907-8533
mailto:mariaclara.nucci@unibo.it
mailto:rutwig@ucm.es
https://doi.org/10.1063/5.0086431


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

3. Type III:

H3 =
1
2
(p2

r +
p2
θ

r2 ) +
α
r
+

1
r2 (

β1

cos2( θ2)
+

β2

sin2( θ2)
). (3)

4. Type IV:

H4 =
1
2
(p2

r +
p2
θ

r2 ) +
α
r
+

1
√

r
(β1 cos(
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It was shown in Refs. 2 and 9 that these four types (and generalized Hamiltonians) are all linearizable by means of their hidden symme-
tries. These hidden symmetries are more general than the symmetries of the Hamiltonian and do not correspond to canonical transformations
that preserve the Hamiltonian.

II. MINIMALLY SUPERINTEGRABLE SYSTEMS IN R3

Besides the maximally superintegrable systems in R3, Evans established in Ref. 7 the existence of eight equivalence classes of minimally
superintegrable systems in R3 depending on an arbitrary function and possessing first integrals that are at most quadratic in the canonical
momenta. If H = 1

2 ∣P∣
2
+ V(w1,w2,w3) denotes the Hamiltonian of the system in Cartesian coordinates, with P the linear momentum, these

potentials are given by
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√
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where k, k1, k2, and k3 are arbitrary constants.
It is immediate to observe that for the potentials V II − VVIII , the Hamiltonian systems can be interpreted as an extension of a

(superintegrable) system in the plane, which suggests to reduce these systems to a canonical form, which has already been shown to be
linearizable.2

A. The potential V I (w 1, w 2, w 3)
For the Hamiltonian

H =
1
2
(p2

1 + p2
2 + p2

3) +
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w2
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+

k2

w2
2
+

k3

w2
3
+ F(r), (5)

it is more convenient to consider spherical coordinates w1 = r sin θ cosψ, w2 = r sin θ sinψ, and w3 = r cos θ so that the Hamiltonian is
rewritten as

H =
1
2
(p2

r +
p2
θ

r2 +
p2
ψ

r2 sin2 θ
) +

k1

r2 sin2 θ cos2 ψ
+

k2

r2 sin2 θ sin2 ψ
+

k3

r2 cos2 θ
+ F(r), (6)

and the equations of motion are

ṙ = pr , ṗr =
p2
θ sin2 θ + p2

ψ

r3 sin2 θ
+

2(k2 cos2 ψ + k1 sin2 ψ)
r3 sin2 θ sin2 ψ cos2 ψ

+
2k3

r3 cos2 θ
−

dF(r)
dr

,

θ̇ =
pθ
r2 , ṗθ =

p2
ψ cos θ

r2 sin3 θ
+

2 cos θ(k2 cos2 ψ + k1 sin2 ψ)
r2 sin3 θ sin2 ψ cos2 ψ

−
2k3 sin θ
r2 cos3 θ

,

ψ̇ =
pψ

r2 sin2 θ
, ṗψ =

2k2 cos ψ
r2 sin2 θ sin3 ψ

−
2k1 sin ψ

r2 sin2 θ cos3 ψ
.

(7)

We begin by solving the last equation with respect to ψ, observing that

ṗψ =
dpψ
dψ

pψ
r2 sin2 θ

=
2k2 cos ψ

r2 sin2 θ sin3 ψ
−

2k1 sin ψ
r2 sin2 θ cos3 ψ

, (8)
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which yields the separable equation

pψ
dpψ
dψ
=

2k2 cos ψ
sin3 ψ

−
2k1 sin ψ

cos3 ψ
, (9)

with the solution

p2
ψ = 2(C0 −

k2

sin2 ψ
−

k1

cos2 ψ
) Ô⇒ pψ =

√
2
√

C0 −
k2

sin2 ψ
−

k1

cos2 ψ
(10)

for some constant C0. At this stage, we follow the same procedure used in Ref. 4 to analyze the remaining equations. If, now, h0 is a constant
such that the Hamiltonian (6) satisfies H = h0, solving with respect to pr taking into account identity (10) leads to

pr =

√
2 cos (θ)2 sin (θ)2r2(2h0 − F(r)) − cos (θ)2 sin (θ)2p2

θ − C0 cos (θ)2 − 2k3 sin (θ)2

r cos(θ) sin(θ)
. (11)

We now solve the fourth equation of (7) observing that

ṗθ =
dpθ
dθ

pθ
r2 =

p2
ψ cos θ

r2 sin3 θ
+

2 cos θ(k2 cos2 ψ + k1 sin2 ψ)
r2 sin3 θ sin2 ψ cos2 ψ

−
2k3 sin θ
r2 cos3 θ

. (12)

Replacing pψ by (10) and simplifying the resulting expression leads to the separable equation

pθ
dpθ
dθ
=

2 cos4 θC0 − 2k3 sin4 θ
sin2 θ cos2 θ

(13)

with the solution

pθ =

√
cos2 θ sin2 θC1 − cos2 θC0 − 2k3 sin2 θ

sin θ cos θ
(14)

for some constant C1.
With the appropriate replacements of pr , pθ, and pψ by (11), (14), and (10), respectively, the remaining three first-order equations adopt

the form
dr
dt
=

√
2r2h0 − 2r2F(r) − C1

r
,

dθ
dt
=

√
sin2 θ cos2 θC1 − cos2 θC0 − 2k3 sin2 θ

r2 sin θ cos θ
,

dψ
dt
=

√
sin2 ψ cos2 ψC0 − 2k2 cos2 ψ − 2k1 sin2 ψ

r2 sin2 θ sin ψ cos ψ
.

(15)

The first of these equations is separable and, thus, in principle, formally solvable by quadratures. Considering the change of variables
ψ = 2 arctan r2, θ = 2 arctan r3, taking into account the relation

dr3

dt
=

dr3

dr2

dr2

dt
, (16)

the combination of the transformed equations leads to the first-order differential equation

dr3

dr2
=

2
√

2r3(r3
2 − r2)

√

((4C1 − 2C0)r2
3 − C0(1 + r4

3))(r
2
3 − 1)2 − 8k3r2

3(r
2
3 + 1)2

(r4
3 − 1)(r2

2 + 1)
√

(2C0r2
2 − k2(r2

2 + 1)2)(r2
2 − 1)2 − 4k1r2

2(r
2
2 + 1)2

(17)

We solve this expression with respect to the constant k3 and derive once with respect to the variable r2, which yields the second-order ordinary
differential equation (ODE)

d2r3

dr2
2
= −

2
r3

3 − r3
(

dr3

dr2
)

2
+ S1(r2)

dr3

dr2
+ S2(r2)

r3(r2
3 + 1)4C0 − 16C1r5

3

(r2
3 + 1)3(r2

3 − 1)
, (18)
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where

S1(r2) = −
3k2r12

2 + 4(2k1 − k2 − C0)r10
2 + (12C0 − 8k1 − 5k2)r8

2 + (8k2 − 40k1 − 12C0)r6
2

(r5
2 − r2)(k2r8

2 + (4k1 − 2C0)r6
2 + (8k1 − 2k2 + 4C0)r4

2 + (4k1 − 2C0)r2
2 + k2)

−
(k2 − 24k1 − 12C0)r4

2 − 4k2r2
2 + k2

(r5
2 − r2)(k2r8

2 + (4k1 − 2C0)r6
2 + (8k1 − 2k2 + 4C0)r4

2 + (4k1 − 2C0)r2
2 + k2)

,

S2(r2) =
8(r2

2 − 1)2r2
2

(r2
2 + 1)2(k2r8

2 + (4k1 − 2C0)r6
2 + (8k1 − 2k2 + 4C0)r4

2 + (4k1 − 2C0)r2
2 + k2)

,

(19)

and the functions are related by 2S1(r2)S2(r2) −
dS2
dr2
= 0.

If C1 = 0, we consider the change of dependent variable r3 =
1
2(w −

√
w2 − 4), which transforms (18) into the linear equation

d2w

dr2
2
= −S1(r2)

dw
dr2
− C0S2(r2)w,

from which we conclude that it has eight point symmetries. For C1 ≠ 0, the equation admits a three-dimensional symmetry algebra isomorphic
to sl(2,R) and symmetry generators

X = U(r2)∂r2 +
r3

2 + r2

2(r2
2 − 1)

(U(r2)S1(r2) +
dU
dr2
)∂r3 , (20)

where U(r2) is a solution of the third-order linear equation

d3U
dr3

2
+ (2

dS1

dr2
− S2

1(r2) − 4C0S2(r2))
dU
dr2
+ (

d2S1

dr2
2
− S1(r2)

dS1

dr2
− 2C0

dS2

dr2
)U(r2) = 0. (21)

This fact suggests us to apply the procedure described in Ref. 6 and that is valid for any second-order ordinary differential equation
possessing sl(2,R) symmetry. To this extent, we solve Eq. (18) with respect to the constant C1 and derive once with respect to r2, which yields
the third-order equation

d3r3

dr3
2
= −

3(r4
3 + 3)

r5
3 − r3

d2r3

dr2
2

dr3

dr2
+

S3(r2)

(r5
2 − r2)S5(r2)

d2r3

dr2
2
+

12
r6

3 − r3
(

dr3

dr2
)

3

+
(r4

3 + 3)S3(r2)

r2(r4
2r4

3 − r4
2 − r4

3 + 1)r3S5(r2)
(

dr3

dr2
)

2
−

3S4(r2)

r2
2(r

4
2 − 1)2S5(r2)

dr3

dr2
,

(22)

where
S3(r2) = 12(r2

2 − 1)3r4
2C0 − 24k1r4

2(r
2
2 − 3)(r2

2 + 1)2
− 3k2(3r2

2 − 1)(r4
2 − 1)2

(r2
2 − 1),

S4(r2) = − 4C0r4
2(r

2
2 + 3)(r2

2 − 1)4
+ 8k1r4

2(r
2
2 + 1)2

(r6
2 − 5r4

2 + 11r2
2 + 1)

+ k2(r2
2 − 1)4

(r2
2 + 1)2

(5r4
2 − 2r2

2 + 1),

S5(r2) = 4k1r2
2(r

2
2 + 1) + k2(r4

2 − 1)2
− 2C0r2

2(r
2
2 − 1)2.

The symmetry generators of the equation have the generic form

X = V1(r2)∂r2 +
1

(r4
2 − 1)

(V2(r2)r3
2 + (r

5
2 + r2)V3(r2))∂r3. (23)

The coefficient function V1(r2) provides three point symmetries, as it satisfies the third-order differential equation

d3V1

dr3
2
=(

6S4(r2)

(r5
2 − r2)2S5(r2)

−
S2

3(r2)

3(r5
2 − r2)2S2

5(r2)
+

96(r3
2 − r2)

2C0

(r2
2 + 1)4S5(r2)

)
dV1

dr2

+
S6(r2)

(r5
2 − r2)3S5(r2)3 V1(r2),

(24)

where S6(r2) is given by
S6(r2) = 6((3r4

2 − 6r2
2 − 1)(r2

2 + 1)4
(r2

2 − 3)k2
2 + 8(5r4

2 − 2r2
2 − 1)(r3

2 + r2)
2k2C0

− 32r8
2C2

0)r
2
2(r

2
2 − 1)9C0 − 3(512r10

2 k3
1 + (r

2
2 − 1)9

)k3
2)(r

2
2 + 1)9.

(25)
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The coefficient functions V2(r2) and V3(R2) provide three point symmetries and one point symmetry, respectively, as they satisfy the
differential equations

d3V2

dr3
2
=

S3(r2)

r2S5(r2)

d2V2

dr2
2
−

3S4(r2)

(r6
2 − r2

2)S5(r2)

dV2

dr2
, (26)

dV3

dr2
=

d2V1

dr2
2
+

S3(r2)

3(r5
2 − r2)S5(r2)

dV1

dr2
+

1
(r5

2 − r2)2 (
2S3(r2)

2

9S5(r2)2 −
3S4(r2)

S5(r2)
)V1(r2)

−
32r2

2(r
2
2 − 1)2C0

(r2
2 + 1)2S5(r2)

V1(r2).
(27)

Consequently, the symmetry algebra of (22) is seven-dimensional, corresponding to the maximal symmetry of third-order equations. For the
particular values V1(r2) = 0, V2(r2) = λ2, and V3(r2) =

1
2λ3, with λi constant, the vector fields

X =
1

(r4
2 − 1)

(λ2r3
2 +

1
2
(r5

2 + r2)λ3)∂r3 (28)

generate a two-dimensional non-Abelian intransitive symmetry algebra. Following Lie’s classification,10 the symmetry generators (28) can be
reduced to the normal forms

X1 = ∂u, X2 = u∂u (29)

through the transformation y = r2 and u = r4
3+1
2r2

3
. In these canonical coordinates, the nonlinear Eq. (23) is transformed into the following linear

third-order ODE:
d3u
dy3 =

S3(y)
(y5 − y)S5(y)

d2u
dy2 −

3S4(y)
(y6 − y2)S5(y)

du
dy

. (30)

Summarizing, the Hamiltonian (6) hides a third-order equation, leading to the linearization of the system. The general solution can be derived
by substitution and integration by quadratures, without making explicit use of the constants of the motion.

B. Potentials obtained by extension of planar systems
As commented before, for the remaining seven potentials, we show that the system is obtained by the extension of one of the four types

of Hamiltonians shown in Ref. 8 to be superintegrable, the linearizability of which was proved in Refs. 9 and 2.

1. The potential VII(w1, w2, w3)
For the Hamiltonian

H =
1
2
(p2

1 + p2
2 + p2

3) + k(w2
1 +w

2
2) +

k1

w2
1
+

k2

w2
2
+ F(w3), (31)

we get the equations of motion
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 = p1, ṗ1 = −2kw1 +
2k2

w3
1

,

ẇ2 = p2, ṗ2 = −2kw2 +
2k2

w3
2

,

ẇ3 = p3, ṗ3 = −
dF(w3)

dw3
.

(32)

Considering the last two equations and introducing the new variable y = w3, with dy
dt = p3, we are led to the separable equation

p3 dp3 = −F′(y)dy, (33)

from which p2
3 = 2(C0 − F(y)) follows for some constant C0. Introducing this result into Eq. (31) leads us to the reduced two-dimensional

Hamiltonian

Ĥ =
1
2
(p2

1 + p2
2) + k(w2

1 +w
2
2) +

k1

w2
1
+

k2

w2
2
+ C0, (34)

corresponding to the Hamiltonian of type (1) with k = ω2, k1 = β1, and k2 = β2. It was shown in Ref. 2 that the Hamiltonian system (34) hides
a third-order linear equation, from which we conclude the linearizability of the Hamiltonian (31).
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2. The potential VIII(w1, w2, w3)
The Hamiltonian

H =
1
2
(p2

1 + p2
2 + p2

3) + 4kw2
1 + kw2

2 +
k2

w2
2
+ F(w3) (35)

yields the equations of motion
⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 = p1, ṗ1 = −8kw1,

ẇ2 = p2, ṗ2 = −2kw2 +
2k2

w3
2

,

ẇ3 = p3, ṗ3 = −
dF(w3)

dw3
.

(36)

As before, we take w3 as the new variable y so that p3 is given by p2
3 = 2(C0 − F(y)). Inserting it into (31) leads to the two-dimensional

Hamiltonian

Ĥ =
1
2
(p2

1 + p2
2) + 4kw2

1 + kw2
2 +

k2

w2
2
+ C0, (37)

which corresponds to the Hamiltonian of type (2) with k = ω2, β1 = 0, and k2 = β2. Following Ref. 2, the system determined by (37) hides a
second-order linear equation and a third-order linear equation, from which the linearizability of the Hamiltonian (35) follows. We observe
that this case was already considered in Ref. 3 by direct computation.

3. The potential VIV(w1, w2, w3)
For the Hamiltonian

H =
1
2
(p2

1 + p2
2 + p2

3) +
k

√
w2

1 +w
2
2

+
k2

w2
2
+

k1w1

w2
2

√
w2

1 +w
2
2

+ F(w3), (38)

the equations of motion are given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẇ1 = p1, ṗ1 =
kw1w

2
2 + k1w

2
1

w2
2

√
w2

1 +w
2
2

−
k1

w2
2

√
w2

1 +w
2
2

,

ẇ2 = p2, ṗ2 =
kw2

2 + k1w1

w2
√
w2

1 +w
2
2

+
2k1w1

w3
2

√
w2

1 +w
2
2

+
2k2

w3
2

,

ẇ3 = p3, ṗ3 = −
dF(w3)

dw3
.

(39)

Solving again the last equation with respect to p3 and the new variable y = w3 leads to p2
3 = 2(C0 − F(y)) as before. The reduced

two-dimensional system has the Hamiltonian

H =
1
2
(p2

1 + p2
2) +

k
√
w2

1 +w
2
2

+
k2

w2
2
+

k1w1

w2
2

√
w2

1 +w
2
2

+ C0. (40)

which expressed in polar coordinates {r, θ} adopts the form

Ĥ =
1
2
(p2

r +
p2
θ

r2 ) +
k
r
+

k2

r2 sin2 θ
+

k1 cos θ
r2 sin2 θ

+ C0. (41)

Now, observing that cos θ = cos2
( θ2) − sin2

( θ2) and sin θ = 2 sin( θ2) cos( θ2), the Hamiltonian (41) can be rewritten as

Ĥ =
1
2
(p2

r +
p2
θ

r2 ) +
k
r
+

k1 + k2

4r2 sin2( θ2)
+

k2 − k1

4r2 cos2( θ2)
+ C0. (42)

This corresponds to the Hamiltonian of type (3) with k = α, β1 =
k1+k2

4 , and β2 =
k2−k1

4 . The systems of this class were shown in Ref. 2 to hide
a second-order linear equation, from which the linearizability of the Hamiltonian (38) follows.
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4. The potential VV(w1, w2, w3)
The Hamiltonian

H5 =
1
2
(p2

1 + p2
2 + p2

3) + k(w2
1 +w

2
2 +w

2
3) +

k3

w2
3
+

F(w2/w1)

w2
1 +w

2
2

(43)

is more conveniently expressed in cylindrical coordinates w1 = r cos θ, w2 = r sin θ, and w3 = z as

H5 =
1
2
(p2

r +
pθ
r2 + p2

z) +
k3

z2 + k(r2
+ z2
) +

F(tan(θ))
r2 , (44)

leading to the Hamiltonian equations

ṙ = pr , ṗr = −2kr +
p2
θ + 2F(tan(θ))

r3 ,

θ̇ =
pθ
r2 , ṗθ =

−sec2
(θ)

r2
dF(tan(θ))

dθ
,

ż = pz , ṗz =
2k3

z3 − 2kz.

(45)

Introducing the new variable y = θ such that dy
dt =

pθ
r2 , the fourth equation in (45) adopts the separable form

pθ dpθ = −sec2
(y)F′(tan(y))dy, (46)

from which we obtain p2
θ = 2(C0 − F(tan(y))). Substitution into (44) leads to the two-dimensional Hamiltonian

Ĥ5 =
1
2
(p2

r + p2
z) +

k3

z2 + k(r2
+ z2
) +

C0

r2 , (47)

corresponding to the Hamiltonian of type (1) with k = ω2, C0 = β1, and k3 = β2, the linearizability of which follows from the analysis in Ref. 2.

5. The potential VVI(w1, w2, w3)
In Cartesian coordinates, the Hamiltonian is given by

H6 =
1
2
(p2

1 + p2
2 + p2

3) + k(w2
1 +w

2
2) + 4kw2

3 +
F(w2/w1)

w2
1 +w

2
2

. (48)

Again, it is convenient to consider cylindrical coordinates w1 = r cos θ, w2 = r sin θ, and w3 = z so that H6 can be rewritten as

H6 =
1
2
(p2

r +
p2
θ

r2 + p2
z) + kr2

+ 4kz2
+

F(tan θ)
r2 , (49)

with canonical equations given by

ṙ = pr , ṗr =
2F(tan θ)

r3 − 2kr +
p2
θ

r3 ,

θ̇ =
pθ
r2 , ṗθ = −

sec2 θ F′(tan θ)
r2 ,

ż = pz , ṗz = −8kz.

(50)

If we take y = θ as the new variable, the same calculation as before gives p2
θ = 2(C0 − F(tan(y))), which substituted into (49) leads to the

two-dimensional Hamiltonian
Ĥ6 =

1
2
(p2

r + p2
z) + kr2

+ 4kz2
+

C0

r2 , (51)

corresponding to the Hamiltonian of type (2) with k = ω2, β1 = 0, and C0 = β2.

6. The potential VVII(w1, w2, w3)
In cylindrical coordinates {r, θ, z}, the Hamiltonian is given by

H7 =
1
2
(p2

r +
p2
θ

r2 + p2
z) −

k
√

r2 + z2
+

k1z
r2
√

r2 + z2
+

F(tan θ)
r2 , (52)

J. Math. Phys. 63, 123510 (2022); doi: 10.1063/5.0086431 63, 123510-7

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

with canonical equations

ṙ = pr , ṗr =
p2
θ

r3 +
2k1z

r2
√

r2 + z2
+

k1z − kr2

(r2 + z2)
3
2
+

2F(tan(θ))
r2 ,

θ̇ =
pθ
r2 , ṗθ = −

sec2 θ F′(tan θ)
r2 ,

ż = pz , ṗz = −
k1 + kz
(r2 + z2)

3
2

.

(53)

The reduction with respect to the new variable y = θ with p2
θ = 2(C0 − F( tan(y)) leads to the two-dimensional Hamiltonian

Ĥ7 =
1
2
(p2

r + p2
z) −

k
√

r2 + z2
+

k1z
r2
√

r2 + z2
+

C0

r2 , (54)

which is of the same type as the Hamiltonian (40) and, thus, corresponds to type (3) with k = −α, β1 =
k1 +C0

4 , and β2 =
C0 − k1

4 .

7. The potential VVIII(w1, w2, w3)
Considering cylindrical coordinates {r, θ, z} defined as w1 = r sin θ, w2 = r cos θ, and w3 = z, the Hamiltonian is expressed as

H8 =
1
2
(p2

r +
p2
θ

r2 + p2
z) +

k
r
+

k1
√

1 + cos θ
√

r
+

k2
√

1 − cos θ
√

r
+ F(z), (55)

with canonical equations

ṙ = pr , ṗr =
p2
θ + kr

r3 +
k1
√

1 + cos θ + k2
√

1 − cos θ
2r

3
2

,

θ̇ =
pθ
r2 , ṗθ =

k1 sin θ
2
√

r
√

1 + cos θ
−

k2 sin θ
2
√

r
√

1 + cos θ
,

ż = pz , ṗz = −F′(z).

(56)

Considering z = y as the new variable, we deduce from the last two equations that p2
z = 2(C0 − F(y)) for some constant. Inserting it

into (55) leads to the two-dimensional Hamiltonian

Ĥ8 =
1
2
(p2

r +
p2
θ

r2 ) +
k
r
+

k1
√

1 + cos θ
√

r
+

k2
√

1 − cos θ
√

r
+ C0. (57)

Observing now that
√

1 + cos θ =
√

2 cos( θ2) and
√

1 − cos θ =
√

2 sin( θ2), Ĥ8 can be rewritten as

Ĥ8 =
1
2
(p2

r +
p2
θ

r2 ) +
k
r
+

k1
√

2
√

r
cos(

θ
2
) +

k2
√

2
√

r
sin(

θ
2
) + C0, (58)

showing that it corresponds to the Hamiltonian of type (4) with k = α, β1 =
√

2k1, and β2 =
√

2k2. The linearization of such systems, which
follows as a subcase of a more general class of Hamiltonians, was proved in Ref. 9.

III. CONCLUDING REMARKS
Using the Lie symmetry method in combination with the procedure of Ref. 6 to linearize second-order ordinary differential equations

with symmetry algebra sl(2,R), as well as the reduction method used in Ref. 4, we have completed the linearizability analysis of superinte-
grable systems in a three-dimensional flat space begun in Ref. 3. Specifically, it has been shown that all minimally superintegrable systems
classified in Ref. 7 possess a hidden symmetry that allows us to linearize the system. For seven of the eight potentials presented in Ref. 7, the
system can be seen as an extension of one of the types classified in Ref. 8, the linearizability of which has been shown in a previous work.2 For
the first potential, which constitutes the only system that is not obtained by the extension of a planar one, the linearization is proved applying
the method used in Ref. 4 to determine the linearizability of large classes of two-dimensional systems in non-Euclidean spaces.

The linearization process does neither depend on the separating coordinates of the system nor the degree of the first integrals. In this
context, it should be mentioned that the Hamiltonians with potentials V I–VVIII can be linearized in various ways. In this work, we have chosen
the simplest solution, showing that the potentials V II–VVIII are actually obtained from superintegrable systems in the plane that have already
been proved elsewhere to be linearizable.
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