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Abstract

We introduce a novel score-driven model with two sources of shock, allowing for
both time-varying volatility and jumps. A theoretical investigation is performed
which yields sufficient conditions to ensure stationarity and ergodicity. We extend
the model to consider a time-varying jump intensity. Both an in-sample and an out-
of-sample analysis based on the S&P500 time series show that the proposed meth-
odology provides excellent agreement with observed returns, outperforming more
standard Generalized Autoregressive Conditional Heteroskedasticity (GARCH)
specifications with jumps. Finally, we apply our models to option pricing via risk
neutralization. Results show this novel approach produces reliable implied volatility
surfaces. Supplementary Materials including proofs, the derivation of the condition-
al Fisher information, and two figures showing additional empirical results are avail-
able online.
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and ergodicity, option pricing, JEL Codes: C510, C530, C580

JEL classification: C510, C530, C580

Several empirical studies document that asset prices are affected by sharp and large discon-

tinuities (jumps), due to unexpected news and events, see the recent works by Gürkaynak,

Kisaciko�glu, and Wright (2020), Engle et al. (2021) and Jeon, McCurdy, and Zhao (2021).

To account for these discontinuities, nonstandard GARCH approaches that also allow for

jumps in the return process have been proposed by Vlaar and Palm (1993), Chan and

Maheu (2002), Maheu and McCurdy (2004), Duan, Ritchken, and Sun (2006),
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Christoffersen, Jacobs, and Ornthanalai (2012), Guégan, Ielpo, and Lalaharison (2013),

and Ornthanalai (2014).

Importantly, GARCH models are not robust to misspecification or even small depar-

tures from the data-generating process (DGP) given that, in their original form, these mod-

els use squared-lagged innovations to update the value of the conditional variance. This

makes them very sensitive to the presence of even a few outliers or extreme returns. A pos-

sible solution to this issue is provided by the so-called score-driven models, which were ori-

ginally proposed by Creal, Koopman, and Lucas (2011) and Harvey (2013).

The key feature of score-driven models is that the dynamic of the time-varying parame-

ters is described by an autoregressive process driven by a scaled version of the score

function, that is, the derivative of the (postulated) conditional log -density. Moreover, the

score-driven approach guarantees that the Kullback–Leibler divergence between the

probability density function of the DGP and the model implied probability distribution

diminishes at least locally, see Blasques, Koopman, and Lucas (2015). In addition to guar-

anteeing theoretical optimality, this property is crucial in model misspecifications, when

the chosen modeling framework is different from the true economic dynamic of the empir-

ical data. Score-driven models also provide a general framework that fully exploits shape of

the observation conditional density as its characteristics can be specifically incorporated as

driving forces for the time-varying parameters. As a final advantage, score-driven models

belong to the class of observation-driven models, see Cox et al. (1981), since the evolution

of the unobserved dynamic parameters depends only on historical data. Therefore, exactly

like GARCH models, they can be easily filtered and estimated by maximum likelihood,

which makes them appealing for practical applications.

Despite the strong advantages of this approach and the importance of accounting for

jumps in asset price dynamics, literature on the score-driven approach with jumps is still lack-

ing. To fill this gap, we develop a score-driven model with jumps (SDJ), where the condition-

al variance of the returns is assumed to follow an autoregressive process driven by the score

of the predictive density, and the jumps are modeled by a compound Poisson process. This

approach allows us to take into account the interaction between jumps and volatility, since

the Poisson process used to specify the jumps is fully coupled with the dynamics of the vari-

ance. Moreover, from a theoretical standpoint, the proposed model offers the advantage of

being strictly stationary and ergodic. In particular, based on the framework developed by

Blasques, Koopman, and Lucas (2014), we establish one mild sufficient condition that

ensures the ergodicity and strict stationarity of the return process.

We also develop two extensions of the SDJ model in which the conditional variance of

the returns and the conditional jump intensity follow a bivariate (coupled) score-driven

autoregression. These two approaches, which we label SDSDJ-1 and SDSDJ-2, allow us to

take into account the stochastic nature of the jump frequency, which depends on the contin-

gent and continuously evolving macroeconomic conditions.

We test the empirical performances of the proposed SDJ, SDSDJ-1, and SDSDJ-2 mod-

els, and we compare them against the GARCH models with jumps and both constant or

time-varying intensity introduced by Christoffersen et al. (2008) and Christoffersen,

Jacobs, and Ornthanalai (2012). We conduct both an in-sample and an out-of-sample

exercise focusing on the S&P500 total return time series. The results reveal that the score-

driven approaches provide a very good fitting of empirical data as they significantly outper-

form their GARCH counterparts. In a Monte Carlo exercise, we show the superiority of the
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SDJ, SDSDJ-1, and SDSDJ-2 models in filtering the unobserved variance process in a mis-

specified setting. Finally, we derive the risk-neutralized versions of the score-driven models

and we apply them to pricing options written on the S&P500 index. Again, the empirical

findings show that the proposed score-driven framework yields more accurate option prices

than the GARCH benchmarks.

The contribution of the article is two-fold. First, we propose a new class of nonlinear

models with jumps based on the score-driven approach; second, we apply the score-driven

technology to value derivatives, which, to the best of our knowledge, is new to the

literature.

The remainder of the article is organized as follows. In Section 1, we introduce the SDJ

model and we establish sufficient conditions ensuring ergodicity and strict stationarity. In

Section 2, we present the SDSDJ-1 and SDSDJ-2 extensions of the score-driven approach

developed in Section 1. In Section 3, we briefly review the two GARCH models used as

benchmarks. Section 4 shows the empirical performance of the proposed models and the

benchmarks when dealing with the S&P500 total return time series. In Section 5, we pre-

sent the Monte Carlo simulations showing the properties of our models that are relevant

for practical applications. In Section 6, we risk-neutralize the models, whereas in Section 7,

we test the abilities of the score-driven and GARCH models in pricing S&P500 options.

Finally, Section 8 concludes.

1 Modeling Returns with Jumps

Let St denotes the price of a risky asset and let us consider the log -return Rt ¼ ln StþDt

St�1

� �
,

including the dividend Dt. Following Christoffersen, Jacobs, and Ornthanalai (2012), the

return process is modeled as follows

Rt ¼ rþ kz �
1

2

� �
ht þ ky � n

� �
vþ

ffiffiffiffiffi
ht

p
Zt þ yt: (1)

The specification Equation (1) contains two sources of uncertainty. The first one,

fZtgt2Z, is a serially uncorrelated Gaussian process such that Zt � N 0; 1ð Þ, whereas the se-

cond one, fytgt2Z, is a compound Poisson process:

yt ¼
XNt

j¼0

X
jð Þ

t ; (2)

where Nt � Pois vð Þ is a Poisson random variable with constant intensity v, that is,

P Nt ¼ jð Þ ¼ e�vvj

j!
; j ¼ 0;1;2; . . . ; (3)

and X
jð Þ

t is IID random variables such that

X
jð Þ

t � N l; s2
� �

; j ¼ 0;1; . . . ;Nt:

Moreover, in Equation (1), fhtgt2Z is the conditional variance process of the normal in-

novation, whose dynamics will be specified in the following, r is the risk-free interest rate.

The terms 1
2 ht and nv in Equation (1), where n ¼ exp lþ s2

2

n o
� 1 are the so-called
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convexity adjustment, which ensures that kz and ky are the market prices of risk for the nor-

mal and the compound Poisson innovations, respectively. In fact,

E½exp fRtgjF t�1� ¼ exp frþ kzht þ kyvg;

where F t ¼ fRt;Rt�1;Rt�2; . . .g collects the past information. It is straightforward to re-

trieve the conditional moments of the return process. Specifically, the conditional mean,

variance, skewness, and kurtosis are (see Das and Sundaram, 1997):

E½RtjF t�1� ¼ rþ kz �
1

2

� �
ht þ ky � nþ l

� �
v; V½RtjF t�1� ¼ ht þ v s2 þ l2

� �
;

Skew½RtjF t�1� ¼
v l3 þ 3ls2
� �

ht þ v s2 þ l2ð Þð Þ3=2
; Kurt½RtjF t�1� ¼ 3þ v l4 þ 6l2s2 þ 3s4

� �
ht þ v s2 þ l2ð Þð Þ2

:

(4)

Given the information in F t�1, the conditional density of Rt is obtained by noting that

f Rtð Þ ¼
X1
j¼0

f RtjNt ¼ jð ÞP Nt ¼ jð Þ; (5)

where the density of the returns conditional to Nt ¼ j and F t�1 is

f RtjNt ¼ jð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p ht þ js2ð Þ

p e
� Rt�r� kz�1=2ð Þht� ky�nð Þv�ljð Þ2

2 htþjs2ð Þ : (6)

Therefore, according to Equations (3) and (6), we have

f Rtð Þ ¼
X1
j¼0

fj Rtð Þ; (7)

where

fj Rtð Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p ht þ js2ð Þ
p e

� Rt�r� kz�1=2ð Þht� ky�nð Þv�ljð Þ2
2 htþjs2ð Þ e�vvj

j!
: (8)

Note that, owing to Equation (7), we have

X1
j¼0

fj Rtð Þ
f Rtð Þ

¼ 1: (9)

Thus, the conditional log -density is defined as

ln f Rtð Þ ¼ ln

"X1
j¼0

exp

(
� 1

2
ln 2pð Þ � 1

2
ln ht þ js2
� �

�
Rt � r� kz � 1=2ð Þht � ky � n

� �
v� lj

� �2

2 ht þ js2ð Þ � v� ln j!ð Þ þ j ln vð Þ

)#
:

(10)

1.1 The Score-Driven Approach

We specify the conditional variance using a score-driven model (Creal, Koopman,and

Lucas, 2011, 2013; Harvey, 2013).
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First, in order to ensure positivity, we use the exponential link function:

ht ¼ exp fwtg: (11)

Then, we specify the process fwtgt2Z according to the recursion

wtþ1 ¼ /t wtð Þ ¼ xw þ awsh Rt;wtð Þ þ bw wt � xw
� �

; (12)

where xw 2 R, aw 6¼ 0, and bw 2 R are the intercept, the score weight, and the autoregres-

sive coefficients, respectively, and the driving force sh Rt;wtð Þ will be defined in the follow-

ing. Note that the condition aw 6¼ 0 is needed in order to keep the process in Equation (12)

stochastic. Moreover, /t wtð Þ will also depend on Rt, but, for the sake of simplicity, we omit

this dependence.

Let us consider the score of the predictive distribution:

rh
t ¼

@ ln f Rtð Þ
@ht

@ht

@wt

:

By differentiating Equation (10) with respect to ht and by taking into account

(Equation 11), we obtain

rh
t ¼

X1
j¼0

fj Rtð Þ
f Rtð Þ

rh
j;t; (13)

where

rh
j;t ¼

ht

2 ht þ js2ð Þ

 
Rt � r� kz � 1=2ð Þht � ky � n

� �
v� lj

� �2

ht þ js2

þ 2 kz � 1=2ð Þ Rt � r� kz � 1=2ð Þht � ky � n
� �

v� lj
� �

� 1

!
:

(14)

To specify the driving force, we use the approach in Catania (2019) and set sh Rt;wtð Þ
equal to the following function:

s
^ h

Rt;wtð Þ ¼
X1
j¼0

fj Rtð Þ
f Rtð Þ

rh
j;t

E½�r2;h
j;t jNt ¼ j;F t�1�

: (15)

We have the following result.

Proposition 1 Formula (15) is equivalent to

s
^ h

Rt;wtð Þ ¼
X1
j¼0

fj Rtð Þ
f Rtð Þ

ht þ js2

ht½1þ 2 kz � 1=2ð Þ2 ht þ js2ð Þ�

�
 

Rt � r� kz � 1=2ð Þht � ky � n
� �

v� lj
� �2

ht þ js2

þ 2 kz � 1=2ð Þ Rt � r� kz � 1=2ð Þht � ky � n
� �

v� lj
� �

� 1

!
;

(16)
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with E½�r2;h
j;t jNt ¼ j;F t�1� given by

E½�r2;h
j;t jNt ¼ j;F t�1� ¼ h2

t

1þ 2 kz � 1=2ð Þ2 ht þ js2
� �

2 ht þ js2ð Þ2
:

Proof: See the Supplementary Material. h

However, in Figure 1, we plot the score s
^ h

Rt;wtð Þ as a function of wt. As we see, for

low values of wt, s
^ h

Rt;wtð Þ is unbounded. This is due to the presence in the denominator

of Equation (16) of the term ht, which tends to zero as wt ! �1, and the term ht þ js2,

which tends to zero as wt ! �1 when j ¼ 0, since ht ¼ exp fwtg.
As we will show in Section 5 by a simulation exercise, the unboundedness of the score func-

tion may lead to explosive Monte Carlo trajectories, which would make the evaluation of option

prices infeasible. From the theoretical standpoint, to ensure the existence of a nondegenerate sta-

tionarity and ergodicity region, we will require that the score function s
^ h �; �ð Þ and its derivative

w.r.t. the log -variance be bounded. Thus, we modify Equation (15) as follows:

sh Rt;wtð Þ ¼
X1
j¼0

fj Rtð Þ
f Rtð Þ

Dh
j htð Þ

rh
j;t

E½�r2;h
j;t jNt ¼ j;F t�1�

; (17)

where

Dh
j htð Þ ¼

h3
t

1þ ht þ vs2ð Þ ht þ vs2ð Þ2 ht þ js2ð Þ 1þ l2j2ð Þ
: (18)

Therefore, according to Equations (17) and (18), the final functional form of the score

sh Rt;wtð Þ is as follows

sh Rt;wtð Þ ¼ h2
t

1þ ht þ vs2ð Þ ht þ vs2ð Þ
X1
j¼0

fj Rtð Þ
f Rtð Þ

1

½1þ 2 kz � 1=2ð Þ2 ht þ js2ð Þ�
1

1þ l2j2

�
 

Rt � r� kz � 1=2ð Þht � ky � n
� �

v� lj
� �2

ht þ js2

þ 2 kz � 1=2ð Þ Rt � r� kz � 1=2ð Þht � ky � n
� �

v� lj
� �

� 1

!
;

(19)

Remark 1 The correction term Dj htð Þ in Equation (18) has been chosen such that: ið Þ if

ht ! 0 Dj htð Þ ¼ O h2
t

� �
if j ¼ 0 and Dj htð Þ ¼ O h3

t

� �
if j > 0. Thus, Dj htð Þ allows us to off-

set the critical powers (tending to zero) of ht in the denominator of both Equation (15) and

its derivative (see the proof of Theorem 1 reported in the Supplementary Material); iið Þ
Both sh Rt;wtð Þ and its derivative are bounded as ht !1 (see again the proof of Theorem

1); iiið Þ The factor 1þ l2j2 at the denominator of Equation (18) enhances the convergence

of the infinite sum in both Equation (16) and its derivative w.r.t. the log -variance (see

Equation S.5 in the proof of Theorem 1).

In Figure 1, we show the scores s
^ h

Rt;wtð Þ and sh Rt;wtð Þ, as well as the score s
^ h

Rt;wtð Þ
in the case with no jumps (v ¼ 0 and ky ¼ 0), as functions of the log -volatility wt. This plot

clearly highlights the unboundedness of s
^ h

Rt;wtð Þ, and the boundedness and C1 properties

of sh Rt;wtð Þ and the score function s
^ h

Rt;wtð Þ with no jumps.
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1.2 Stationarity and Ergodicity of the SDJ Model

With the following theorem, we state a sufficient condition to ensure that the score-driven

recursion Equation (12) admits a unique stationary and ergodic solution.

Theorem 1 Consider the score-driven recursion in Equation (12), with score function

sh Rt;wtð Þ as in Equation (19), and assume that

E½g Zt; ytð Þ� <
1� jbwj
jawj

; (20)

where gt is defined as

g Zt; ytð Þ ¼ 5

vs2
Z2

t þ
2y2

t þ 2

vs2
þ 1þ jZtjffiffiffi

2
p þ jytjffiffiffiffiffiffiffiffiffiffi

2vs2
p þ 1

2
ffiffiffiffiffiffiffiffiffiffi
2vs2

p
 !

þ 2 Z2
t þ

y2
t

vs2
þ l2

2s4
þ jZtj

2
ffiffiffiffiffiffiffi
vs2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

t þ
y2

t

vs2

s
þ jlj

s2

0
@

1
Aþ 1

2

0
@

1
A

� Z2
t þ

2y2
t þ 2

vs2
þ 1

2
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

t þ
2y2

t

vs2
þ 1

2vs2

s
þ 1

0
@

1
A

þ 1

vs2

"
1

4
Z2

t þ
2y2

t þ 2

vs2
þ 1

 !
þ 3

ffiffiffi
3
p

16
ffiffiffi
2
p jZtjffiffiffi

2
p þ jytjffiffiffiffiffiffiffiffiffiffi

2vs2
p þ 1

2
ffiffiffiffiffiffiffiffiffiffi
2vs2

p
 !#

þ jZtj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

t þ
2y2

t þ 2

vs2
þ 1

2vs2

s
þ Z2

t þ
2y2

t þ 1

vs2
þ 1

 !
þ 1

vs2

jZtj
2
ffiffiffi
2
p :

Figure 1 Score functions computed according to Equations (16) and (19). The return Rt is obtained

using Equation (1) with Zt ¼ 0 and yt ¼ 0. The scores with and without adjustment are computed using

Equations (19) and (16), respectively, with parameters as in Table 1. The score with no jumps is com-

puted using Equation (16) with v ¼ 0, ky ¼ 0 and remaining parameters as in Table 1.
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Then, for any fwtgt�0, such that wtþ1 ¼ /t wtð Þ for all t � 0, there exists a unique stationary

and ergodic process f~wtgt2Z, solution of Equation (12), such that jwt � ~wtj !
e:a:s:

0 as t !1.

Moreover, let ~ht ¼ exp f~wtg. Then, the process fRtgt2Z generated by Equation (1) with

ht ¼ ~ht is stationary and ergodic.

Proof: See the Supplementary Material. h

We note that condition (20) involves the expectation of a nonlinear function of Zt and

yt which can be calculated by a Monte Carlo simulation or by numerical approximation.

2 Extensions to Time-Varying Jump Intensity

We now consider two extensions of the score-driven model introduced in Subsection 1.1 in

which we allow for a time-varying jump intensity. Specifically, in the return process

Equation (1), we substitute v for vt, that is

Rt ¼ rþ kz �
1

2

� �
ht þ ky � n

� �
vt þ

ffiffiffiffiffi
ht

p
Zt þ yt: (21)

Again, we model the evolution of vt by means of a score-driven approach. As done for

the conditional variance Equation (11), we consider an exponential link function:

vt ¼ exp fdtg; (22)

and then we directly model the vector process f wt; dtð Þgt2Z. As a first extension of the SDJ,

we consider the following bivariate recursion:

wtþ1 ¼ xw þ awsh Rt;wtð Þ þ cwsv Rt; dtð Þ þ bw wt � xw
� �

; (23)

dtþ1 ¼ xd þ ads
v Rt; dtð Þ þ cdsh Rt;wtð Þ þ bd dt � xdð Þ; (24)

where xd 2 R, ad 6¼ 0, and bd 2 R have the same interpretation as in Equation (12). The

additional parameters cw 2 R and cd 2 R allow us to couple the above recursions by means

of the score innovations sh Rt;wtð Þ and sv Rt; dtð Þ. We call the model formed by Equations

(11), (21), (22), (23), and (24) as the score-driven model with separate dynamic jumps

(SDSDJ-1).

To specify the new driving force sv Rt; dtð Þ, we use the score of the predictive log -density

as defined in Equation (10) with respect to vt, that is

rv
t ¼

X1
j¼0

fj Rtð Þ
f Rtð Þ

rv
j;t; (25)

where

rv
j;t ¼ vt

ky � n
� �

Rt � r� kz � 1=2ð Þht � ky � n
� �

vt � lj
� �

ht þ js2
þ j

vt

� 1

 !
:

Therefore, in line with what was done for Equation (17), we compute sv Rt; dtð Þ accord-

ing to

sv Rt; dtð Þ ¼
X1
j¼0

fj Rtð Þ
f Rtð Þ

Dv
j vtð Þ

rv
j;t

E½�r2;v
j;t jNt ¼ j;F t�1�

; (26)
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where

Dv
j vtð Þ ¼

ht

ht þ js2ð Þ 1þ l2j2ð Þ ;

and E½�r2;v
j;t jNt ¼ j;F t�1� is computed in Proposition 2.

As a second bivariate model, suggested by a Referee, we also consider

wtþ1

dtþ1

2
4

3
5 ¼ xw

xd

2
4

3
5þ bw bw;d

bd;w bd

2
4

3
5 wt � xw

dt � xd

2
4

3
5

þ
aw cw

cd ad

2
4

3
5X1

j¼0

fj Rtð Þ
f Rtð Þ

E½�r2;h
j;t jNt ¼ j;F t�1� E½�rh;v

j;t jNt ¼ j;F t�1�

E½�rv;h
j;t jNt ¼ j;F t�1� E½�r2;v

j;t jNt ¼ j;F t�1�

2
64

3
75
�1

rh
j;t

rv
j;t

2
64

3
75:

(27)

We can compute Equations (26) and (27) based on the following proposition.

Proposition 2 Formula (26) is equivalent to

sv Rt; dtð Þ ¼
X1
j¼0

fj Rtð Þ
f Rtð Þ

ht

½ht þ js2 þ vt ky � n
� �2�

1

1þ l2j2

�
ky � n
� �

Rt � r� kz � 1=2ð Þht � ky � n
� �

vt � lj
� �

ht þ js2
þ j

vt

� 1

 !
:

(28)

Moreover, E½�r2;h
j;t jNt ¼ j;F t�1� is computed as in Proposition 1, and

E½�r2;v
j;t jNt ¼ j;F t�1� ¼ vt 1þ

vt ky � n
� �2

ht þ js2

 !
;

E½�rh;v
j;t jNt ¼ j;F t�1� ¼ E½�rv;h

j;t jNt ¼ j;F t�1� ¼ htvt

kz � 1=2ð Þ ky � n
� �

ht þ js2
:

Proof: See the Supplementary Material. h

We label model (27) as SDSDJ-2, which differs from SDSDJ-1 as follows. First, in con-

trast to what was done in Equations (17) and (26), we do not apply adjustments to the score

vector, following the specific suggestion of the Referee. Second, model SDSDJ-2 employs

the full Fisher information matrix to scale the score, whereas in SDSDJ-1 the off-diagonal

terms are neglected. Finally, SDSDJ-1 assumes bw;d ¼ bd;w ¼ 0. Therefore, the SDSDJ-1 is

actually a parsimonious and modified version of the SDSDJ-2.

3 Benchmark Models

We will compare the proposed SDJ, SDSDJ-1, and SDSDJ-2 models with the

GARCH(1,1)-Jump approach (GARCHJ) developed by Christoffersen et al. (2008), and

the dynamic volatility and separate dynamic jumps (DVSDJ) model introduced by

Christoffersen, Jacobs, and Ornthanalai (2012).
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3.1 The GARCHJ Model

The return process is specified according to Equation (1), whereas the dynamics of the con-

ditional variance is as follows:

htþ1 ¼ xz þ az Zt þ ytffiffiffi
ht

p � cz

ffiffiffiffiffi
ht

p� �2

þ bzht:

We note that, with respect to the SDJ model (see Equations 11 and 12), the GARCHJ

contains an additional parameter cz 2 R.

3.2 The DVSDJ Model

The return process follows Equation (21), and the dynamics of the conditional variance

and conditional intensity are described by the following GARCH recursions:

htþ1 ¼ xz þ bzht þ
az

ht

ffiffiffiffiffi
ht

p
Zt � czht

� �2

þ cz yt � ezð Þ2; (29)

vtþ1 ¼ xy þ byvt þ
ay

ht

ffiffiffiffiffi
ht

p
Zt � cyht

� �2

þ cy yt � eyð Þ2: (30)

We note that, with respect to the more parsimonious SDSDJ-1 model (see Equations 23

and 24), the DVSDJ has four additional parameters, namely cz; ez; cy; ey 2 R. The innov-

ation processes fZtgt2Z and fytgt2Z cannot be directly observed based on the time series of

the return Rt, but their computation requires an ad-hoc filtering procedure, which, in

principle, could introduce an additional source of uncertainty in the parameter estimation.

4 Empirical Results for Returns

In this section, we present empirical results for the S&P500 daily total log -returns time ser-

ies. Our data span from January 3, 1990 to December 31, 2019 (7559 observations), which

are shown in Figure 2. It is well-known that jumps are rare events, so we chose a 30-year

time window.

A basic list of descriptive statistics is reported in Table 2. As is clearly seen, the skew-

ness, albeit negative (equal to �0.27), is not very different from zero. However, the kurtosis

coefficient (11.85) is particularly high, which points to the advantage of using a model with

jumps. Indeed, as documented by Eraker, Johannes, and Polson (2003), jumps yield more

realistic tail patterns (with a high kurtosis in the returns) than models in which the volatility

is the only stochastic component.

4.1 Maximum Likelihood Estimation

Employing an observation-driven approach allows us to estimate the model parameters by

maximum likelihood. The log -likelihood function reads

‘returns hð Þ ¼
XT

t¼1

ln f Rtð Þ; (31)

where f Rtð Þ is the conditional density Equation (7), and h is the vector of unknown parame-

ters. For all the considered models, the initial variance h1 is estimated by maximum likeli-

hood along with all the other unknown parameters. Finally, for practical purposes, it is
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necessary to truncate the infinite sum in Equation (7). Thus, following Christoffersen,

Jacobs, and Ornthanalai (2012), we consider only the first fifty jumps1 for every

t ¼ 1; 2;3; . . .. The estimation results are presented in Table 1.

To validate the models, we focus on the maximized log -likelihood values, the Akaike,

and the Bayesian information criteria (labeled AIC and BIC, respectively). If we consider

the models with constant jump intensity, that is, the SDJ against the GARCHJ, the above

three quantities clearly indicate that the SDJ model performs better than the GARCHJ (for

instance, the BIC of the SDJ is approximately 300 points smaller than that of the

GARCHJ). This suggests that the driving force sh Rt;wtð Þ in Equation (12) is capable of

improving the fit.

When we look at the models with time-varying jump intensity, the drastic improvement

of the log -likelihood, of the AIC and of the BIC allows us to conclude that it is important

to also take into account the time variations of the jump intensity. Moreover, by comparing

the SDSDJ-1 and SDSDJ-2 with their GARCH-type counterpart, the BICs of the SDSDJ-1

and SDSDJ-2 are approximately 100 points lower than the BIC of the DVSDJ. Therefore,

as the BIC is very conservative when selecting models with a large number of parameters,

the more parsimonious SDSDJ-1 and SDSDJ-2 provide a better fit than the more

Figure 2 Daily time series of S&P500 total log -returns.

1 This value is conservative since if we consider a jump intensity equal to ten (approximately ten

times the highest value obtained in our empirical analysis) the probability of having more than fifty

jumps is almost null (3.62e-20).
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parametrized DVSDJ. Finally, the SDSDJ-1 has a slightly lower BIC than the SDSDJ-2,

even though the latter outperforms the former if we only look at the AIC and the log -

likelihood.

Passing to the analysis of the parameters, and focusing on the models with constant in-

tensity, we can see that the coefficients of the volatility equation, that is, x, a, b for the SDJ

and, additionally, c for the GARCHJ, are in line with those that are typically retrieved in fi-

nancial applications. In particular, consistent with Christoffersen et al. (2008) and Creal,

Koopman, and Lucas (2013), we obtain low values for x and a, and value close to one for

the persistence parameter b. Turning to the parameters of the Poisson process, we note that

the SDJ and the GARCHJ yield rather different values for the jump intensity (the former

gives v ¼ 0:136 whereas the latter gives v ¼ 0:043). Therefore, the SDJ weights the jump

term more than the GARCHJ, which supports other empirical studies, see Bakshi, Cao, and

Chen (1997). Finally, the parameter l in the GARCHJ is smaller than in the SDJ, whereas

the s2s are quite similar in both models.

In Figure 3, we plot the conditional volatility
ffiffiffiffiffi
ht

p
filtered with the models with constant

jump intensity, as well as the conditional skewness and kurtosis, which are computed

according to Equation (4). To better appreciate the differences in the five models, we zoom

in on a specific time interval from January 2004 to December 2011. Similar figures for the

entire period from January 1990 to December 2019 are included in the Supplementary

Material. It can be clearly seen that SDJ and GARCHJ yield quite different results. In fact,

SDJ appears more able to quickly adapt to clusters in the volatility level than the GARCHJ

(c.f.r. Figure 3, top left and Figure 3, top right). Finally, the GARCHJ model implies a con-

ditional skewness as low as �2.35, and a conditional kurtosis as high as 19.51, while the

SDJ model implies substantially different values, namely a conditional skewness as low as

�0.64, and a conditional kurtosis as high as 8.98.

Let us now consider the models with dynamic intensity. As expected, for the SDSDJ-1,

SDSDJ-2, and DVSDJ models, the parameters of the dynamic equations show the presence

of substantial persistence in both the volatility and the jump intensity processes. Quite

interestingly, the SDSDJ-1 and SDSDJ-2 yield a higher c for the Normal component, that

is, the contribution of the scaled score innovation relative to the volatility in the log-volatil-

ity equation is greater than the contribution of the scaled score innovation relative to the

jump intensity in the log -intensity equation.

Furthermore, we note that the jump intensity from the static SDJ model is equal to

log 0:136ð Þ � �1:99 which is close to the unconditional mean of the SDSDJ-2, that is,

�2.317. In contrast, the restricted SDSDJ-1 has a much higher unconditional jump

intensity.

Similarly, in DVSDJ, the c and, additionally, the e parameters (see Equations 29 and 30)

confirm the importance of including the compound Poisson process in the dynamic equa-

tions for both the variance and the intensity, see Subsection 3.2. The remaining parameters

Table 2 Descriptive statistics of the daily S&P500 total log -returns

Mean Std deviation Skewness Kurtosis

S&P500 0.00 0.01 �0.27 11.85
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Table 1 Maximum likelihood estimation results

SDJ SDSDJ-1 SDSDJ-2 GARCHJ DVSDJ

Normal Jump Normal Jump Normal Jump Normal Jump Normal Jump

Parameters

x �9.632 �7.721 �0.610 �7.579 �2.317 �2e-06 �3e-03 �3e-02

ð1e-02Þ ð1e-03Þ ð3e-04Þ ð2e-03Þ ð2e-04Þ ð4e-09Þ ð2e-08Þ ð2e-06Þ
a 0.135 0.011 0.255 �0.021 �0.016 2e-06 2e-06 2e-02

ð1e-03Þ ð3e-04Þ ð6e-04Þ ð3e-04Þ ð2e-05Þ ð3e-08Þ ð2e-09Þ ð2e-05Þ
b 0.992 0.909 0.890 0.870 0.982 0.986 0.829 0.985

ð2e-05Þ ð1e-04Þ ð2e-04Þ ð2e-04Þ ð1e-04Þ ð2e-04Þ ð3e-04Þ ð2e-05Þ
bc 0.110 0.008

ð1e-04Þ ð2e-04Þ
c 0.308 0.017 0.323 0.037 0.021 0.388

ð6e-04Þ ð3e-04Þ ð2e-04Þ ð6e-04Þ ð1e-06Þ ð1e-03Þ
c 3.085 193.339 70.065

ð2e-02Þ ð8e-02Þ ð8e-02Þ
e 0.117 0.702

ð7e-06Þ ð1e-05Þ
k �4.076 0.006 22.767 �0.009 22.667 �0.009 2.240 0.006 2.995 �0.001

ð9e-03Þ ð3e-03Þ ð3e-02Þ ð1e-04Þ ð3e-02Þ ð1e-04Þ ð6e-02Þ ð2e-04Þ ð1e-06Þ ð1e-03Þ
v 0.136 0.043

ð3e-04Þ ð1e-03Þ
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Table 1 (continued)

SDJ SDSDJ-1 SDSDJ-2 GARCHJ DVSDJ

Normal Jump Normal Jump Normal Jump Normal Jump Normal Jump

l �0.002 �0.008 �0.006 �0.011 �0.011

ð3e-04Þ ð8e-04Þ ð8e-04Þ ð2e-04Þ ð2e-04Þ
s2 8e-05 1e-04 1e-04 2e-004 5e-005

ð1e-07Þ ð1e-07Þ ð1e-07Þ ð5e-07Þ ð8e-08Þ
h1 9e-05 1e-05 6e-05 7e-06 1e-07

ð8e-03Þ ð1e-02Þ ð2e-02Þ ð1e-08Þ ð1e-08Þ
v1 1.110 0.069 4e-003

ð9e-03Þ ð8e-04Þ ð2e-04Þ
log -likelihood 25082.76 25242.62 25250.69 24940.07 25217.55

AIC �50147.52 �50457.25 �50469.39 �49860.14 �50399.11

BIC �50085.15 �50360.22 �50358.51 �49790.84 �50274.36

The estimation period spans from January 3, 1990 to December 31, 2019 (7559 observations). The standard errors, reported in parenthesis, are computed by inverting the negative

Hessian matrix evaluated at the optimum parameter values.
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of the jump component, that is, l and s2, are very similar among the three bivariate

models.

We note that for the SDSDJ-2 model, the estimated values of the a parameters are nega-

tive, which can be explained as follows. In Equation (24), we have two linear combinations

of the two scores rh
t and rv

t , which involve not only the a but also the c parameters.

Therefore, there is not a single direction associated with a single score, but two linear com-

binations of the two scores scaled by the inverse of the full Fisher’s Information matrix. So,

we have not experienced any issue with the negative a, as they are counterbalanced by the

positive c.

In Figure 4, we display the dynamics of the conditional volatility and the jump intensity,

together with the higher conditional moments, filtered with the SDSDJ-1, SDSDJ-2, and

DVSDJ models. Although the volatility shows a similar pattern between the three models,

Figure 3 Filtered conditional volatility, skewness, and kurtosis, SDJ model (left) and GARCHJ model

(right).
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we note a substantial difference in the jump intensity. In addition, comparing Figures 3

and 4, we note that the volatility paths are similar among the SDJ, SDSDJ-1, and SDSDJ-2

models, with the constant jump intensity path being slightly more noisy. This is due to the

fact that the bivariate models account for the market risk through a higher jump intensity

than that estimated with the monovariate model, assigning less weight to the volatility risk

component. In this respect, in Table 1, we note that the SDSDJ-1 and SDSDJ-2 provide a

jump mean parameter l much higher in magnitude (and negative) than that of the SDJ. For

the bivariate specifications, the risk premium ky is significantly lower than for the SDJ. In

particular, in the models with time-varying intensity, the jump premia become negative

(ky ¼ �0.009 for both SDSDJ-1 and SDSDJ-2) and, in turn, are compensated for by a

higher (and positive) volatility premia (kz ¼ 22:767 for SDSDJ-1 and kz ¼ 22:667 for

SDSDJ-2). Finally, we note that jump premia changing sign when passing from the model

with constant jump intensity to the model with time-varying jump intensity is also found in

Christoffersen, Jacobs, and Ornthanalai (2012).

Figure 4 Filtered conditional volatility, jump intensity, skewness, and kurtosis, SDSDJ-1 model (left),

SDSDJ-2 model (center), and DVSDJ model (right).
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Regarding the time-varying jump intensity vt, we note that the curve provided by model

SDSDJ-2 is less noisy and has lower peaks than in model SDSDJ-1. Furthermore, if we look

at the whole time interval from 1990 to 2020 (Figure S2 in the Supplementary Material) we

see that model DVSDJ yields quite a persistent jump intensity in the time interval from 1998

to 2004, whereas SDSDJ-1 and SDSDJ-2 exhibit lower persistence. Figure 4 shows that the

conditional skewness is quite similar among the three models. On the other hand, the kurtosis

reveals that the SDSDJ-1 and SDSDJ-2 are able to retrieve a conditional distribution of the

S&P500 returns with fatter tails than DVSDJ. In particular, the SDSDJ-1 model provides a

conditional kurtosis as high as 15.72, whereas the DVSDJ model is as high as 10.04.

4.2 Out-of-Sample Analysis

To evaluate the predictive performances of the rival models, we forecast the 5% and 1%

Value-at-Risk (VaR) from one to five days ahead. We test the models during different periods

of crisis by splitting the dataset into three subperiods and running separate out-of-sample

analyses: From January 1, 1996 to December 31, 2003 (to include the September 11, 2001

crisis), from January 1, 2004 to December 31, 2011 (to include the 2008 financial crisis), and

finally, from January 1, 2012 to December 31, 2019, a noncrisis period in the United States.

For each period, we estimate the model parameters using a rolling window equal to

20% of the days in the period. We start by using the first 20% of the daily S&P500 total

returns to calibrate the models, leaving the remaining data for the out-of-sample analysis.

Then, for each day in the out-of-sample, we re-estimate the model parameters using the

past 20% daily observations and compute forecasts from one to five days ahead.

In particular, for the SDJ model, at each forecasting time t?, we simulate 100,000 sample

paths of Rt?þl, with l ¼ 1;2; . . . ;5, according to the return Equation (1), or, equivalently,

Equation (21). This is done by randomly generating the innovations
ffiffiffiffiffiffiffiffiffiffi
ht?þl

p
Zt?þl, where ht

follows Equations (11) and (12), Zt � N 0; 1ð Þ and yt?þl is the compound Poisson process in

Equation (2), l ¼ 1; 2; . . . ; 5. A similar procedure is also used for the GARCHJ, DVSDJ,

SDSDJ-1, and SDSDJ-2 models. Then, we estimate the VaR at both the a ¼ 5% and a ¼ 1%

levels by computing the empirical quantiles of the 100,000 simulated sample paths of Rt?þl.

In line with Creal, Koopman, and Lucas (2011), we assess the statistical accuracy of the

VaR forecasts by performing the proportion of failures test proposed by Kupiec (1995) and

the correct conditional coverage test from Christoffersen (1998). The results obtained for

the proposed SDJ, SDSDJ-1, and SDSDJ-2 models, together with the competing GARCHJ

and DVSDJ models, are reported in Tables 3 and 4.

Focusing on the models with constant intensity, we note that overall the SDJ specifica-

tion shows a lower number of failures than the GARCHJ. Both tests show the superiority

of the SDJ in the period from January 1, 1996 to December 31, 2003 while in the period

from January 1, 2012 to December 31, 2019, only the Kupiec (1995) test provides similar

evidence. However, the two models perform similarly over the period from January 1,

2004 to December 31, 2011.

The bivariate models, SDSDJ-1 and SDSDJ-2, also perform substantially the same. If we

consider the three periods together, with SDSDJ-1, the Kupiec (1995) test is only rejected one

time and the Christoffersen (1998) test is rejected two times, whereas with SDSDJ-2, the

Kupiec (1995) test never rejects and the Christoffersen (1998) test rejects one time. In con-

trast, the performance of the DVSDJ is considerably worse, as the Kupiec (1995) and

Christoffersen (1998) tests reject seventeen and ten times, respectively (on all periods).
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Table 3 Likelihood ratio test statistic of Kupiec (1995), p-values in parentheses

January 1996 to December 2003

a ¼ 5%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

SDJ 17:980	ð1e-05Þ 1:507ð0:219Þ 0:265ð0:606Þ 0:102ð0:749Þ 0:100ð0:748Þ
SDSDJ-1 0:034ð0:853Þ 0:838ð0:359Þ 1:978ð0:656Þ 0:065ð0:797Þ 0:074ð0:792Þ
SDSDJ-2 0:034ð0:853Þ 0:888ð0:327Þ 1:977ð0:656Þ 0:397ð0:528Þ 0:197ð0:656Þ
GARCHJ 19:372	ð1e-05Þ 2:349ð0:117Þ 6:602	ð0:010Þ 7:492	ð0:006Þ 7:468	ð0:006Þ
DVSDJ 19:192	ð1e-05Þ 2:456ð0:107Þ 1:388ð0:2875Þ 1:842ð0:174Þ 0:995ð0:318Þ

a ¼ 1%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

SDJ 21:823	ð2e-06Þ 16:979	ð1e-05Þ 3:274ð0:070Þ 3:274ð0:070Þ 3:274ð0:070Þ
SDSDJ-1 0:654ð0:418Þ 0:626ð0:428Þ 2:645ð0:103Þ 1:620ð0:203Þ 1:617ð0:203Þ
SDSDJ-2 0:656ð0:419Þ 0:428ð0:388Þ 2:644ð0:103Þ 1:617ð0:203Þ 1:624ð0:202Þ
GARCHJ 19:877	ð2e-06Þ 17:980	ð1e-05Þ 42:051	ð1e-11Þ 38:910	ð4e-10Þ 27:184	ð2e-07Þ
DVSDJ 18:640	ð2e-06Þ 3:274ð0:070Þ 11:518	ð6e-04Þ 12:351	ð6e-04Þ 15:687	ð7e-04Þ

January 2004 to December 2011

a ¼ 5%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

SDJ 1:962ð0:161Þ 3:157ð0:075Þ 2:527ð0:111Þ 2:577ð0:112Þ 1:464ð0:226Þ
SDSDJ-1 1:464ð0:226Þ 1:035ð0:309Þ 0:676ð0:411Þ 0:676ð0:408Þ 0:391ð0:532Þ
SDSDJ-2 1:468ð0:223Þ 1:963ð0:161Þ 1:464ð0:226Þ 1:464ð0:226Þ 0:676ð0:410Þ
GARCHJ 5:926	ð0:015Þ 4:801	ð0:028Þ 4:801	ð0:028Þ 4:801	ð0:028Þ 5:811	ð0:011Þ
DVSDJ 4:801	ð0:028Þ 3:801ð0:051Þ 2:954ð0:085Þ 2:954ð0:086Þ 2:955ð0:085Þ

a ¼ 1%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

SDJ 9:038	ð0:003Þ 13:244	ð3e-4Þ 15:557	ð8e-05Þ 13:244	ð0:047Þ 11:068	ð0:001Þ
SDSDJ-1 2:645ð0:114Þ 1:562ð0:211Þ 2:645ð0:104Þ 3:954	ð0:046Þ 2:645ð0:103Þ
SDSDJ-2 2:656ð0:101Þ 1:563ð0:211Þ 2:655ð0:102Þ 1:563ð0:211Þ 2:645ð0:103Þ
GARCHJ 5:468	ð0:019Þ 7:167	ð0:007Þ 7:167	ð0:007Þ 7:167	ð0:007Þ 7:176	ð0:008Þ
DVSDJ 7:167	ð0:007Þ 11:068	ð0:001Þ 11:068	ð0:001Þ 11:068	ð0:001Þ 11:700	ð8e-4Þ

January 2012 to December 2019

a ¼ 5%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

SDJ 1:035ð0:309Þ 0:391ð0:532Þ 0:676ð0:411Þ 0:391ð0:532Þ 6:903	ð9e-03Þ
SDSDJ-1 1:033ð0:330Þ 0:050ð0:822Þ 1:451ð0:228Þ 3:592ð0:060Þ 0:391ð0:532Þ
SDSDJ-2 1:035ð0:309Þ 0:059ð0:801Þ 1:926ð0:159Þ 1:592ð0:302Þ 0:398ð0:531Þ
GARCHJ 14:011	ð2e-04Þ 10:231	ð1e-03Þ 12:019	ð5e-03Þ 12:019	ð5e-03Þ 14:011	ð2e-03Þ
DVSDJ 14:684	ð1e-04Þ 2:232ð0:135Þ 0:004ð0:949Þ 1:168ð0:279Þ 2:167ð0:141Þ

(continued)
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Overall, results suggest that the GARCHJ and the DVSDJ models do not provide a very

satisfactory representation of the left (and fat) tail of the conditional distribution of the

returns. By contrast, the proposed SDJ, SDSDJ-1, and SDSDJ-2 models yield a much better

fit for extreme losses and thus should be more useful for risk management.

In addition, we compare the accuracy of the VaR forecast using the Model Confidence

Set (MCS) of Hansen, Lunde, and Nason (2011), and as in González-Rivera, Lee, and

Mishra (2004), we measure performance by means of the quantile loss function used in the

quantile regression, see Koenker and Bassett (1978), defined as

QLVaR
t	þl ¼ a� 1fRt	þl <VaRt	þl að Þg

� �
Rt	þl � VaRt	þl að Þð Þ;

where VaRt	þl að Þ denotes the VaR on day t at level a. Results are reported in Tables 5–7.

As we see, the three score-driven models perform much better than the GARCH counter-

parts in the period from January 1, 1996 to December 31, 2003, while in the period from

January 1, 2004 to December 31, 2011, all five models perform approximately the same. In

the period from January 1, 2012 to December 31, 2019, the models with constant intensity

do not provide accurate VaR forecasts, while the models with dynamic jump intensity yield

satisfactory and similar performances.

5 Monte Carlo Simulations

5.1 Accuracy of the Filters under Model Misspecification

To demonstrate that the score-driven approach is particularly suitable in the case of model

misspecification, we perform a Monte Carlo experiment to test the proposed models

against their GARCH counterparts. Precisely, we consider yet another model with both sto-

chastic volatility and jumps, namely, the Bates model, where the price S and the variance v

satisfy the following stochastic differential equations:

dS tð Þ ¼ lS tð Þ þ
ffiffiffiffiffiffiffiffi
v tð Þ

p
S tð ÞdW1 tð Þ þ g� 1ð ÞS tð ÞdJ tð Þ; (32)

dv tð Þ ¼ c h� v tð Þð Þ þ r
ffiffiffiffiffiffiffiffi
v tð Þ

p
dW2 tð Þ; (33)

where l, c, h, and r are constant parameters and W1 and W2 are standard Wiener proc-

esses, with constant correlation q. Moreover, J is a Poisson process with constant intensity

parameter k, independent of W1 and W2, and g is a random variable measuring the

jump size. Following Chiarella et al. (2009), we assume that g is distributed according to a

log-Normal distribution, with probability density given by

Table 3 (continued)

a ¼ 1%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

SDJ 0:208ð0:647Þ 0:209ð0:647Þ 0:209ð0:648Þ 2:329ð0:127Þ 4:781	ð0:029Þ
SDSDJ-1 0:198ð0:656Þ 0:208ð0:656Þ 2:745ð0:097Þ 0:224ð0:636Þ 0:224ð0:636Þ
SDSDJ-2 0:207ð0:650Þ 0:205ð0:658Þ 2:328ð0:127Þ 0:647ð0:208Þ 2:328ð0:127Þ
GARCHJ 0:209ð0:647Þ 23:245	ð1e-04Þ 0:080ð0:799Þ 0:209ð0:648Þ 0:927ð0:337Þ
DVSDJ 40:055	ð2e-10Þ 7:855	ð5e-03Þ 11:988	ð5e-03Þ 9:857	ð1e-03Þ 9:858	ð2e-03Þ

The asterisk denotes significance at 95% level.
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Table 4 Likelihood ratio test statistic of Christoffersen (1998), p-values in parentheses

January 1996 to December 2003

a ¼ 5%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

SDJ 1:521ð0:217Þ 2:232ð0:135Þ 2:232ð0:130Þ 3:838ð0:051Þ 3:691ð0:055Þ
SDSDJ-1 1:281ð0:257Þ 1:650ð0:199Þ 2:069ð0:145Þ 3:102ð0:078Þ 0:806ð0:369Þ
SDSDJ-2 2:518ð0:112Þ 1:650ð0:198Þ 2:209ð0:136Þ 3:100ð0:080Þ 0:809ð0:307Þ
GARCHJ 0:611ð0:434Þ 6:766	ð0:009Þ 6:201	ð0:012Þ 5:870	ð0:015Þ 7:379	ð0:007Þ
DVSDJ 1:901ð0:167Þ 2:044ð0:152Þ 3:290ð0:069Þ 4:553	ð0:033Þ 5:069	ð0:024Þ

a ¼ 1%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

SDJ 0:021ð0:884Þ 0:014ð0:905Þ 0:014ð0:906Þ 2:362ð0:124Þ 2:362ð0:126Þ
SDSDJ-1 2:588ð0:108Þ 2:362ð0:124Þ 0:015ð0:905Þ 0:014ð0:906Þ 0:014ð0:905Þ
SDSDJ-2 2:612ð0:106Þ 1:978ð0:159Þ 0:014ð0:905Þ 0:015ð0:905Þ 0:010ð0:905Þ
GARCHJ 8:355	ð0:003Þ 9:143	ð0:002Þ 7:701	ð0:004Þ 8:399	ð0:002Þ 7:177	ð0:008Þ
DVSDJ 0:031ð0:869Þ 9:133	ð0:002Þ 7:266	ð0:005Þ 8:295	ð0:006Þ 2:328ð0:127Þ

January 2004 to December 2011

a ¼ 5%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

SDJ 3:603ð0:057Þ 7:580	ð0:006Þ 3:179ð0:074Þ 3:179ð0:074Þ 1:993ð0:158Þ
SDSDJ-1 0:705ð0:401Þ 2:322ð0:127Þ 2:680ð0:102Þ 2:680ð0:102Þ 3:070ð0:079Þ
SDSDJ-2 0:532ð0:465Þ 3:603ð0:057Þ 1:993ð0:158Þ 4:062	ð0:044Þ 2:680ð0:102Þ
GARCHJ 4:060	ð0:043Þ 3:194ð0:074Þ 3:195ð0:073Þ 3:195ð0:073Þ 3:194ð0:073Þ
DVSDJ 4:060	ð0:044Þ 2:755ð0:096Þ 5:771	ð0:016Þ 2:361ð0:124Þ 5:771	ð0:016Þ

a ¼ 1%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

SDJ 0:908ð0:340Þ 3:196ð0:073Þ 2:755ð0:097Þ 3:195ð0:074Þ 3:685ð0:054Þ
SDSDJ-1 2:119ð0:144Þ 0:262ð0:608Þ 2:119ð0:145Þ 6:300	ð0:012Þ 2:119ð0:150Þ
SDSDJ-2 2:115ð0:145Þ 0:261ð0:609Þ 2:115ð0:145Þ 0:262ð0:609Þ 2:115ð0:145Þ
GARCHJ 1:422ð0:232Þ 4:839	ð0:027Þ 4:839	ð0:027Þ 4:839	ð0:028Þ 4:839	ð0:027Þ
DVSDJ 1:146ð0:284Þ 3:683ð0:055Þ 3:683ð0:055Þ 3:683ð0:055Þ 3:683ð0:059Þ

January 2012 to December 2019

a ¼ 5%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

SDJ 7:258	ð0:007Þ 7:155	ð0:007Þ 7:484	ð0:006Þ 9:212	ð0:002Þ 8:149	ð0:002Þ
SDSDJ-1 4:602	ð0:043Þ 1:993ð0:158Þ 2:322ð0:115Þ 2:321ð0:127Þ 2:680ð0:102Þ
SDSDJ-2 3:698ð0:054Þ 1:990ð0:159Þ 0:146ð0:701Þ 0:146ð0:701Þ 0:102ð0:749Þ
GARCHJ 13:382	ð0:004Þ 6:918	ð0:008Þ 6:295	ð0:012Þ 4:321	ð0:035Þ 8:159	ð0:003Þ
DVSDJ 0:405ð0:524Þ 1:466ð0:170Þ 2:233ð0:127Þ 4:321	ð0:035Þ 2:786ð0:095Þ
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f gð Þ ¼
1ffiffiffiffiffiffi

2p
p

rjg
e
�

ln g�ljð Þ2
2r2

j ;

where rj and lj are fixed parameters.

We conduct a simulation exercise where we assume that models Equations (32) and (33) are

the DGP, and we test the performance of the misspecified score-driven and GARCH models in

Table 4 (continued)

a ¼ 1%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

SDJ 4:984	ð0:025Þ 11:880	ð5e-04Þ 8:359	ð0:003Þ 7:573	ð0:006Þ 23:416	ð6e-06Þ
SDSDJ-1 2:119ð0:145Þ 3:683ð0:050Þ 3:194ð0:073Þ 3:194ð0:073Þ 3:638ð0:054Þ
SDSDJ-2 0:405ð0:524Þ 3:195ð0:073Þ 3:194ð0:073Þ 3:196ð0:073Þ 3:680ð0:050Þ
GARCHJ 4:696	ð0:028Þ 9:976	ð0:002Þ 8:356	ð0:004Þ 7:574	ð0:006Þ 20:445	ð6e-06Þ
DVSDJ 4:565	ð0:032Þ 3:195ð0:074Þ 3:195ð0:073Þ 3:195ð0:073Þ 3:635ð0:059Þ

The asterisk denotes significance at 95% level.

Table 5 Left columns: QLVaR
t	þl ratios for SDSDJ-1, SDSDJ-2, GARCHJ, and DVSDJ over SDJ; right

columns: models included in the MCS of Hansen, Lunde, and Nason (2011) using QLVaR
t	þl loss

function

January 1996 to December 2003

a ¼ 5%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

QLVaR
t	þl MCS QLVaR

t	þl MCS QLVaR
t	þl MCS QLVaR

t	þl MCS QLVaR
t	þl MCS

SDJ 1.00 � 1.00 � 1.00 � 1.00 � 1.00 �

SDSDJ-1 1.08 � 1.16 � 1.05 � 1.03 � 1.07 �

SDSDJ-2 1.08 � 1.17 � 1.06 � 1.02 � 1.07 �

GARCHJ 1.18 � 0.63 0.82 0.90 0.84

DVSDJ 0.98 1.02 � 0.98 � 0.91 0.88

a ¼ 1%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

QLVaR
t	þl MCS QLVaR

t	þl MCS QLVaR
t	þl MCS QLVaR

t	þl MCS QLVaR
t	þl MCS

SDJ 1.00 � 1.00 � 1.00 � 1.00 1.00

SDSDJ-1 1.18 � 1.00 � 1.15 � 1.01 � 1.02 �

SDSDJ-2 1.18 � 1.00 � 1.18 � 0.98 0.99

GARCHJ 0.99 0.65 0.86 0.88 0.96

DVSDJ 0.99 0.75 0.85 0.96 1.02 �

Values greater than 1 indicate the better out-of-sample performance.
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filtering the (unobserved) variance process. We simulate 1000 sample paths with T ¼ 1000

observations each by using an Euler time-discretized version of Equations (32) and (33), where

the parameters are chosen as in Table 8 and are taken from Ballestra and Sgarra (2010).

For each of these trajectories, we estimate the five competing models by maximum like-

lihood and then we filter the volatility process. To measure the accuracy in filtering the

volatility paths, we adopt the mean absolute error (MAE) and the mean squared error

(MSE) which, for each trajectory, are given by

MAE ¼ 1

T

XT

t¼1

jv̂ tð Þ � v tð Þj; MSE ¼ 1

T

XT

t¼1

v̂ðtð Þ � v tð ÞÞ2 ;

where v̂ tð Þ and v tð Þ denote the filtered conditional variance and the true variance processes.

The results are reported in Table 9.

As we can see, the score-driven models provide a more accurate filtering than the GARCH

counterparts, according to both the MAE and MSE. Moreover, the SDSDJ-1 and SDSDJ-2

perform better than the SDJ. For a visual interpretation of the results, we report in Figures 5

and 6 the true and the filtered volatility, averaged over the 1000 simulated trajectories.

Table 6 Left columns: QLVaR
t	þl ratios for SDSDJ-1, SDSDJ-2, GARCHJ, and DVSDJ over SDJ; right

columns: models included in the MCS of Hansen, Lunde, and Nason (2011) using QLVaR
t	þl loss

function

January 2004 to December 2011

a ¼ 5%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

QLVaR
t	þl MCS QLVaR

t	þl MCS QLVaR
t	þl MCS QLVaR

t	þl MCS QLVaR
t	þl MCS

SDJ 1.00 � 1.00 1.00 � 1.00 � 1.00 �

SDSDJ-1 1.03 � 1.01 � 1.03 � 1.01 � 1.01 �

SDSDJ-2 1.05 � 1.02 � 1.02 � 1.00 � 1.03 �

GARCHJ 0.88 1.01 � 1.01 � 1.01 � 1.02 �

DVSDJ 0.89 1.01 � 0.99 1.01 � 0.99

a ¼ 1%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

QLVaR
t	þl MCS QLVaR

t	þl MCS QLVaR
t	þl MCS QLVaR

t	þl MCS QLVaR
t	þl MCS

SDJ 1.00 � 1.00 � 1.00 � 1.00 � 1.00 �

SDSDJ-1 1.03 � 1.01 � 1.03 � 0.95 1.05 �

SDSDJ-2 1.05 � 1.01 � 0.99 0.98 0.98

GARCHJ 1.08 � 0.82 0.98 0.99 0.99

DVSDJ 1.03 � 0.98 � 1.03 � 1.04 � 1.01 �

Values greater than one indicate the better out-of-sample performance.
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5.2 Unboundedness of the Scaled Score without Adjustment

Finally, in Equation (19), we discuss the use of the modified scaled scores in the jump sum.

As we previously noted, in models SDJ and SDSDJ-1, we made this adjustment because

otherwise the scaled score is unbounded for small values of the variance. To see why this

modification is needed, we perform the following Monte Carlo exercise. For each of the

Table 7 Left columns: QLVaR
t	þl ratios for SDSDJ-1, SDSDJ-2, GARCHJ, and DVSDJ over SDJ; right

columns: models included in the MCS of Hansen, Lunde, and Nason (2011) using QLVaR
t	þl loss

function

January 2012 to December 2019

a ¼ 5%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

QLVaR
t	þl MCS QLVaR

t	þl MCS QLVaR
t	þl MCS QLVaR

t	þl MCS QLVaR
t	þl MCS

SDJ 1.00 1.00 1.00 1.00 1.00

SDSDJ-1 0.98 1.05 � 1.07 � 1.06 � 1.00 �

SDSDJ-2 1.01 � 1.05 � 1.07 � 1.05 � 1.01 �

GARCHJ 0.99 0.97 0.93 0.91 0.92

DVSDJ 1.01 � 1.00 � 1.01 � 0.95 1.00 �

a ¼ 1%

l ¼ 1 l ¼ 2 l ¼ 3 l ¼ 4 l ¼ 5

QLVaR MCS QLVaR MCS QLVaR MCS QLVaR MCS QLVaR MCS

SDJ 1.00 1.00 1.00 1.00 1.00

SDSDJ-1 1.03 � 1.05 � 1.03 � 1.01 � 1.08 �

SDSDJ-2 1.02 � 1.05 � 1.03 � 1.02 � 1.07 �

GARCHJ 0.98 0.97 0.92 0.97 0.94

DVSDJ 0.98 0.98 1.02 � 1.03 � 1.00 �

Values greater than one indicate the better out-of-sample performance.

Table 9 Average MAE and MSE relative to SDJ over 1000 Monte Carlo trajectories

SDJ SDSDJ-1 SDSDJ-2 GARCHJ DVSDJ

Avg. MAE 1.0000 0.9762 0.9833 1.0252 1.0197

Avg. MSE 1.0000 0.9867 0.9625 1.0354 1.0049

Table 8 DGP model parameters

l c h r q k rj lj

0.03 2 0.04 0.25 �0.5 0.2 0.4 �0.58

Ballestra et al. j Score-Driven Modeling with Jumps 397

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/22/2/375/7031337 by D

ip. M
edicina C

linica Biotecnologia Applicata user on 27 August 2024



five models, we simulate 1000 trajectories of T ¼ 365 daily observations each based on the

parameters reported in Table 1. Then, for each of these paths, we check if the variance

explodes, that is, if ht > 100000. The results are reported in Table 10.

We see that model SDSDJ-2, which does not employ the score adjustment, generates ex-

plosive trajectories, whereas the remaining models do not. In the following analysis, as we

compute option prices based on simulated trajectories of the S&P500 returns, the SDSDJ-2

model is excluded.

6 Option Valuation

Jumps play an important role in option modeling, as emphasized by the rich literature that

follows the work of Bates (1991). Option pricing is therefore an important context for

assessing models with jumps, and thus we evaluate the performances of the SDJ, SDSDJ-1,

GARCHJ, and DVSDJ approaches in computing the prices of a wide number of options

with several different strikes and maturities. To this aim, following Christoffersen et al.

(2008), Christoffersen, Jacobs, and Ornthanalai (2012, 2013), and Bormetti et al. (2020),

we first perform the risk neutralization of the models based on a suitable pricing kernel.

For the sake of brevity, we only describe this for SDSDJ-1, since the risk-neutralized SDJ is

readily obtained as a special case. Instead, for the risk neutralization of the GARCHJ and

the DVSDJ models, the interested reader is referred to Christoffersen et al. (2008) and

Christoffersen, Jacobs, and Ornthanalai (2012).

Figure 6 Volatilities computed averaging over 1000 simulated trajectories for the SDSDJ-1, SDSDJ-2,

and DVSDJ.

Figure 5 Volatilities computed averaging over 1000 simulated trajectories for the SDJ and GARCHJ.
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6.1 Risk Neutralization

Following Christoffersen, Jacobs, and Ornthanalai (2012), we consider the pricing kernel

with affine dynamics

Mtþ1 ¼
exp f�r� cVtþ1 � cþ cjð Þytþ1g

E½exp f�cVtþ1 � cþ cjð Þytþ1gjF t�
; (34)

where Vtþ1 ¼
ffiffiffiffiffiffiffiffiffi
htþ1

p
Ztþ1 is the nonstandardized normal innovation. We guess the condi-

tional Radon–Nikodym derivative in the following form

dQtþ1

dPtþ1
¼ exp fKVVtþ1 þ Kyytþ1g

E½exp fKVVtþ1 þ Kyytþ1gjF t�
; (35)

and we impose

dQtþ1

dPtþ1
¼ exp rf gMtþ1; (36)

so that, upon Equations (34)–(36), we obtain KV ¼ �c and Ky ¼ �c� cj.

Therefore, we have the following result.

Proposition 3 Let us consider the return process specified by Equation (21) and the

Radon–Nikodym derivative (Equation 35). Then, the equivalent martingale measure Q

exists if and only if the coefficients KV and Ky satisfy

kz þKV ¼ 0; (37)

ky � nþ exp Kylþ
K2

ys
2

2

( )
exp lþ Kys2 þ s2

2

	 

� 1

� �
¼ 0: (38)

Proof: See the Supplementary Material. h

Finally, the following proposition yields the dynamics of the risk-neutralized processes

fRtgt2Z and fhtgt2Z.

Proposition 4 Under the risk-neutral measure Q, the dynamics of the return process is as

follows

Table 10 Ratio of cases in which the variance process ht explodes (#explsions), that is, gs >

100,000, and average explosion time

SDJ SDSDJ-1 SDSDJ-2 GARCHJ DVSDJ

#explosions 0 0 0.61 0 0

Explosion time n.e. n.e. 186 n.e. n.e.

The notation n.e. indicates that no explosion was detected.
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Rt ¼ ln
St

St�1

� �
¼ r� 1

2
ht þ ky � n

� �
vt þ V	t þ y	t ;

ht ¼ exp fwtg; vt ¼ exp fdtg
wtþ1 ¼ xw þ awsh;	 V	t ; y

	
t ;wtð Þ þ cwsv;	 V	t ; y

	
t ; dtð Þ þ bw wt � xw

� �
;

dtþ1 ¼ xd þ ads
v;	 V	t ; y

	
t ; dtð Þ þ cdsh;	 V	t ; y

	
t ;wtð Þ þ bd dt � xdð Þ;

where (under the measure Q) V	t � N 0; htð Þ, y	t is a compound Poisson process with inten-

sity v	t ¼ vt exp fKylþ
K2

ys2

2 g, jump size mean l	 ¼ lþ Kys2, and jump size variance s2,

whereas s	 V	t ; y
	
t ;wtð Þ and s	 V	t ; y

	
t ; dtð Þ are defined as in Supplementary Equations (S.23)

and (S.24), respectively.

Proof: See the Supplementary Material. h

6.2 Computing Option Prices

Let us consider a European option (either Call or Put) on the underlying asset St with ma-

turity T, and let P STð Þ denote its payoff. The option price at a generic time t < T, which

we denote by Ot, is computed as follows, see Heston and Nandi (2000), Christoffersen,

Jacobs, and Ornthanalai (2013):

Ot ¼ exp f�r T � tð ÞgEQ½P STð ÞjF t�: (39)

As in Christoffersen, Jacobs, and Ornthanalai (2012, 2013), the conditional expectation

in Equation (39) is evaluated by a Monte Carlo simulation, since it cannot be obtained in

closed form. Precisely, for each option price, we simulate 1000 trajectories.

7 Option Valuation Empirics

We consider European Put and Call options on the S&P500 index, with data retrieved

from Thomson Reuters Eikon Datastream, which reports the prices of options with matur-

ities starting from 2015. Thus, we select the S&P500 options with maturities ranging from

2015 to 2019, and we consider the time series of their daily prices from September 18,

2013 to November 27, 2019.

As a common practice, we apply several exclusion filters to obtain the final panel of Put

and Call option contracts. Specifically, following Bormetti et al. (2020), we keep only the

options with time-to-maturity between 14 and 365 days. Following Christoffersen, Jacobs,

and Ornthanalai (2012), we select only out-of-the-money Put and Call options (we com-

pute the moneyness as K=St, where K is the strike price and St is the underlying index level),

and we filter out illiquid quotes by selecting only the six most liquid strikes at each matur-

ity, and we consider option quotes only on Wednesday. Finally, as in Bakshi, Cao, and

Chen (1997), we further remove price quotes lower than 3.8$. In Table 11, we report the

resulting number of option prices on the S&P500 index sorted by moneyness and maturity.

7.1 Joint Maximum Likelihood Estimation

As argued by Ornthanalai (2014), fitting and evaluating a dynamic model to a panel of op-

tion prices could be really challenging, especially if the goal is to estimate the parameters

also using returns. In fact, several studies have documented the importance of taking into
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account both the sources of information, see Chernov and Ghysels (2000), Pan (2002),

Santa-Clara and Yan (2010). However, we note that the joint estimation method proposed

by Ornthanalai (2014) can be easily adapted for our score-driven models, and provides a

feasible and efficient procedure for gaining more insights about option pricing

performances.

To apply this method, we need to define a suitably weighted log -likelihood function that

considers both the daily time series of log -returns used in Section 4 and the panel of option

contracts considered in this section. While for the daily returns the log -likelihood, ‘returns hð Þ,
is already available in Equation (31), for the option pricing error structure further assump-

tions are required. Formally, if we have N option prices, the option pricing error for the i-th

contract, ui, for i ¼ 1; . . . ;N, is defined as the relative implied volatility loss function:

ui ¼
IVMKT

i � IVMOD
i

IVMKT
i

; (40)

where IVMKT
i and IVMOD

i denote the market and the model implied volatilities of the i-th

option, respectively, computed according to the popular Black-Scholes model, see Black

and Scholes (1973). Then, following Christoffersen, Jacobs, and Ornthanalai (2012) and

Ornthanalai (2014), the likelihood associated with the error on implied volatility is com-

puted by using a Gaussian specification:

‘options hð Þ ¼ �N

2
ln 2pr2

u

� �
� 1

2

XN
i¼1

u2
i

r2
u

:

It is important to note that the number N of data points available from the option panel

is different from the number T of daily returns, see Section 4. Therefore, according to

Christoffersen, Jacobs, and Ornthanalai (2012) and Ornthanalai (2014), to assign an

equal weight to returns and option prices, we consider the following weighted joint (total)

log-likelihood:

‘joint hð Þ ¼ T þN

2

‘returns hð Þ
T

þ T þN

2

‘options hð Þ
N

: (41)

The joint estimation results are presented in Table 12. As we can see, the score-driven

approaches, namely the SDJ and SDSDJ-1, provide a higher joint log -likelihood than the

GARCHJ and the DVSDJ.

Table 11 Number of S&P500 option prices considered, sorted by moneyness and day-to-matur-

ity (DTM)

Number of option prices

Maturity

Moneyness 14 
 DTM 
 50 50 < DTM 
 150 150 < DTM 
 365 All

0:8 
 K=St 
 0:9 194 957 535 1686

0:9 < K=St 
 1:02 429 1329 1328 3086

1:02 < K=St 
 1:2 284 855 1162 2301

All 907 3141 3025 7073
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7.2 Option Valuation Results

To assess the performance of the four competing models, we follow Majewski, Bormetti,

and Corsi (2015) and Alitab et al. (2019), and employ the (percentage) implied volatility

root mean square error:

IVRMSE %ð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

IVMKT
i � IVMOD

i

� �2

vuut � 100; (42)

where, as in Subsection 7.1, N is the total number of option prices considered (7073) while

IVMKT
i and IVMOD

i denote the market and the model implied volatilities of the i-th option,

respectively.

Table 12 Joint maximum likelihood estimation results

SDJ SDSDJ-1 GARCHJ DVSDJ

Normal Jump Normal Jump Normal Jump Normal Jump

Parameters

x �11.142 �9.194 �2.946 �1e-06 1e-06 �7e-07

ð1e-02Þ ð8e-03Þ ð7e-04Þ ð3e-09Þ ð2e-08Þ ð2e-06Þ
a 0.150 0.023 0.070 2e-06 2e-06 1e-03

ð1e-03Þ ð8e-04Þ ð8e-04Þ ð3e-08Þ ð4e-09Þ ð3e-05Þ
b 0.993 0.969 0.963 0.980 0.560 0.585

ð2e-05Þ ð8e-04Þ ð8e-04Þ ð3e-04Þ ð1e-04Þ ð3e-05Þ
c 0.010 0.009 0.010 0.780

ð9e-04Þ ð6e-04Þ ð2e-06Þ ð3e-03Þ
c 3.093 116.380 70.065

ð2e-02Þ ð8e-02Þ ð8e-02Þ
e 0.004 0.885

ð7e-06Þ ð1e-05Þ
k �4.732 0.002 5.804 0.005 2.241 0.005 0.885 0.002

ð9e-03Þ ð3e-03Þ ð3e-02Þ ð5e-04Þ ð6e-02Þ ð2e-04Þ ð4e-06Þ ð7e-03Þ
v 0.136 0.047

ð3e-04Þ ð1e-03Þ
l �0.001 �0.008 �0.012 �0.024

ð3e-04Þ ð8e-04Þ ð2e-04Þ ð5e-04Þ
s2 8e-05 6e-04 2e-04 1e-05

ð1e-07Þ ð1e-07Þ ð5e-07Þ ð8e-08Þ
h1 9e-05 4e-05 7e-06 1e-07

ð8e-03Þ ð1e-02Þ ð1e-08Þ ð1e-08Þ
v1 0.137 1e-03

ð9e-03Þ ð2e-04Þ
K 4.732 �11.570 �5.804 �77.575 �2.241 �14.013 �0.885 �3.117

log -likelihood 21719.76 24686.62 20480.07 20810.55

The estimation period spans from January 3, 1990 to December 31, 2019 (7559 observations) for the returns,

and spans from September 18, 2013 to November 27, 2019 (7073 prices) for the option prices. The standard

errors reported in parenthesis are computed by inverting the negative Hessian matrix evaluated at the optimum

parameter values.
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The results obtained, shown in Table 13, reveal that the score-driven specifications yield

a better fitting than the GARCH approaches. In fact, for the SDJ and the SDSDJ-1, the

overall pricing errors are equal to 4:24% and 3:89%, respectively, whereas for the

GARCHJ and the DVSDJ, the overall pricing errors are equal to 5:90% and 5:39%, respect-

ively. The picture does not change if we sort the options for moneyness or maturity. In par-

ticular, the IVRMSE obtained using the SDSDJ-1 is always smaller than or equal to 4:45%,

whereas the GARCHJ and the DVSDJ provide errors also equal to 8:88% and 8:67%,

respectively.

Furthermore, to investigate the model performances at different volatility scenarios, for

every day in the sample period, we sort the option price according to the value of the VIX

on that day, see Panel D of Table 13. The results obtained reveal that score-driven models

perform better than the GARCH counterparts for every level of VIX considered.

8 Conclusions

To better cope with the empirical features of stock prices, and to incorporate relevant infor-

mation about the probability distribution of returns, this article presents a novel approach

Table 13 Implied volatility root MSE in percentage points (IVRMSE [%])

Panel A: IVRMSE (%) overall

SDJ SDSDJ-1 GARCHJ DVSDJ

4.24 3.89 5.90 5.39

Panel B: IVRMSE (%) sorted by moneyness

Moneyness SDJ SDSDJ-1 GARCHJ DVSDJ

0:8 
 K=St 
 0:9 2.81 2.47 4.85 3.12

0:9 < K=St 
 1:02 3.78 3.48 6.93 5.87

1:02 < K=St 
 1:2 6.95 4.45 8.88 8.67

Panel C: IVRMSE (%) sorted by day-to-maturity (DTM)

Maturity SDJ SDSDJ-1 GARCHJ DVSDJ

14 
 DTM 
 50 5.43 4.60 5.77 5.78

50 < DTM 
 150 4.20 3.64 5.59 5.31

150 < DTM 
 365 4.69 2.65 6.27 5.12

Panel D: IVRMSE (%) sorted by VIX level

Level SDJ SDSDJ-1 GARCHJ DVSDJ

VIX 
 22 1.65 1.60 1.76 1.78

22 < VIX 
 30 4.74 4.46 5.27 5.51

30 < VIX 9.73 9.68 11.81 9.77

The option time series spans from September 18, 2013 to November 27, 2019.

Ballestra et al. j Score-Driven Modeling with Jumps 403

D
ow

nloaded from
 https://academ

ic.oup.com
/jfec/article/22/2/375/7031337 by D

ip. M
edicina C

linica Biotecnologia Applicata user on 27 August 2024



that couples the predicting power and the flexibility of score-driven models with a jump

process. In particular, the proposed SDJ model assumes that returns are affected by two

sources of randomness, namely a Gaussian process and a compound Poisson process, and

employs a score-driven framework for the dynamics of the conditional variance of the for-

mer. The resulting specification benefits from the fact that the process used to incorporate

the jumps is fully integrated with the dynamics of the conditional variance, and that it has a

straightforward estimation by maximum likelihood. In doing so, we contribute by extend-

ing the score-driven literature to better cope with financial stylized facts.

We have performed a theoretical investigation of the SDJ model, establishing a sufficient

condition for its stationarity and ergodicity. In addition, we also present two extensions of

the SDJ approach, namely, the SDSDJ-1 and SDSDJ-2 models, which take into account the

time-varying features of the jump intensity.

An empirical analysis focusing on the S&P500 time series is conducted, to test the SDJ,

SDSDJ-1, and SDSDJ-2 against the GARCHJ and DVSDJ approaches of Christoffersen

et al. (2008) and Christoffersen, Jacobs, and Ornthanalai (2012). Overall, our score-driven

models turn out to be superior to their GARCH counterparts both in terms of goodness-of-

fit and out-of-sample VaR prediction, confirming that the proposed specifications are

particularly suitable for capturing the non-Gaussian behavior of returns due to outliers and

occasional bursts.

Finally, we test how our approach works in a challenging empirical setting such as op-

tion pricing. We find that our score-driven models provide a smaller pricing error and more

reliable implied volatility surfaces than the GARCH benchmarks. To the best of our know-

ledge, this is the first time that the score-driven methodology is used for valuing derivatives.

Thus, the present article opens the way to possible future applications of score-driven mod-

els in option pricing.

Supplementary Material

Supplementary data are available at Journal of Financial Econometrics online.

The Supplementary Material contains proofs, the derivation of the conditional Fisher in-

formation and two additional figures showing additional empirical results.
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