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Abstract: In this paper, we propose a new exogenous model to address the problem of negative
interest rates that preserves the analytical tractability of the original Cox–Ingersoll–Ross (CIR) model
with a perfect fit to the observed term-structure. We use the difference between two independent
CIR processes and apply the deterministic-shift extension technique. To allow for a fast calibration
to the market swaption surface, we apply the Gram–Charlier expansion to calculate the swaption
prices in our model. We run several numerical tests to demonstrate the strengths of this model by
using Monte-Carlo techniques. In particular, the model produces close Bermudan swaption prices
compared to Bloomberg’s Hull–White one-factor model. Moreover, it finds constant maturity swap
(CMS) rates very close to Bloomberg’s CMS rates.

Keywords: CIR model; negative interest rates; calibration; Riccati equations; swaptions; Bermudan
swaptions

1. Introduction

This paper is the natural extension of Di Francesco and Kamm (2021), where we
modeled interest rates by means of a short-rate model defined as the difference of two
independent Cox–Ingersoll–Ross (CIR) processes in a negative interest rate framework.

We are extending the previous short-rate model by adding a deterministic function to
allow for a perfect fit to the observed market term-structure while preserving the analytical
tractability of an affine model and its features.

Let us briefly recall our findings in Di Francesco and Kamm (2021). We derived an
analytical formula for the zero-coupon price of the non-extended model (see Theorem A1)
by solving the associated Riccati equations in Lemma A1 explicitly and calibrated it to the
market term-structure. Such short-rate models, where the observed term-structure is an
output depending on the model parameters, are called endogeneous. We performed several
numerical experiments on two different dates obtaining good results in the sense that the
model reproduced the market term-structures with negative interest rates very well, and it
generates more realistic distributions of interest rates with a slight skewness and fatter tail
with respect to the normal distribution. However, as reported in the numerical tests, the
model failed to capture the full swaption surface due to the fact that the model parameters
were constant and the Brownian motions were independent.

To improve the fit to the swaption surface, we suggest transforming the endogenous
model into an exogenous one, in which the observed term-structure is an input.

A basic strategy to transform an endogenous model into an exogenous one is the
inclusion of time-dependent parameters to exactly reproduce the observed term-structure.
In fact, matching the term-structure exactly is equivalent to solving a system with an infinite
number of equations. However, this is only possible by introducing an infinite number
of parameters or, equivalently, a deterministic function of time. We follow the method
illustrated in (Brigo and Mercurio 2006, pp. 95 ff. Section 3.8 A General Deterministic-Shift
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Extension) to extend any time-homogeneous short-rate model, so as to exactly reproduce
any observed term-structure of interest rates while preserving the possible analytical
tractability of the original model.

To be more precise, we consider the CIR dynamics for z ∈ {x, y}

dz(t) = kz(θz − z(t))dt + σz

√
z(t)dWz(t), z(0) = z0 (1)

under a martingale measure Q with kz, θz, σz ∈ R>0 and define the short-rate as

r(t) := x(t)− y(t) + ψ(t), (2)

where Wy and Wx are two independent standard Brownian motions on a stochastic basis(
Ω,F , (Ft)t∈[0,T],Q

)
and ψ(t) := f M(0, t)− f (0, t) is a deterministic function defined as

the difference of the market and model instantaneous forward rate.
Since the market term-structure is now an input, we can calibrate the model parameters

to the swaption surface. However, simple Monte-Carlo techniques are in general very slow
and memory demanding. Therefore, we resort to an approximation formula known as the
Gram–Charlier expansion (cf. Tanaka et al. 2010) in our model. This allows for a fast and
accurate calibration procedure.

1.1. Description of the Main Results

In this paper, we will first of all extend the results of Di Francesco and Kamm (2021)
by using a deterministic shift extension. The zero-coupon price in the extended model (2)
is given in the next Lemma.

Lemma 1. Let
(

Ω,F , (Ft)t∈[0,T],Q
)

be a stochastic basis, where Q is a martingale measure,
T > 0 a finite time horizon and let the σ-algebra (Ft)t∈[0,T] fulfill the usual conditions and support
two independent standard Brownian motions Wx and Wy. The price of a zero-coupon bond in the
model r(t) := x(t)− y(t) + ψ(t) is given by

P(t, T) =
PM(0, T)
PM(0, t)

PCIR-(0, t)
PCIR-(0, T)

PCIR-(t, T),

where PCIR-(t, T) is the zero-coupon price from Theorem A1 and PM(0, T) the market zero-curve.

The derivation of this result is straightforward and is referred to in Section 2 alongside
a recollection of basic results on swaps and swaptions.

We will see that it is necessary to study the so-called swap moments to derive the
Gram–Charlier expansion. In our model, we will find explicit formulas allowing for fast
swaption pricing and it is part of the next technical Lemma.

Lemma 2. Let everything be as in Lemma 1. The so-called swap moments at time t < T0 of order
m ∈ N are given by

Mm(t) := EQT0
[(

SwapTN
T0

(T0; K, ζ)
)m∣∣∣Ft

]
=

(
PCIR-(0, T0)

PM(0, T0)

)m 1
PCIR-(t, T0)

∑
0≤k0,...,kN≤N
k0+···+kN=m

m!
k0! · · · kN !

ãk0
0 · · · ã

kN
N

(
Mx(t, T0)e−Nx(t,T0)x(t)My(t, T0)eNy(t,T0)y(t)

)

where we suppress the dependency of Nz, Mz on ki for readability. The coefficients ãi are given by
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ã0 := ζ
PM(0, T0)

PCIR-(0, T0)
, ãN := −ζ(1 + KαN)

PM(0, TN)

PCIR-(0, TN)
, ãi := −ζKαi

PM(0, Ti)

PCIR-(0, Ti)
,

for i = 1, . . . , N− 1, year fractions αi, fixed swap rate K and swap type ζ = 1 for a payer swap and
ζ = −1 for a receiver swap.

Moreover, the functions Mz, Nz, z ∈ {x, y} are defined as

Mz(t, T0) = az

(
φz

1 exp(φz
2(T0 − t))

φz
1 + φz

2
(
exp

(
φz

1(T0 − t)
)
− 1
)(

1 + bz
(
φz

1 − φz
2
)))φz

3

, az =
N

∏
j=0

Az(T0, Tj)
kj

Nz(t, T0) =
bzφz

1 +
(
exp

(
φz

1(T0 − t)
)
− 1
)(

1 + bz
(
φz

1 − φz
2
))

φz
1 + φz

2
(
exp

(
φz

1(T0 − t)
)
− 1
)(

1 + bz
(
φz

1 − φz
2
)) , bz =

N

∑
j=0

k jBz(T0, Tj),

where Az, Bz are the functions defined in Theorem A1. The swap cumulants cl(t) at time t are now
given by the formulas in Appendix D by setting µi := Ml(t), l = 1, . . . , m.

For the proof of this Lemma, we follow Tanaka et al. (2010) closely, which is referred
to in Section 3.1.

The main result of this paper is the approximation of swaption prices by the Gram–
Charlier expansion with short-rate (2), which follows immediately from Lemma 2 by using
Proposition 2 and is referred to in Section 3.2.

Theorem 1. Let everything be as in Lemma 2.
The time t price of a T0× (TN − T0) payer (ζ = 1) and receiver (ζ = −1) swaption is given by

SwaptionTN
T0

(t; K, ζ) = P(t, T0)

(
C1N

(
C1√
C2

)
+
√

C2 ϕ

(
C1√
C2

)(
1 +

∞

∑
l=3

(−1)lql Hl−2

))
,

where N denotes the cdf of the normal distribution, ϕ is the pdf or the normal distribution and Hl
are the probabilist’s Hermite polynomials (see Appendix C). The coefficients q0 = 1, q1 = q2 = 0,
and for n ≥ 3

qn =
b n

3 c
∑

m=1
∑

k1+···+km=n
ki≥3

Ck1 · · ·Ckm

m!k1! · · · km!

(
1√
C2

)n

for Cl := cl(t)P(t, Tn)l with cl(t) being the swap cumulants from Lemma 2 for fixed t ≥ 0.

This formula will provide the necessary ingredient for the numerical experiments in
Section 4, making it possible to calibrate the model to the swaption surface very efficiently.
After successfully calibrating the model, we apply it to find constant maturity swap rates
in Section 4.4 and Bermudan swaption pricing in Section 4.5 using the Least-Square Monte-
Carlo technique. We will see a good performance of this model compared to the reference
data downloaded from Bloomberg.

1.2. Review of the Literature and Comparison

Historically, the theory of interest-rate modeling started on the assumption of specific
one-dimensional dynamics for the instantaneous spot rate process r. These models are
convenient for defining all fundamental quantities (rates and bonds) by no-arbitrage
arguments as it is the expectation of a functional of the process r. Indeed, the price at time
t > 0 of a contingent claim with payoff HT , T > t, under the risk-neutral measure Q is
given by (cf. Pascucci 2011)

Ht = EQ
t

[
e−
∫ T

t r(s)dsHT

]
, (3)
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where EQ
t denotes the conditional expectation with respect to some filtration Ft under

measure Q. In particular, choosing HT := P(T, T) = 1, where P(t, T) denotes a zero-
coupon bond.

The literature on interest rate modeling is very vast, and our short literature review is
by no means exhaustive. We refer to (Björk 2004; Brigo and Mercurio 2006; Hull 2006) for a
comprehensive review and description of these models.

Among all possible classifications, we can divide these models into two major cate-
gories: the endogenous and exogenous models. In chronological order, the first short-rate
models belong to the first group: the Vasicek model Vasicek (1977), the Dothan model
and the Cox, Ingersoll and Ross (CIR) Cox et al. (1985). In particular, the CIR model has
been regarded as the reference model in interest rate modeling by both practitioners and
academics for several decades for several reasons. First of all, it was derived from a general
equilibrium framework. Secondly, it generates more realistic interest rate distributions with
skewness and a fatter tail with respect to normal distribution. Thirdly, it avoids negative
interest rates. There is a rich literature on extensions to the classical CIR model in order to
obtain more sophisticated models, which could fit the market data better, allowing to price
interest rate derivatives more accurately. For example, Chen (1996), proposed a three-factor
model; Brigo and Mercurio (2006), proposed a jump diffusion model (JCIR).

However, in the last decade, the financial industry encountered a paradigm shift
by allowing the possibility of negative interest rates, making the classical CIR model
unsuitable.

Recently, Orlando et al. suggest in several papers (cf. Orlando et al. 2019a, 2019b,
2020) a new framework that they call the CIR# model, which fits the market term-structure
of interest rates. Additionally, it preserves the market volatility, as well as the analytical
tractability of the original CIR model. Their new methodology consists of partitioning the
entire available market data sample, which usually consists of a mixture of probability
distributions of the same type. They use a technique to detect suitable sub-samples with
normal or gamma distributions. In the next step, they calibrate the CIR parameters to
shifted market interest rates, such that the interest rates are positive, and use a Monte Carlo
scheme to simulate the expected value of interest rates.

In addition to historical reasons, endogenous models are important for their simplicity
and analytical tractability, in particular for the possibility of pricing bonds and bond
options analytically. However, there are some drawbacks. Since these models use only
a few constant parameters, they are not able to simultaneously reproduce a given term-
structure and volatility curve satisfactorily. Moreover, some shapes of the zero-coupon
curve can never be reproduced (for example, an inverted shape curve with the Vasicek
model). The need for an exact fit to the currently observed yield curve led some authors to
introduce exogenous term-structure models. The first model was proposed by Ho and Lee
(see HO and LEE 1986), but we believe the most popular among practitioners is the Hull
and White extended Vasicek model (see Hull and White 1990). A generalization of this
model with a good calibration to swaption market prices was found in Di Francesco (2012),
while Mercurio and Pallavicini (2005) proposed a mixing Gaussian model coupled with
parameter uncertainty. Moreover, in Russo and Torri (2019), the authors calibrate a one-
and two-factor Hull–White model using swaptions under a market-consistent framework
compatible with negative interest rates.

On the one hand, these models can handle negative interest rates with a very good
analytical tractability. On the other hand, the distribution of continuously compounded
interest rates shows all the undesirable features of the Gaussian distribution.

In this paper, we extend the endogenous model of Di Francesco and Kamm (2021) to
an exogenous model by adding a deterministic shift and show how the Gram–Charlier
expansion of Tanaka et al. (2010) can be utilized to calibrate our model to the swaption
surface. We will see a good performance of the model with respect to determining constant
maturity swap rates and pricing Bermudan swaptions.
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We performed tests on two different dates 30 December 2019 and 30 November 2020.
On the first date, the market zero rates were partially negative, and on the second date, they
were completely negative. We saw similar numerical results on both dates and decided
for the sake of brevity to only present the results on 30 December 2019. For the interested
reader, we will make the data on 30 November 2020 as well as the code of the numerical
implementation available online. The paper is organized as follows. In Section 2, we first
introduce the deterministic shift extension and the corresponding zero-coupon price. This
is followed by a reminder of the relevant features of swaps and swaptions in Section 2.1.

In Section 3, we will derive the Gram–Charlier expansion. This is achieved by first
recalling how a probability density of a random variable can be approximated by Hermite
polynomials. We will see that it is necessary to study the cumulants or, equivalently, the
moments of this random variable. In our case, this will be the swap moments, and we
will show how to derive them from the so-called bond moments by solving some Riccati
equations, which will have explicit solutions in our model, making it possible to compute
swaption prices very fast.

After that, in Section 4, we will conduct some numerical experiments. First, we
calibrate our model to the market swaption surface at 30 December 2019 in Section 4.2. Sub-
sequently, we simulate the model by using the Euler–Maruyama scheme in Section 4.3 and
compute CMS rates in Section 4.4. We conclude our numerical tests by pricing Bermudan
swaptions in Section 4.5. Finally, we summarize the results of the paper in Section 5 and
discuss possible extensions for future research.

2. A Model for Negative Interest Rates with Perfect Fit to the Term-Structure

Let us define α :=
(
αx, αy

)
, αz := (kz, θz, σz), z ∈ {x, y}. We want to use the general

deterministic shift extension by (Brigo and Mercurio 2006, pp. 95 ff. Chapter 3.8 A General
Deterministic-Shift Extension) or Brigo and Mercurio (2001) in the case of multifactor
models. We note that contrary to the presented ideas in the aforementioned papers, we do
not need to introduce another probability space for our purposes and will use the same
risk-neutral measure for all dynamics.

Thus, we are interested in the following short rate model on (Ω,F ,Q)

r(t; α) := rCIR-(t; α) + ψ(t; α) = x(t; αx)− y(t; αy) + ψ(t; αx), ψ(0; α) = 0, (4)

where rCIR- denotes the short-rate model without the deterministic shift extension. We
will suppress the dependency on the parameters α for readability whenever there is
no confusion.

Likewise, we recall from Theorem A1 in the Appendix A that the price of the zero-
coupon bond for the non-extended model is given by

PCIR-(t, T) = Ax(t, T)e−Bx(t,T)x(t)Ay(t, T)eBy(t,T)y(t).

Analogous to (Brigo and Mercurio 2001, p. 5, Theorem 3.1), we easily derive the price of a
zero-coupon bond in the short-rate model (4) for given parameters α

P(t, T) = EQ
[

exp
(
−
∫ T

t
r(s)ds

)∣∣∣∣Ft

]
= EQ

[
exp

(
−
∫ T

t
x(s)− y(s) + ψ(s)ds

)∣∣∣∣Ft

]
= exp

(
−
∫ T

t
ψ(s)ds

)
PCIR-(t, T)

because ψ is deterministic.
To ensure a perfect fit to the initial term-structure, we set as in (Brigo and Mercurio

2001, pp. 5–6, Corollary 3.2)

ψ(t; α) = f M(0, t)− f α(0, t),
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where f M(0, t) is the instantaneous market forward rate and

f α(0, t) = −∂T(Ax(0, t))
Ax(0, t)

+ ∂T(Bx(0, t))x(0)−
∂T
(

Ay(0, t)
)

Ay(0, t)
− ∂T

(
By(0, t)

)
y(0)

is the instantaneous market rate for rCIR- (see Appendix B).
More conveniently, we observe that this is equivalent to asking that the following

equation holds

exp
(
−
∫ T

t
ψα(s)ds

)
=

PM(0, T)
PM(0, t)

PCIR-(0, t)
PCIR-(0, T)

,

where we used Pz(t, T) = exp
(
−
∫ T

t f z(t, s)ds
)

, z ∈ {M, CIR-}.
In total, this leads to the following formula for the zero-coupon price of the determin-

istic shift extended model

P(t, T) =
PM(0, T)
PM(0, t)

PCIR-(0, t)
PCIR-(0, T)

PCIR-(t, T) (5)

and P(0, T) = PM(0, T) is guaranteed.

2.1. Swaption Price Formula

In Di Francesco and Kamm (2021), we calibrated the short-rate model rCIR- to the
initial term-structure. For the deterministic shift extended model, this is not possible since
a perfect fit is guaranteed regardless of the parameters α. Therefore, we will calibrate to
market swaption prices, for which we will recall all essentials in this section.

We are following (Björk 2004, pp. 428 ff. Chapter 27.7 Swaps); (Brigo and Mercurio
2006, pp. 19 ff.) and (Schrager and Pelsser 2006, pp. 3 ff.) in this section.

A swap is a financial contract between two counterparties with fixed resettlement
dates T0, T1, . . . , TN , N ∈ N. The contract itself contains two cashflows, one—called the
floating leg—is payments of future interest rates and the other—called the fixed leg—is a
fixed amount of payments. The receiver of a swap will receive at the fixed dates the amount
of the fixed leg and pays the amounts of the floating leg to the other counterparty, giving it
its name: the floating leg is swapped for the fixed leg. Additionally, a payer swap refers
to the case, when the floating leg is received and the fixed rate paid. We will distinguish
the different kinds by introducing the factor ζ, which will be equal to +1 in case of a payer
swap and −1 in case of a receiver swap.

Such a contract with maturity T0 and tenor TN − T0 and resettlements T0, . . . , TN is
commonly called a T0 × (TN − T0) swap.

The net value of a T0 × (TN − T0) payer and receiver swap at time t < T0 is given by

SwapTN
T0

(t; K, ζ) := ζ

(
P(t, T0)− P(t, TN)− K

N

∑
i=1

αiP(t, Ti)

)
(6)

where αi = Ti − Ti−1 is the day-count convention and K the fixed rate, see for instance
(Björk 2004, pp. 429 ff.). To ease notation, we will suppress the explicit dependency on the
T0 and TN whenever there is no confusion.

A particular fixed rate K called par or forward swap rate is of special interest, which
are usually quoted in the market. It is the one such that SwapN(t; K, ζ) = 0 (which is
independent of ζ), and we will denote it a bit more generally by

RN
n (t) :=

P(t, Tn)− P(t, TN)

∑N
i=n+1 αiP(t, Ti)

, n = 0, . . . , N − 1.
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Moreover, we will denote the so-called accrual factor or present value of a basis point by

SN
n (t) :=

N

∑
i=n+1

αiP(t, Ti), n = 0, . . . , N − 1.

Now, we are able to discuss swaptions (cf. Björk 2004, pp. 430 ff.). A T0 × (TN − T0)
payer, receiver swaption with swaption strike K is a contract, at maturity T0 gives the
holder the right to enter into a T0 × (TN − T0) payer, receiver swap with fixed rate K.

Its arbitrage free price at time t < T0 is given by

SwaptionTN
T0

(t; K, ζ) = EQ
[

exp
(
−
∫ T0

t
r(s)ds

)(
ζ
(

RN
0 (T0)− K

))+
SN

0 (T0)

∣∣∣∣Ft

]
(7)

We will use this formulation for our Monte-Carlo calibration procedure together with (5).

Swaption Prices under the Forward Measure

For the Gram–Charlier expansion, we will make use of the fact that the stochastic
discount factor in (7) can be removed by a clever change of measure. For fixed T0, the T0-
forward measure QT0 is defined as the martingale measure for the numeraire process p(t, T0)
(cf. Björk 2004, pp. 403 ff. Chapter 26.4 Forward measure), and we have the following:

Proposition 1. For any T0-claim X, we have

EQ
[

e−
∫ T0

t r(s)dsX
∣∣∣∣Ft

]
= P(t, T0)EQT0 [X|Ft].

Thus, the price at time t < T0 of a payer (ζ = 1), receiver (ζ = −1) swaption under the
T0-forward measure is given by

Swaption(t; K, ζ) = P(t, T0)EQT0
[(

ζ
(

RN
0 (T0)− K

))+
SN

0 (T0)

∣∣∣∣Ft

]
(8)

3. Gram–Charlier Expansion

We will use all the results available in (Tanaka et al. 2010, pp. 3 ff. Section 2.1 Gram–
Charlier expansion) and apply them to our case.

Let us first of all make the following observation: The payer (ζ = 1) and receiver
(ζ = −1) swap value (6) can both be rewritten as

Swap(t; K, ζ) :=
N

∑
i=0

aζ
i P(t, Ti),

where aζ
i are equal to

aζ
0 := ζ, aζ

N := −ζ(1 + KαN), aζ
i := −ζKαi, i = 1, . . . , N − 1.

For the remainder of this section, we will drop the dependency on ζ for the coefficients ai to
ease the notation. Now, with this notation, we can rewrite the swaption prices (8) to obtain

Swaption(t; K, ζ) = P(t, T0)EQT0
[(

SwapN(T0; K, ζ)
)+∣∣∣∣Ft

]
!
= P(t, T0)

∫ ∞

0
x f (x)dx,

for an unknown density function f . The idea of the Gram–Charlier expansion is to ap-
proximate this density function f by using the orthonormal basis of Hermite polynomials
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(see Appendix C), which is the content of the next Proposition (cf. Tanaka et al. 2010, p. 3,
Proposition 2.1; Cheng 2013, p. 5, Proposition 2.1.2).

Proposition 2. Assume that a random variable Y has the continuous density function f and has
finite cumulants ck, k ≥ 1. Then the following holds:

1. f can be expanded as

f (x) =
∞

∑
n=0

qn√
c2

Hn

(
x− c1√

c2

)
ϕ

(
x− c1√

c2

)
,

where Hn are the probabilist’s Hermite polynomials and ϕ the probability density function of
the standard normal distribution, as well as q0 = 1, q1 = q2 = 0, and for n ≥ 3

qn =
1
n!
E
[

Hn

(
Y− c1√

c2

)]
=
b n

3 c
∑

m=1
∑

k1+···+km=n
ki≥3

ck1 · · · ckm

m!k1! · · · km!

(
1√
c2

)n
.

2. For any a ∈ R

E[Y1Y≥a] = c1N
(

c1 − a√
c2

)
+
√

c2 ϕ

(
c1 − a√

c2

)
+

∞

∑
n=3

(−1)n−1qn ϕ

(
c1 − a√

c2

)[
aHn−1

(
c1 − a√

c2

)
−
√

c2Hn−2

(
c1 − a√

c2

)]
,

where, furthermore, N denotes the cumulative distribution function of the standard nor-
mal distribution.

In particular, we have

q3 =
c3

3!c
3
2
2

, q4 =
c4

4!c
5
2
2

, q5 =
c5

5!c
6
2
2

, q6 =
c6 + 10c2

3

6!c
6
2
2

, q7 =
c7 + 35c3c4

7!c
7
2
2

Therefore, all that is required is to determine the swap cumulants. This will be
performed in several steps: First, we will use the fact that cumulants can be computed
from moments, see Appendix D. Second, we compute the so-called swap moments in
Equation (9), which in turn are computed from so-called bond moments. Last but not
least, in order to compute the bond moments, we need to derive a new system of Riccati
equations in Equation (11).

3.1. Bond and Swap Moments

Since cumulants can be expressed by moments and vice versa (see Appendix D), we
will study the Swap moments in this section, which we denote by

Mm(t) := EQT0 [ (Swap(T0))
m∣∣Ft

]
= EQT0

[(
N

∑
i=0

aiP(T0, Ti)

)m∣∣∣∣∣Ft

]
.

It can be shown by induction that the m-th power can be rewritten as(
N

∑
i=0

aiP(T0, Ti)

)m

= ∑
0≤i1,...,im≤N

ai1 · · · aim

(
m

∏
k=1

P(T0, Tik )

)
.
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Now, notice that all ai are Ft measurable, and therefore,

Mm(t) = ∑
0≤i1,...,im≤N

ai1 · · · aimE
QT0

[
m

∏
k=1

P(T0, Tik )

∣∣∣∣∣Ft

]
(9)

and we will call EQT0 [∏m
k=1 P(T0, Tik )

∣∣Ft
]

the bond moments.
Similar to (Cheng 2013, pp. 44–46), we will reduce the problem to finding the bond

moments for the short-rate model without a deterministic-shift extension by using (5)

Mm(t) = ∑
0≤i1,...,im≤N

ai1 · · · aimE
QT0

[
m

∏
k=1

P(T0, Tik )

∣∣∣∣∣Ft

]

= ∑
0≤i1,...,im≤N

ai1 · · · aimE
QT0

[
m

∏
k=1

PM(0, Tik )

PM(0, T0)

PCIR-(0, T0)

PCIR-(0, Tik )
PCIR-(T0, Tik )

∣∣∣∣∣Ft

]

=

(
PCIR-(0, T0)

PM(0, T0)

)m

∑
0≤i1,...,im≤N

ai1 · · · aim

m

∏
k=1

PM(0, Tik )

PCIR-(0, Tik )
EQT0

[
m

∏
k=1

PCIR-(T0, Tik )

∣∣∣∣∣Ft

]

=

(
PCIR-(0, T0)

PM(0, T0)

)m

∑
0≤i1,...,im≤N

a∗i1 · · · a
∗
imE

QT0

[
m

∏
k=1

PCIR-(T0, Tik )

∣∣∣∣∣Ft

]
,

where a∗ik = aik
PM(0,Tik

)

PCIR-(0,Tik
)
.

Thus, we only have to calculate the bond moments for the CIR- model.
For a numerical implementation, the m-fold sum over all permutations of ik is unfavor-

able. Therefore, we rewrite it as follows: By definition, there will always be m coefficients
aik in the m-fold sum, but it is possible to obtain, e.g., ai1 twice, etc. Hence, fixing indices
for a0 up to aN , we can sum over the powers of all occurrences, which have to sum up to
m. However, the individual products of the coefficients can appear multiple times as well,
e.g., for m = 2, N = 2 summing over all permutations would lead to two times the term
a0a1 since we encounter i0 = 0, i1 = 1 and i1 = 1, i0 = 0. Finally, we derive, similar to
(Cheng 2013, p. 28, Remark 4.2.1), the following expression

∑
0≤i1,...,im≤N

ai1 · · · aim

(
m

∏
k=1

P(T0, Tik )

)
= ∑

0≤k0,...,kN≤N
k0+···+kN=m

m!
k0! · · · kN !

ak0
0 · · · a

kN
N

(
N

∏
j=0

P(T0, Tj)
kj

)
.

Finding this set of indices is known as the subset sum problem, which is NP-hard
but can be solved by, e.g., dynamical programming. The interested reader is referred to
Curtis and Sanches (2017) for recent developments using a GPU for large subset sum
problems. In our case, m will be at most 7, and due to annual payments, N will be at
most equal to the maximal tenor plus one, i.e., 11, which is considered as a small subset
sum problem for which we will utilize a simpler implementation. Even with semi-annual
payments, a simple implementation with dynamic programming is sufficient, since we will
need to calculate the subset sum problems only once and pass it to the calibration procedure.

Now, let us derive the Riccati equation for the bond moments. First of all, notice that
the affine structure of P(t, T) is preserved
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N

∏
j=0

PCIR-(T0, Tj
)kj

=
N

∏
j=0

(
Ax(T0, Tj)e

−Bx(T0,Tj)x(T0)Ay(T0, Tj)e
By(T0,Tj)y(T0)

)kj

=

(
N

∏
j=0

Ax(T0, Tj)
kj

)
e−∑N

j=0 kjBx(T0,Tj)x(T0)

(
N

∏
j=0

Ay(T0, Tj)
kj

)
e∑N

j=0 kjBy(T0,Tj)y(T0)

=: Ax(T0, {k0, . . . , kN})e−Bx(T0,{k0,...,kN})x(T0)Ay(T0, {k0, . . . , kN})eBy(T0,{k0,...,kN})y(T0)

(10)

By Proposition 1, we have also for t ≤ T0

EQT0

[
N

∏
j=0

PCIR-(T0, Tj
)kj

∣∣∣∣∣Ft

]

=
1

PCIR-(t, T0)
EQ
[

e−
∫ T0

t rCIR-(s)ds Ax(T0, {k0, . . . , kN})e−Bx(T0,{k0,...,kN})x(T0)

Ay(T0, {k0, . . . , kN})eBy(T0,{k0,...,kN})y(T0)

∣∣∣∣Ft

]
!
=

1
PCIR-(t, T0)

Mx(t, T0)e−Nx(t,T0)x(t)My(t, T0)eNy(t,T0)y(t).

We notice that by martingale pricing, the discounted price process e−
∫ t

0 rCIR-(s)ds Mx(t, T0)

e−Nx(t,T0)My(t, T0)eNy(t,T0) has to be a martingale. Since it has an affine structure as well, it
places us exactly in the same situation as in the derivation of Lemma A1 seen in Di Francesco
and Kamm (2021) with the difference of variable terminal conditions.

Therefore, we have the same Riccati equation but different terminal values dependent
on k0, . . . , kN .

For generic terminal values az, bz ∈ R≥0, the explicit solution is given by

Mz(t, T0) = az

(
φz

1 exp(φz
2(T0 − t))

φz
1 + φz

2
(
exp

(
φz

1(T0 − t)
)
− 1
)(

1 + bz
(
φz

1 − φz
2
)))φz

3

, Mz(T0, T0) = az

Nz(t, T0) =
bzφz

1 +
(
exp

(
φz

1(T0 − t)
)
− 1
)(

1 + bz
(
φz

1 − φz
2
))

φz
1 + φz

2
(
exp

(
φz

1(T0 − t)
)
− 1
)(

1 + bz
(
φz

1 − φz
2
)) , Nz(T0, T0) = bz.

(11)

As seen from our derivation in Equation (10), the terminal values t = T0 are equal to

az = Az(T0, {k0, . . . , kN}), bz = Bz(T0, {k0, . . . , kN}), z ∈ {x, y},

and we can now compute the bond moments and, therefore, the swap moments for the
Gram–Charlier expansion. Thus, using the one-to-one relationship between moments and
cumulants in Appendix D, we have an explicit formula for the swap cumulants and we can
apply Proposition 2, which is part of the next subsection.

3.2. Expansion Formula

As described in Tanaka et al. (2010), we can now use Proposition 2 to formulate the
Gram–Charlier expansion formula:

Swaption(t; K, ζ) = P(t, T0)

(
C1N

(
C1√
C2

)
+
√

C2 ϕ

(
C1√
C2

)(
1 +

∞

∑
l=3

(−1)lql Hl−2

))
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where we replace the cn in Proposition 2 by Cn := cn(t)P(t, T0)
n for n ≥ 1 and the swap

cumulants cn(t) are derived from the swap moments Mm(t) using their one-to-one rela-
tionship shown in Appendix D.

In the following, we will denote by

GC(L; K, ζ) := P(t, T0)

(
C1N

(
C1√
C2

)
+
√

C2 ϕ

(
C1√
C2

)(
1 +

L

∑
l=3

(−1)lql Hl−2

))

the L-th order of the Gram–Charlier expansion of the T0 × (TN − T0) swaption with strikes
K and swaption type ζ with annual payment dates.

4. Numerical Tests

We will now perform some numerical experiments in our model. In Section 4.1, we
will briefly discuss the market data, which we will use to perform all numerical tests in the
subsequent sections. Afterward, we will describe the calibration procedure of our model
in Section 4.2. This is followed by a short subsection on simulating the model with the
Euler–Maruyama scheme in Section 4.3, and in Section 4.4, we investigate the par rates
of constant maturity swaps (CMS). Last but not least, we compare the model Bermudan
swaption prices to Bloomberg’s Hull–White one factor model prices in Section 4.5.

For the calculations, we used Matlab 2021a with the (Global) Optimization Toolbox
running on Windows 10 Pro, on a machine with the following specifications: processor In-
tel(R) Core(TM) i7-8750H CPU @ 2.20 GHz and 2x32 GB (Dual Channel) Samsung SODIMM
DDR4 RAM @ 2667 MHz. All calculations were sped-up by multiprocessing on a single
CPU whenever possible.

4.1. Market Data

To obtain the market zero-coupon bond term-structure, we first build the EUR Euribor-
swap curve, which was created from the most liquid interest rate instruments available in
the market and constructed as follows: We consider deposit rates and Euribor rates with
maturity from one day to one year and par-swap rates versus six-month Euribor rates with
maturity from two years to thirty years. Then, the zero interest curve and the zero-coupon
bond curve are calculated using a standard “bootstrapping” technique in conjunction with
cubic spline interpolation of the continuously compounded rate (cf. Miron and Swannell
1991 for more details).

We tested the model on two different dates 30 December 2019 and 30 November 2020.
As mentioned in the introduction, we chose those particular dates because on 30 December
2019 the market zero rates were partially negative (up to year six) and on 30 November
2020 they were completely negative. This enables us to test the compatibility of the
model in the most relevant different scenarios. However, since the results on 30 December
2019 and 30 November 2020 are very similar, we decided to present only the results on
30 December 2019 and make all the data on 30 November 2020 available online to shorten
the presentation.

As aforementioned, we will calibrate the model to swaption prices (Table A3). They are
computed by Bachelier’s formula from normal volatilities quoted in the market (Table A1),
and the swaption strikes can be found in Table A2.

After the calibration, we will assess the performance of the model by comparing its
prediction of par CMS rates to Bloomberg’s CMS rates in Section 4.4 and pricing Bermudan
swaptions. The benchmark for Bermudan swaption prices will be Bloomberg’s Hull–
White one factor model alongside the corresponding strikes. The values are displayed in
Tables A4–A6, respectively.

All data were downloaded from Bloomberg and used in the following subsections for
our numerical experiments. We start in the next subsection by calibrating our model to the
swaption surface.
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4.2. Calibration

In this subsection, we will discuss how we use the Gram–Charlier expansion to cali-
brate our model to parts of the swaption surface in Table A3. Since we are using a determin-
istic shift extension, a perfect fit to the market zero-coupon curve (see Table A7) is always

guaranteed. Let us denote the parameter vector by Π :=
[
φx

1 , φx
2 , φx

3 , φ
y
1 , φ

y
2 , φ

y
3 , x0, y0

]T
∈ R8

>0.

We will formulate the calibration procedure as a constraint minimization problem in R8
>0

for the parameters Π with the objective function

f (Π) := ∑
l∈L

∑
T0∈M

∑
TN∈T

MarketSwaptionTN
T0

(K, ζ)

GCTN
T0

(l, Π; K, ζ)
− 1

2

, (12)

where L ⊂ N is a set of natural numbers containing the orders of the Gram–Charlier
expansion,M is a set of maturities and T a set of final times. We will go into further details
on how to choose these sets in Remark 1.

The objective function describes the relative square difference between the market
swaption prices and the theoretical prices derived by the Gram–Charlier expansion using
the short-rate model (4). We would like to note that one could also think of different
objective functions, which might lead to slightly different results. For instance, we tested
absolute squared errors, but the results were similar.

The set of admissible parameters A will consist of the following constraints arising
from the well-definedness of the Formulas (A3):

1. First of all, let us note that there is a one-to-one correspondence between the parame-
ters Π and kz, σz and θz if one is looking for positive real solutions only. We have

kx = 2φx
2 − φx

1 , ky = 2φ
y
2 − φ

y
1 ,

σx =

√
2
(

φx
2 φx

1 −
(
φx

2
)2
)

, σy =

√
−2
(

φ
y
2φ

y
1 −

(
φ

y
2

)2
)

,

θx = −φ2
xφ3

x(φ
1
x − φ2

x)

φ1
x − 2φ2

x
, θy =

φ2
yφ3

y(φ
1
y − φ2

y)

φ1
y − 2φ2

y
.

(13)

2. We require σz ∈ R≥0, z ∈ {x, y}. By rearranging (13), these conditions are equivalent
to φx

1 ≥ φx
2 and φ

y
2 ≥ φ

y
1 ;

3. A positive mean-reversion speed, i.e., kz ≥ 0, is equivalent to 2φz
2 ≥ φz

1, z ∈ {a, b};
4. The Feller condition 2kzθz ≥ σ2

z is equivalent to φz
3 ≥ 1, z ∈ {a, b};

5. A positive mean for each CIR process, i.e., θz ≥ 0, is by positivity of σ2
z and kz

equivalent to φz
3 ≥ 0, which is already satisfied by the Feller condition;

6. The parameter φz
1, assuming that it is real-valued, is positive by definition, meaning

that by the positivity of the mean reversion speed, φz
2 will be as well. Therefore, all φ

are positive;
7. As both CIR processes xt and yt, individually, are positive processes, we additionally

require x0 ≥ 0 and y0 ≥ 0.

The advantage of using the parameters Π instead of kz, σz and θz is that we can
rewrite these conditions as a system of linear inequality constraints in matrix notation
A ·Π ≤ 0, where

A :=


−1 1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0
1 −2 0 0 0 0 0 0
0 0 0 1 −2 0 0 0


with boundary conditions Πi ≥ 0, i = 1, . . . , 8, and Π3 = φx

3 ≥ 1, as well as Π6 = φ
y
3 ≥ 1.
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In total, the set of admissible parameters is given by

A :=
{

Π ∈ R8
≥0, Π3, Π6 ≥ 1 : A ·Π ≤ 0

}
. (14)

Finally, a solution Π∗ to the calibration problem is a minimizer of

min
Π∈A

f (Π). (15)

Before we present some results, we would like to make the following remark on the
choices of L,M and T .

Remark 1. As always, in calibration procedures with parametrized models, there is the notion of
over- and underfitting the data. Overfitting usually occurs when there are more parameters than
independent values to calibrate to. For example, we saw a very good fit for a single swaption price.
Underfitting, on the other hand, occurs when the model is not able to fit to the whole data, e.g.,
fitting this model to the entire swaption surface.

In our experiments, we determined that four to six values performed best with regards to the
Bermudan swaption pricing (Section 4.5) and finding the CMS par rates (Section 4.4). This is not
very surprising since the model has in total eight parameters, but since the two CIR processes are
independent and subtracted to deal with the negative interest rates, it has essentially four parameters
to model the data.

Therefore, we decided to perform tests on columns of the swaption surface and excluded short
maturities. Additionally, removing the last maturity in the column from the calibration increased
the speed of the optimization with usually the same accuracy. Additionally, we performed tests on
several diagonals of the swaption surface with similar results and, therefore, decided to focus only on
columns in this paper.

Another aspect of this calibration procedure is the question of which orders to use the Gram–
Charlier expansion. Since it is an orthogonal expansion, there is no a priori error estimate of the
truncated expansion formula. This also means that increasing the order might not be beneficial for
the accuracy. By comparing the Gram–Charlier swaption prices with Monte-Carlo swaption prices
(see Section 4.3) using the same parameters, we found both prices to be closer to each other if we were
using the orders three, five and seven in the calibration procedure. A non-rigorous and heuristic idea
behind this reasoning is that if the three orders are close to each other, then the expansion “converges”
to the correct price of the swaption in a loose sense.

To conclude, to avoid over- and underfitting, we will calibrate to columns of the swaption
surface starting with maturity five and ending with maturity 15. Moreover, to have a “stable”
Gram–Charlier swaption price, we will use the orders three, five and seven in all experiments.

To solve (15) numerically, we would like to use Matlab’s function fmincon in the
(Global) Optimization Toolbox. In order to use this function, we need an initial guess of the
parameter Π, and the computational time will depend on that choice.

Our experiments showed that initial guesses with small admissible values worked
best for fmincon. Therefore, we use the following hand-made parameters as initial points
for fmincon

I1 := [0.1, 0.095, 0.3, 0.095, 0.1, 0.3, 0.01, 0.01]T , I2 :=
1
2

I1

and compare the performance to parameters found by Matlab’s function ga. For the
algorithms, e.g., the interior point algorithm for fmincon, used by Matlab, we refer the
reader to Gilli et al. (2011), in the context of financial mathematics.

In Table 1, we show the value of (12) after the calibration procedure and its computa-
tional time in seconds in the case of a payer swaption on 30 December 2019. We display
four different choices of initial points, first of all only using ga, second ga as an initial point
for fmincon, third I1 as initial point for fmincon and last but not least I2 for fmincon. We
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can see that the model fits the swaption values best using columns with larger tenor but
the computational time increases as well for all methods. Furthermore, we can see that our
choices I1 and I2 in conjunction with fmincon outperforms ga with respect to accuracy and
it is significantly faster than the combination of ga and fmincon. Therefore, we will use in
the following experiments only fmincon with I1 or I2 to present the results. In Table 2, we
show the results of (15) with initial point I1 using fmincon for reproducibility.

Table 1. Computational times and values of (12) using different initial points and different swaption
columns in Table A3 and corresponding strikes in Table A2 in the case of payer swaptions and
maturities ranging from 5 to 15.

Method
Tenor 1 2 5 7 10

ga
f (Π)=

3.94× 10−2

in 76.2 s

f (Π)=
7.12× 10−2

in 85.8 s

f (Π)=
5.75× 10−2

in 100 s

f (Π)=
2.27× 10−2

in 168 s

f (Π)=
1.79× 10−2

in 891 s

ga & fmincon
f (Π)=

3.94× 10−2

in 76.6 s

f (Π)=
7.92× 10−2

in 87.6 s

f (Π)=
6.61× 10−3

in 118.6 s

f (Π)=
1.12× 10−3

in 206.6 s

f (Π)=
8.04× 10−4

in 945.9 s

I1 & fmincon
f (Π)=

7.90× 10−2

in 0.9 s

f (Π)=
4.78× 10−2

in 0.8 s

f (Π)=
6.62× 10−3

in 2.47 s

f (Π)=
1.10× 10−3

in 52 s

f (Π)=
3.00× 10−4

in 181 s

I2 & fmincon
f (Π)=

8.62× 10−1

in 0.3 s

f (Π)=
5.80× 10−1

in 1.35 s

f (Π)=
6.55× 10−3

in 33.3 s

f (Π)=
1.12× 10−3

in 49.9 s

f (Π)=
6.95× 10−4

in 93.9 s

Table 2. Calibrated parameters Π∗ using I1 with fmincon and different swaption columns in Table A3
and corresponding strikes in Table A2 in the case of payer swaptions and maturities ranging from
5 to 15.

Π∗
Tenor 1 2 5 7 10

φx
1 0.082 0.114 0.109 0.113 0.118

φx
2 0.0477 0.0947 0.0846 0.0899 0.092

φx
3 1.05 1.13 1.99 2 2

φ
y
1 0.155 0.0241 0.584 0.00192 0.00741

φ
y
2 0.165 0.0521 0.597 0.00851 0.00151

φ
y
3 1.33 1.19 1.26 1.78 1.73

x0 0.000126 0.00147 0.00017 0.000107 0.00151
y0 0.000128 0.0024 0.0021 0.0991 0.0988

4.3. Euler–Monte-Carlo Simulation

In order to forecast the future expected interest rate for, e.g., pricing Bermudan swap-
tions in Section 4.5, we use the Euler–Maruyama scheme to simulate the instantaneous
spot rate r (2). We refer to Dereich et al. (2012) and the references therein for a list of
different Euler-type methods to simulate a CIR process. In our experiments, we simulate
the processes x(t) and y(t) by the truncated Euler scheme defined as follows:

First of all, we fix a homogeneous time grid 0 = t0 ≤ t1 ≤ · · · ≤ tN = T for
the interval [0, T] with N + 1 time points and mesh ∆ti := ti+1 − ti ≡ ∆ := T

N for all
i = 0, . . . , N − 1. Secondly, we simulate the two independent Brownian motions Wz,
z ∈ {x, y}, and define their time increment as ∆Wz(ti) := Wz(ti+1)−Wz(ti). In total, we
compute r(ti+1) := x(ti+1)− y(ti+1) for i = 0, . . . , N − 1, where

x(ti+1) = x(ti) + kx(θx − x(ti))∆ti + σx

√
max(x(ti), 0)∆Wx(ti)

y(ti+1) = y(ti) + ky(θy − y(ti))∆ti + σy

√
max(y(ti), 0)∆Wy(ti).

(16)
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We choose the max inside the square-root to ensure that the square-root remains real
because, due to discretization effects, the positivity of x(ti) and y(ti) might be violated.

In all of our experiments, we use M = 10,000 simulations and mesh size ∆ = 1
256 . On

the one hand, looking at the fast calibration times using the Gram–Charlier approximation
in Section 4.2, it is clear that Monte-Carlo methods cannot compete with respect to speed.
On the other hand, since the Gram–Charlier expansion has no a priori error bound, let
us now validate the calibration results by computing the Monte-Carlo prices with the
parameters obtained by the Gram–Charlier expansion in Table 2. In Table 3, we compare
the swaption prices obtained by selected orders of the Gram–Charlier expansion to the
Monte-Carlo prices and also the Monte-Carlo prices to the market prices. To compare the
prices, we will use an average absolute error, i.e., for X, Y ∈ Rd1,d2

‖X−Y‖ :=
1

d1d2

d1

∑
i=1

d2

∑
j=1

∣∣Xij −Yij
∣∣.

Table 3. Average absolute errors of Monte-Carlo prices compared to Gram–Charlier prices and
market prices using the parameters shown in Table 2.

Methods
Tenor 1 2 5 7 10

MC − GC3 4.96× 10−4 1.17× 10−3 5.48× 10−4 6.23× 10−4 6.18× 10−4

MC − GC5 2.90× 10−4 1.07× 10−4 9.54× 10−4 2.93× 10−4 3.57× 10−4

MC − GC7 7.65× 10−4 1.05× 10−3 2.14× 10−4 1.97× 10−4 2.86× 10−4

MC −Market 3.93× 10−4 8.99× 10−4 4.58× 10−4 3.85× 10−4 3.73× 10−4

The average absolute error between the Gram–Charlier orders and the Monte-Carlo
prices are usually of order 10−4, and the Monte-Carlo prices compared to the market prices
usually of order 10−4, as well. It is important to note while reading this table that the
prices themselves are usually of order 10−2; therefore, the accuracy is usually up to two
significant orders. Hence, this validates the parameters obtained by the calibration with
the Gram–Charlier expansion, and we can proceed with finding CMS rates in the next
subsection using Monte-Carlo techniques.

4.4. Pricing Constant Maturity Swaps (CMS)

In this section, we want to use the calibrated model to compute the par rates of
constant maturity swaps (CMS) using Monte-Carlo simulation. We refer the reader to
(Brigo and Mercurio 2006, pp. 557 ff. Section 13.7 Constant-Maturity-Swaps; Tanaka et al.
2010, pp. 7 ff.) for more details.

Let us recall the definition of a CMS:

Definition 1. A constant maturity swap (CMS) is a variant of an interest rate swap between two
parties, such that at each payment date starting at T0 and ending at TN a fixed rate K is swapped
with a c-year swap rate.

Analogously, we distinguish between payer and receiver CMS. In receiver CMS, the fixed rate
is received and the floating rate paid, and vice versa for payer CMS.

Furthermore, as before, we will assume annual settlements between the effective
date T0 and maturity TN and denote the payment dates by T := {T0, T1, . . . , TN}. The net
value of a T0 × TN + c CMS with fixed rate K and index c at time 0 under the risk-neutral
measure is

CMSTN
T0

(0; K, c, ζ) := EQ
[

N

∑
i=1

exp
(
−
∫ Ti−1

0
r(s)ds

)
ζαi

(
Ri−1+c

i−1 (Ti−1)− K
)]

. (17)
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By rearranging (17), we can compute the par CMS rates by setting it to zero and solve for
K, i.e.,

K =
EQ
[
∑N

i=1 αi exp
(
−
∫ Ti−1

0 r(s)ds
)

Ri−1+c
i−1 (Ti−1)

]
EQ
[
∑N

i=1 αi exp
(
−
∫ Ti−1

0 r(s)ds
)]

=
EQ
[
∑N

i=1 αi exp
(
−
∫ Ti−1

0 r(s)ds
)

Ri−1+c
i−1 (Ti−1)

]
∑N

i=1 αiP(0, Ti−1)
.

Remember that by the deterministic shift extension, we have P(0, T) = PM(0, T) in our model.
In our experiment, we will use Monte-Carlo simulation for the short-rate (2) and

display the results in Table 4 using the initial parameters I2 for fmincon in the case of payer
swaptions. In the first column, we see the effective date T0, in the second the tenor T, such
that TN = T0 + T and in the third column the index c for the CMS. The next column shows
Bloomberg’s CMS rates, which is followed by the model CMS rates. In the last column, we
can see the absolute error of market and model rates. We can observe that the majority of
CMS rates are very close to each other, telling us that the model performs well on average
using just one column of the swaption data for the calibration. Using different columns in
the calibration for all different CMS rates would improve the results further.

Table 4. CMS rates computed with a calibration using I2 and fmincon to the column with tenor 7 of
the payer swaption surface with maturities ranging from 5 to 15.

Effective Date Tenor Index Bloomberg’s CMS Rate Model CMS Rate Abs Error

0 5 5 0.00145 0.00154 8.91× 10−5

0 10 5 0.00472 0.00499 0.000273
0 5 10 0.00465 0.0047 4.67× 10−5

0 10 10 0.00732 0.00738 6.06× 10−5

3 5 5 0.00562 0.00584 0.000226
3 5 10 0.00824 0.00825 8.32× 10−6

5 10 5 0.00999 0.01 3.64× 10−5

5 5 5 0.00958 0.00847 0.00112
5 5 10 0.011 0.0101 0.000912

4.5. Pricing Bermudan Swaptions

In this section, we want to use the calibrated model to compute the prices of Bermudan
swaptions. A popular choice of literature on this subject is, e.g., (Brigo and Mercurio 2006,
pp. 588 ff. Section 13.15 LFM: Pricing Bermudan Swaptions; Glasserman 2004, pp. 421 ff.
Chapter 8 Pricing American Options) or more recently (Gatarek and Jabłecki 2021; Oosterlee
and Grzelak 2019, pp. 422 ff. Section 13.3.2 European and Bermudan option example).

Now, let us define which type of Bermudan swaptions we are interested in.

Definition 2. A TN no-call T0 or TN nc T0 Bermudan swaption with annual exercise dates gives
its holder the right but not the obligation to enter at any time T N

E := {T0, T1, . . . , TN−1} into an
interest rate swap with first reset T ∈ TE, last payment TN and fixed rate K.

Let us give a quick example of a 10 nc 2 Bermudan swaption with annually spaced
exercise dates. The holder can exercise this option starting from year two and afterward at
the beginning of each consecutive year but not later than year nine. After exercising the
option, the holder enters into a swap contract—for simplicity with annual settlements—
ending at year 10.
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Accordingly, the price at time t of a TN nc T0 Bermudan swaption is the solution to the
following optimal stopping problem

BSwaptionTN
T0

(t; K, ζ) := sup
τ∈T N

E
τ stopping time

EQ
t

[
e−
∫ τ

t r(s)dsSN
τ (τ)

(
ζ
(

K− RN
τ (τ)

))+]
,

where the filtration is generated by the forward swap rate, i.e., Ft := σ
(

RN
s (s) : s ≤ t

)
augmented such that it satisfies the usual hypothesis.

For the implementation, we are interested in the special case of today’s price, i.e., t = 0.
We will use backward induction to compare the exercise value to the continuation value
and compute the conditional expectations by the least square Monte-Carlo (LSMC) method
(cf. Longstaff and Schwartz 2001). Let us be more precise:

We know that the price at time TN−1 is given by

BSwaptionTN
T0

(TN−1; K, ζ) = EQ
TN−1

[
e
−
∫ TN−1

TN−1
r(s)ds

SN
N−1(TN−1)

(
ζ
(

K− RN
N−1(TN−1)

))+]

= P(TN−1, TN)
(

ζ
(

K− RN
N−1(TN−1)

))+
by definition and measurability as well as the fact that the stopping time can only be
equal to TN−1 in this case. This gives us the opportunity to inductively calculate the
Bermudan swaption price backward. Thus, let us now assume that BSwaptionTN

T0
(Ti+1; K, ζ)

for i = N − 2, . . . , 0 is known.
We would like to compare the so-called continuation value, which is the expected future

payoff if the option is not exercised to the exercise value at all times T N
E , and is defined as

c(Ti) := EQ
Ti

[
e−
∫ Ti+1

Ti
r(s)dsBSwaptionTN

T0
(Ti+1; K, ζ)

]
.

Since the optimal stopping time will pathwise choose the maximum of continuing the
option or exercising it, we have a dynamic programming principle

BSwaptionTN
T0

(Ti; K, ζ) =

{
P(TN−1, TN)

(
ζ
(
K− RN

N−1(TN−1)
))+, i = N − 1

max
(

c(Ti), SN
i (Ti)

(
ζ
(
K− RN

i (Ti)
))+), i = 0, . . . , N − 2.

The price at time t = 0 is then given by

BSwaptionTN
T0

(0; K, ζ) = EQ
[

e−
∫ T0

0 r(s)dsBSwaptionTN
T0

(T0; K, ζ)

]
.

For completeness, we explain how to approximate the conditional expectation with
the LSMC method in Appendix E. For the numerical implementation, we choose the
polynomial basis.

In Table 5, we can see the average absolute error of the Bermudan swaption prices in
our model compared to Bloomberg’s prices. We used I1 and I2 s initial points for fmincon in
the case of receiver and payer swaptions with different tenors. We can see that the average
errors are very sensitive with respect to the calibrated parameters by looking at the results
of I1 and I2 for a fixed tenor. Additionally, we notice that usually the results are better if we
choose I2 as an initial point. The best results, on average, are found while calibrating to the
columns of the swaption surface with tenor 5 or 7. In Table 6, we show the absolute errors
for the individual payer Bermudan swaptions using I1 as the initial point calibrated to the
column with tenor 5 and see an overall good match. Particularly, the column with tenor 7
in Table 5 is very accurate.
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We focused in this experiment on the average errors only and not on specific Bermun-
dan swaptions. If one desires to do so, there might be better choices as to which swaption
prices to use for the calibration. Usually, the so-called co-terminal swaption prices are used
to achieve better results for a specific Bermudan swaption. Since we are satisfied with the
average performance of the model, we will not perform these individual tests for the sake
of brevity.

Table 5. Average absolute errors of Monte-Carlo Bermudan swaption prices and Bloomberg’s HW1
Bermudan swaption prices using the I1 and I2 as initial points for fmincon.

Methods
Tenor 1 2 5 7 10

I1 & fmincon
(Payer)

0.0254 0.0129 0.0014 0.0073 0.203

I2 & fmincon
(Payer)

0.00196 0.00991 0.00269 0.00279 0.0088

I1 & fmincon
(Receiver)

0.948 0.0642 0.0036 0.0021 0.0102

I2 & fmincon
(Receiver)

0.00615 0.0149 0.0033 0.0021 0.0071

Table 6. Absolute errors of Monte-Carlo Bermudan payer swaption prices and Bloomberg’s HW1
Bermudan swaption prices using the I1 as initial points for fmincon calibrated to the column with
tenor equal to 5.

Maturity
Tenor 2 5 7 10

1 1.295× 10−3 5.452× 10−4 6.337× 10−4 2.488× 10−3

3 1.026× 10−3 6.628× 10−4 9.348× 10−4 2.931× 10−3

5 1.284× 10−3 1.404× 10−3 1.629× 10−4 3.605× 10−3

7 9.416× 10−4 1.191× 10−3 4.314× 10−6 2.271× 10−3

10 1.267× 10−3 1.305× 10−3 1.603× 10−3 2.470× 10−3

5. Conclusions

In this paper, we extended the short-rate of Di Francesco and Kamm (2021) by applying
the deterministic-shift extension. We derived the swaption prices by using the Gram–
Charlier expansion in this model and calibrated it to columns of the market swaption
surface. The calibration is fast and accurate. Using Monte-Carlo techniques, we obtained
close CMS rates compared to Bloomberg’s rates. Furthermore, compared to Bloomberg’s
Bermudan swaption prices via the HW1 model, our model performed very well.

Let us discuss some limitations and potentials for future research on this model and
methodology. Introducing correlations between the Brownian motions might impact the
ability to solve the Riccati equations analytically, such that numerical solutions would be
necessary. This would clearly impact the computational effort. Considering piecewise
constant coefficients in the CIR processes might lead to similar problems but would make
the model more flexible and could lead to a better fit the entire swaption surface. These
problems are subject to future research.

Motivated by Russo and Torri (2019), we would like to extend the model by adding
multiple risk factors. This enables the model to generate more yield-curve shapes. In
this line of thought, it is possible to add an uneven number of risk factors, e.g., two risk
factors for the positive CIR process but keep only one for the negative CIR process and vice
versa. The impact of such choices are subject to future research. Again adding correlation
structures for multiple risk factors is also a possible extension.

Furthermore, in this paper, we only considered the CIR framework and especially only
Brownian motions as risk-factors. Another possible extension could be the JCIR framework
by adding a jump process to (2).
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Thanks to an anonymous referee, we were made aware that a discussion of how
realistic this model is is in order. For a more in-depth discussion, we point the reader to
Grabinski and Klinkova (2019) and the references therein. As aforementioned, we are using
a Brownian framework for reasons of analytical and numerical tractability. However, this
is far from sufficient to capture the full complexity of the real world. In this sense, the
choice of constant parameters in (2) can also be criticized. Together with (12), they can be
interpreted as regression parameters or averages with respect to the observed market data.
Of course, it would be more realistic to choose time-dependent parameters to counteract
some of these averaging effects. Nonetheless, even after adding time dependence, the
model would not be able to perfectly describe the real world, but it would certainly improve
it, and this is left to future research.
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Appendix A. Results on the CIR-Model

The following results are taken from Di Francesco and Kamm (2021).

Theorem A1. Let
(

Ω,F , (Ft)t∈[0,T],Q
)

be a stochastic basis, where Q is a martingale measure,
T > 0 a finite time horizon and let the σ-algebra (Ft)t∈[0,T] fulfill the usual conditions and support
two independent standard Brownian motions Wx and Wy.

The price of a zero-coupon bond in the model r(t) = x(t) − y(t) with x and y being two
independent CIR processes as in (1) is given by

PCIR-(t, T) = Ax(t, T)e−Bx(t,T)x(t)Ay(t, T)eBy(t,T)y(t), (A1)

where t ≤ T and for z ∈ {x, y}

Az(t, T) =

 φz
1eφz

2(T−t)

φz
2

(
eφz

1(T−t) − 1
)
+ φz

1

φz
3

Bz(t, T) =
eφz

1(T−t) − 1

φz
2

(
eφz

1(T−t) − 1
)
+ φz

1

(A2)

https://github.com/kevinkamm/CIR
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with φz
i ≥ 0, i = 1, 2, 3, z ∈ {x, y}, such that the Feller condition 2kzθz ≥ σ2

z is satisfied and

φx
1 =

√
k2

x + 2σ2
x , φx

2 =
kx + φx

1
2

, φx
3 =

2kxθx

σ2
x

φ
y
1 =

√
k2

y − 2σ2
y , φ

y
2 =

ky + φ
y
1

2
, φ

y
3 =

2kyθy

σ2
y

.
(A3)

Lemma A1. Let everything be as in Theorem A1 but let x(t) and y(t) follow the general
affine dynamicsdx(t) = (λx(t)x(t) + ηx(t))dt +

√
γx(t)x(t) + δx(t)dWx(t)

x(0) = x0,
(A4)

dy(t) =
(
λy(t)y(t) + ηy(t)

)
dt +

√
γy(t)y(t) + δy(t)dWy(t)

y(0) = y0,
(A5)

The initial values x0, y0 ∈ R are real-valued constants, and the coefficients λz, ηz, γz, δz, z ∈ {x, y},
are all real-valued deterministic functions, such that (A4) and (A5) are well-defined.

Then, the price of a Zero-coupon bond is given by

P(t, T) = EQ
t

[
e−
∫ T

t r(s)ds
]
= Ax(t, T)e−Bx(t,T)x(t)Ay(t, T)eBy(t,T)y(t), (A6)

where Az and Bz, z ∈ {x, y} are deterministic functions and are a classical solution to the following
system of Riccati equations

−1− Bx(t, T)λx(t)− (∂tBx)(t, T) +
1
2

B2
x(t, T)γx(t) = 0, Bx(T, T) = 0

−Bx(t, T)ηx(t) +
1
2

B2
x(t, T)δx(t) + ∂t(log Ax)(t, T) = 0, Ax(T, T) = 1

1 + By(t, T)λy(t) +
(
∂tBy

)
(t, T) +

1
2

B2
y(t, T)γy(t) = 0, By(T, T) = 0

By(t, T)ηy(t) +
1
2

B2
y(t, T)δy(t) + ∂t

(
log Ay

)
(t, T) = 0, Ay(T, T) = 1.

(A7)

The Riccati equations for the CIR processes are given by defining λz(t) ≡ −kz, ηz(t) ≡
kzθz, γz(t) ≡ σ2

z , δz(t) ≡ 0.

Appendix B. Instantaneous Forward Rate

The definition of the instantaneous forward rate (cf. Brigo and Mercurio 2006, p. 13,
Equation (1.23)) is given by

f (t, T) := −∂T log(P(t, T)).

By (A1), we therefore have

f (t, T) = −∂T

(
log
(

Ax(t, T)e−Bx(t,T)x(t)Ay(t, T)eBy(t,T)y(t)
))

= −∂T(log(Ax(t, T))− Bx(t, T)x(t))− ∂T
(
log
(

Ay(t, T)
)
+ By(t, T)y(t)

)
= −∂T(Ax(t, T))

Ax(t, T)
+ ∂T(Bx(t, T))x(t)−

∂T
(

Ay(t, T)
)

Ay(t, T)
− ∂T

(
By(t, T)

)
y(t).

Let z ∈ {x, y} and consider the case of the CIR model (1). Then, those derivatives are given
by the following expressions: Let us calculate the derivative of Az first
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∂T(Az(t, T))

= φ3
z

 φ1
z φ2

z eφ2
z (T−t)

φ1
z + φ2

z

(
eφ1

z (T−t) − 1
) − (

φ1
z
)2

φ2
z eφ1

z (T−t)eφ2
z (T−t)(

φ1
z + φ2

z

(
eφ1

z (T−t) − 1
))2


 φ1

z eφ2
z (T−t)

φ1
z + φ2

z

(
eφ1

z (T−t) − 1
)
φ3

z−1

.

Hence, we obtain

−∂T(Az(t, T))
Az(t, T)

=
φ2

z φ3
z
(
φ1

z − φ2
z
)(

e(T−t)φ1
z − 1

)
φ1

z + φ2
z

(
e(T−t)φ1

z − 1
) .

Now, we compute the derivative of Bz

∂T(Bz(t, T)) =
(
φ1

z
)2e(T−t)φ1

z(
φ1

z + φ2
z

(
e(T−t)φ1

z − 1
))2 .

Appendix C. Hermite Polynomials

In this short section, we briefly recall the probabilist’s Hermite polynomials, which are
key to the Gram–Charlier expansion.

Definition A1. The (probabilist’s) Hermite polynomials Hn(x) are defined as H0(x) ≡ 1 and for
n ≥ 1

(−1)n(ϕ(x))−1
(

dn

dxn ϕ

)
(x),

where ϕ(x) := 1√
2π

exp
(
− x2

2

)
.

Notice, that they are orthogonal with respect to the Gaussian measure, i.e.,∫
R

Hm(x)Hn(x)ϕ(x)dx = δnmn!.

In particular,

H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3,

H5(x) = x5 − 10x3 + 15x, H6(x) = x6 − 15x4 + 45x2 − 15, H7(x) = x7 − 21x5 + 105x3 − 105x.

Appendix D. Cumulants and Moments

Let us denote by µi the moments and by ci the cumulants. Their relationship towards
each other is determined by the moment generating function (cf. Smith 1995) as follows

M(t) = 1 +
∞

∑
i=1

µi
ti

i!
= exp

(
∞

∑
i=1

ci
ti

i!

)
= exp(K(t)).

Therefore, assuming that the moments µi are known, we can compute the cumulants ci by
differentiating the formula from above

ci =
di

dti log(M(t))
∣∣∣∣
t=0

.

Since we only need a few of them, we can compute the formulas and implement them
directly, leading to
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c1 = µ1, c2 = µ2 − µ2
1, c3 = 2µ3

1 − 3µ2µ1 + µ3, c4 = −6µ4
1 + 12µ2µ2

1 − 4µ3µ1 − 3µ2
2 + µ4,

c5 = 24µ5
1 − 60µ2µ3

1 + 20µ3µ2
1 + 30µ2

2µ1 − 5µ4µ1 − 10µ2µ3 + µ5

c6 = −120µ6
1 + 360µ2µ4

1 − 120µ3µ3
1 − 270µ2

2µ2
1 + 30µ4µ2

1 + 120µ2µ3µ1 − 6µ5µ1 + 30µ3
2 − 10µ2

3

− 15µ2µ4 + µ6

c7 = 720µ7
1 − 2520µ2µ5

1 + 840µ3µ4
1 + 2520µ2

2µ3
1 − 210µ4µ3

1 − 1260µ2µ3µ2
1 + 42µ5µ2

1 − 630µ3
2µ1

+ 140µ2
3µ1 + 210µ2µ4µ1 − 7µ6µ1 + 210µ2

2µ3 − 35µ3µ4 − 21µ2µ5 + µ7.

Appendix E. Least Square Monte Carlo Method (LSMC)

In this section, we will demonstrate how to approximate the conditional expectation
via LSMC. Let us first of all recall the following facts about the conditional expectation
(cf. Pascucci 2011, pp. 654 ff.):

Let X ∈ L2(Ω,F ,Q) and A ⊆ F be a sub-σ-algebra.

1. Then, the conditional expectation is the L2-best approximation, i.e.

EQ
[(

X−EQ[X|A]
)2
]
≤ EQ

[
(X−Y)2

]
for all Y ∈ L2(Ω,A,Q).

2. Furthermore, the factorization Lemma tells us that there exists a function u, such that

EQ[Y|R] = u(R)

and combined with the argument above

u(R) = arg min
v(·)

EQ
[
|v(R)−Y|2

]
where v(·) runs over all measurable functions.

The idea is now to approximate the function u(x). Therefore, fix a basis (bi(x))i=1,...,n
and set bn(·) := [b1(·), . . . , bn(·)]. Then, we approximate u by u(x) ≈ λTbn(x) where λ
solves the least square problem

λ = arg min
α∈Rn

EQ
[∣∣∣αTbn(R)−Y

∣∣∣2].

The problem we encounter is that in this least square problem, we have random
variables. Therefore, we can numerically deal with this problem by simulating those
random variables, if it is possible, and view this least square problem as finding a linear
regression for data points introduced by the realizations of the random variables.

Thus, let yi be realizations of Y and set y = [y1, . . . , ym]T . Additionally, let bij = bi(rj),
where rj is a realization of R, and define the matrix b = [bij]i=1,...,n;j=1,...,m.

Then, the above least square problem reads

λ = arg min
α∈Rn

|bα− y|2.

This is known as the ordinary least square problem, and the optimal solution is given by

λ =
(

bTb
)−1

bTy.
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This tells us how to approximate the conditional expectation via a Monte Carlo linear
regression approach.

Appendix F. Market Data

Table A1. Market data containing the volatility surface for the swaption pricing on 30 December 2019
in bps.

Maturity
Tenor 1 2 3 4 5 7 10

1 17.5 21.8 26.8 31.4 35.2 40.2 45.6
2 25.4 29.3 33.5 36.4 39.5 43.5 47.5
3 34 36.7 39.2 41.1 43.2 46.2 49.3
4 40 41.5 43.4 44.8 46.2 48.4 50.9
5 43.7 44.6 45.8 47 48.4 50.1 52.3
7 49.7 49.8 50.5 51.4 52.1 53.1 54.4

10 54.6 54.4 54.7 54.9 55.1 55.2 55.6
15 54.8 54.4 54.5 54.4 54.2 54.2 54.4
20 53.6 53.2 53.4 53 52.9 52.8 52.5

Table A2. Market data containing the swaption strikes on 30 December 2019.

Maturity
Tenor 1 2 5 7 10

1 −0.260793% −0.195187% −0.011405% 0.140129% 0.330514%
2 −0.129665% −0.0782444% 0.139932% 0.273273% 0.449172%
5 0.268095% 0.38307% 0.556996% 0.655339% 0.757978%
7 0.547079% 0.611571% 0.76683% 0.830788% 0.891069%
10 0.880582% 0.907944% 0.967521% 0.988131% 0.992003%
15 1.04232% 1.04153% 1.01776% 0.985317% 0.924744%
20 0.925377% 0.901441% 0.827386% 0.778437% 0.721445%

Table A3. Market data containing the swaption prices on 30 December 2019.

Maturity
Tenor 1 2 5 7 10

1 0.000702236 0.00175071 0.00706456 0.0112631 0.0181169
2 0.0014433 0.00333027 0.0111956 0.017189 0.0265694
5 0.00391314 0.00796766 0.0214221 0.0308074 0.0453508
7 0.00521117 0.0104082 0.0268942 0.0380283 0.0548627

10 0.00668368 0.0132567 0.0330802 0.045932 0.0651091
15 0.00781681 0.0154396 0.0378811 0.0525334 0.0743464
20 0.00840243 0.0166069 0.0407885 0.0565876 0.0795953

Table A4. Bloomberg’s Hull–White one factor prices of receiver Bermudan swaptions on 30 Decem-
ber 2019.

Maturity
Tenor 2 5 7 10

1 0.21% 1.06% 1.85% 3.28%
3 0.57% 1.83% 2.86% 4.63%
5 0.87% 2.48% 3.71% 5.72%
7 1.11% 3.03% 4.43% 6.65%

10 1.4% 3.62% 5.2% 7.59%
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Table A5. Bloomberg’s Hull–White one factor prices of payer Bermudan swaptions on 30 Decem-
ber 2019.

Maturity
Tenor 2 5 7 10

1 0.25% 1.4% 2.55% 4.76%
3 0.6% 2.08% 3.42% 5.74%
5 0.9% 2.7% 4.16% 6.59%
7 1.13% 3.2% 4.75% 7.18%

10 1.41% 3.72% 5.33% 7.91%

Table A6. Market data containing the Bermudan swaption strikes on 30 December 2019.

Maturity
Tenor 2 5 7 10

1 −0.194% 0.00912% 0.14% 0.33%
3 0.0789% 0.274% 0.432% 0.561%
5 0.335% 0.534% 0.644% 0.767%
7 0.612% 0.771% 0.84% 0.894%

10 0.926% 1.01% 0.994% 1.02%

Table A7. Market data containing the zero rate curve and zero coupon curve on 30 December 2019.

Maturity (in Years) Zero Rate (in %) Zero-Coupon Price

0.0833333333333333 −0.469999993219972 1.0004001991529
0.25 −0.388000020757318 1.00096969387991
0.5 −0.324999983422458 1.00163343819125

0.75 −0.314333918504417 1.00237481461989
1 −0.322000007145107 1.00323926670136

1.25 −0.323286440253412 1.00405360258242
1.5 −0.316161320131414 1.00476558980205

1.75 −0.303842297803669 1.00535001652119
2 −0.289547047577798 1.00582418019158

2.25 −0.275860329135469 1.00623288634409
2.5 −0.262835313503729 1.006604855007

2.75 −0.249892233800608 1.00691299093433
3 −0.236451346427202 1.00713375064174

3.25 −0.222084053437044 1.00725039326453
3.5 −0.20696636298112 1.00728054250496

3.75 −0.191425434683623 1.00721781901104
4 −0.175788428168744 1.00706740209126

4.25 −0.160311330630236 1.00684531811395
4.5 −0.144965462482105 1.00655553463348

4.75 −0.129650957156002 1.00618948972951
5 −0.114267959725112 1.00573933685071

5.25 −0.0987154224631581 1.00520062530541
5.5 −0.0828875612342017 1.00457454544122

5.75 −0.0666773874613114 1.00384671986489
6 −0.0499779242090881 1.00300667524933

6.25 −0.0327643402378897 1.00205088034181
6.5 −0.0153403983915723 1.00099833086134

6.75 0.00190798987986796 0.999871102605028
7 0.0185949131264351 0.998698306220564

7.25 0.0344518735623467 0.997505079039002
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Table A7. Cont.

Maturity (in Years) Zero Rate (in %) Zero-Coupon Price

7.5 0.0496800311054812 0.996279818846146
7.75 0.0645979575189415 0.995003816465917

8 0.0795242260210216 0.993656440330286
8.25 0.0947347900819295 0.992214008696662
8.5 0.110335148849572 0.990662992494919
8.75 0.126388167535652 0.988997743889118

9 0.142956722993404 0.987213788328959
9.25 0.160050573928316 0.985308478446392
9.5 0.177466994199449 0.983284710270437
9.75 0.194950156980411 0.981173005874126
10 0.212244223803282 0.979004189945635
15 0.473523046821356 0.931543316237289
20 0.611338950693607 0.885166902653398
25 0.652327481657267 0.849865688031976
30 0.640345783904195 0.825611308910539
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