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Abstract

In this paper, once and for all, we want to strongly affirm that the
thermodynamic framework for complex materials based on extra fluxes
can lead to more severe restrictions with respect to the virtual powers
scheme. Even if formally converging to the same final constitutive
results, it seems only the consequence of an inappropriate approach
to the problem itself. To achieve this goal, we proceed with a quick
critical comparison between the different steps of the two methodolo-
gies: by way of example, we address novel constitutive settings for the
third-order infinitesimal elasticity and viscoelasticity with an exten-
sion to thermo-elasticity, based on nonlocal revisited Green-Naghdi
like thermal properties. Finally suitable thermodynamic restrictions
are derived from the generalized Clausius-Duhem inequality.

1 Introduction

Nowadays there is an increasing interest in nonlocal thermo-elastic models
that can predict the thermo-elastic behavior of micro- and nano-structures.
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These structures are widely employed in modern industry, in “extreme” en-
vironments, accounting for very short action times, very high temperature
gradients requiring temperature-dependent conductivities, together with very
small scale lengths, see e.g. [1] for nano-rods. Moreover, another challenge
of higher-gradients theories is just represented by the constitutive boundary
conditions naturally associated to them, within their thermodynamic con-
struction. Higher-order boundary problems yield new and interesting insights
in their applicability, since they are able to describe typical surface singu-
larities of nano-technologies, see e.g. [2, 3]. Inspired by the evergreen great
attention towards these smart materials, we aim in going back to the issue
upstream, concerning the right thermodynamic approach to derive governing
PDEs equations for nonlocal theories and related boundary conditions.

The nonlocal elastic behavior, herein addressed, is assumed to be consis-
tent with third-order strain gradient elastic and viscoelastic theories, whereas
the thermal properties are based on a suitable revisitation of Green-Naghdi
like heat theories under nonlocal features. The choice of these modelings
is just motivated by the increasing use of material bodies exhibiting micro-
and nano-structures, at both mechanical and thermal point of view, in a
wide range of applications. On the other hand, as already well known, the
constitutive aspects of these nonlocal higher-gradient materials cannot be
thermodynamically supported via the standard Thermodynamic Laws.

There are two very different approaches to implement, converging to ap-
parently equivalent constitutive results: the variational principles and the
so-called extra fluxes arguments. Following Germain’s strategies (see e.g.
[4]), the first format directly expresses the Laws of Thermodynamics in terms
of appropriate internal and external mechanical/entropic powers, character-
istics of the complex structure under study, as in Fabrizio et al. [5] and
references therein. The second topic modifies the formulation of the two
Laws, by introducing additional mechanical and entropic extra fluxes, in a
divergence form, as suggested by Dunn and Serrin [6] and Müller [7].

In this way, it is not immediately clear which nonlocal constitutive setting
is to be performed, with a posteriori choices for the extra fluxes, in order that
the compatibility with the Laws of Thermodynamics is maintained, just in
the spirit of the virtual powers developments.

It is worth to recall that in the literature, the two approaches are generally
considered equivalent and often they are presented in parallel. However the
first formulation is usually judged more general than the second one, as in
Amendola et al. [8], with some theoretical advantage, as in Amendola et al.
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[9]. Some constructive criticisms vs the second method are emphasized in
Fabrizio et al. [5], within many nonlocal different research areas, whereas
in Morro and Vianello [10] a “conciliation” between the two approaches is
shown thoroughly, for second-gradient elasticity. Notably, Cardona et al.
[11], working with a theory of second-gradient thermo-elasticity, point out
the deficiencies of the extra fluxes topic vs the variational approach, within
the isothermal frame.

In our opinion the extra fluxes topic does not hold up, without knowing
the key constitutive developments, due to the variational approach. It is
the primary goal of this paper to assert the universal validity of the virtual
powers method in deriving thermodynamically consistent nonlocal continuum
mechanics theories. To the best of our knowledge, this is the first time
that, focusing on special nonlocal thermo-elastic/viscoelastic theories, and
presenting both approaches in parallel, all the shortcomings of the extra
fluxes topic are thoroughly highlighted to conclude, once and for all, that it
is not the correct procedure to address such complex structures.

To this aim, hereafter, following the Lagrangian description we con-
centrate, by way of example, on third-gradient infinitesimal elasticity and
thermo-elasticity, within analogous nonlocal thermal effects, via either Green-
Naghdi or Fourier type heat theories. We choose to work with Green-Naghdi
like thermal features, mainly motivated by the great past and recent research
interest towards their revisitations, even in relation to the standard Fourier
properties in their limiting cases, see e.g. [12, 13] and references therein.

In our opinion non standard Green-Naghdi heat conduction theories may
be more accurate than the standard Fourier’s theory, both theoretically and
experimentally, since providing a general framework for a wide range of in-
teracting thermal problems, see e.g. [14, 15].

Therefore our new idea to propose higher-order Green-Naghdi like ther-
mal features, in order to also capture size dependencies related to nanoscale
devices, may be worthwhile.

The outline of the paper is as follows. In section 2, after a brief overview of
preliminary notations and definitions, novel non-isothermal third-order gradi-
ent elastic/viscoelastic theories, under analogous nonlocal thermal properties
within a revisited Green-Naghdi heat theory, are set up via a non-standard
version of the virtual powers method, which attributes a special role to the
coldness displacement and its higher-gradients. The appropriate expressions
for the virtual/real internal/external mechanical and entropic powers, incor-
porating also non standard surface effects, are deduced straightaway. As a
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consequence, thermodynamic constraints, upon the general constitutive set-
ting, are derived and the need of a limited number of additional internal
lengths scale parameters is commented, within simplified gradient isotropic
backgrounds. In section 3 we present the guidelines of the extra fluxes topic,
by providing a step by step comparison with the previous procedure in or-
der to highlight its irrefutable weaknesses. Moreover, we furnish two special
constitutive examples in order to make a quick and incisive comparison also
on the necessary smoothness requirements, driven by the two approaches.

Notably, the variational integral formulation, related to the virtual pow-
ers format, lead to a weak methodology, allowing for an interpretation of
all the quantities involved, in the sense of distributions, see e.g. [4]. These
variational techniques allow to establish existence, uniqueness and stability
results of weak solutions to initial-(modified) boundary value problems, re-
lated to the PDEs system governing higher-order gradient theories [16, 17,
18, 19, 20, 21]. Even in differential contexts, as it is herein emphasized, this
method needs weaker smoothness assumptions.

To conclude, the virtual power format guarantees a universal and a pri-
ori tool since it is just based on the rheological aspects under study and
furnishes all the balance and imbalance local equations together with the ap-
propriate constitutive boundary conditions. It should be mentioned that the
constitutive restrictions come out from the usual thermodynamic arguments;
also, the basic regularity assumptions, herein used to justify the passage from
integral formulations to local ones, are the classical ones within continuum
thermo-mechanics frameworks, appropriately referred to nonlocal constitu-
tive settings under study.

As a final comment, these novel third-order thermo-elastic and viscoelas-
tic scenarios are herein derived on a theoretical point of view, and we might
only conjecture their possible ability to capture the multidisciplinary size ef-
fects related to micro- and nano-structures or structural components, which
are highlighted in a wide range of applications in modern industry [22, 23, 24].
More specifically, our nonlocal Green-Naghdi heat theories might better
model nanoscale thermal devices which are proven to be important in a broad
variety of research areas, including for example aerospace, optics, chemical
and ceramics, see e.g [14, 15].
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2 Third-gradient thermo-elastic models: the

kinematical background, the guidelines of a

non standard version of the virtual powers

scheme and thermodynamic restrictions

As a briefly reviewing of kinematical aspects, let a typical simple/non simple
body be pointwise identified with a reference/initial configuration B(0) of the
ordinary 3D Euclidean space; B(t) denotes the configuration at the generic
time t. Let P(0) be an arbitrary body part (sub-body) of B(0), with outward
unit normal n on its boundary. So we work on the space-time cylinder
P(0) × (0, T ), (0, T ) being the observational time interval. In what follows,
we address the Lagrangian description of Continuum Mechanics, within the
standard notations, granting us some slight nomenclature changes to avoid
“writing distractions”. For convenience, we refer to the small deformations of
the continuum with respect to a fixed orthogonal Cartesian reference system.
A compact notation is used, with capital bold face letters denoting vectors
and tensors of any order. Also, a simple dot stands for the scalar product
between vectors or tensors of any order, independently of contracted index
pair. As usual, the material position X is related to the current position x(t),
via the material displacement vector u, as u = x(t) − X, and, for brevity,
henceforth the space dependence of the fields is generally omitted. Further
un upper dot over a symbol denotes the time derivative, so that the velocity
field is v = u̇.

The tensor E = sym(∇u) represents the linearized form of the Green-St-
Venant strain tensor to denote the infinitesimal strain tensor, and ρ0 stands
for the (positive and constant) reference mass density.

Without any misunderstanding the first Piola-Kirchhoff stress tensor will
be still denoted by T, likewise we use the notation θ for the material tem-
perature and q represents the heat flux vector in its material form; e, η, b
and r stand for the internal energy density, the entropy density, the body
force and the heat supply respectively, for unit mass and in their material
description.

In analogy with the displacement vector u, we introduce the coldness
displacement, denoted by k̂, defined as a time primitive of the coldness k =

1/θ, so that
˙̂
k = k. The “kinetics” of our thermo-elastic behavior is thus

characterized by the pair (u, k̂), so that the pair (u̇,
˙̂
k) represents the real
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“velocities”, whereas the virtual (test) “velocities” will be given by (δu, δk̂).
As usual, the virtual velocities are supposed sufficiently smooth with compact
support on the space-time cylinder P(0)× (0, T ) in study, ∀ P(0) ⊂ B(0).

The Helmholtz free energy for unit mass, defined by

ψ = e− θη , (1)

yields the modified free energy potential

ψ̃ = kψ = ke− η . (2)

We believe that the coldness k just plays a universal role within thermo-
elasticity [25], so henceforth, dealing with thermal properties, we choose to
work with k, rather than with the standard temperature θ = 1/k.

In what follows, we regard simple and local as an equivalent description
of materials. Likewise, non simple and nonlocal are interchangeable.

We conclude this preliminary section with some brief considerations over
the strategic notion of the state σ(t) and the associated process P (t), within
a local/nonlocal constitutive theory.

On the Lagrangian point of view, for simple isothermal linearly elastic
materials, one has σ(t) = ∇u(t) with process P (t) = ∇u̇(t). The first Piola
Kirchhoff stress tensor T depends on the present value of ∇u, so that the
internal mechanical power density has form T·∇u̇ in P(0)×(0, T ). We recall
that in classical viscoelastic theories, the stress tensor T may also depend
on the past history of E, i.e. Et(s) = E(t− s), and hence the state and the
process are dutifully modified to incorporate new memory effects [8].

More generally, the deformation can be better approximated considering
deformation gradients of a higher-order N > 1, thus leading to non simple
elastic materials of grade N > 1. Due to this typology of complexity, the
concept of stress has to be revisited, by introducing stresses of higher-order
with the role of hyper-stresses. For example, for a second-gradient mechanical
structure the effective stress tensor splits as follows:

T = T2 −∇ ·T3 , (3)

where the hyper-stress T3 is a third-order tensor, symmetric with respect to
the last two indices (see e.g.[10]), which, in a simplified constitutive setting
[26], may be chosen proportional to the gradient of T2; the proportionality
parameter represents an internal length modulo able to capture different size-
dependent effects, see e.g. [27]. In this way the constitutive choice for T2
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would affect the constitutive form of T3; as a consequence the state and the
process broaden to include the second gradients of E and Ė respectively.

Raising the order of complexity to 3, we propose for the effective stress
tensor the form

T = T2 −∇ ·T3 +∇ · (∇ ·T4) , (4)

accounting for a further fourth-order hyper-stress T4.
Now dimensional arguments, confirmed by experimental evidences, sug-

gest that, if T3 may be proportional to the gradient of the standard stress ten-
sor T2, for T4 can be predicted a proportionality with the double gradient of
T2. By all means it is the constitutive relation for the symmetric T2 to be de-
cisive for constitutive features of higher-gradient theories. In this Lagrangian
context the mechanical state σ is characterized by (∇u,∇∇u,∇∇∇u), where-
as the process P is given by their temporal derivatives.

For a non isothermal third-gradient elastic theory, we may propose simple
thermal properties of either Cattaneo or Green-Naghdi type: the state σ is
then redefined to incorporate not only the coldness, as in the Fourier frame,
but also other thermal variables, like the heat flux vector or the coldness
displacement gradient, respectively. However, it is interesting to argue on a
complex heat theory, by introducing nonlocal thermal effects of grade M >
1, via additional hyper-heat flux tensors. Just for a better understanding,
within a rigid heat conduction of grade 3, the effective heat flux vector has
form

q = q1 −∇ ·Q2 +∇ · (∇ ·Q3) , (5)

where the second-order symmetric tensor Q2 and the third-order tensor Q3,
symmetric with respect to its two last indices, play the role of hyper-heat
fluxes. Indeed the divergence and the double divergence account for the
flux exchanging between bulk and surface points. However the knowledge
of inflowing/outflowing hyper-fluxes is still not well understood: hence the
signs are random, and again it will be up to the thermodynamics restrictions
to settle them.

Again it is the constitutive relation for q1 to play a key role on the
third-gradient theory; for Fourier type thermal features, q1 is proportional
to the coldness gradient, via a generally non constant conductivity, so as for
the nonlocal mechanical structure we address a state σ dependent only on
the coldness k. Instead the thermal process P includes first-, second- and
third-coldness gradients. Obviously, in analogy with nonlocal mechanical
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structures, one may generalize nonlocal thermal properties to include memory
effects.

Let us now briefly present the main steps of a nonstandard version of the
virtual powers method, based on the notion of the coldness displacement,
in order to deduce all the balance and imbalance laws, together with the
appropriate boundary conditions, for nonlocal third-gradient elasticity and
thermo-elasticity.

Taking into account the relation (4), the equation of motion for third-
gradient elasticity has the form

ρ0ü = ∇ · [T2 −∇ ·T3 +∇ · (∇ ·T4)] + ρ0b . (6)

Considering the inner product of (6) with δu and following the standard
procedure, we recover its weak formulation in the d’Alembert form∫

P(0)

ρ0ü · δu d V = P(e)
m (P(0); δu)− P(i)

m (P(0); δu) (7)

for any reference sub-bodies P(0) ⊂ B(0) and any sufficiently smooth virtual
velocity field δu. The internal and external virtual mechanical powers are
expressed as

P(i)
m (P(0); δu) =

∫
P(0)

p̃(i)m d V

=

∫
P(0)

(T2 · ∇δu + T3 · ∇∇δu + T4 · ∇∇∇δu) d V ,

(8)

P(e)
m (P(0); δu) =

∫
P(0)

ρ0b · δu d V

+

∫
∂P(0)

[Tδu + (T3 −∇ ·T4)∇δu + T4∇∇δu] · n d a .

(9)

Whence the real form of the Kinetic Energy Theorem can be written as

d

dt

∫
P(0)

ρ0
u̇2

2
d V = P(e)

m (P(0))− P(i)
m (P(0)) (10)

where the external and internal mechanical powers are defined as

P(e)
m (P(0)) =

∫
P(0)

ρ0b · u̇ d V

+

∫
∂P(0)

[Tu̇ + (T3 −∇ ·T4)∇u̇ + T4∇∇u̇] · n d a ,

(11)
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P(i)
m (P(0)) =

∫
P(0)

p(i)m d V

=

∫
P(0)

(T2 · ∇u̇ + T3 · ∇∇u̇ + T4 · ∇∇∇u̇) d V ,

(12)

p
(i)
m representing the density of the global internal mechanical power.

It is worth to note that the nonlocal mechanical theory under study is
responsible of additional constitutive boundary conditions driven by the pres-
ence of hyper-stress tensors via the superficial integral in (11).

The interaction between the First Law of Thermodynamics and the Ki-
netic Energy Theorem (10), under suitable smoothness assumptions, locally
yields

ρ0ė− p(i)m = ρ0h (13)

where p
(i)
m is defined in (12) and, from the heat balance equation, the right-

hand side satisfies
ρ0h = −∇ · q + ρ0r , (14)

(q, ρ0r) being the internal energy thermal inflow.
We highlight that the integral formulation of the internal energy mechan-

ical inflow is just represented by the right-hand side of (11).
Let us multiply (14) by δk̂ and then integrate over P(0) to yield the

balance equation for the virtual entropy powers

P(i)
en (P(0); δk̂) = P(e)

en (P(0); δk̂) . (15)

Herein, thinking of the third-gradient heat theory, the virtual internal and
external entropy powers are expressed as

P(i)
en (P(0); δk̂) =

∫
P(0)

(
ρ0hδk̂ − q1 · ∇δk̂ −Q2 · ∇∇δk̂ −Q3 · ∇∇∇δk̂

)
d V

P(e)
en (P(0); δk̂) =

∫
P(0)

ρ0rδk̂ d V

−
∫
∂P(0)

{
qδk̂ +

[
(Q2 − (∇ ·Q3))∇δk̂ + Q3∇∇δk̂

]}
· n d a ,

(16)

which, in a complete analogy with the mechanical background, lead to the
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definitions

P(i)
en (P(0)) =

∫
P(0)

p(i)en d V

=

∫
P(0)

(ρ0hk − q1 · ∇k −Q2 · ∇∇k −Q3 · ∇∇∇k) d V

P(e)
en (P(0)) =

∫
P(0)

ρ0rk d V

−
∫
∂P(0)

{kq + [(Q2 − (∇ ·Q3))∇k + Q3∇∇k]} · n d a ,

(17)

p
(i)
en being the density of the real internal entropy power.

So, under suitable hypotheses of regularity, the Second Law of Thermo-
dynamics can be locally written as

ρ0η̇ ≥ ρ0hk − q1 · ∇k −Q2 · ∇∇k −Q3 · ∇∇∇k = p(i)en . (18)

The interlacement between (13), multiplied by k, and (18) yields

ρ0η̇ ≥ ρ0ėk − (T2 · ∇u̇ + T3 · ∇∇u̇ + T4 · ∇∇∇u̇) k

− q1 · ∇k −Q2 · ∇∇k −Q3 · ∇∇∇k
(19)

whereas, via the definition of the modified free energy ψ̃, defined in (2), we
recover the general Clausius-Duhem inequality for our theory

− ρ0 ˙̃ψ + ρ0ek̇ + q1 · ∇k + Q2 · ∇∇k + Q3 · ∇∇∇k
+ (T2 · ∇u̇ + T3 · ∇∇u̇ + T4 · ∇∇∇u̇) k ≥ 0 .

(20)

It is worth to observe that this inequality holds also for nonlocal higher-order
thermo-elastic structures, by suitably updating the internal mechanical and
entropic densities. The universality of this thermodynamic approach just
stands on different expressions of the internal virtual/real powers, according
to the nonlocal properties of the material under study.

Clearly we reduce to the classical Clausius-Duhem inequality in the ab-
sence of both nonlocal effects, while, in an isothermal context, from (20) we

provide the Dissipation Principle in the form ρ0ψ̇ ≤ p
(i)
m . On the other hand,

within a nonlocal rigid heat conduction of grade 3, in (20) all the mechan-
ical contributions are neglected. It is perhaps superfluous to note that for
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non-isothermal third-strain gradient elasticity, under simple (Fourier, Catta-
neo or Green-Naghdi type) thermal properties, in (20) the hyper-heat flux
tensors disappear so that the effective heat flux vector is just q1.

The final step of this section is the application of the classical Coleman-
Noll arguments towards the thermodynamic restrictions on our constitutive
settings, taking into account the dependences of the modified free energy
potential on the state functions.

In order to describe non-isothermal anisotropic/isotropic third-strain gra-
dient elasticity, under nonlocal anisotropic/isotropic Green-Naghdi type ther-
mal effects of grade 3, we take ψ̃ as a continuously differentiable function of
all the independent variables at the current time t, representing the state

σ = (k,∇u,∇∇u,∇∇∇u,∇k̂,∇∇k̂,∇∇∇k̂). Upon evaluation of ˙̃ψ, by us-
ing the chain rule, and substitution in (20), with the usual line of arguments,
besides the classical relations

e =
∂ψ̃

∂k
, η = k2

∂ψ

∂k
, (21)

we provide the following “split” thermo-elastic restrictions

k

(
T2 − ρ0

∂ψ

∂∇u

)
· ∇u̇ ≥ 0 , k

(
T3 − ρ0

∂ψ

∂∇∇u

)
· ∇∇u̇ ,

k

(
T4 − ρ0

∂ψ

∂∇∇∇u

)
· ∇∇∇u̇ ≥ 0 ,

(22)

together with(
q1 − ρ0

∂ψ̃

∂∇k̂

)
· ∇k ≥ 0 ,

(
Q2 − ρ0

∂ψ̃

∂∇∇k̂

)
· ∇∇k ≥ 0 ,(

Q3 − ρ0
∂ψ̃

∂∇∇∇k̂

)
· ∇∇∇k ≥ 0 .

(23)

These inequalities hold if we choose

T2 = ρ0
∂ψ

∂∇u
+ D1∇u̇ , T3 = ρ0

∂ψ

∂∇∇u
+ D2∇∇u̇ ,

T4 = ρ0
∂ψ

∂∇∇∇u
+ D3∇∇∇u̇

(24)
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and

q1 = ρ0
∂ψ̃

∂∇k̂
+ K1∇k , Q2 = ρ0

∂ψ̃

∂∇∇k̂
+ K2∇∇k ,

Q3 = ρ0
∂ψ̃

∂∇∇∇k̂
+ K3∇∇∇k ,

(25)

D1,D2,D3 and K1,K2,K3 being positive tensorial valued functions, de-
pending on at most (X, t) and the coldness k. It is worth to comment
that relations (24) generalize our third-strain gradient constitutive setting
to account of third-strain rate gradient viscoelastic features. The coefficients
D1,D2 and D3 may be interpreted as viscoelastic and hyper-viscoelastic
tensorial moduli, likewise the additional K1,K2 and K3 play the role of
conductivity and hyper-conductivity tensors, respectively.

By summarizing, different nonlocal Green-Naghdi thermo-elastic/visco-
elastic theories depend on different expressions for the free energy potentials.
Notably, a significant number of additional constitutive parameters enter due
to the complex structure under study.

In special linearly isotropic backgrounds, we recall that a positive-definite
fourth-order tensor can be written in terms of only two positive phenomeno-
logical constants, which become characteristics of the structure under study;
obviously the picture changes a lot for higher-order isotropic tensors, see e.g.
[28].

When ψ does not depend on (simple, double and triple) coldness dis-
placement gradients, so that k represents its only thermal dependence, we
reduce to a nonlocal Fourier type heat theory of grade 3. In this case, we
may confine our attention to the following free energy potential, accounting
for a quadratic dependence on the first-, second- and third-strain gradients,
together with the mentioned dependence on the coldness,

ψ = ψE(k) +
1

2ρ0
C1(k)∇u · ∇u +

1

2ρ0
C2(k)∇∇u · ∇∇u

+
1

2ρ0
C3(k)∇∇∇u · ∇∇∇u .

(26)

Herein C1 is the standard fourth-order elasticity tensor, C2 and C3 repre-
sent the sixth- and eighth-order hyper-elasticity tensors respectively, obeying
suitable symmetries strictly related to the symmetry requirements on T2 and
T3. Since it is reasonable to assume for T2 a symmetry in the last pair of
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indices, as in [10, 29], we propose for T3 a symmetry with respect to its last
three indices.

Thus, by restricting to (24) with vanishing Di , i = 1, 2, 3, we find the
constitutive relations

T2 = C1∇u , T3 = C2∇∇u , T4 = C3∇∇∇u . (27)

Obviously, from (25), beyond the Fourier Law q1 = K1(k)∇k (K1 being the
non-negative conductivity tensor), we recover the constitutive relations for
the additional hyper-heat fluxes Q2 and Q3, interpreting K2 and K3 as the
non-negative fourth- and sixth-order hyper-conductivity tensors, satisfying
the same symmetries as C1 and C2, respectively.

By making recourse to the simplified isotropic Aifantis gradient theory,
within the so called internal lengths gradient (in short ILG) framework, see
e.g.[27], the effective heat flux vector for third-coldness gradient thermal
behaviors has form

q =
(
1− L2

c1
∆ + L2

c2
∆2
)
K1(k)∇k , (28)

where Lc1 and Lc2 denote two thermal internal lengths (ILs), entering through
the additional nonlocal terms.

In an analogous manner, starting from the Hookean form for the standard
stress tensor T2, in terms of E, the effective stress tensor may be proposed
as

T = T2 −∇ ·T3 +∇ · (∇ ·T4) = 2µ
(
1− L2

e1
∆ + L2

e2
∆2
)
E

+ λ
(
1− L2

e1
∆ + L2

e2
∆2
)

(trE)I .
(29)

Here µ and λ denote the (positive) Lamè constants, whereas Le1 and Le2 rep-
resent the elastic ILs, due to the additional hyper-stresses, with an important
role in detecting different size-effects.

Also, it is worth to highlight that, within the Aifantis scheme, only a
minimum number of dominant ILs gradient parameters needs to be intro-
duced to successfully account for size dependent characteristics of nonlocal
multidisciplinary interacting phenomena, at very different scales, as in [30].

Finally we observe that, for a better description of memory behaviors,
a generalization of these nonlocal gradient theories to involve the Caputo-
Fabrizio fractional calculus [31] is also desirable, see e.g. [32, 33].
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3 The virtual powers method vs the extra

fluxes format

We now present the key steps of the (mechanical/entropic) extra fluxes type
thermodynamic framework to address nonlocal thermo-mechanical struc-
tures, like third-gradient elasticity and thermo-elasticity.

Following the same notation as in [8], for the mechanical frame it is only
the First Law of Thermodynamics to be modified by supposing that the
internal energy mechanical influx is given by the couple (−Tu̇,Φe), where Φe

represents an extra influx vector, playing the role of the interstitial working
conceived by Dunn and Serrin [6]. In this way the local form of the First
Law of Thermodynamics reads

ρ0ė−T · ∇u̇ = −∇ ·Φe + ρ0h (30)

so that, compared with (13), by a quick inspection the density of the internal
mechanical power has now the following form

p(i)m = T · ∇u̇−∇ ·Φe , (31)

which exhibits different expressions according to the different constitutive
setting to face up.

Again, we focus on a third-order strain gradient elasticity theory, with the
primary goal to state the thermodynamic legitimation of the virtual power
format vs the extra fluxes topic and, at the same time, carrying on a critical
comparison of the two methods.

If we consider the effective stress tensor of the form (4), by using standard
identities, we easily find

p(i)m = T2 · ∇u̇ + T3 · ∇∇u̇ + T4 · ∇∇∇u̇

−∇ · [Φe + (T3 −∇ ·T4)∇u̇ + T4∇∇u̇] ,
(32)

which coincides with the density defined in (12) whenever we choose

Φe = − (T3 −∇ ·T4)∇u̇−T4∇∇u̇ , (33)

within an additive divergence-free term.
It is worth to enhance that this a posteriori choice does not change how-

ever the standard boundary value problem. This becomes a strong drawback
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towards the challenge concerning the role of additional constitutive boundary
conditions due to the non locality, via the presence of hyper-stress tensors.
Therefore this approach therefore just pierces the target of the important
hyper-boundary conditions topic, strictly related to the applicability of com-
plex mechanical structures in a wide range of phenomena, see e.g. [2, 3].

Likewise, in order to model nonlocal thermal properties as suggested by
Müller [7], an extra entropic flux appears to modify the Second Law of Ther-
modynamics, by assuming that the entropy inflow is given by the couple
(qk + Φη, ρ0rk). In this way inequality (18) has form

ρ0η̇ ≥ ρ0hk −∇ ˙̂
k · q−∇ ·Φη , (34)

so, when the heat flux vector splits as in (5), we arrive at

ρ0η̇ ≥ ρ0hk −∇ ˙̂
k · q1 −∇∇ ˙̂

k ·Q2 −∇∇∇ ˙̂
k ·Q3

+∇ ·
[
(Q2 −∇ ·Q3)∇ ˙̂

k + (∇ ·Q3)∇∇ ˙̂
k −Φη

]
,

(35)

which coincides with the entropic density in (18), whenever we choose

Φη = (Q2 −∇ ·Q3)∇ ˙̂
k + (∇ ·Q3)∇∇ ˙̂

k , (36)

within an additive divergence-free term.
Also, we stress an intrinsic non-uniqueness of the extra fluxes in that

a divergence-free term may be added, without affecting the two Laws of
Thermodynamics. Moreover it is usual to require that Φη · n = 0 on the
boundary ∂B(0), so that the global formulation of the entropy inequality for
the whole region B(0) is free from Φη.

As an overall comment, we note that the presence of Φe and Φη is for-
mally inhibited by the above a posteriori choices, totally constrained by the
nonlocal thermo-elastic theory of grade 3 under study. This, in turn, pre-
cludes the universal character of the two Laws of Thermodynamics.

It should also be stressed that the internal powers are not given by a dif-
ferential form, but exhibit a hybrid representation, containing also divergence
terms.

Finally, beyond all the above shareable criticisms of this approach versus
the other one, we are now interested in arguing also on the need of more
severe smoothness requirements on the constitutive setting in study.
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To this aim let us consider the following linearly anisotropic constitu-
tive relations for third-order strain gradient elasticity in an isothermal back-
ground:

T2 = C1∇u , T3 = C2∇∇u , T4 = C3∇∇∇u , (37)

where Ci, i = 1, 2, 3, are chosen as in the previous section.
The standard combination between (30), multiplied by k, and (34) leads

to the following Clausius-Duhem inequality:

−ρ0 ˙̃ψ + ρ0ek̇ + p(i)m k +∇k · q +∇ ·Φη ≥ 0 (38)

where p
(i)
m is now defined in (31).

On the other hand from (38), within this isothermal constitutive setting,
the appropriate Dissipation Principle reads

ρ0ψ̇ ≤ [C1∇u−∇ · (C2∇∇u) +∇ · (∇ · (C3∇∇∇u))] ·∇u̇−∇ ·Φe , (39)

which, via standard identities, may be compared with the analogous Principle
as due to the variational approach:

ρ0ψ̇ ≤ C1∇u · ∇u̇ + C2∇∇u · ∇∇u̇ + C3∇∇∇u · ∇∇∇u̇ . (40)

Obviously, if Φe = [−(C2∇∇u) +∇ · (C3∇∇∇u)]∇u̇− (C3∇∇∇u)∇∇u̇,
these two principles eventually come in the same form, but it is immedi-
ately evident that the right-hand side of (40) is well defined for continuous
hyper-elasticities C2 and C3, whereas the right-hand side of (39) requires
the differentiability of C2 and the double differentiability of C3. Therefore
we may conclude that the two approaches are by no means formally equiva-
lent and, in our opinion, the correct procedure to address nonlocal structures
turns out the virtual powers format [11].

Also, within a purely thermal structure, let us now consider the following
constitutive relations for a third-coldness gradient Fourier type rigid heat
theory:

q1 = K1∇k , Q2 = K2∇∇k , Q3 = K3∇∇∇k (41)

where, as before, K1 is the (non-negative) second-order conductivity ten-
sor, while K2 and K3 are the (non-negative) fourth- and sixth-order hyper-
conductivity tensors, respectively. In this case the right-hand side of (34)
reads

ρ0hk−∇k · [K1∇k −∇ · (K2∇∇k) +∇ · (∇ · (K3∇∇∇k))]−∇·Φη . (42)
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With the help of standard identities, under the final choice

Φη = [K2∇∇k −∇ · (K3∇∇∇k)]∇k + (K3∇∇∇k)∇∇k , (43)

we recover the right expression of the density of the (real) internal entropy
power, given in (18). Again, concerning the regularity assumptions on the
constitutive setting, we point out that this approach needs the differentiabil-
ity of K2 together with a twice differentiability for K3 On the contrary, it
is enough the continuity requirement along the variational formulation, thus
confirming our point of view.

In conclusion, we believe that these two thermodynamics arguments are
by no means comparable. Indeed we want to underline that the virtual pow-
ers format just represents the most efficient and right approach for the con-
stitutive description of nonlocal continuum mechanics structures, like higher-
order gradients thermo-elasticity. Even if, for sake of simplicity, we focused
on purely mechanical and thermal structures, our theories may be easily ex-
tended to the presence of interaction terms accounting for temperature driven
motions, as in [12], also generalizable to coupled nonlocal hereditary effects,
as in [8, 9].

By summarizing, along the variational approach, we may develop general
balance equations together with appropriate boundary conditions for third-
/higher-order thermo-elasticity, undergoing infinitesimal/finite deformations.
Also, the theory provides thermodynamically consistent general constitutive
equations and furnishes a weak formulation of related initial-boundary value
problems towards the well-posedness issues.

4 Concluding remarks

The primary idea of this brief paper is to assert the universal validity of the
virtual powers method in deriving thermodynamically consistent nonlocal
continuum mechanics theories vs the extra fluxes topic.

We emphasize that all strengths of the first method are quite overlooked
by the second one. The key support points are

• the a priori role played by the concepts of state and process to assess
the typology of nonlocal behaviors to face;

• internal mechanical and/or entropic powers formulated through linear

17



dependences on the quantities that define the process and hence, in a
predictable way, generalizable to higher-order non localities;

• the presence of additional higher-order constitutive boundary condi-
tions, justified through the procedural developments, with a challenge
role within micro- to nano-applications;

• last, but not least, the variational arguments allow for the weak formu-
lation of initial-(modified) boundary value problems within the distri-
bution theory. Whence less smoothness needs to be required on the so-
lutions of the governing equations, in order to test their well-posedness
problem via existence, uniqueness and stability results.

We achieve these conclusions from a procedural point of view, by comparing,
step by step, the different thermodynamic developments leading to nonlocal
constitutive structures. We address, by way of example, third-strain gradient
linearized elasticity, under analogous nonlocal thermal properties, due to a
revisitation of the Green-Naghdi heat conduction theory.

For completeness, we have emphasized the need of taking a minimum
number of additional constitutive/internal length gradient parameters in trig-
gering the size dependent characteristics of nonlocal higher-gradient multi-
disciplinary phenomena, like the third-gradient elastic and thermo-elastic
behaviors, herein considered.
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