ARCHIVIO ISTITUZIONALE
ONIVERSITA DI BOLOGNA DELLA RICERCA

Alma Mater Studiorum Universita di Bologna
Archivio istituzionale della ricerca

Towards the non-destructive analysis of multilayered samples: A novel XRF-VNIR-SWIR hyperspectral imaging
system combined with multiblock data processing

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

Published Version:

Availability:
This version is available at: https://hdl.handle.net/11585/915776 since: 2023-02-16

Published:
DOI: http://doi.org/10.1016/j.aca.2022.340710

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Universita di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

(Article begins on next page)

10 April 2024


http://doi.org/10.1016/j.aca.2022.340710
https://hdl.handle.net/11585/915776

This is the final peer-reviewed accepted manuscript of:

E. Catelli, Z. Li, G. Sciutto, P. Oliveri, S. Prati, M. Occhipinti, A. Tocchio, R. Alberti, T. Frizzi, C.
Malegori, R. Mazzeo, Towards the non-destructive analysis of multilayered samples: A novel
XRF-VNIR-SWIR hyperspectral imaging system combined with multiblock data processing,
Analytica Chimica Acta, 1239, (2023) 340710.

The final published version is available online at: https://doi.org/10.1016/].aca.2022.340710

© [2023]. This manuscript version is made available under the Creative Common Attribution-
NonCommercial —NoDerivatives (CC BY-NC-ND) 4.0 International Licence.
(https://creativecommons.org/licenses/by-nc-nd/4.0/)




Towards the non-destructive analysis of multilayered samples: A novel
XRF-VNIR-SWIR hyperspectral imaging system combined with multiblock

data processing

Emilio Catelli®, Zelan Li®, Giorgia Sciutto® , Paolo Oliveri™ ", Silvia Prati*,
Michele Occhipinti “, Alessandro Tocchio “, Roberto Alberti ‘, Tommaso Frizzi‘,
Cristina Malegori ", Rocco Mazzeo”

* Department of Chemistry, University of Bologna-Ravenna Campus, via Guaccimanni, 42, 48121, Ravenna, Italy
b Department of Pharmacy, University of Genoa, via Cembrano, 4, 16148, Genoa, Italy
© XGLab SRL - Bruker Nano Analytics, Via Conte Rosso 23, 1-20134 Milano, Italy

HIGHLIGHTS

GRAPHICAL ABSTRACT

e Novel whiskbroom hyperspectral scan-
ner for high space-coherence chemical
mapping.

o Simultaneous acquisition of XRF, VNIR
and SWIR spectral ranges.

« Multiblock approach for the assessment
of correlation between spectral ranges.
« Multivariate data processing for a thor-
ough characterization of multi-layered

samples.
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The new challenge in the investigation of cultural heritage is the possibility to obtain stratigraphical information
about the distribution of the different organic and inorganic components without sampling. In this paper recently
commercialized analytical set-up, which is able to co-register VNIR, SWIR, and XRF spectral data simultaneously,
is exploited in combination with an innovative multivariate and multiblock high-throughput data processing for
the analysis of multilayered paintings. The instrument allows to obtain elemental and molecular information
from superficial to subsurface layers across the investigated area. The chemometric strategy proved to be highly
efficient in data reduction and for the extraction and integration of the most useful information coming from the
three different spectroscopies, also filling the gap between data acquisition and data understanding through the
combination of principal component analysis (PCA), brushing, correlation diagrams and maps (within and be-
tween spectral blocks) on the low-level fused. In particular, correlation diagrams and maps provide useful in-
formation for the reconstruction of a stratigraphic structure without the need to take any sample, thanks to the
effective account for inter-correlation among data (variables), which is able to effectively characterize the
possible combinations of components located in the same depth level. The highly innovative technology and the
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data processing strategy are applied for the multi-level characterization of a complex painting reproduction as an

illustrative pilot study.

1. Introduction

To avoid damage on precious cultural heritage objects, the use of
non-destructive techniques has been strongly encouraged. To this pur-
pose, several research projects have been developed in the last few years
to develop new advanced non-destructive and portable instrumentations
[1]. Accordantly, a new challenge for the analytical chemistry in the
investigation of artworks is the possibility to obtain stratigraphical in-
formation about the distribution of the different organic and inorganic
components without sampling. Hyperspectral imaging (HSI) systems are
today well established in a wide range of analytical chemistry applica-
tions, from medical diagnostics [2], food [3], and forensic sciences [4],
to cultural heritage [5-8]. Thus, HSI technology has received great
attention in many research fields due to the possibility of performing
measurements in a low-invasive way, often without even touching the
sample, together with the ability to record the information of large
heterogeneous areas [5,9,10]. Indeed, HSI data are organized in a 3D
data cube, in which the spatial information is allocated in the x and y
dimension and the spectral information along the z dimension [11].

Hyperspectral imaging instrumentations span a wide portion of the
electromagnetic spectrum, stretching from X-rays to the infrared region.
In detail, commercial hyperspectral devices cover the subregions of X-
ray (1-50 keV), UV (150-400 nm), Visible-NIR (VNIR) (400-1100 nm),
SWIR (1100-2500 nm), MWIR (2500-5000 nm), and LWIR
(8000-12000 nm). The instrumentations produce, as a result of the
scanning, a 3D data cube or data block. Macro-X-ray fluorescence in-
strument (MA-XRF) is, among others, the most successful and largely
applied system for non-invasive x-ray 2D surface scanning, achieving
information about the elemental distribution across a region of interest
[12,13]. Reflectance imaging spectroscopy technique operates in the
UV-visible, near, short and mid infrared window, providing distribution
of the chemical species by exploiting electronic and vibrational molec-
ular transitions [13]. X-rays, near and short infrared waves, penetrate
the analyzed object at a level depending on materials and their prop-
erties, giving information from superficial to subsurface features
[14-17]. UV-Visible and mid-infrared waves offer mainly superficial
information [14,17].

By combining spectral and spatial information in one single mea-
surement, HSI allows to extract or create chemical images of the objects
under study, displaying the distribution of the different chemical com-
pounds, obtaining information also from inner layers when the
employed technique exploits sources with penetrating radiation. As an
example, the elemental distribution obtained with a macro XRF scanner
allowed to discover original paintings hidden by overpainted layers [18,
19].

It is worth to note that a critical point that limited the effective
implementation and application of the hyperspectral systems, in
different analytical sectors, is the complexity of the data processing.
Each hyperspectral data block, in fact, is constituted by a massive
amount of data that requires advanced computational and statistical
methods to extract meaningful (chemical) information.

Moreover, in recent years, studies have shown the benefit of
combining two or more hyperspectral imaging systems in complemen-
tary spectral regions. Delaney and co-workers proposed a single-point
(whiskbroom) hyperspectral scanner to investigate paintings that co-
collect VNIR-SWIR and XRF spectra [20]. Although very informative,
the combination of several spectral blocks in one single 3D array matrix
(through data fusion, DF) required additional processing steps and still
presented a number of challenges. The most critical one is pixel align-
ment, required because the different instrumentations are characterized
by different pixel sizes and spatial resolution [21,22]. Moreover, with

the multiblock DF, the amount of data increased drastically, further
emphasizing the need for computational strategies for data reduction
and interpretation, also evaluating the relationship among the variables
of the different blocks.

Within this scenario, Bruker Nano Analytics developed the first
hyperspectral device that combines XRF with VNIR and SWIR reflec-
tance in a whiskbroom scanner. This instrument, named IRIS, allows to
simultaneously acquire X-ray fluorescence (XRF, 0-48 keV) data
together with visible & near-infrared (VNIR, 380-1100 nm) and short-
wave infrared reflectance spectroscopy (SWIR, 1100-2500 nm).

IRIS combines elemental and molecular information for the identi-
fication of inorganic and organic materials, from superficial to subsur-
face layers, across the total area of the painting. Indeed, SWIR and XRF
spectroscopies are penetrating, reaching the subsurface painting layers.
In particular, near-infrared radiation penetrates a few to one hundred
microns [23], depending on several factors, including the energy of the
source, the incident angle, and the material physical properties [24].
X-rays usually penetrate deeper, from tens to hundreds of micrometers
[25-27], and collect information through all the layers down to the
preparation one. Moreover, it is always worth considering that lighter
elements are preferentially associated with the surface elements distri-
bution, because their low-energy radiation is highly absorbed by the
materials in the inner paint structure [28]. Data from these three spec-
tral ranges (XRF, VNIR, and SWIR) are co-registered, thus inherently
saved with high spatial coherence, reducing the time for post-processing
and correlated analysis. Being co-aligned in the spatial dimension, the
data blocks generated by IRIS are intrinsically multivariate, not only in
the single spectral range but among the different spectral ranges, and
thus a higher level of information in the identification of the compounds
could be achieved by exploiting and interpreting the correlation among
the variables. In the present study, IRIS was used for the first time in
combination with an innovative data processing approach for the
multi-level characterization of a complex painting reproduction in order
to differentiate the contribution of the materials in different layers, by
exploiting the penetration depth characteristic of the radiation
employed. More in detail, an efficient multivariate strategy based on the
combination of principal component analysis (PCA), brushing, correla-
tion diagrams and maps (within and between spectral blocks) was
purposedly developed. The chemometric strategy proved to be highly
efficient in data reduction and for the extraction and integration of the
most useful information coming from the three different spectroscopies,
through effective data visualization and inter-correlation assessment.

To date, some data processing methods are gathered in the com-
mercial software ENVI (L3Harris Geospatial Solutions, Inc.), designed
mainly for remote sensing data processing [29]. Other methods are
based on more flexible chemometric tools, such as principal component
analysis (PCA), which can be easily combined with interactive tools such
as brushing for an integrated interpretation of all PCA outcomes
[30-32]. Recently developed methods such as t-distributed stochastic
neighbor embedding (t-SNE) have been demonstrated to be useful,
although their application was limited to classifying and mapping pig-
ments [33].

2. Materials and methods
2.1. Laboratory painting mock-up

A complex painting reproduction was prepared at the Micro-
chemistry and Microscopy Art Diagnostic Laboratory (M2ADL) of the

University of Bologna, representing a freely inspired version of
“Sportsmen” by Kazimir Malevich (ca. 1931, State Russian Museum,



Saint Petersburg). The heterogeneous and multi-layer reproduction was
purposedly prepared to demonstrate the potential of the innovative
scanner and multi-block HSI approach. It includes different areas which
were painted using different pigments and binders. In more detail, a
four-layer painted stratigraphy was prepared as follow: i) a wooden
support, ii) a preparation layer made of gypsum and glue binder, iii) a
first painting layer with glue binder, and iv) a second painting layer with
egg binder. Ancient and modern pigments were used in both of the
painting layers, applying the pigments in well-delimited sectors defining
the two human figures and the background (Fig. 1 and Fig. S1). The
pigments were selected from ancient and modern, bearing also in mind
their intrinsic electronic, vibrational, and elemental signals detectable
by VNIR, SWIR, and XRF spectroscopies, respectively. Pigment and
binder were applied on the painting according to the scheme presented
in Fig. 1a. The rendering of the preparation and painting layers is rep-
resented in Fig. 1b. The final view of the painting is presented in Fig. 1c.
Pigments and binders were purchased from Zecchi (Florence, Italy) and
Kremer Pigmente GmbH & Co. (Aichstetten, Germany).

2.2. Instrumentation

The scanner adopted for the measurements presented is IRIS (Bruker
Nano Analytics), an analytical instrument developed in the framework
of the project “MOBARTECH™ [34], co-financed by Regione Lombardia
(POR FESR 2014-2020).

IRIS (https://www.bruker.com/en/applications/academia-material
s-science/art-conservation-archaeology/special-engineering.html) is a
portable platform dedicated to synchronous and co-registered XRF and

VNIR-SWIR hyperspectral measurement, with non-destructive and
contactless approach to the sample. The XRF system is equipped with a
rhodium-target X-ray tube and a nominal power of 10 W. The voltage
range is between 10 and 50 kV, and the anode current range is between 5
and 200 pA. The X-ray fluorescence is revealed by a Peltier-cooled sili-
con drift detector (SDD) with CUBE technology, with an active area of
50 mm? The typical energy resolution for Mn-Ku radiation is < 140 eV
with an input count rate of up to 500,000 cps. Three collimators with
different size can be used (0.5, 1.0, 2.0 mm) to optimize the XRF
measurement.

The hyperspectral technique performs better than 1.5 nm as spectral
resolution in the most informative VNIR range (400-1100 nm), and
better than 9.0 nm in the most informative SWIR region (1100-2500
nm). The intrinsic spatial resolution ranges between 0.6 and 0.8 mm
depending on the wavelength.

Map analysis is performed with a whiskbroom scanning approach.
The maximum extension of the map is 450 mm x 600 mm with a
maximum speed of 42 mm/s.

The scanned area of the present experiment is 250 x 194 mm (249 x
193 pixels) with a collimator size of 1.0 mm and a spatial step along the
x and y direction of 1 mm.

2.3. Multivariate image analysis approach

After IRIS hyperspectral data acquisition, the three raw data cubes,
namely VNIR, SWIR, and XRF, have the same spatial dimension (same
number of pixels) but different spectral dimensions (different number of
variables). Since no particular spatial pre-processing was required, only

a

Area Painted layer 1 + glue Painted layer 2 + egg
1 Titanium white Zinc white

2 Carbon black Yellow Ochre
3 Lead white Vermilion

4 Smalt Sienna

5 Chrome yellow Prussian blue
6 Sienna Chrome yellow
& Prussian blue Lapis lazuli

8 Madder Minium

9 Azurite Lapis Lazuli

10 Malachite Sienna

11 Malachite Sienna

12 Cobalt green Sienna

13 Sienna Verdigris

14 Azurite Verdigris

15 Smalt Verdigris

16 Lead white Zinc white

Fig. 1. Mock-up painting used in the research: (a) schematic representation and description of the pigments used in each area; (b) rendering of the preparatory and

painting layers; (c) overview of the painting after its completion.




spectra pre-processing methods were applied. Firstly, VNIR and SWIR
spectral variables were converted from reflectance into apparent
absorbance (Log(1/R)). Each spectral range was edge-cut, considering
the useful spectral region of 400-1087 nm for VNIR and 1087-2500 nm
for SWIR. Successively, the baseline shifts and drifts observable in the
SWIR region were corrected by applying a quadratic detrending. On the
XRF data, a 4x binning along the spectral dimension was applied to
improve the peak legibility and position, followed by a row-profile
correction to remove global intensity (multiplicative) effects [35]. The
XRF spectral range was also reduced, considering only the variables
between 1 and 30 keV. After the above-mentioned operation, the spec-
tral ranges consist of 1213 variables for the VNIR, 447 variables for the
SWIR, and 307 variables for the XRF. To keep the VNIR and SWIR ranges
with comparable spectral resolution, VNIR spectra were down-sampled
taking one variable over three, reducing the total number of variables to
405. As the last step, the VNIR and SWIR data blocks were concatenated
along the spectral dimension as they are contiguous in terms of the
spectral variables and thus can be considered as a single block with
variables included in the range from 400 to 2500 nm.

A low-level data fusion method (LLDF), which consisted in concat-
enating the VNIR-SWIR and XRF 3D data array along the spectral
dimension after a separate block autoscaling, was chosen to merge the
data.

The data processing method consisted of a multivariate strategy that
consisted firstly of data exploration by principal component analysis
(PCA) and secondly by the construction of correlation diagrams and
maps, within and between the three spectral ranges examined. The
approach was performed using a dedicated in-house software for image
analysis, developed under MATLAB environment (v. 2019b, The Math-
Works, Inc., Natick, MA, USA).

PCA was performed after mean-centering directly on the fused data
cube, and results were firstly visualized as score images, where the score
value of each pixel was encoded using a chromatic scale from blue
(minimum score) to red (maximum score). Bidimensional scatter score
plots of different pairs of PCs were then plotted using a density-based
plotting method, here again using a chromatic scale from blue (mini-
mum) to red (maximum) to individuate the low and the high-density
pixel agglomerates and structures respectively. An interactive brush-
ing approach was applied to these plots to understand the relations
between the clusters in the score plot and the corresponding pixels in the
original image domain. Such an approach proved very useful for iden-
tifying and studying pixel regions characterized by similar spectral
features, which may also contain important information regarding
similar chemical composition [30-32,36]. In detail, the brushing first
allows the operator to manually select the cluster/s of interest in the
score plot. The corresponding pixels are then automatically highlighted
in the image. Moreover, the average spectral profiles of the selected
pixels can be computed and visualized to enable chemical interpreta-
tion, together with PC loading analysis [32].

Correlation diagrams and maps, obtained using the VNIR-SWIR and
XRF spectral blocks not submitted to block autoscaling, provided an easy
visual highlighting of interrelations among variables in each spectral
range and between the different ranges. Appropriate masks were created
in the image to select the regions of interest (ROI), considering areas
with similar chemical composition obtained through the previous PCA-
brushing step). The ROIs were then submitted to the computation of the
correlation coefficients.

Correlation diagrams and maps, obtained using the VNIR-SWIR and
XRF spectral blocks not submitted to block autoscaling, provided an easy
visual highlighting of interrelations among variables in each spectral
range and between the different ranges. The basic idea of the correlation
diagrams and maps is the computation of the correlation coefficient, a
value that states the linear interdependence between pair of a selected
variables. The correlation coefficient is thus computed for all the
possible pairs of variables present in the dataset to build the correlation
maps, either within the same spectral range or in different spectral

ranges.

The values of the correlation coefficient may range between +1 and
—1. A value of +1 or nearly close describes a behavior of the variables
such that an increase in the first variable corresponds to an increase in
the second variable (positive correlation). When the correlation coeffi-
cient value is —1, the opposite behavior (negative correlation) is veri-
fied. When the correlation coefficient value is close to zero, there is no
correlation between the variables.

The correlation diagrams were calculated for the VNIR-SWIR and
XRF spectral blocks separately. The graphical interface was pro-
grammed in order to select, on a representative spectral profile, a
spectral variable of interest (wavelength or energy) on the abscissa.
Subsequently, the correlation coefficient between a selected variable
(indicated by a vertical red line that can be moved by the operator) and
all the other variables in the range is graphically visualized using a
chromatic scale from blue to red.

Visualization of the correlation between VNIR-SWIR and XRF blocks
is obtained through correlation maps. In this case, correlation values are
displayed in a 2D plot where the X-ray energies are on the abscissa, and
the VNIR-SWIR wavelengths are on the ordinate. The overall workflow
from data acquisition to data processing and visualization is presented in
Fig. 2.

3. Results and discussion

The painting reconstruction described in the Materials and method
section was analyzed with IRIS, and the data cube obtained was pro-
cessed with a two-step multivariate procedure. In the first step, PCA and
brushing were applied on the fused 3D array (where each pixel spectrum
covers the extended range VNIR, SWIR, and XRF) to efficiently group or
separate areas with similar chemical behavior. In the second step, a
within- and between-block correlation was performed for a clear and
solid representation of the correlation of critical variables. This step
allowed to provide information about the multilayer composition of the
painting reconstruction.

3.1. PCA and brushing

After PCA computation, score maps were visualized (Fig. S2) to
identify the PCs yielding meaningful information (variance) to chemi-
cally characterize the different painted areas. Information that was
retrieved from the most informative PC score maps (namely PC1, 3,
5and 6) was notable, allowing the identification of areas according to
their chemical composition.

In the score plot PC1 vs. PC3, shown in Fig. 3a, it is possible to detect
several score clusters — among which eight are clearly identifiable
thanks to a higher point density — which correspond to the major areas of
the painting in the image (Fig. 3b). Through the brushing procedure,
these eight main clusters were manually selected in the score plot (A to
H), and the related correspondence with the regions of the image was
visualized. In the PC1 vs. PC6 score plot (Fig. 3c and d), it was possible to
identify eight additional clusters (I to O), while a single but important
cluster (P) was found in the PC1 vs. PC5 score plot, reported in Fig. 3f. It
is worth mentioning that the cluster selection followed the criterion of
analyzing the highest possible number of clusters for segmenting the
image, which usually led to find the highest number of chemically
different areas. For exploratory purposes, other clusters of scores were
selected and visualized by brushing, also considering different combi-
nations of PCs, but only the ones most informative for chemically
describing painting areas were presented. By combining the information
retained in the score images, brushing, and the corresponding averaged
spectra per area, it was possible to identify painting details localized
below the first painting layer.

An illustrative example of hidden details placed in the inner layer of
the painting was represented by the star-shaped areas, which were
visible in PC1 vs. PC3 and PC1 vs. PC6, and highlighted in clusters G, L,
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Fig. 2. Data collection, processing and visualization workflow.

transition) of the iron-based pigment applied in the uppermost layer.
a Score Plot _ Additionally, the cobalt green characteristic spectral shape in the
4 1300-1500 nm region [37] (Table 51) and Co, Ni, and Zn signals in the
XRF region supported the identification of a cobalt-based pigment used
for the creation of the star in the underneath layer. Similarly, the second
star-shaped area (cluster K, Fig. 3d, Fig. 4(K)) showed the infrared bands
of the pigment azurite (underneath layer) at 1489 nm [38] and verdigris
(uppermost layer) between 2310 and 2260 nm [39]. The group of bands
of verdigris were recognizable but not well resolved due to the overlap
of azurite and lipidic bands. The presence of copper-based pigments was
Scores on PC1 (38.1%) also confirmed by the XRF extracted spectrum (Fig. 4(K)), which
c Score Plot allowed to detect only the Cu emission lines.

An additional star painted with smalt under the layer of verdigris,
cluster L (Fig. 3d), was recognized thanks to the presence of a weak peak
of cobalt in the X-ray region, which might suggest the presence of a
cobalt-based pigment (Fig. 4(L)).

PCA investigation also allowed to identify areas in which, despite the
lack of painted details present in the inner layer, the chemical compo-
sitions could be revealed clearly, and the presence of a two-layer
structure might be hypothesized.

For example, the brown strip area (Area 10, cluster N in Fig. 3d)
consisted of a layer of sienna earth and egg on top of a layer of malachite
and glue below. The spectrum clearly showed the presence of the iron-
based pigment, with the characteristic electronic transition [40] and
the strong X-ray Fe signal (Fig. 5(N)). At the same time, the Cu X-ray
signal, together with the marked shoulder at 2267 nm, suggested an
additional contribution ascribable to malachite (v3 CO%) [39]. The
visible brown color of the area suggested the presence of the malachite
in the underneath layer, although the presence of a possible mixture of
the two pigments may not be excluded.

In the white background area (Area 1, cluster A in Fig. 3b), it was
possible to hypothesize the presence of two white pigments—titanium
white and zinc white, due to the elements detected in XRF and the color
Fig. 3. (a) Score plot PC1 vs. PC3 with selected clusters (A to H); (b) scoremap  appearance. However, these outcomes did not sufficiently allow to
with highlighted areas corresponding to A-H clusters; (c) score plot PC1 vs. PC6 assert whether a mixture or multiple layers were applied to the painting.
with selected clusters (I to 0); (d) score map with highlighted areas corre-  gjyj1ar resylts were obtained from another white area (Area 16, cluster
sponding to If 0 dfm‘?m; (e) score plot PC1 8 PC5 with selected cluster (P); () Bin Fig. 3b), characterized by the presence of lead white and zinc white,
score map with highlighted area corresponding to P cluster. e

and from the area that presented vermilion in the uppermost layer and
lead white underneath (Area 3, cluster J in Fig. 3d), for which could be
not possible to exclude the use of lead white in mixture with vermillion
in a single paint layer.

L oE o
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Score Plot
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S
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Scores on PC5 (4.6%)

-1 0 1 2
Scores on PC1 (38.1%)

and K (Fig. 3 b,d)). The spectrum of the star defined by cluster G (Fig. 3b,
Fig. 4(G)) revealed the presence of the characteristic transitions in the
visible region at 580 nm (inflection point) and 850-900 nm (ligand field
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In the dark blue shirt’s areas (Area 5, cluster C, Fig. 3b), made by the
superimposition of a layer of Prussian blue and egg on a layer of chrome
yellow and glue, the presence of Prussian blue could be inferred by the
iron signal in the X-ray region together with the high absorption
reflectance curve in the visible (minimum at 550 nm) (Fig. 5(C)) [41].
However, the presence of chrome and lead could suggest multiple
compounds (i.e., lead carbonate, lead oxide, chrome oxide), and it was
difficult to have a univocal attribution to chrome yellow.

Finally, in area 2 (cluster I in Fig. 3d), painted with yellow ochre and
carbon black, the strong signal of Fe in the XRF spectrum indicated the
presence of the iron-base pigment (Fig. 5(I)). Interestingly, the inflection
point at 545 nm and the apparent absorbance maximum at 900 nm
suggested that the yellow pigment applied on the uppermost layer could
be yellow ochre [40]. Conversely, the carbon-based pigment is unde-
tectable in the extended range considered: despite the very low reflec-
tance values, the carbon-based pigment has no characteristic band in the



SWIR region, and the light element carbon is not detectable in the XRF
spectrum.

Concerning the identification of the binders used overall in the
painting, it was worth noting that, in the SWIR region, signals of pro-
teinaceous materials at 2042 nm (v(NH)+8(NH)) and 2173 nm (2v(CO)
amide I + amide II) from both the first and the second paint layer were
observed. Bands of lipids were also visible in the whole painting, due to
the egg binder’s fatty part at 2303 and 2347 nm (v(CH3)+8(CHy)) [42].
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To deepen the evaluation of the PCA results, the different painted
areas identified by PCA were submitted to a further investigation by
using correlation diagrams. At this stage, the multivariate analysis was
aimed at investigating more deeply the combined presence of compo-
nents related to different types of pigments and/or present in different
layers, exploiting the different penetration depths of the different
spectroscopic techniques.
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Fig. 6. Computed correlation for the molecular and elemental signals from the brown strip (cluster N) and the blue shirt (cluster C); (a)brown strip: within-block
correlation of XRF; (b)brown strip: within-block correlation of VNIR-SWIR; (c)brown strip: between-block correlation for VNIR-SWIR vs. XRF; (d)blue shirt: within-
block correlation of XRF; (e)blue shirt: within-block correlation of VNIR-SWIR; (f)blue shirt: between-block correlation for VNIR-SWIR vs. XRF. (For interpretation of
the references to color in this figure legend, the reader is referred to the Web version of this article.)



3.2. Correlation diagrams

The results of within- and between-block spectral correlation of all
the areas analyzed were summarized in Table S2. In this case, the VNIR-
SWIR regions were considered as a single block, while the XRF data
represented the second block.

Results obtained from the most representative areas, according to
PCA outcomes, were reported below. As expected, the chemometric
approach based on the evaluation of the correlation between and within
spectral variables, provided additional information on the painting
structure and composition. In Fig. 6 (a-b), the diagrams of the within-
block correlation for the area associated with cluster N (Area 10) were
shown. As described above, this brown-strip area was characterized by a
first layer of malachite mixed with glue and an uppermost layer obtained
with sienna pigment and egg.

The diagrams of the within-block correlation showed that the Cu
peak, ascribable to the presence of malachite, presented a strong nega-
tive correlation (blue color) with Fe. The negative correlation means
that when Cu values increased, Fe decreased with an inverse linear
interdependence. This result suggested that these elements may not be
ascribable to the same pigment. Since the area is homogenous, it could
be supposed a mixture of two pigments or two pigments, possibly pre-
sented in two distinct paint layers. On the other hand, in the VNIR-SWIR
spectrum, the fatty acids bands at 1724 nm, 2303 nm, and 2347 nm were
positively correlated with each other (Fig. 6b) and not correlated to the
proteinaceous-related bands at 2042 nm and 2173 nm, revealing the
presence of the two distinct binders. Furthermore, in the related corre-
lation map computed for this area (Fig. 6¢), Cu at 8.0 keV was positively
correlated with the proteinaceous signal at 2042 nm and 2173 nm, while
it was negatively correlated to fatty materials, as the color at the cor-
responding coordinates appeared blue. Moreover, the SWIR shoulder at
2271 nm, ascribable to the second overtone of the CO3~ antisymmetic
stretching of carbonate in malachite [39], showed a positive
within-block correlation with the proteinaceous bands, confirming the
presence of malachite and of a proteinaceous binder, mixed in the same
layer. A positive correlation between Fe and the fatty materials was
observed, confirming their simultaneous presence in the same layer.

Thus, according to the results and based on the visual appearance of
the layer, it is possible to hypothesize the presence in this cluster of two
superimposed layers, the inner one made of malachite and a proteina-
ceous binder, the superficial one composed of an iron-based pigment
applied with a lipidic material.

Concerning the area of the blue shirts (Area 5, cluster C), the XRF
correlation diagram (Fig. 6d) showed chromium and lead positively
correlated (red color) while iron is negatively correlated with both (blue
color), suggesting the presence of two pigments, one based on iron and
one based on chromium and lead, possibly lead chromate. Also, in this
case, the absence of correlation between proteinaceous and lipidic bands
suggested that the area has two distinct binders (Fig. 6e). In the corre-
lation map (Fig. 6f), it was possible to observe a positive correlation
between the combination bands of the proteinaceous material (2049 and
2169 nm) and chromium and lead elements, corresponding to the actual
composition of the inner painting layer. Furthermore, the combination
bands of the lipidic binder (2304 and 2346 nm) were correlated to the
iron peak of Prussian blue, according to the composition of the outer
layer. A positive correlation was also revealed between the near-infrared
bands of gypsum (OH stretching overtone) and the calcium XRF peak
(Fig. 6f). This second example further proved the possibility of distinctly
identifying the correspondence between pigments and binders, thus
directing data interpretation in a more accurate way to identify pigment-
binder mixtures in distinct layers. Also, in this case, the visual appear-
ance of the painting may suggest that the external layer is composed of
Prussian blue applied with a lipidic material, with the lead and chrome-
based pigment coming from an inner layer applied with a proteinaceous
binder.

Similar to the previous examples, it was possible to hypothesize two

painting layers in the white background areas (Fig. 1 areas 1 and 16)
since the two elements were not correlated, while the titanium was
positively correlated with a proteinaceous binder while zinc was with
the lipidic binder (Table S2). In this case, being both the two layer white,
it is not possible to state which layer is the external one. As further
development, the combination with other non-destructive superficial
techniques may support the correct identification of the stratigraphic
distribution.

The great advantage of the methodology proposed here is the pos-
sibility to progressively isolate the areas with similar chemical compo-
sition and use effective tools to thoroughly characterize the materials
inside each area. In the elemental univariate XRF analysis (Fig. 53), for
example, the map of a single element usually represents the overall
distribution of the element in the painting, leading to some difficulty and
uncertainty in the pigment characterization, especially when an element
is shared between two or more pigments. In our method, we use PCA-
brushing first to isolate the chemically similar areas. Secondly, from
each area, both the distribution and correlation of the element with
respect to the other elements can be provided, supporting the com-
pounds’ characterization. The VNIR-SWIR correlation follows the same
structure. In the end, the between-block correlation map of VNIR-SWIR
and XRF provides, for the same area, the pigment-binder relationship
with additional possibilities for the allocation of multiple layers.

4, Conclusions

In this research work, a state-of-the-art hyperspectral system was
applied for the first time, combining three different spectroscopies with
high spatial coherence, together with an advanced multivariate and
multi-block data processing approach. The study demonstrated the
possibility of addressing, with such a system, new urgent issues of the
analytical chemistry applied to the characterization of the composition
of multi-layered objects without the need of performing micro sampling.
To this purpose, the research considered the fundamental role that data
processing is assuming in various areas, filling the gap between the big
data acquired and the possibility of extracting useful information from
them. The results obtained demonstrated the ability of the proposed
method to provide highly characterizing chemical information in a non-
invasive way, exploiting the capabilities of an unsupervised chemo-
metric approach. In particular, multivariate exploratory analysis led to
identifing and mapping composition variability, while the evaluation of
the within- and between-block correlation, revealed the relationship
among pigments and binders, which led to robust hypotheses on paint
stratigraphy and execution techniques. The possibility — offered by the
method described in the present study — of achieving stratigraphical
information on the composition of multi-layered objects in a non-
destructive way will be of great interest in many application sectors,
including the industrial, food, forensic, and medical fields. Moreover, in
order to improve the performance of the system in the non-destructive
reconstruction of the multilayers composition, further research is in
progress to combine IRIS data with other data arrays obtained with
other hyperspectral systems which provide superficial information (i.e.,
macro FTIR scanner).
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