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Simulation Driven Experimental Hypotheses and

Design: A Study of Price Impact and Bubbles
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Abstract

A crucial aspect of every experiment is the formulation of hypotheses prior to

data collection. In this paper, we use a simulation-based approach to generate syn-

thetic data and formulate the hypotheses for our market experiment and calibrate

its laboratory design. In this experiment, we extend well-established laboratory

market models to the two-asset case, accounting at the same time for heterogeneous

artificial traders with multi-asset strategies. Our main objective is to identify the

role played in the price bubble formation by both self-impact (i.e., how trading

orders affect the price dynamics) and cross-impact (i.e., the price changes in one

asset caused by the trading activity on other assets). To this end, we vary across

treatments the possibility of traders of diverting their capital from one asset to the

other, thereby artificially changing the amount of liquidity in the market. To sim-

ulate different scenarios for the synthetic data generation, we vary along with the

liquidity the type of trading strategies of our artificial traders. Our results suggest

that an increase in liquidity increases the cross- impact, especially when agents are

market-neutral. Self-impact, on the other hand, remains significant and constant

for all model specifications.
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1. Introduction

Since the seminal work of Smith et al., [1], (henceforth, SSW) experimental asset markets

proved to be a very powerful tool to analyze bubble-crash patterns, which turns out to

be a very persistent phenomenon in the laboratory under different settings (e.g., [2], [3],

[4], [5] and [6]). A delicate aspect of every experimental analysis is the formulation of

hypotheses. Before conducting any laboratory experiment, researchers have to state the

assumptions that they are going to test in the laboratory1 and calibrate their market

design, e.g., decide the number of participants and sessions trading time. All these

steps, which have to be planned carefully, produce non-trivial issues for researchers. A

normally followed route is to conduct preliminary pilot experiments, which are quite

costly but allow the researcher to collect preliminary data. Pilot sessions can also be

used to formulate hypotheses if not supported by theoretical modeling. However, the

situation might be extremely challenging with novel experiments, as previous set-up and

knowledge can be of limited help. In that event, an alternative path which follow in

this paper is to rely on a simulation-based approach. More precisely, starting from a

specific experimental market design, we derive synthetic data which allows us to track

the price dynamics across different treatments, formulate our experimental hypotheses

and calibrate our design.

Our experimental design builds on the well-established setup of SSW (e.g. [8]): we

extend it to the two-asset case as our main objective is to identify the role that price

impact, in its two components of self- and cross-impact, has on the price-bubble mecha-

nism. Price impact describes the relation between orders and price changes, which plays

a crucial role in real financial markets dynamics, leading to flash crashes or instability

events occurring in very short time scales (e.g., intraday) in which liquidity plays a funda-

mental role, e.g., the Flash Crash of May 6th, 2010 and the Treasury bond flash crash of

October 15th, 2014 ([9], [10], [11], [12]). Self-impact describes the price changes triggered

by orders on the same stock ([13], [14], [15]), while cross-impact captures the effects that

price changes trigger on other asssets (see e.g. [16], [17], [18], [19]). Indeed, as observed

during the Flash Crash of 2010, a cascade of instabilities might affect a large set of assets

and the entire market very rapidly, [9], e.g., as a consequence of the execution of assets

portfolio orders and more generally on the commonality of liquidity across assets [20].

To identify these effects, we vary across treatments the possibility of traders to move

capital between markets, allowing in one case traders to divert money from one asset to

the other (treatment T2-Unique), while in the other (T1-Separated) they have a separated

portfolio for each asset. Compared to empirical work (e.g. [21]), our experimental analysis

has the main advantage of having a complete control over market dynamics, which allows

us to explore how price impact evolves during distinct trading phases. In particular, we

1This process is often known as pre-registration step of an experiment [7].
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can keep track of the fundamental values of each asset, an unobservable variable in real

data. In addition, the simplicity of our design (i.e., having only two stocks) allows us to

identify and estimate cross-market relationships with relative ease compared to empirical

analysis, often hampered by the estimation of very large matrix.

However, due to the novelty of our analysis, it is hard to precisely formulate our

main hypotheses and calibrate the experimental design. Wan and Hunter, [22], showed

that simulated markets might generate similar patterns observed in experimental asset

markets. Furthermore, several works attempt to explore the impact of artificial traders

on financial markets by employing different agent-based simulations analyses, e.g., [23],

[24] and [25]. Similarly, we follow this route by setting up a series of agent-based models

replicating our experimental design, which allows us to generate synthetic data to analyze

the price dynamics under different scenarios. More precisely, we extend the model of Duffy

and Ünver [8] in the two-asset case incorporating heterogeneous agent strategies.

The Duffy and Ünver’s model, [8], is one of the first (along with [26, 27]) to compare

the results from financial market with artificial traders with those of experimental markets

with human traders. In particular, they propose an agent-based computational approach

with near-zero artificial traders to replicate the experiments of SSW. They also analyze

the impact of intelligent traders with differing fundamental motivations on agent-based

simulations of financial markets bring more insight into the micro-structural dynamics

that work against market efficiency.

To generate the synthetic data according to the Duffy and Ünver model, we first

need to adapt it to our case, thereby extending it to the two-asset case. In addition, to

proxy the behavior of the human participants in the laboratory and improve our ability to

study real hybrid financial markets, in the spirit of [5], we introduce specific heterogeneous

artificial traders which follow different investment strategies (i.e. being market-neutral

or directional traders).2 Importantly, our exercise not only serves to confirm the price

bubbles formation and cross-impact effects, but also to calibrate our experimental market

and formulate relevant hypotheses about the drivers of market impact. In particular, we

employ the order flow imbalance measures of Cont et al. [28] to retrieve estimates of

self and cross-impact matrix during the boom phase and study how cross-impact changes

with respect to other trading periods and between treatments.3 The final objective will

be to replicate the same type of analysis once our experimental data is collected in the

laboratory to assess the role of human behavior in the market and its consequences on

price-impact.

The paper is structured as follows. In Section 2 we present our experimental design.

In Section 3 we illustrate the structural price model providing extensions to the multi-

2Modern markets are hybrid markets. It is has been estimated that algorithmic traders are involved
in up to 70% of the total trading volume [6].

3In contrast to [11] we do not incorporate the market impact directly in the price dynamics and we
estimate it without imposing any prior impact model.
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Figure 1: Average fundamental values for the two assets. The blue (red) lines represent
the value of the speculative (value) asset.

asset case. In Section 4 we present the results of structural price models investigating the

price dynamics with different model specifications and in Section 5 we report the market

impact estimates based on the previous model specifications. In Section 6 we derive the

hypotheses we want to investigate and validate with laboratory data. In Section 7 we

conclude.

2. Market environment design

Our design consists of a market where there are J agents which interact in T = 15 trading

period and trade M = 2 assets. Each trading period is composed of 180 seconds, where

a trader can submit an ask or bid price for the two assets.

Following [1], [4], [5], we define the fundamental value of an asset as the discounted

dividend cash flows plus a terminal value. For asset i we denote with di the expected

dividend payment for asset i, i.e., the average dividend paid by asset i, and with TVi

its buy-out (or terminal) value, i.e., the terminal payoff paid by i at the end of the last

trading period T . Then, at time t the fundamental value for asset i is provided by

FVt,i = (T − t+ 1) · di + TVi,

For both assets, the dividend process is described by a Bernoulli process as follows4. The

dividends distribution of the first asset P1 is drawn by a uniformly distributed random

variables with support d1 = {0, 0.1, 0.16, 0.22} and terminal value equal to 1.80. There-

fore, FVt,1 = (T − t+1) ·0.12+1.80. The dividends of the second asset are defined on the

support d2 = {−0.2,−0.1, 0, 0.1, 0.2} where d2,TV = 2.80. We remark that if di > 0 the

fair-value FVt,i is decreasing as t→ T . Thus, the first asset has a declining fundamental

value with an average decreasing trend by 0.12 for each period (see Figure 1). On the

other hand, the second asset has an expected dividend value of zero with a terminal

value of 2.8. For convention we name asset 1 the speculative asset and asset 2 as the

4Negative dividends represent holding costs, see [4].
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Table 1: Summary statistics of the fundamental values for the two assets.

Dividends d1 ∈ {$0, $0.10, $0.16, $0.22}; d1 = $0.12
Initial Value FV1,1 = 3.6

FVt,1 = (T − t+ 1) · 0.12 + 1.80
Terminal Value TV1 = 1.80

Dividends d2 ∈ {$− 0.20, $− 0.10, $0, $0.10, $0.20}; d2 = $0
Initial Value FV1,2 = 2.80

FVt,2 = 2.80
Terminal Value TV1 = 2.80

value asset.5

Table 1 reports a summary of statistics for the two fundamental values. The fun-

damental values intersect each other around round 8. Figure (1) displays the average

fundamental values for the two assets.

2.1. Market treatments

In our experiment traders will have the opportunity to buy and sell assets in each period

via a continuous double-auctions open limit order book (see e.g. [29, 4, 1]). At the

beginning of the experiment, each participant is endowed with two fictitious asset units,

i.e., asset 1 and asset 2, and a cash balance of $5.85 in total6. Our experimental market

will be a hybrid one with artificial agents and human participants. Each order is for

only one share (as in [29]). The order book is empty at the beginning and at the end

of a period, and it is anonymous, i.e., the identity of the trader submitting an order

is concealed. In particular, in all treatments, there will be 2 types of traders, human

participants and noise traders, along with market-makers. Noise traders are “near-zero-

intelligence” agents, and can be likened to inexperienced subjects in the market (see [8]).

A market-maker is an agent who, on a continuous and regular basis, proposes prices at

which he is ready to buy and sell a given asset [30]. That is, as in real financial markets,

the role of market-makers in our experiment is to provide liquidity (see in detail Section

3.4).7 Having more liquidity in the market, i.e. more transactions from both types of

artificial agents is essential for our purpose as it allows us to precisely estimate the effect

of market-impact by increasing the number of available observations while keeping track

of agents’ actions. On top of that, having market-markers in addition to noise agents

5Even if we adopt the same terminology of [2], we did not use their “speculative relation” to establish
if an asset is more speculative than another, see [2] for further details.

6In the laboratory we will use our experimental currency, the ECU.
7Market makers are said to be part of 70% of the electronic trades in the US (40% in the EU and

35% in Japan). See [31]. Some of them are “official” , i.e. there is an agreement with an exchange for
maintaining fair and orderly markets (e.g. the Designated Market Makers on the NYSE) while others
are just acting as liquidity providers without any obligation to do it (e.g. high-frequency traders). See
[30].
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results in a price volatility more in line with what is observed in real financial markets

(as described in details in Section 4). To sum up, in our experimental market we will

have:

1. human traders that cannot go short and do not know which players are posting

the order. They will play a relevant role in the laboratory experiment;

2. noise traders buy and sell according to the traditional Duffy and Ünver model,

and post quotes following a homogeneous Poisson process. They can be considered

as “near-zero intelligent” agents. They have the same initial inventory as human

participants (see Section 3);

3. market-makers post bid/ask quotes at the beginning of the sessions following the

Avellaneda/Stoikov model (see [32], [33], and more information on Section 3). In

contrast to other participants, they can go short. They main role is to provide

liquidity to the market, thereby incresing market efficiency;

To isolate the effect of price-impact, we conduct two main treatments: the first one

(T1-separated) features a market in which traders have two separated portfolios (i.e.,

participants cannot divert the money of one asset to the other one); the second one (T2 -

unique) features a market in which traders have a unique portfolio (i.e., the money can

be freely invested in each of the two assets with no restrictions). Thus, treatment T1-

separated is similar to [2] execpt for traders’ inability to freely move capital across markets

(i.e. stocks). Indeed, in T2-Unique (with independent orders) traders can freely divert

their capital from one asset to the other. Thus, comparing these two treatments allow us

to identify the effect of changes in liquidity on cross and self- impact. Importantly, for

both treatments, asset dividends are placed in the respective portfolio. Kirchler et al., [4],

show how merging the savings account for dividend cash with portfolio cash implies an

increasing Cash/Asset ratio (C/A), which in turn generates an increase in the available

liquidity for traders.

Since in our simulation-based analysis we do not consider the presence of human

agents, in the spirit of [5], we set up different investment strategies for artificial traders

which can be used as proxies for the human participants’ behavior. In particular, we will

consider either directional or market-neutral players, i.e. players that either place orders

in the same side in both markets or in the opposite side in the two markets (see Section

3.3). Indeed, this study will serve as a future base to evaluate the behavior of financial

markets featuring human participants as active players.

Thus, in Section 4 we additionally examine the T2-Unique treatments in which players

follow one of the two factor investing style strategies, namely T2-Unique-Directional and

T2-Unique-Market-Neutral, or a combination of the two, namely T2-Unique-Heterogeneous.
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Finally, to assess the role of market-makers we integrate them in previous set-up, namely

(T2-Unique-Heterogeneous-MM ).

3. Structural agent-based model for order book dy-

namics

In this section we first describe the Duffy and Ünver model, [8]. We then extend this

model to our multi-asset environment, additionally considering the existence of market-

markers. Finally, we specify an heterogeneous agent-based model when traders follow

different factor investing style strategies.

3.1. The Duffy and Ünver Model

In the Duffy and Ünver market model, J agents trade the same asset P1 in T trading pe-

riods. The asset pays a random dividend at the end of each period t. Each trading period

t is composed of S submission rounds, where traders can place their orders, following a

double auction market mechanism with continuous open-order book dynamics. Specifi-

cally, in each submission round, agents have to determine their position, i.e., whether they

buy or sell the asset, and the amount they are willing to pay or receive for the asset (i.e.

a quote). A Bernoulli variable decides the traders’ position in each submission round.

The probability to be a buyer decreases in each trading period so that in the last trading

sessions, traders are more prone to sell. This condition allows the Duffy and Ünver model

to capture the same liquidity dynamics observed in [1] and is named the weak-foresight

assumption. The quote of a trader’s order is then determined by the weighted sum of the

previous period’s prices and a random value proportional to the fundamental value. [8]

introduces this randomness in traders’ quote to capture traders’ uncertainty about the

fundamental value, while the weighting parameter, the so called anchoring parameter,

indicates that agents are more likely to post quotes close to the previous period’s prices

(see also [5]) and represents a crucial parameter to explain the price bubble shape.

Therefore, during the round s in the trading period a t an agent can place buy (bid)

or sell (ask) orders. Agents can submit a bid or ask quotes for a unit of the asset, see

also [1] where standard bid and ask improvement rules are employed.

We now report the main model specification we have implemented from the Duffy

and Ünver model.

• We allow a trader to place an order in all the bid and ask sides, i.e., if he is

a buyer (seller), the agent can place a bid (ask) price which is not necessarily

greater (smaller) than the current best bid (ask) price. However, the quotes can

not be unbounded since they must satisfy the traders’ inventory condition (see point

7



below). Furthermore, a trader can have only one outstanding limit order, and an

agent can not be in the bid and ask side in the book simultaneously.

• For each trading time period t, at the beginning of each round s the trading priority

is assigned by a permutation of participants. Then, once a trader is selected, a

Bernoulli variable, B(πt), determines the trader’s position (buyer or seller) for the

submission round. So, if in a trading period t and at round s a trader is selected

to be a buyer (seller) and has an open ask (bid) position in round s− 1, the trader

will not submit any order in the round s. We refer to this condition as the one-side

condition.

• The probability to be a buyer, during the trading period t at submission round s,

of an agent j is given by πt. We assume the weak foresight assumptions of [8], i.e.,

the probability to be a buyer is decreasing among the trading periods,

πt = max{0.5− ϕt, 0}, where ϕ ∈
[
0,

0.5

T

)
.

As stressed in [8], we choose ϕ > 0 to get consistent results with the experimental

data. A positive ϕ implies a gradual increase of excess supply towards the end of

the market and so it contributes to the reduction in mean transaction prices. In

particular, its primary role is to reduce the transaction volume over time consistent

with the experimental data, see [1], [8]. This assumption is crucial for the Duffy and

Ünver model to generate the observed crash patterns in the laboratory market.8

• At the end of each trading period t we compute the mean traded price, pt,i, which is

publicly available. The mean traded price pt is defined as the average of the mean

of round prices pst . If the volume of transactions, i.e., number of shares traded in

period t round s is denoted by volst , then

pst =

 1
volst

∑volst
h=1 p

s
t,h if volst > 0

pb−a,st if volst = 0
,

where pb−a,st is the mean bid-ask spread price and pst,h is the price of the h-th unit

traded in period t of session s. Then, pt = 1
S

∑S
s=1 p

s
t represents a measure of the

market price of a share, see [8] for further details.

8By considering the heterogeneous model of [5], the weak foresight assumption can be dropped as
we did in a companion paper. The price dynamics of the Baghestanian et al. model heavily depends
on a more complex parameterization of agents’ strategies compared to simplest Duffy and Ünver model.
Moreover, since their model is calibrated with experimental data where only one asset is considered,
instead of presenting preliminary results using their parameters, we prefer to postpone the analysis with
the Baghestanian et al. model when our experimental data are available.
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• At the beginning of the market session, each trader j has an endowment of cash

xj and a quantity of the asset yj. Then, a buyer (seller) j in period t at round

s can place9 a bid (ask) quote if enough cash balances xjt,s > 0 (share quantity

yjt,s > 0) is available in his account. Thus, trader j places a quote following a convex

combination of the previous period mean traded price pt−1 and a random quantity

ut,s. This random price is proportional to the current expected fundamental value

drawn from a uniform distribution with support [0, κ · FVt], where κ > 0. This

noise captures the possibility that agents can make some decision errors. So, if j is

a buyer, j can place a bid price given by

bjt,s = min{(1− α)ut,s + αpt−1, x
j
t,s}

and if j is a seller he can place a ask price given by

ajt,s = (1− α)ut,s + αpt−1,

where α ∈ (0, 1) is the so called anchoring parameter. The anchoring parameter

plays a crucial role in the price-bubble formation, since prices will necessarily in-

crease at the beginning to decrease as the fundamental value decreases, with the

number of sellers increasing over time. As stressed in [8], this kind of explanation

for the price-bubble mechanism holds regardless of ϕ. As we will see, when ϕ = 0

the price will continue to get a “hump-shaped” path with no decrease in transaction

volume.

• When the submitted bid (ask) price is greater (smaller) than or equal to the current

best ask (bid) price, the unit is sold at the current best ask (bid) price. At the end

of each trading period t, after the round S, the order book is completely cleared10,

where dividends are paid out and we update the agent cash accounts. In particular,

at the beginning of the first round, s = 1 in the trading period t + 1 the book is

initially empty.11 We employ a real-time adjustment rule, i.e., during a trading

period t in a round s, any executed orders are immediately executed and the cash

and share accounts are respectively adjusted.

Even if the particular architecture specification would appear to influence the simulation

results, as remarked in [8], the results are insensitive to the type of order book convention

and structure.

9Where we also consider the one-side condition.
10We simply clean out the two sides of the order book without executing limit orders.
11We will introduce market maker agents to ensure enough liquidity to traders.
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3.2. Two-Asset extension

We now introduce the generalizations of the previous model to our experimental design.

To extend the Duffy and Ünver model in a the two-asset market we may simply specify

two model specifications to the two assets P1 and P2. Therefore, we have two order

books with the relative parameters, κi, αi, ϕi. However, we have to carefully set the time

priority. Specifically, we consider two different time priority for the two books related

to the two assets. Therefore, in a given round s, the two time priorities of book 1 and

book 2 are embedded and executed alternatively 12. More precisely, if τ(·) denotes the

time priority (i.e., a permutation of the N traders) for the round s, we first execute the

first order for book 1, τ1(1), and then that of book 2 τ2(1). Then, we consider the second

ones, τ1(2) and τ2(2), so that in events time we have τ1(1) > τ2(1) > τ1(2) > τ2(2) >

· · · τ1(i) > τ2(i) > τ1(i+ 1) > τ2(i+ 1) and so on.

The main feature of the multi-asset scenario is the design of a specific multi-asset

trading strategy which traders can implement. We are going to explain the details of this

feature in the next section.

3.3. Heterogeneous agents based model: factor-investing styles

The near-zero-intelligence agents of Duffy and Ünver can be essentially viewed as a pro-

totype of noise traders in real financial market. Therefore, to understand how different

trading strategies can induce significant cross-impact effects in a multi-asset scenario,

and to better proxy the behavior of human traders, we introduce artificial agents with

different strategies mimicking factor investing style, see e.g. [34].

To do that, we assume that the traders read a signal to buy or sell assets following

one of the assets i. We assume that agents follow the speculative asset and we denote

the signal as si ∈ {−1, 1}, where 1 means that si is a buy signal and −1 a sell signal.

The probability of reading a buy or sell signal is modeled by πi, i.e, the probability to be

a buyer or a seller for asset i.

Then in order to introduce heterogeneity in our population we design a percentage of

agents following one of the two market factors vj. A directional trader places orders on

both assets following the directional market factor, i.e, vD = [1, 1]T . On the other hand,

a market-neutral agent will place orders following vM = [1, −1]T . Therefore, when an

agent reads the market signal si, he decides the position on the asset i and if the trader is

a directional will place the same order side on the other assets, i.e., the position on both

assets are described by the product si · vD, while in the market-neutral case the agent

will place an opposite order side on the other asset, e.g., his order will be determined by

si · vM .

12We have tested in preliminary analyses other execution ordering and we did not find any particular
change in simulations results.
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Therefore, we consider three classes of agents: directional, market-neutral, and noisy

traders. Each trader chooses a position following the speculative asset P1 and decides

the position on the value asset P2 using a market factor for the directional and market-

neutral agents, while the noise trader randomly selects the two asset positions. As stated

above, the positions on asset one are chosen using the probability the weak foresight

assumptions of [8]. The quotes, bt,s and at,s are placed randomly for all the traders

following the specification of [8].

Remark 3.1. An agent who follows the directional or market-neutral vectors could be

interpreted as a stylization of a general factor investing strategy. Indeed, the two market

factors vD and vM are the eigenvectors of a general symmetric matrix

Λ =

[
1 λ

λ 1

]

and this matrix could represent the correlation of the two assets or, more interestingly,

the cross-impact matrix.

3.4. Agent based model with market-makers

To ensure sufficient liquidity at all trading periods and to make our laboratory design

closer to typical real market architecture, we include market-maker agents, which place

bid/ask quotes in an opening session before round s = 1 for all trading period t and

act as liquidity providers for all other rounds. This should provide price and order book

dynamics in line with what observed in real market sessions.

We employ the Avellaneda-Stoikov market-making model (see [32] and [33]), where

market-makers place optimal quotes in order to maximize the expected (CARA) utility

criterion within a finite time horizon T in an order book. We consider the setting of [31]

where market-makers have a maximum authorized inventory Q, which can be, in contrast

to traders, either long or short. Furthermore, [31] proved that the optimal bid and ask

quotes of the market-maker in the Avellaneda-Stoikov model are given, respectively, by:

Sb∗(t, p, q) = p− 1

κ
ln

(
vq(t)

vq+1(t)

)
− 1

γ
ln
(

1 +
γ

κ

)
Sa∗(t, p, q) = p+

1

κ
ln

(
vq(t)

vq−1(t)

)
+

1

γ
ln
(

1 +
γ

κ

)
,

where p is the current value of the reference price (the mid-price), γ is the market-maker’s

risk-aversion, κ characterizes the price sensitivity of market participants and the functions

vq(t), |q| ≤ Q, which make the market-maker’s optimal quotes depend on its inventory,
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denoted by q, and they are defined as

(v−Q(t), . . . , vQ(t))′ = exp(−M(T − t))× (1, . . . , 1)′ ,

M =



αQ2 −η 0 · · · · · · · · · 0

−η α(Q− 1)2 −η 0
. . . . . .

...

0
. . . . . . . . . . . . . . .

...
...

. . . . . . . . . . . . . . .
...

...
. . . . . . . . . . . . . . . 0

...
. . . . . . 0 −η α(Q− 1)2 −η

0 · · · · · · · · · 0 −η αQ2


where α = κ

2
γσ2 and η = A(1+ γ

κ
)−(1+

κ
γ
), σ is the volatility of the asset and A characterizes

its liquidity.

In the original work of [33] the market-maker’s inventory is modelled by the differences

of two point processes which model the trading activity of traders, i.e., the number of

assets that have been respectively bought and sold. In our setting, a market maker

updates his inventory when a trader hits one of his quotes at time t. Right after, the

market maker updates his optimal quote according to the new inventory,13 the remaining

trading period time T − t and reference price pt, where the volatility parameter σt is fixed

as the intra-trading period volatility of the previous trading period, i.e., the volatility

observed in [t− 1, t].

In order to have a symmetric initialization of the order book, we select JMM hetero-

geneous market-makers distinguishing them in terms of risk-aversion.

We remark that even if the Avellaneda and Stoikov model is time continuous, the

model can be reinterpreted in a discrete way as also observed by [31]. Therefore we may

use its discretization to produce reliable market-makers’ quotes.

3.5. Two-asset Agent-Based Market model

We now summarize our agent-based model for the two-asset market experiments. Recall

that our market is designed as a continuous double-auction market as in [8] and agents

are distinguished between traders and market-makers. Market-makers post bid and ask

quotes at the beginning of the session following the Avellaneda/Stoikov model, see Section

3.4, and they will eventually update their quotes if traders accept one of their quotes.

Therefore, market-makers agents will provide and guarantee the necessary liquidity to

the market in each trading round so that a trade can occur. In contrast to traders, they

can go short.

13An the other parameters, A, γ, κ

12



On the other hand, traders are the only participants who can actively participate in

the market, i.e., they can accept quotes from other participants, which then generate a

trade. They can only have one outstanding position for each asset and each quote is

for one share, where standard bid/ask improvement rules are applied. Depending on the

market treatments, traders can follow one of the factors investing trading strategies of

Section 3.3.

Regarding the sequentiality, at the beginning of each trading period, t, an opening

session is executed where market-makers place their quotes, characterizing the initial

liquidity offer for the two assets order books. Then, round sessions start and the time

priorities for the two books are generated, τ1 and τ2. Then, traders can place orders

and they are sequentially called following the two time priorities, where we embed τ1

and τ2 as explained in Section 3.2. An order of the trader can be posted in the book

or executed. In the last case, a trade occurs where the counterpart can be another

trader or a market-maker. When the counterpart is another trader, then both agents

update their inventories and their quotes are removed from the book. On the other hand,

when the counterpart is a market-maker, the trader and market-maker’s inventories are

updated and the market-maker updates quotes according to the new inventory following

the Avellaneda and Stoikov model. At the end of submission round S, the book is cleared

and dividends are paid, while at the end of the trading period T the terminal value is

paid for each remaining share in traders’ inventories for both assets.

Table 2 and Algorithm 1 report a summary of the simulation design.

3.6. Simulation set-up

We design a market experiment where each market session consists of T = 15 trading pe-

riods and where each period lasts 180 seconds. Based on previous experimental evidence,

see e.g., [35], we hypothesize that a trader could submit an order for the two assets every

30 seconds. Therefore, we set up in simulation S = 6 rounds for each trading period.

We remark that in T1 treatment agents have separate portfolios, where traders have

initial endowments of $2.925 and 2 units of asset for the two portfolios. In T2 treatment,

each trader has a merged portfolio with an initial endowment of $5.85 and 2 units for each

asset14. Thus, in T1 traders cannot divert cash of one asset in the other. We consider

one type of treatment T1 (T1-Separated) and three types of T2 treatments, where agents

place orders independently for the two assets and are either all directional (T2-Unique-

Directional), all market-neutral (T2-Unique-Market-Neutral), or a combination of the two

(T2-Unique-Heterogenous). Finally, we consider two heterogeneous model specifications

in which we additionally consider the presence of JMM = 10 market-makers. For each

14In the first simulations we divide traders in 3 classes depending on different initial endowments
among T1 and T2 treatments, as in [1] and [8]. However, we did not observe any significant differences
in terms of price dynamics and market impact estimates.
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Table 2: Simulation design summary

Agents
Market

Traders Market-Makers

• Initial inventory is
composed of cash and
assets.

• Post bid and ask quotes
at the beginning of the
sessions following the AS
model.

•A market session of
T = 15 trading periods,
each one divided in S = 6
submission rounds.

• Can only have one
outstanding position for
each asset and each order is
for one share. Standard
bid/ask improvement rules.

• Can go short. • In each round s, a trader
can post bid/ask quotes.

•The counterpart can be
any another trader or
market maker.

• Buy and sell according to
[8] with the extension
provided in Section 3.2.

• Can follow one of the
factor investing trading
styles, see Section 3.3.

•Trade orders are executed
only by traders (i.e. in
trader/trader order the
inventory is updated for
both, in market
maker/trader, the
inventory is updated for
the trader while the market
marker updates according
to Avellaneda/Stoikov
model

•Dividends are paid at the
end of each period t, and
the inventories are
updated.

simulation treatment, we run N = 100 simulations with a total of J = 33 traders15.

The order type (buy or sell) is decided by πt,1, the probability related to the asset

1. This means that agents, in some sense, follow the price of the asset 1 and decide

to buy or sell the asset 2 depending only on πt,1
16. To determine the quotes, we set

for the speculative asset P1, the agents’ parameters based on the estimates of [8], i.e.,

κ1 = 4.1946, α1 = 0.8499, ϕ1 = 0.01643. These parameters were estimated by [8] in order

to replicate SSW experiments, so we might expect that the price dynamics of P1 will

15The number of participants is chosen similar as much as possible to those of our future experiment
in the laboratory.

16As complementary treatments, we consider the case when the order side is decided fixed by πt,2,
i.e., traders follow the value asset. In other words, the directional and market-neutral cases correspond
trivially to the case when the agents place an order following a unique Bernoulli variable. The results
are available upon request, since we observe no relevant findings.
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Algorithm 1: Pseudo Code of Market Design. The algorithm illustrates the
sequence of the different operations between traders and market-makers and the
different market phases, i.e., from the opening session when dividends are paid.
We distinguish traders from market-makers since traders are the only ones who
can actively participate in the market, i.e., they can accept quotes from other
traders. Market-makers in our design can only supply liquidity to the market.

Participants of the market: traders, market makers.

for ( t = 1 : T ) {
Trading period t starts;

run opening session;
Market makers place quotes in the order book, charatherizing the initial
liquidity offer;

for ( s = 1 : S ) {
Round trading session s starts;

Traders place orders following our extension of the DU model;

The time priorities for the two books are selected, τ1and τ2;
Traders are sequentially called following the two time priorities, where we
embed τ1and τ2 as explained in Section 3.2;

An order of the trader can be posted in the book or executed. In the last
case, the order generates a ‘trade’ where the counterpart can be another
trader or a market-maker;

if A ‘trade’ is of the type Trader/Trader then
Both agents update their inventories;

end
if A ‘trade’ is of the type Trader/Market-maker then

The trader’s inventory is updated and the market maker updates his
quotes according to the new inventory following the Avellaneda and
Stoikov model;

end
Round trading session s ends ;

}
Trading period t is ends;

Dividends are paid for both assets.
}
The terminal value is paid for each remaining share in traders inventories by
each asset.

exhibit the typical bubble-shape of market experiments 17. Since, κ1 = 4.1946 traders

17[8] have calibrated their model to reproduce the SSW experiments.
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Table 3: Model Specification: πt,i = max{0.5−ϕit, 0} is the probability to be a buyer or a
seller for the asset i. Bid and ask quotes are given by, bt,s = min{(1−αi)uit,s+αipt−1,i, xt,s}
and at,s = (1−αj)uit,s+αipt−1,i, where uit,s is drawn by a uniform distrubition with support
[0, κidt,i].

ϕi αi κi

i = 1 0.01643 0.8499 4.1946
i = 2 0 1-0.8499 2

will post on average twice the fundamental value of P1 even if they will put more weight

on previous price. This will generate the same hump-shaped pattern of [1], where traders

start to trade at a low price level and subsequently generate an upward trend which is

finally eliminated by large-scale selling orders posted by traders due to the weak-foresight

assumption (ϕ1 > 0). On the other hand, since the dynamics of the value asset should

be aligned with its fundamental value, see [4], the parameters of the asset 2 are set in

a complementary way with respect to that of asset 1. Thus, for asset 2, we set κ2 = 2,

α2 = (1 − 0.8499), ϕ2 = 0. A value κ2 = 2 would force agents to trade at the intrinsic

value on average. The weight α2 given to the “anchor” pt−1 is complementary to that for

asset 1. This implies that agents place an order on the asset 2 with bid/ask prices which

are close to the dividend fair value dt,2 than past prices. Finally, since we set ϕ2 = 0,

we expect to observe no imbalance between demand and supply as the one observed for

asset 1. We summarize the model parameters in Table (3).

4. Simulation results on price dynamics

In this section, we analyze price dynamics generated by the various treatments according

to the basic models. We also marginally consider the case when market-makers are

included, even if their role is primarily to provide enough liquidity to human agents

when we will go to the laboratory. On the other hand, artificial (noise) traders in the

structural model are designed independently from the presence of market-makers. We

thus expect they will have a significant role in the laboratory sessions when humans and

artificial traders play together. As a result, in this first analysis, we mainly present price-

dynamics results concerning models where market-makers are not considered, although

in the next Section (5), we will also present and discuss the estimates of cross-impact

when market makers are included as well.

We first analyze the effect of changing traders’ liquidity on price dynamics by compar-

ing T1-separated and T2-Unique. In line with the experimental results of [4], we observe

an amplification in price levels due to the increase in C/A, when both dividends are col-

lected in the same portfolio for each trader, i.e., in T2-Unique treatment, see Figure (2)

and (3).
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Then, to understand how different trading strategies can impact prices, we examine

two T2-treatments where traders follow one between directional and market-neutral mar-

ket factors. We observe that directional traders generate an undervaluation effect on the

value asset P2, contrary to market-neutral agents, which produce an overvaluation effect

on P2, see Figure (4) and (5).

Finally, we investigate the effect of market-makers by comparing T2-treatments where

all the previous features are implemented, i.e., considering heterogeneous agents, of the

previous treatments and where market-makers are included in the market. The liquidity

provided by market-makers does not seem significant alter the price dynamics of both

assets, although we observe that at the beginning of the trading session, the dynamics of

P1 is more aligned with its fundamental value, Figure (7), compared when market-makers

are absent, Figure (6).

For the sake of clarity, we summarize each treatment results in the following:

1. T1-Separated: this is our base treatment in which agents have separate portfolios.

We basically observe the same behavior as in [8], which based on SSW experiments,

i.e. a price bubble emerges for the speculative asset 1, see , P1 in Figure (2).

Moreover, we observe the same price shape of [4] for the second asset since the

fundamental value is constant, see P2 in Figure (2).

2. T2-Unique with independent orders (T2-Unique-Independent): in this treat-

ment, agents’ cash accounts are merged into a single one for the two assets con-

sidering the same endowments as in T1-separated. Agents place order in each of

the two assets independently. As expected, in line with the results observed by [4],

we observe an amplification on price levels, e.g., see the price for the value asset

P2, due to the increase in C/A since both dividends are collected now in the same

portfolio for each trader, which generates an overall increase in cash, see Figure (3).

3. T2-Unique with directional orders (T2-Unique-Directional): this treatment is

similar to the previous one although agents’ orders now follow the speculative asset

1 and place order in both assets in the same position, i.e., using the directional

market factor. This treatment is also similar to the experiment of [2], when part of

the investment capital is diverted from the value asset toward the speculative one.

Indeed, in addition to observing a price bubble emerging for the speculative asset

1, we observe a price reduction for the value asset, see Figure (4).

4. T2-Unique with market-neutral orders (T2-Unique-Market-Neutral); this is

a complementary treatment to the previous one, whereby agents place orders, fol-

lowing the speculative asset P1, for both assets in opposite positions, i.e., using the

market-neutral factor. In this case we observe a price bubble for both assets, see

Figure (5).
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5. T2-Unique with heterogeneous directional and market-neutral orders

(T2-Unique-Heterogeneous), this treatment combines the feature of previous treat-

ments, in which there are 33% noise traders, 33% directional traders (always fol-

lowing the speculative asset P1) and 33% market-neutral traders, see Figure (6).

6. T2-Unique with heterogeneous directional and market-neutral orders

when 10 market makers are present (T2-Unique-Heterogeneous-MM ): we set

the market makers parameter equal to κ = 1, A = 50, Q = 20. Each market maker

has different risk-aversion parameter γ, which is selected using an equidistant grid

in [0.5, 1]. Results in this case resemble the one presented in point 5. Having

market-makers providing liquidity does not significantly alter the price dynamics

of both assets, although are more realistic at the beginning and at the end of the

experiment, see Figure (7).

As a robustness check, we also repeated treatments 3-4 where the agents follow asset 2. In

other words, ϕ1 = 0, so we expect that there is no decrease in volume and a subsequent

price decrease in the last trading periods for P1. We do not observe any particular

difference in price path between these treatments and the T2 with independent order,

suggesting that a correlation in orders does not affect prices correlation when the agent

follows the signal from the value assets18.

To summarize, the results from our simulations suggest that a price-bubble tends to

emerge in all cases for the speculative asset 1, while different dynamics appear for the

price of the value asset 2. In general, we interpret the results of T2-Unique-independent as

those obtained by purely noise traders with no particular trading strategy. On the other

hand, when we distinguish between two types of traders, namely directional and market-

neutral (i.e.T2-Unique-Directional and T2-Unique-Market-Neutral) a positive (negative)

order correlation seems to imply a negative (positive) price correlation. Indeed, by con-

struction, the order types of a directional are positively correlated (more precisely, they

are equal); however, we observe a negative price correlation. This was observed by [2]

where they concluded that there might exist a negative liquidity mechanism that induces

this price correlation. This is precisely what comes out from the results of T2-Unique-

Directional, where, however, the order correlation is positive. We remark that the quotes

are independent of the two assets. Interestingly, the heterogeneous model where the

population is equally divided into three classes, noise, directional, and market-neutral

(T2-Unique-Heterogeneous), provides equivalent results to that of the T2-independent

model, where all agents are noise traders.

Finally, when market makers are considered (T2-Unique-Heterogeneous-MM ), the

price dynamics of the speculative asset starts close to the fundamental value, hence

18More details are available upon request.
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Figure 2: Mean transaction price and average volume of shares traded among the trading
periods for T1-Separated.

more realistic than the previous ones. Indeed, as in SSW experiments, traders in T2-

treatments, since they are inexperienced, start trading at a low value compared to the

fundamental value. Then, agents gain confidence and create an upward trend which

generates the typical price bubble shape. On the other hand, this inexperience is filled

by market-makers, which allows agents to trade at a more efficient price. Thus, when

market-makers are included, traders may be considered more experienced than those of

the Duffy and Ünver model. Interestingly, even if traders are experienced, we still ob-

serve price bubble dynamics, which is then intrinsically characterized by the experimental

market design. Furthermore, in the Duffy and Ünver model, we observe a liquidity drop

when t → T , the volume of transactions significantly reduces at the end of the market
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Figure 3: Mean transaction price and average volume of shares traded among the trading
periods for T2-Unique-Independent.

session. This effect is principally due to the weak foresight of traders on the speculative

asset. Therefore, the liquidity generated by market-makers seems to anticipate this liq-

uidity drop process since agents start to trade at prices close to the price bubble peak

and, therefore, with a subsequent anticipated price deflation. The parameter setting of

the market-makers forces the average of their bid-ask spread to be 1.5 on average. There-

fore, at the beginning of the market session, traders will mainly buy from market-makers,

while at the end traders will post (“aggressive”) quotes inside the market-makers spread,

making the liquidity provided by market-makers useless. This suggests how cash flows

from traders to market-makers initially, and while at the end of the period due to the

market makers inventory risk-aversion, the liquidity provided by market-makers does not
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Figure 4: Mean transaction price and average volume of shares traded among the trading
periods for T2-Unique-Directional (Following P1).

increase the transaction volumes. This explains the reduction of the number of transac-

tions even if we have more liquidity in the market. The same price and volume dynamics

are also observed for the other treatments considered.

On the other hand, if we increase the parameter κ the market-makers’ spread will

decrease and the number of transactions remains constant over the trading period, see

[31]. In this case, the typical price bubble shape will no longer be observable since the

price will remain constant for all trading periods at the market-makers’ mid-price.

To conclude, by analyzing the market impact among the different treatments, we

notice that the T2-Unique-Market-Neutral exhibits the larger and significant cross-impact

effect, as it is confirmed by the subsequent results.
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Figure 5: Mean transaction price and average volume of shares traded among the trading
periods for T2-Unique treatment with market-neutral orders (Following P1).

5. Statistical price model: market and cross-impact

estimation

Since the seminal paper of Kyle, [36], linear models for market impact are widely used

to study impact of (aggregate) net order flow and price movements. We consider the

popular order flow imbalance, (OFI), measure of Cont et al., [28], to estimate market

impact. Roughly speaking, OFI represents the imbalance between supply and demand

at the best bid and ask prices during a fixed time interval. In particular, after computing
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Figure 6: Mean transaction price and average volume of shares traded among the trading
periods for T2-Unique-Heteregenous. There are 33% noise traders, 33% directional and
33% market-neutral traders.

OFIt ∈ RM between period t− 1 to t, see [28], we estimate the following model

rt = Λ OFIt + εt (1)

where rt ∈ RM represents the assets returns, εt ∈ RM is the residual term and Λ ∈ RM×M

is the market impact matrix. As usual the noise term εt is uncorrelated from OFIt, i.e.,

cov(εt,OFIt) = 0. The diagonal components of Λ represent the so called self-impact

coefficients, while the off-diagonal terms represent the cross-impact effect between the

selected assets.

Furthermore, due to the features of experimental data, we may infer a causal and
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Figure 7: Mean transaction price and average volume of shares traded among the trad-
ing periods for T2-Unique-Heterogeneous with 10 market makers. There are 33% noise
traders, 33% directional and 33% market-neutral traders.

statistical relation between fundamental values changes and OFIt.

5.1. Market-impact estimation based on simulated data

We now compute the OFI and estimate market and cross-impact using simulated data

for each market session. We follow [28] and the standardization of [37]. More precisely,

we compute OFI for each trading round s among the periods. For our market design, the

OFIt,s,i for the asset i is computed firstly as the difference between of net (buy) order

flow, V B
t,s,i, and net (sell) order flow, V S

t,s,i, where there are no cancellations at the best
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bid and ask, i.e.,

OFIt,s,i = V B
t,s,i − V S

t,s,i.

The net (buy) order flow is defined as V B
t,s,i = Lbt,s,i − M b

t,s,i, where Lbt,s,i denotes the

volume (number of shares) of limit buy orders at the best bid and M b
t,s,i denotes the

volume of market (sell) orders occurring at the best bid during round s. On the other

hand, V S
t,s,i = Lat,s,i − Ma

t,s,i, where Lat,s,i denotes the volume of limit sell orders at the

best ask and Ma
t,s,i denotes the volume of market (buy) orders occurring at the best ask

during round s. See [28] for further details. Then, following [37], we standardize OFIt,s,i

by rescaling with its standard deviation and market depth δt,·,i, i.e.,

ofit,s,i :=
OFIt,s,i

δt,·,iσ(OFIt,s,i)
,

where δt,·,i is defined as the average among the rounds of the average volume at the best

bid and ask, δt,·,i = 1
S

∑S
s=1(V

b
t,s,i+V a

t,s,i)/2, i.e. depth is defined as the average of the size

at the best quotes, see also [37].

Therefore, we compute for each round s at trading time t, following [37], the nor-

malized log-returns of mid-prices rt,s,i (by its standard deviation) and we estimate the

market impact coefficients λt,1,i and λt,2,i for asset i = 1, 2 in a panel regression among

round s and across simulations for each trading period t, i.e., for each trading period

t = 1, 2, . . . , T ,

rt,s,i,k = λt,i,1 · ofit,s,1,k + λt,i,2 · ofit,s,2,k + εt,s,i,k, k = 1, 2, . . . , N ; s = 1, 2, . . . , S (2)

so that we may obtain an estimate of market impact among the trading periods t, for

asset i = 1, 2. The terms λ·,1,2 (λ·,2,1) measures how the order flow imbalance of asset 2

(1) impacts the returns of asset 1 (2), i.e., the cross-impact.

Figures (8) and (9) exhibit the estimates of λ·,·,1 and λ·,·,2 obtained by the regres-

sion (2) for each trading period t for T2-Unique-Independent/Neutral and T2-Unique-

Heterogeneous/Heterogeneous-MM. Table (4) and (5) report the time average estimates

of market-impact coefficients among the trading periods. The results related to T1-

Separated are similar to those of T2-Unique-Independent, but with a weaker cross-impact

effect due to the capital restrictions which we have imposed in T1.

We observe that the estimations of the regression model (2) highlight how the self-

impact remains significant and constant among the trading periods for all the model spec-

ifications considered. Moreover, we observe asymmetric cross-impact estimates. Specifi-

cally, for almost all model specifications, the cross-impact effect λ21, the impact of order-

flow imbalance of asset 1 on returns of asset 2, is positive. On the other hand, the

cross-impact term λ12 is not statistically different from zero so that the returns of asset

1 are essentially influenced by the self- impact λ11. Furthermore, from Table (4) and
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(5) we observe that the cross-impact terms are smaller on average than those of self-

impact. Moreover, we note that market-neutral agents seem to play a relevant role in

generating a positive and significant cross-impact effect λ12 with respect to directional

traders. When agents follow the market-neutral factor, we find significant cross-impact

terms of asset 1 to asset 2. We also observe a significant cross-impact term in the sim-

ulations when the two fair values intersect. Moreover, while the self- impact estimates

are quite uniform among all specifications, even when market-makers are considered, the

cross-impact terms are reduced by the market-makers’ effect, even though the estimates

remain statistically significant.

We summarize our preliminary results:

1. The market-neutral investors play a relevant role in generating cross-impact effects.

2. The cross-impact tend to be asymmetric, where the impact of the liquidity of (the

speculative) asset 1 on asset 2 returns are significant and positive. The liquidity of

(the value) asset 2 is not relevant to explain asset 1 returns.

3. The self- impact remains significant and constant among the trading periods for all

model specifications.

In Appendix A we repeat the previous analysis to investigate market impact during

price bubble crashes using other market liquidity measures. We employ the order imbal-

ance, see, e.g., [11] and the excess bids measures, see [38]. However, we found inconclusive

and insignificant results for both measures. The volume imbalance does not provide sig-

nificant coefficients even for self- impact coefficients. The excess bids measure provides,

in general, noisy and contrasting results. Therefore, we restrict the statistical analysis to

the OFI measure.

5.2. A possible interpretation of cross-impact effect

Since we know the fundamental value for each asset, in regression (2) we consider as

an explanatory variable the ratio between fundamental values. Precisely, we consider

rFV,t = log(FV1,t/FV2,t) as a distance measure between the two asset values, which in our

design is positive for the first half trading period and negative in the last trading period.

In particular, rFV,t becomes zero in the middle period when the two asset values intersect

each other, which is the region where agents will have more difficulty to disentangle the

two values.19

Therefore, we estimate the market impact coefficients λt,1,i and λt,2,i for asset i = 1, 2,

for each round s at trading time t, in a panel regression among round s and across

19We expect that the confusion generated by the intersection of fundamental values will play a relevant
role with human traders rather than artificial.
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Table 4: Time average, among trading period t, of market-impact estimates obtained by
regression (2) for T2 treatments with homogeneous population. Standard deviations are
reported in parentheses. We also report the average adjusted R2 for each regression.

(a) Estimates for T2-Unique.

T2-indep. T2-Direc. T2-Market Neutral

λ11 0.657 (0.033) 0.639 (0.047) 0.657 (0.050)
λ12 0.014 (0.042) 0.058 (0.042) -0.011 (0.021)
Adj. R2 0.402 0.393 0.397

λ21 0.125 (0.045) 0.046 (0.040) 0.167 (0.067)
λ22 0.630 (0.031) 0.659 (0.039) 0.422 (0.127)
Adj. R2 0.394 0.459 0.176

(b) Estimates for T2-Unique with 10 market makers.

T2-indep. T2-Direc. T2-Market Neutral

λ11 0.767 (0.295) 0.756 (0.317) 0.760 (0.285)
λ12 0.034 (0.047) 0.060 (0.045) -0.015 (0.059)
Adj. R2 0.419 0.380 0.457

λ21 0.046 (0.112) 0.066 (0.107) 0.088 (0.115)
λ22 0.737 (0.059) 0.712 (0.060) 0.800 (0.128)
Adj. R2 0.317 0.317 0.312

simulations for each trading period t, i.e., for each trading period t = 1, 2, . . . , T ,

rt,s,i,k = αt,i · rFV,t + λt,i,1 · ofit,s,1,k + λt,i,2 · ofit,s,2,k + εt,s,i,k, (3)

for each k = 1, 2, . . . , N and s = 1, 2, . . . , S. Table (6) and (7) reports the average esti-

mates of market-impact and α for different model specifications. The ratio of fundamental

values filters out the cross-impact effect. This result suggests that cross-impact effects are

a masked outcome of the intrinsic relations between fundamental values and prices. The

price bubble mechanism of asset 1 pushes out the price of asset 2 as an intrinsic effect.

Interestingly, the self- impact are consistent to what observed in the previous analysis,

and significantly positive.

We observe that α2 estimates turn out to be quite oscillatory among trading periods.

Especially during trading period 7 and 8, when rFV,t is close to zero, the estimates of α2

results to be huge and oscillatory. Since this behavior is observed among the various model

specifications, we report as an example in Figure (10) the estimates of αi for T2-Unique-

heterogeneous specification model where there are 33% directional and market-neutral

agents. The behavior of α2 explains the huge standard deviations of the average estimate
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Table 5: Time average, among trading period t, of market-impact estimates obtained by
regression (2) for T2 treatments with different factor-investing style agents by varying the
percentage of directional (Dir.) and market-neutral (MN.) traders. Standard deviation
are reported in parentheses. We report also the average adjusted R2 for each regression.

(a) Estimates for T2-Unique-Heterogeneous.

Dir. 33.00% 40% 30%
MN. 33.00% 30% 40%

λ11 0.649 (0.059) 0.652 (0.036) 0.653 (0.034)
λ12 0.007 (0.037) 0.026 (0.023) 0.012 (0.031)
Adj. R2 0.381 0.399 0.385

λ21 0.117 (0.057) 0.131 (0.055) 0.155 (0.050)
λ22 0.627 (0.056) 0.634 (0.045) 0.599 (0.101)
Adj. R2 0.380 0.381 0.347

(b) Estimates for T2-Unique-Heterogeneous with 10 market makers.

Dir. 33.00% 40% 30%
MN. 33.00% 30% 40%

λ11 0.762 (0.291) 0.765 (0.289) 0.763 (0.285)
λ12 0.034 (0.049) 0.036 (0.043) 0.035 (0.056)
Adj. R2 0.407 0.396 0.394

λ21 0.058 (0.098) 0.076 (0.062) 0.060 (0.114)
λ22 0.723 (0.055) 0.727 (0.056) 0.742 (0.067)
Adj. R2 0.310 0.321 0.319

of tables (6) and (7).

It is crucial to confirm this simulation analysis using market laboratory data. We

expect to repeat the previous analysis by calibrating the models with parameters derived

from experimental data and directly measuring cross-impact relations with fundamen-

tal values. Therefore, we can now formulate our main hypotheses, to be tested once

experimental data has been collected.

6. Discussion: hypotheses formulation

Given the previous simulation results, we derive our main hypothesis related to the cross-

impact effect. In particular, we expect that the uncertainty and difficulty to disentangle

the two asset values during the central phase of the experiment might trigger a significant

liquidity mechanic effect by which the price of one asset is affected by orders of the other

asset. We emphasize this hypothesis as follows.
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a) Estimates for treatment T2-Unique-Independent
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b) Estimates for treatment T2-Unique-Market-Neutral
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Figure 8: Market-impact estimates using regression (2). Values with orange (dark) star
are significant at 5% (10%) level using HAC standard errors.

H 1. The uncertainty and difficulty in disentangling the two asset values trigger a sig-

nificant cross-impact effect between the two asset prices. This effect will be stronger in

treatment T2-Unique compared to T1-separated as in the former case, there are no re-

strictions in moving the capital from one asset to the other.

Results from our simulation analyses support this hypothesis. We observe a price

bubble emerging in the speculative asset that also affects the price dynamics of the value

asset in all cases we examined (see Section 4 to get an overview of the different factor-

investing styles and price dynamics). Estimation of the cross-impact confirms that this

effect is positive and statistically significant in most cases, see λ2,1 in Figures 8, 9, and

Tables 4, 5). If this hypothesis will be validated with laboratory data, it will have an

important policy recommendation: in order to prevent price bubble propagations (i.e.,

significant price deviations from the fundamental values), the regulator could operate in

the market by imposing some capital constraints that impede capitals to divert from one
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a) Estimates for treatment T2-Heterogeneous
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b) Estimates for treatment T2-Unique-Heterogeneous and 10 market makers.
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Figure 9: Market-impact estimates using regression (2). Values with orange (dark) star
are significant at 5% (10%) level using HAC standard errors.

asset to another, i.e., as in T1 treatment.

Another hypothesis we derive concerns the cross-impact asymmetries.

H 2. The liquidity mechanism which generates the price bubble does not involve a sym-

metric cross-impact between the two assets.

In particular, we expect a larger cross-impact of the speculative asset on the value

asset, rather than the opposite. Indeed, the price bubble of the speculative asset is mainly

driven by an endogenous mechanism, e.g., it does not depend on the price realization of

the value asset and it is often observed in single asset experiments (see [35] for a review).

Results from our simulation results support this hypothesis. In all cases, we observe a

larger and significant cross-impact of the speculative asset, see λ2,1 vs λ1,2 in Figure 8, 9

and Tables 4, 5), but never the reverse.

The third hypothesis refers to the self-price impact.
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Table 6: Time average, among trading period t, of market-impact estimates obtained by
regression (3) for T2 treatments with homogeneous population. Standard deviations are
reported in parentheses. We report also the average adjusted R2 for each regression.

(a) Estimates for T2-Unique treatments.

T2-Indep. T2-Direc. T2-Market Neutral

α1 0.277 (1.392) -0.270 (0.694) 0.010 (1.055)
λ11 0.642 (0.047) 0.633 (0.052) 0.633 (0.052)
λ12 0.005 (0.041) 0.053 (0.044) -0.023 (0.017)
Adj. R2 0.401 0.392 0.396

α2 -0.710 (5.979) 0.046 (0.461) -1.304 (9.911)
λ21 0.033 (0.033) 0.040 (0.048) -0.005 (0.040)
λ22 0.591 (0.030) 0.654 (0.042) 0.345 (0.141)
Adj. R2 0.400 0.458 0.192

(b) Estimates for T2-Unique treatments with 10 market makers.

T2-Indep. T2-Direc. T2-Market Neutral

α1 -0.3117 (0.653) -1.243 (3.151) -0.292 (0.663)
λ11 0.740 (0.292) 0.721 (0.315) 0.745 (0.278)
λ12 0.013 (0.024) 0.033 (0.043) -0.028 (0.069)
Adj. R2 0.419 0.380 0.457

α2 -0.214 (3.276) -0.480 (2.668) -0.512 (5.356)
λ21 -0.014 (0.095) 0.032 (0.079) -0.010 (0.096)
λ22 0.695 (0.052) 0.684 (0.058) 0.704 (0.097)
Adj. R2 0.319 0.317 0.318

H 3. The self–impact will not change significantly in treatment T2-Unique compared to

T1-Separated.

In other words, we expect that the removal of liquidity constraints will only affect

cross-impact without significantly affecting the self-impact. Results from our simulation

results support this hypothesis, see λ1,1 and λ2,2 in Figure 8, 9, and Table 4 5.

A further strong hypothesis which we can derive taking advantage of the experimental

data is the following:

H 4. Within treatments, the relationship between asset prices and fundamental values

makes the cross-impact effect negligible.

This hypothesis will allow us to investigate the origin of the cross-impact effect as

the result of an intrinsic relation between fundamental values. From our preliminary

results, see Section 5.2, the cross-impact vanishes when a distance measure between the
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Table 7: Time average, among trading period t, of market-impact estimates obtained by
regression (3) for T2 treatments with different factor-investing style agents by varying the
percentage of directional (Dir.) and market-neutral (MN.) traders. Standard deviations
are reported in parentheses. We report also the average adjusted R2 for each regression.

(a) Estimates for T2-Unique-Heterogeneous.

Dir. 33.00% 40% 30%
MN. 33.00% 30% 40%

α1 0.217 (0.543) 0.151 (0.912) 0.151 (0.912)
λ11 0.627 (0.063) 0.628 (0.057) 0.628 (0.057)
λ12 -0.004 (0.038) 0.000 (0.026) 0.000 (0.026)
Adj. R2 0.380 0.379 0.379

α2 -0.635 (5.107) -0.377 (3.812) -0.377 (3.812)
λ21 0.014 (0.046) 0.021 (0.030) 0.021 (0.030)
λ22 0.584 (0.058) 0.624 (0.045) 0.624 (0.045)
Adj. R2 0.388 0.410 0.410

(b) Estimates for T2-Unique-Heterogeneous with 10 market makers.

Dir. 33.00% 40% 30%
MN. 33.00% 30% 40%

α1 -0.641 (1.745) -0.357 (1.959) -1.063 (3.288)
λ11 0.731 (0.286) 0.729 (0.287) 0.728 (0.283)
λ12 0.005 (0.048) 0.000 (0.053) -0.002 (0.029)
Adj. R2 0.407 0.397 0.394

α2 -0.471 (4.113) -0.552 (3.347) -0.549 (3.786)
λ21 0.003 (0.081) 0.030 (0.043) 0.010 (0.097)
λ22 0.676 (0.056) 0.685 (0.050) 0.696 (0.058)
Adj. R2 0.312 0.321 0.320

the two asset fundamental values is included in regression (2). If H4 results to be valid,

it would point the relationships between intrinsic values as a possible explanation of the

cross-impact effect, further supporting assumption H1.

7. Conclusion

Hypotheses formulation is always a crucial step when planning an experiment. This work

presents a simulation-based approach to derive the hypotheses for our financial market

experiment, which we will validate once the laboratory data has been collected. The

present analysis relies on synthetic data derived by different agent-based models which

sufficiently replicate the experimental data. We first extend the agent-based model of
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Figure 10: α estimates using regression (3) for T2-Unique-Heterogeneous model speci-
fication where there are 33% directional and 33% market neutral agents. Values with
orange (dark) star are significant at 5% (10%) level using HAC standard errors.

Duffy and Ünver to our market design, in which we consider two financial assets (instead

of one) and introduce factor-investing trading strategies. We also use the simulation

approach to calibrate our experimental design. Furthermore, [39] shows how the price-

bubble dynamics of the (simulated) experimental results presented herein are robust and

persistent to the parameter choice of the asset-price models.

We believe that our work contribute to the understanding of the origin and causes of

cross-impact effects in the process of price bubble formation. In particular, in a market

environment where capital is relatively segmented across treatments, while price infor-

mation remains free to move, cross-impact can be seen as the result of the entanglement

of asset value fundamentals, triggered by the boost of the speculative asset price bubble.

Our preliminary analysis supports this hypothesis (H1): the uncertainty and difficulty

in disentangling the two asset values trigger a significant cross-impact effect between the

two asset prices. This effect is larger when there are no restrictions in moving capi-

tal across the market. Interestingly, this effect appears to be asymmetric (H2), always

triggered by the boost of the speculative asset to the value asset, while the liquidity of

the second asset never influences the price bubble. This would imply a violation of dy-

namic arbitrage in the sense of [40], see e.g., [17], [18], [41], which is not surprising in a

market where price bubbles are present. This suggests that the price-bubble mechanism

is endogenously generated by the fundamental characteristics of the speculative asset.

Finally, we also observe that the self- impact is not substantially affected by the mar-

ket’s liquidity alteration (H3). An exception is the self–impact of asset 2 when agents are

market-neutral traders. We also expect that a significant relationship between asset price

and fundamental values will emerge with experimental data. In particular, our setting

suggests that taking into account a distance measure between the two asset values will
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explain a great part of the cross-impact effect (H4).

In conclusion, even though these preliminary results are based on simulations derived

from specific agent-based models, we can draw several interesting conclusions. All the

results need to be confirmed with experimental data in order to understand the relevance

of human traders in generating market impact effects under the price-bubble formation

process. Furthermore, relying on the experimental data, we aim to calibrate the more

sophisticated Baghestanian et al. agent-based model, [5], to the two-asset market to fur-

ther investigate the price impact using the previous analyses set-up featuring speculative

or fundamental trading strategies.
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[31] Olivier Guéant, Charles-Albert Lehalle, and Joaquin Fernandez-Tapia. Dealing with

the inventory risk: a solution to the market making problem. Mathematics and

financial economics, 7(4):477–507, 2013.

[32] Thomas Ho and Hans R Stoll. Optimal dealer pricing under transactions and return

uncertainty. Journal of Financial Economics, 9(1):47–73, 1981.

[33] Marco Avellaneda and Sasha Stoikov. High-frequency trading in a limit order book.

Quantitative Finance, 8(3):217–224, 2008.

[34] Feifei Li, Tzee-Man Chow, Alex Pickard, and Yadwinder Garg. Transaction costs of

factor-investing strategies. Financial Analysts Journal, 75(2):62–78, 2019.

[35] Stefan Palan. A review of bubbles and crashes in experimental asset markets. Journal

of Economic Surveys, 27(3):570–588, 2013.

[36] Albert S. Kyle. Continuous auctions and insider trading. Econometrica, pages 1315–

1335, 1985.

36



[37] Luca Philippe Mertens, Alberto Ciacci, Fabrizio Lillo, and Giulia Livieri. Liquidity

fluctuations and the latent dynamics of price impact. Quantitative Finance, pages

1–21, 2021.

[38] Reinhard Selten and Tibor Neugebauer. Experimental stock market dynamics: Ex-

cess bids, directional learning, and adaptive style-investing in a call-auction with

multiple multi-period lived assets. Journal of Economic Behavior & Organization,

157:209–224, 2019.

[39] Francesco Cordoni. Multi-asset bubbles equilibrium price dynamics. arXiv preprint

arXiv:2206.01468, 2022.

[40] Jim Gatheral. No-dynamic-arbitrage and market impact. Quantitative Finance, 10

(7):749–759, 2010.

[41] Mehdi Tomas, Iacopo Mastromatteo, and Michael Benzaquen. How to build a cross-

impact model from first principles: Theoretical requirements and empirical results.

Available at SSRN 3567815, 2020.

[42] Alvaro Cartea, Ryan Donnelly, and Sebastian Jaimungal. Enhancing trading strate-

gies with order book signals. Applied Mathematical Finance, 25(1):1–35, 2018.

Appendix A. Market impact and other liquidity mea-

sures

We then repeat the previous analysis to investigate market-impact during price bubble

crashes using other market liquidity measure. We report the results for the homogeneous

agents model specification. We employ the order imbalance, see e.g., [11] and the excess

bids measures, see [38]. The order volume imbalance is defined as ρt =
V bt −V at
V bt +V

a
t
∈ [−1, 1],

where V b
t (V a

t ) are the total volume at time t of limit of buying (selling) orders orders, see

[11]. Similarly, as for the volume imbalance, see e.g., [42], there is strong buying pressure

when ρt is close to 1, , and there is strong selling pressure when it is close to −1. A

critique to using OFI to estimate market impact is that we have to use the mid-prices

returns. Thus, we run regression (2) using log-price returns (of realized prices20) and by

substituting OFI with ρ.

Table 4 reports the time average estimates of market-impact coefficients among the

trading periods. In contrast to the previous case, the market impact estimates also seem

to deteriorate for self-impact terms. Furthermore, we observe now significant positive

20We also run OFI regression using market price instead of mid-prices, but as expected the regression
provides no significant results, see also [28].
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Table 8: Time average, among trading period t, of market-impact estimates obtained
by regression (2) using Order Imbalance ρ for T2 treatments. Standard deviations are
reported in parentheses. Legend: T2 refers to T2 treatments with independent orders,
T2-D1 refers to T2 treatments with directional orders and T2-M1 refers to T2 treatments
with market-neutral orders, respectively.

T2 T2-D1 T2-M1

λOI11 -0.0018 (0.231) 0.2624 (0.260) 0.4672 (0.163)
λOI12 0.3735 (0.162) -0.5308 (0.163) 0.5007 (0.143)
λOI21 -0.2907 (0.295) -0.6556 (0.348) -0.0287 (0.278)
λOI22 0.4972 (0.233) 0.3412 (0.211) 0.5904 (0.122)

cross-impact effects of volume imbalance of asset 2 to returns of asset 1 in T2 treatment

with market-neutral orders following asset 1. In general, we observe a persistent self-

market impact effect for the value asset, while the self impact of asset 1 results to be

quite oscillatory.

We then explore the excess bids as another liquidity measure. Following [38] we also

test the predictive model of excess bids, i.e., we test the predictability power of the

excess bids variable at period t on asset return of the next period t+ 1. The excess bids

during the trading period t for agent j on asset i is defined as the difference in number

of submitted bids Lbt,i,j minus offers Lat,i,j, which in our market design correspond to the

number of limits buy and sell orders respectively,

Xt,i,j = Lbt,i,j − Lat,i,j,

see [1, 38]. If we account also for market orders we obtain, on the individual level, the

excess bids after market clearing,

X ′t,i,j = (Lbt,i,j − Lat,i,j)− (M b
t,i,j −Ma

t,i,j),

where a market buy (sell) order for agent j means that j purchases (sales) the asset at

the best ask (bid). Furthermore, if j places a market buy order and k is the seller, then

we account the market clearing only for the excess bids agent j. Therefore, following [38]

we aggregate the excess bids measure at level of traders, i.e., we compute the average

among agents X ′t,i = 1
J

∑J
j=1X

′
t,i,j. Thus, we run regression (2) at level of trading periods

t among the simulations substituting ofi with excess bids X ′. Moreover, we test the

predictive hypothesis of [38] in our market setting, where using their notation, we set

to zero the risk-free rate by regressing rt+1,i,k on X ′t,i,k. In order to avoid confusion, we

call the first regression as “Market Impact Regression” and the second one “Predictive

Regression”. Therefore, for each treatment, we compute unique market impact estimates.

Table 9 shows the results. In contrast to previous cases, we obtain disparate results among
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Table 9: Market Impact estimates using excess bids. We estimate a predictive regression
of rt+1 on X ′t and a contemporaneous regression of rt on X ′t. P-values are computed using
robust HAC standard errors. Legend: T2 refers to T2 treatments with independent
orders,T2-D1 refers to T2 treatments with directional orders and T2-M1 refers to T2
treatments with market-neutral orders.

Predictive Regression Market Impact Regression

Estimate p-value adj. R2 Estimate p-value adj. R2

T2
λ11 0.388 0.008 0.131 λ11 0.538 0.000 0.279
λ12 0.367 0.005 λ12 0.480 0.000
λ21 -0.123 0.087 0.147 λ21 0.303 0.000 0.277
λ22 -0.225 0.001 λ22 0.496 0.000

T2-D1
λ11 0.008 0.960 0.215 λ11 0.071 0.660 0.481
λ12 0.116 0.265 λ12 0.078 0.480
λ21 0.291 0.000 0.067 λ21 -0.260 0.000 0.187
λ22 -0.408 0.000 λ22 0.590 0.000

T2-M1
λ11 0.580 0.000 0.164 λ11 0.850 0.000 0.440
λ12 0.267 0.013 λ12 0.390 0.000
λ21 0.412 0.000 0.063 λ21 0.124 0.204 0.034
λ22 0.195 0.000 λ22 0.207 0.000

T2 specifications, see e.g., R2 measures.

Overall, these previous analyses show that the unique, consistent liquidity measure

that provides more evident and significant market impact coefficients is the OFI mea-

sure.
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