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Digital restoration of colour 
cinematic films using imaging 
spectroscopy and machine learning
L. Liu 1, E. Catelli 2, A. Katsaggelos 3, G. Sciutto 2, R. Mazzeo 2, M. Milanic 4,5, J. Stergar 4,5, 
S. Prati 2* & M. Walton 6*

Digital restoration is a rapidly growing methodology within the field of heritage conservation, 
especially for early cinematic films which have intrinsically unstable dye colourants that suffer from 
irreversible colour fading. Although numerous techniques to restore film digitally have emerged 
recently, complex degradation remains a challenging problem. This paper proposes a novel vector 
quantization (VQ) algorithm for restoring movie frames based on the acquisition of spectroscopic data 
with a custom-made push-broom VNIR hyperspectral camera (380–780 nm). The VQ algorithm utilizes 
what we call a multi-codebook that correlates degraded areas with corresponding non-degraded 
ones selected from reference frames. The spectral-codebook was compared with a professional 
commercially available film restoration software (DaVinci Resolve 17) tested both on RGB and on 
hyperspectral providing better results in terms of colour reconstruction.

Digital restoration is a rapidly growing methodology in cultural heritage whereby images of art objects are 
computationally manipulated to visualize their original appearance or reveal hidden information without actual 
physical  intervention1–4. Digital restoration is increasingly playing a role in interpreting and displaying an artwork 
when it is severely  damaged5,6 or when it has been stripped of historically significant  information7.

As has been recognized by UNESCO since 1980, moving images are a fundamental part of the world’s Cultural 
 Heritage8. Throughout the twentieth century, films were coloured with light and heat-sensitive dyes incorporated 
into the emulsion layers. Today, these films often exhibit colour degradation, fading, colour loss, bleaching, and 
colour  change8, thus necessitating their digital  restoration9–11. For motion pictures, the film is commonly restored 
by scanning using an RGB scanner and manually processed with dedicated software, such as Photoworks Photo 
Editor 202112, DaVinci Resolve 17 by Black  Magic13, and Paintshop Pro by  Corel14, to re-balance the colour and 
adjust the colour saturation and  contrast10. Conventional digital restoration is laborious, with the resulting 
appearance reliant upon the restorers’ skills and judgments about what looks appropriate.

This study proposes a machine learning algorithm that avoids subjective choices in restoring differentially 
faded film. As described in more detail below, a vector quantization algorithm is proposed that exploits a sparse 
representation of spectral reflectance data obtained from degraded and non-degraded films. After registration 
of representative degraded and non-degraded frames, a joint dictionary is learned from these data sets, which 
calculates a restored representation for the entire film. Spectral data were first processed using a simple codebook 
approach and further improved by a multi-codebook method capable of restoring frames with different degrada-
tion effects. The method proposed here provides more accurate results than those obtained with the currently 
available restoration software.

Previous work. In response to these subjective approaches, several algorithms have been developed to auto-
matically restore digitalized films with minimal  intervention9,15. Several of these techniques successfully detect 
scratches or lacunae, and this missing content is in-painted using standard  techniques4,16–18. However, for faded 
colour, most existing models assume homogeneous reduction in colour and hue across the image frame. Only 
one deep learning algorithm, based on latent space translation, trains with paired synthetic  data19 to compensate 
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for uniform fading. For more severe and inhomogeneous colour loss, the algorithm is prone to failure. Other 
CNN algorithms focusing on colorization of black and white  films20–23 rely on synthetic training data sets that 
have the same limitation when it comes to uneven fading. In historical films, the degradation of colour usually 
varies across and within each frame, so restoration models trained using many homogeneous synthetic images 
may impose inaccuracies or even colour distortions. Another approach, based on what is known as the Auto-
matic Colour Equalization Model11, imitates the mechanics of the human visual system, optimizing colour con-
trast, saturation, and balance according to human perception and aesthetics rather than restoring the film to its 
original appearance. Such methods are generally ineffective when attempting to restore artworks to a historically 
accurate state, as is the central requirement in the cultural heritage sector.

Practical restoration of differentially degraded colour film thus remains an unsettled problem. Here we 
propose advanced tools, such as spectral imaging, to face the challenges imposed by the complexity of colour 
degradation in historical films. Hyperspectral imaging has been increasingly applied to the analysis and conser-
vation of important  artefacts24–26. The fine spectral resolution afforded by optical reflection spectroscopy, down 
to nanometre resolution, enables the capture of degradation phenomena of film at high spatial and spectral 
resolution, which is otherwise hard to identify with the conventional RGB captures. By combining spectral 
imaging with advanced machine learning algorithms, the limitations of using synthetic data alone is overcome, 
given the large amount of spectral data that may serve as the input to the algorithm. In addition, machine learn-
ing also handles the challenge of processing large amounts of data which is often a major concern in cultural 
heritage applications. Such methodology has already been reported in the study of illuminated manuscripts 
where hyperspectral imaging and a deep neural network were combined to perform the spectral unmixing 
and quantitative estimation of pigment  concentrations27. Another important work on the degraded medieval 
 manuscript28 proposed a codebook algorithm to fuse the hyperspectral data and XRF data that successfully 
revealed the hidden content through the correlated spectral mapping. Although no application of this approach 
has been reported on film restoration, those research projects open the door for a novel solution to the colour 
degradation problem in damaged historical films.

Materials and methods
Materials. Six positive frames (Fig. 1) belonging to the same scene but with different fading effects were pro-
vided by L’immagine Ritrovata Film Restoration Laboratory (Cinematique of Bologna). This type of colour film 
has a trichromatic structure in which the yellow, magenta, and cyan dyes are in their own layers in the emulsion 
and degrade separately at variable rates over time. A more detailed description of these samples is provided in 
the supplementary information (SI, paragraph A).

The best-preserved film S1 is regarded as "the good" reference to form the codebook. From the degraded 
frames, four different fading effects are recognizable, as indicated in Fig. 1 (type 1–4):

1. A yellowish hue is formed due to the decomposition of cyan and magenta dyes (yellowish upper part in S2).
2. A pinkish hue in S5 and S6 is due to the degradation of the cyan dye.
3. Purplish hue on the left part of S3 and upper part of S4, probably due to a very mild degradation that leaves 

an amount of the cyan dye and keeps most of the colour density.
4. Bluish strips on the right of S3 and S6, as well as sample S1, are considered un-faded parts that preserve most 

of the dyes.

Figure 1.  Optical RGB images captured by Canon EOS 5D Mark IV camera of the film samples (S1–S6) 
considered in this work.
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Sample S6, containing pixels presenting all the four described fading effects, provides the richest information 
on the fading and is selected as the fade reference.

Data acquisition methods. The frames were scanned with a custom-made VNIR push-broom hyperspec-
tral  camera29, specifically built to have high spatial and spectral resolutions. Spectral images were acquired in 
a reflectance geometry with a broadband LED light source covering the spectral range from 380 to 1000  nm29. 
The light source was configured to illuminate the whole sample homogeneously from two sides while using a 
combined diffusor/polarizer (Bolder Vision Optik, Inc., USA) in front of the LEDs. The samples were positioned 
on a white Spectralon (Labsphere, USA) and affixed to the white surface using a custom-made frame, with the 
dyed layers oriented towards the camera. Throughout this paper, the quantity reported and discussed is, for 
simplicity, the reflectance. It is important to note that this is the reflectance of the film and the white imaging 
substrate. In terms of the film, it is composed of the true film reflectance and the square of the film transmittance, 
since light first passes through the film, is subsequently reflected from the substrate, and finally passes the film 
again before being detected. This process amplifies spectral features, which is desirable for the problem at hand. 
The simplification is justified in the scope of this paper since only the different spectral shapes of degraded and 
well-preserved dyes are of interest. The imaging part of the system included an ImSpector V10E imaging spec-
trograph (Specim, Spectral Imaging Ltd, Finland), a 50 mm lens (Schneider Kreuznach Xenoplan 2.8/50-0902, 
Jos. Schneider Optische Werke GmbH, Germany) and 5.0MP monochrome CMOS camera (Blackfly S BFS-
U3-51S5M-C, Flir Systems Inc., USA). To mitigate specular reflections, a polarizer (Bolder Vision Optik, Inc., 
USA) was used in front of the objective in a cross-polarized configuration with the LED polarizers. Images were 
acquired with the resolution of 2048 × 2448 pixels in spectral and spatial dimensions of the spectrograph, respec-
tively. The spectral range considered is from 380 to 780 nm. The field of view in the direction perpendicular to 
the scanning axis was 73 mm. The system’s effective spectral and spatial resolutions were 2.9 nm and 100 µm, 
respectively, as evaluated by a gas discharge tube and spatial grids used for system calibration. In comparison, 
RGB images were acquired with a Canon EOS 5D Mark IV camera.

Vector quantization algorithm. To gain information needed to restore degraded film, the proposed algorithm 
relies on two spectral reference images for training: the best preserved of an individual scene and a representative 
faded frame of the same scene. First, we map the two frames into a space so they may be compared. To do this 
the preserved B and degraded frames F are spatially registered pixel-by-pixel. This is conceptually valid as the 
physical materials in both frames should be made of the same material classes within a given spatial distribu-
tion. The only difference is that the degraded frame B has a slightly altered chemistry compared to the degraded 
frame F. Therefore, if the spectra of the preserved frame B can be successfully clustered, such that the clusters 
represent the concentration of the photographic dyes, then these clusters should be expected to correlate with 
the degraded frame F intensities. At the core of our algorithm, we are finding the reflectance spectra of the pre-
served frame that are best related to reflectance spectra of the degraded frame.

To find these mappings, the degraded frame F is clustered into K groups to find pixels composed of most 
similar spectra. We use a vector quantization method analogous to K-means clustering- except without an update 
step. Once the initial clustering of F has been performed, we can predict the response for the preserved frame 
B. The mean of F per cluster should be a strong estimate for the composition of the pixels belonging to those 
clusters. Based on this, one can estimate an image of a “restored” frame by replacing each cluster of pixels in F 
with the mean of B response. Thus, the restored frame is estimated from the degraded frame as

where k is the cluster index and Ck is the kth cluster, and ICk
  is the indicator function of cluster Ck .

The whole process is schematized in Fig. 2 and summarized step-by-step here:
Step 1 To map the correlations between the degraded and non-degraded states of the film, two references need 

to be selected: as previously stated, (1) a relatively best-preserved reference frame B that serves as the source of 
"good" spectral signatures and (2) another faded frame F of the same scene that provides the degraded spectra. 
The paired references are then registered pixel-wise using Scale-invariant feature transform (SIFT) correspond-
ence and landmark  transformation30. Through a pixel-to-pixel correlation, each pixel spectrum on the faded 
reference Fi has a well-preserved correlated spectrum Bi = ai · Fi , i = 1, . . . ,N where ai is the transformation 
coefficient of each pair of spectra. From this point it is useful to think of these correlated images as a joint code-
book C that contains paired information between the unfaded frame and the faded one. Each spectrum thus 
serves as a codeword, and the paired references form the codebook C of N paired codewords:

Since the faded frames used in this paper are not artificially simulated (Fig. 1 S1) but actual historical samples 
representing degradation behaviours, there are subtle content changes from frame-to-frame, such as human 
figures with slightly adjusted postures. These shifts cause small non-matched pixel regions around the head area 
that are masked during the following calculation to avoid mismatches.

Step 2 Looking up the codebook and finding the index. To "translate" a degraded spectrum in the target frame 
T into a best-preserved spectrum, we need to look it up in the codebook first. Therefore, the spectrum Tj at each 
pixel position in the target needs to be compared with every element throughout the codebook C to locate the 
most representative spectrum Fb. The codebook index b is learned by calculating the minimum cosine distance 
d between the target spectrum Tj and the reference faded spectrum Fi. During this stage, the spectral data cube 

(1)X̂restored =
∑

k

∈Ck [XF ]ICk

(2)C = {(Bi , Fi)|i = 1, . . . ,N}.
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is unfolded spatially into a flattened image with dimension Nxk, where N is the total number of pixels and k is 
the wavelength channels. When using RGB images as input data k = 3, and for spectral data cubes k = 240. After 
restoration, the unfolded matrix is reformed into the original spatial structure. For each spectrum, Tj in the 
target cube T (Fig. 2d), the cosine distance d to every spectrum Fi in faded reference F (Fig. 2b) is obtained by

The resulted distance matrix d has the dimension of NxM, where N is the total pixel numbers in reference and 
M is that in the target. The two images do not necessarily have to be identical in total pixel number and resolution. 
For the jth spectrum in the target, the codeword Fb

(j) that best represents Tj is identified by

which indicates the best match between the target spectrum and the reference spectrum.
Step 3 Reconstructing the restored image. A target-to-codebook relationship is established via the codebook 

index b =
{

b1, b2, . . . , bj , . . . , bM} formed of all elements Fb
(j). Then, exploiting the pixel-to-pixel correlation in 

the codebook, each spectrum Tj in the target image can be substituted by the corresponding good spectrum Bb
(j) of 

the best representation Fb
(j) in the codebook. A restored cube R is formed where Rj = B

(j)
b = ai · argminid

(

Tj , Fi
)

 
(Fig. 2e). The faded image is reconstructed with the "good" spectral signatures, collected from the good reference, 
following the calculated index.

VQ has already been applied to many recognition problems associated with  language31. As an analogy, the 
principle of this digital restoration strategy is like the process of translating a foreign language. Each faded pixel 
in a film frame would be an element to be translated into an unfaded pixel. Once the codebook is built, it may 
be applied to restore any frame with the same degradation characteristics, not limited by size or resolution.

To overcome the limitations of the VQ methods, a multi-codebook was also created to improve the algorithm’s 
accuracy using spectra hand selected from multiple frames. The multi-codebook is one in which the atoms are 
hand-selected and concatenated from multiple frames.

Comparative analysis. Different elaborations were undertaken to compare the application of the novel algo-
rithm on the hyperspectral data. First, RGB acquired images were digitally restored with the professional soft-
ware DaVinci Resolve 17 following the instructions available on the  website13. The RGB data were also tested on 
our developed algorithm following the same pipelines employed for processing the spectral data (Fig. 2).

Results and discussions
Comparative analysis: digital restoration of RGB data. RGB images were acquired with a conven-
tional camera and processed with professional restoration software to evaluate the algorithm’s efficiency and 
reconstruction quality.

(3)d
(

Tj , Fi
)

=
Fi · Tj

||Fi||||Tj||

(4)d
(

Tj , F
(j)
b

)

= min
i

d
(

Tj , Fi
)

Figure 2.  Schematic overview of the vector quantization algorithm. (a) k is the spectral wavelength number 
from the flattened image, N and M represent the total pixel number respectively in the reference image and 
target image, and (j,b) represents the index of the best representative codeword. (b–e) RGB representation of 
fade reference (b), good reference (c), target frame (d) to be restored, and the restoration result (e).
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For the standard software, the colour correction relies on hand adjusting the parameters until the best pos-
sible appearance is obtained according to the operator’s skills and aesthetic judgments. Moreover, it is hard to 
compensate for differential degradation across the frame and achieve a uniform result. Several commercially 
available restoration software packages were tested using the RGB images (SI paragraph B, fig SI. 2–3).

As an example, Fig. 3a reports the restoration result on frame S2obtained using the DaVinci Resolve 1713 soft-
ware as it is one of the commonly used commercial software by film restorers. As shown in Fig. 3b, the primary 
colour balance was adjusted on the base of selected points on the background (wall areas). Then, two more cor-
rection nodes were added to fine-tune the contrast, saturation, hue, tint, temperature, and RGB curves to restore 
the overall appearance. After those steps, the darker lower half achieved a comparable visual effect to reference 
S1. At the same time, the more extensively degraded upper part still had a pronounced yellowish hue, which 
was finally enhanced by selecting those areas and separately adjusting the parameters. The colour appearance of 
the result (Fig. 3a) appears non-uniform, presenting a colour difference from the reference. It can be confirmed 
with the histogram graphs, taking the blue channel as an example, shown in Fig. 3c, that the distribution of the 
colours in the restored image is shifted mainly from the original S2 and now matching with the reference S1.

The overall balance of the RGB colours is also adjusted closer to the reference, but the restored image still 
presents inconsistencies that are hard to correct completely. The same procedure was repeated also on frames S3 
and S5 (Fig. 4d). The presenting the same problems previously described and leading to a not uniform appearance 
of the restored frames Thus, the results achieved by conventional practice are limited by the restorer’s subjective 
choice, personal taste, and proficiency. Moreover, the processing of one single frame takes up to 30 min and 
for historical films with inhomogeneous degradations, the fine-tuning of parameters is inevitable from frame 
to frame.

The VQ algorithm was applied to RGB data to evaluate the advantages of processing with hyperspectral data. 
In particular, a codebook was created using S1 and S6 as paired references (Fig. 4a, b). The wavelength channel 
has a dimension k = 3. Then the digital restoration was achieved on target images S2, S3, and S5 by the vector 
quantization method proposed above, finding the best representative codewords in the fade reference S6 and then 
substituting each pixel with the corresponding good one. The results are reported in Fig. 4e. A simple evaluation 
of the restoration performance is based on calculating the colour difference ΔE between the obtained results R 
and reference S1 per pixel through Euclidean distance:

where r, g, and b represent RGB channel values. The resulting greyscale matrices ΔE are shown as colour maps 
marked with the colour scale (Fig. 5), where higher ΔE values are marked in warm colour, and smaller ΔE 
values are drawn in blue. As references for the initial level of colour difference, the original colour difference 
maps (Fig. 5a) are also obtained by calculating ΔE between the good reference S1 and each target image before 
restoration. Areas highlighted in red and yellow indicate more significant colour differences with respect to the 
reference, thus more degraded than the areas marked in blue. However, it is worth mentioning that the rise of 
ΔE in contours is due to the non-perfect alignment between the RGB image pairs, as is evident in Fig. 5a S3. 
Then a quantitative estimation of the overall performance dE for each image is obtained by averaging the colour 
difference ΔE for all pixels:

(5)�E =

√

(rR − rS1)
2 +

(

gR − gS1
)2

+ (bR − bS1)
2

(6)dE =
1

M

(

M
∑

i=0

�Ei

)

Figure 3.  The conventional digital restoration strategy. (a) Comparison of RGB images before and after the 
hand restoration achieved by DaVinci Resolve 17. (b) Illustration of the processing pipelines. (c) Comparison of 
the histograms before and after restoration with the reference S1.
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and listed in Table 1.
Observing the restored R2 and R5 images in Fig. 4e, it can be highlighted that even though the basic structure 

of the images is maintained, many pixels were mismatched, especially in the most extensively degraded areas. This 
is confirmed by the colour difference map shown in Fig. 5c. For frames S2 and S5, even though the overall colour 
differences have decreased, from 24.3901 before restoration to 7.3894 after restoration in S2 and from 22.6927 
before restoration to 8.7019 after restoration in S5 (as reported in Table 1), there are several pixels mismatched, 
mainly in the most extensively degraded areas (Fig. 5c).

As a comparison, the results obtained by DaVinci manual restoration (Fig. 4d) are more uniform in overall 
appearance without the irregular mismatching pixels (Fig. 5b). However, the average colour difference for conven-
tional software method is slightly higher than what obtained using the RGB codebook results, where for results 
D2 dE = 7.9507  (dER2 = 7.3894, Table 1) and for D5 dE = 8.8564  (dER5 = 8.7019, Table 1), resulting from the overall 
shifts in colour. The accurate colour representation is quite challenging using conventional restoration software.

On the other hand, the original frame S3 (Fig. 4c S3), which is much less degraded than samples S2 and S5, 
is more uniform in colour and has more negligible colour difference with respect to reference S1 (ΔE = 6.3129, 
Table 1). However, since the degradation characteristics are very different from those included in the fade refer-
ence (Fig. 4a), the restoration result (Fig. 5c R3) is less accurate with a higher ΔE value (9.0021, Table 1), espe-
cially in the wall painting areas and dark part on the right of the image. For restoration result D3 obtained with 
DaVinci Resolve (Fig. 4d), the colour difference ΔE is also elevated to 7.7945, though still the smallest among all 
three frames. In this case of the RGB codebook, the matching accuracy is primarily limited by the short spectral 
vector formed from the RGB triplet values as source data. Nevertheless, given the overall evaluation and quick 
processing time (seconds) compared to hand restoration, the VQ technique still performs promising.

Vector quantization of hyperspectral data: simple codebook approach. The proposed codebook 
method was performed on the spectral data obtained with the VNIR hyperspectral  camera29. The collected data 
cube with dimensions of 2448 × 1400 spatial pixels × 2048 wavelengths was cropped and binned to a spectral 
range limited to 380 nm to 780 nm (240 channels separated by approximately 1.8 nm) and spatial dimensions 
of 1300 × 1040 pixels as described in the section above and shown in Fig. 6a. The high-resolution three-dimen-
sional data cube provides richer than the RGB image since it contains spectral features associated with dye mol-
ecule deterioration. Reflectance values are affected by two factors. First, every pixel on the film may contain a 
different level of dye density due to variation in image content. For instance, the brighter wall (pixel W in Fig. 6) 

Figure 4.  Originals and restoration results obtained via DaVinci Resolve software and RGB-codebook approach. 
(a, b) Optical RGB images of references S6 and S1. (c) Optical RGB images of target frames S2, S3, and S5. (d) 
Manually restored frames D2, D3, and D5 using DaVinci Resolve software. (e) Restoration results R2, R3, and R5 
obtained via RGB codebook approach.



7

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21982  | https://doi.org/10.1038/s41598-022-25248-5

www.nature.com/scientificreports/

has a lower dye density than the dark floor (pixel F in Fig. 6), thus a higher reflectance value. Secondly, less light 
is absorbed as the fading becomes more severe, contributing to the more intense reflectance values observed.

Two pairs of spectra, one from the wall (pixel W) and the other from the floor (pixel F), were extracted from 
corresponding pixels in the better-preserved S1 and the degraded S6. The comparison of spectra (Fig. 6b) shows 
that the wall pixel on deteriorated film W(S6) has a significantly higher reflectance across the spectral range 
than sample S1. Furthermore, the deteriorated film F(S6) drastically loses the absorption band around 660 nm 
compared to the best-preserved sample F(S1). This feature is related to the degradation of cyan dyes that lead to 
the overall purplish hue of the faded film. Those subtle spectra variations serve as the fingerprints for looking 
up the most representative spectrum in the codebook.

Figure 5.  Evaluation of the results obtained via RGB images based approaches. (a) Colour difference (ΔE) map 
of the original target frames S2, S3, and S5 compared to the reference S1. (b) Colour difference (ΔE) map of the 
restoration results D2, D3 and D5 using DaVinci software. (c) Colour difference (ΔE) map of the restoration 
results R2, R3 and R5 obtained via RGB triplet codebook approach.

Table 1.  Calculation results of averaged colour difference dE and peak signal-to-noise (PSNR) level of frames 
S2, S3, and S5.

Frame no Original dE

Colour difference (dE) PSNR (in dB)

DaVinci 
Restored RGB codebook

Simple 
codebook Multi codebook

DaVinci 
Restored RGB codebook

Simple 
codebook Multi codebook

S2 24.3901 7.9507 7.3894 4.7016 3.8401 22.1350 21.1825 25.3592 25.8963

S3 6.3129 7.7945 9.0021 6.2975 4.1670 19.4800 19.3644 22.3881 25.1200

S5 22.6927 8.8564 8.7019 6.7695 4.3850 19.6584 19.6892 22.5719 25.3910
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For convenience, the restored data cubes are transformed into RGB space, as shown in Fig. 7a, using wave-
length weighting methods described in supplementary information section C. It can be observed that the restora-
tion results (Fig. 7a) contain many fewer mismatched pixels than those tested using RGB triplet values (Fig. 4e), 
with overall lower ΔE values in all three frames (Table 1). Employing the vector quantization algorithm, however, 
the accuracy of the restoration is still dependent on the selected reference spectra. If a spectrum on the target 
image is not contained in the reference, the perfect match cannot be found, and a rise in noise level and shift in 
hue would be expected. As already discussed in RGB codebook results (Fig. 5c R3), frame S3 restored using a 
simple spectral codebook (Fig. 7a R3) still presents unwanted bluish hues in the background and mismatched 
shade on the right (marked in the yellow square), though much more limited than what obtained with the RGB 
approach. The improvement of colour difference (from 9.0021 in RGB codebook to 6.2975 in simple codebook 
approach, Table 1) could also be observed in the colour difference map (Fig. 7b R3), where pixels with high ΔE 
value disappeared in most of the areas and decreased in intensity as compared to Fig. 5c R3. On the other hand, 
frames S2 and S5 that have similar degradation features with reference S6 achieved better restoration accuracy, 
with significant mismatches corrected.

Vector quantization of spectral data: multiple codebook approach. To improve the representa-
tiveness of the spectra and the algorithm’s applicability, a multi-codebook was created using spectra hand selected 
from multiple frames. Since the data cube is collected with a high spatial resolution, adjacent pixels are mostly 

Figure 6.  Datacube processing and selected spectra. (a) Greyscale illustration of original datacube before and 
after initial processing. (b) Comparison of spectrum extracted from the same x and y coordinates on S1 and S6, 
respectively.

Figure 7.  Results and evaluation of simple codebook approach. (a) Digital restoration outcomes R2, R3, and 
R5 were obtained via a codebook approach visualized in RGB format. (b) Colour difference map of the above 
restoration results in a simple codebook approach.
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similar and highly repeating. Taking every pixel into the codebook would produce a large vector, resulting in a 
high computational load. As illustrated in Fig. 8, a selection of pixels from S2, S3, S5, and S6 was employed to 
create the multi-codebook. S1 was used as an unfaded reference to each faded reference frame, and the pixel-to-
pixel correlation was maintained between the pair of references. One out of every five columns for each frame are 
kept reducing over-sampling, preserving the total variance and representativeness of the spectral features. Then, 
the four compressed reference cubes are combined to form a new multi-codebook reference containing spectral 
information from all instances. The multi-codebook was tested for each frame via the same vector quantization 
and index substituting process.

The results of the digital unfading via the multi-codebook approach are reported as RGB images in Fig. 9a.
Restoration using the three-codebook approach (Figs. 4, 7, 9) achieved the most satisfactory restoration accu-

racy with the lowest ΔE values (Table 1). From the colour difference maps (Fig. 9b), it could also be confirmed 
that the unevenly degraded pixels in the original frames (Fig. 5a) are recovered, achieving a uniform appearance, 
and the mismatches occurred in RGB codebook, and simple codebook approaches are now corrected. For frame 
S3, the noticeable shift in hue and the mismatching on the right (highlighted in yellow square in Fig. 7 R3) dis-
appeared when the more representative multi-codebook was used (in Fig. 9 R3). Furthermore, the noise of the 

Figure 8.  Schematic overview of constructing multi-codebook, using spectra hand-selected and combined 
from multiple samples S2, S3, S5, and S6.

Figure 9.  Results and evaluation of the multi-codebook approach. (a) Digital restoration outcomes R2, R3, and 
R5 were obtained via a multi-codebook approach visualized in RGB format. (b) Colour difference map of the 
above restoration results in a simple codebook approach.
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painting hanging on the wall (highlighted in red square in Fig. 7 R3) is removed, and the colour is restored closer 
to the reference when using a multi-codebook (Fig. 9 R3). For frame S2, the lighter desk and the brightness and 
contrast of the sofa (highlighted in a black square in Fig. 7 R2) are corrected and improved when using multi-
codebook (Fig. 9 R2) and are now closer to the reference image. The restoration results obtained through simple 
and multiple codebooks are comparable for sample S5, which shares the most similar degradation features with 
reference S6 (Fig. 4a). At the same time, a small noisy area around the sofa (highlighted in the green square in 
Fig. 7 R5) is successfully corrected with a multi-codebook (in Fig. 9 R5). The pixels of significant colour differ-
ence concentrated in the head area (marked in the red circle in Fig. 9b) are not restoration errors, as could be 
checked with Fig. 9a, but due to the non-overlapping of the human figure (as already noticed in Fig. 5a) in the 
target frames with the reference S1.

Comparison of the different restoration methods. To better evaluate the quality of the reconstruc-
tion, peak signal-to-noise ratio is also estimated for all the results (Table 1). The Root Mean Square Error (RMSE) 
between the restoration result R and the reference B is first calculated. Then, the PSNR value (in dB) of the recon-
structed image R is estimated by:

where MAXB is the maximum signal value in the referential ground truth image B. This measurement is con-
ducted both on the restoration results obtained from the conventional restoration software and on the trans-
formed RGB representation from the spectral results achieved via codebook approaches.. The image format is 
double decibel in our process, so the MAXB here is 1. Following the definition of PSNR, the higher the value, the 
better quality of the degraded image has been reconstructed.

Observing the results in Table 1, the results achieved with RGB triplet codebook are comparable with those 
obtained with the conventional restoration software DaVinci Resolve 17, while the spectral codebook approaches 
tend to have significantly higher PSNR levels, indicating a better reconstruction quality. The general tendency 
of increasing PSNR level when including more elements in the codebook is also observed. The multi-codebook 
outperformed all other tested methods, obtaining the highest PSNR level while achieving the best colour differ-
ence metrics. Even though the image quality is improved the most with the multi-codebook approach, there is 
still noticeable noise in the reconstruction results. This noise is presumably connected to the still over-abundant 
sampling rate when constructing the codebook. Other data reduction methods, such as clustering and segmenta-
tion techniques to remove the non-correlated elements and only keep the representative centroids of each cluster, 
may help in further reducing the noise.

In conclusion, this work demonstrates that imaging spectroscopy combined with digital unfading machine 
learning technique successfully restores historic motion pictures with inhomogeneous fading, obtaining a result 
which is hard to achieve with conventional method. Our vector quantization method has been positively tested 
with a pipeline of data processing techniques to restore faded cinematic film, mainly because of the high-
resolution spectral features that capture the minimal but essential differences among pixels. The constructed 
multi-codebook could be applied to restore deteriorated images of the same type. Moreover, the spectra bank 
collected in the codebook could be further expanded, including different types of samples and degradation 
effects, to apply to a more extensive range of damaged films. This may allow the automatic restoration of several 
images of the same movies simultaneously.

A drawback of the method could be represented by the large size of the high-resolution spectral data files, 
which may result in long computational time processing. This study overcame the problem by down sampling 
the images before applying the algorithm.

As future perspective, the method can be further improved by applying the clustering techniques, such as 
k-means clustering, to include only the centroids of each obtained cluster in the spectra bank. Forming a more 
compact multi-codebook, the computational load will be further lightened, and the noise level is expected to 
be reduced. The proposed method could also be transformed into a robust dictionary learning program to 
complete the tasks.

Data availability
Data are available with the permission of the University of Bologna. Due to the large size of the spectral data 
involved, raw and processed data can be made available upon reasonable request. Please contact s.prati@unibo.it.

Code availability
The corresponding author can provide MATLAB codes used in this work upon reasonable request.
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