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Extreme value applications commonly employ regression techniques to
capture cross-sectional heterogeneity or time variation in the data. Estimation
of the parameters of an extreme value regression model is notoriously chal-
lenging due to the small number of observations that are usually available
in applications. When repeated extreme measurements are collected on the
same individuals, that is, a panel of extremes is available, pooling the obser-
vations in groups can improve the statistical inference. We study three data
sets related to risk assessment in finance, climate science, and hydrology. In
all three cases the problem can be formulated as an extreme value panel re-
gression model with a latent group structure and group-specific parameters.
We propose a new algorithm that jointly assigns the individuals to the la-
tent groups and estimates the parameters of the regression model inside each
group. Our method efficiently recovers the underlying group structure with-
out prior information, and for the three data sets it provides improved return
level estimates and helps answer important domain-specific questions.

1. Introduction. Extreme value theory provides the basis for the estimation of probabili-
ties and quantiles associated with extreme events (Coles (2001)). These quantities are used
as inputs for managerial and policy decisions to prevent or limit the damage caused by ex-
treme negative outcomes. Applications of extreme value theory commonly employ regression
techniques to capture distributional variations across individuals and over time in data sets
where covariates are available. For example, spatial applications model the parameters of the
extreme value model as a function of geographical characteristics to explain heterogeneous
behavior across stations (Davison, Padoan and Ribatet (2012)), and climate applications typi-
cally include time as a covariate in the extreme value model to capture the effect of a changing
climate (Katz (2013)). When repeated extreme measurements are available for several indi-
viduals, we may speak of a panel of extremes. In particular, we will consider random variables
Yi,t for individuals i = 1, . . . ,N and time points t = 1, . . . , T that follow generalized extreme
value distributions (Coles (2001)) with parameters depending on a covariate vector Xi,t ∈R

K

in a parametric way. In this case, practitioners would like to pool all observations to estimate
the extreme value regression model. This idea of borrowing strength is very attractive in ex-
treme value applications as the number of observations for the analysis is inherently small.
It does present a practical challenge, however, as it requires observations to be homogeneous
with respect to the model parameters.

The naive approach pools all available individuals into one group, regardless of the un-
derlying structure. This may hide large differences in the model parameters and lead to mis-
guided inference and suboptimal quantile estimates. More often, empirical analyses rely on
ad hoc strategies to partition the individuals into homogeneous groups. For example, in spatial
applications one may select groups of geographically close stations as homogeneous regions
(Asadi, Davison and Engelke (2015), Overeem, Buishand and Holleman (2008)); meteoro-
logical applications partition the data based on climatological similarity (Alila (1999)) or
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physiographical similarity and meteorological factors (Cheng (1998)); financial applications
partition the data based on economic sectors, business lines (Mhalla, Hambuckers and Lam-
bert (2020)), or type of losses (Hambuckers and Kneib (2021)). While this approach intro-
duces flexibility in the extreme panel regression model, it requires a priori domain knowledge.
The latter might not be available or may be inconsistent with the data generating mechanism.

In this paper we study three data sets where identification of the correct group structures
is crucial for accurate statistical inference. The first data set is for a financial study involv-
ing 48 assets where an extreme value regression with time-varying asset-specific covariates
is used to tie financial losses to risk factors relevant to generate stress test scenarios. This
is a critical tool to track firms’ exposures to adverse extreme market events. Pooling across
all assets allows estimating the regression model with few observations per asset but yields
poor estimates of the relationship between financial losses and risk factors. Standard practice
in finance would group assets based on the Standard Industrial Classification (SIC), but this
might not fully explain the heterogeneity (Oh and Patton (2020)). The second study inves-
tigates the effect of climate change on extreme temperatures in the U.S. Midwest. Data are
for 127 locations where an extreme value regression (Zwiers and Kharin (1998), Wang et al.
(2016)) models the impact of the global temperature anomaly (a common time-varying vari-
able) on minimum temperatures, controlling for time-invariant location-specific covariates.
The sought-after global mean/local extreme relation can be inferred at a single location, but
short series yield large standard errors. An analysis based on homogeneous groups of loca-
tions could reduce standard errors. The third data set on flood risk assessment is based on
31 gauging stations in the Danube river basin where an extreme value regression with time-
invariant station-specific characteristics is used to model spatial heterogeneity. Risk analy-
sis based only on individual stations is insufficient since short record length would lead to
large uncertainty of return level estimates. There are many methods to construct homogenous
groups of stations (e.g., Merz and Blöschl (2005), Asadi, Engelke and Davison (2018)), but
many of them are heuristic or require domain knowledge.

While the three data sets come from different areas and exhibit domain specific chal-
lenges, the general structure of the data can be cast as a panel regression problem for ex-
tremes. Throughout the paper we assume that the individuals are partitioned, according to
an unknown latent group structure, and that the extreme value regression model presents
group-specific parameters. Our aim is to make joint inference on the group structure and
the model parameters. This requires finding the correct number of groups and the right as-
signment of the individuals. A full-likelihood approach would require estimating the model
parameters and the group assignment concurrently, but this problem is computationally in-
feasible. To solve this issue, we develop a novel expectation-maximization (EM) algorithm
that is able to estimate the model parameters while uncovering the latent group structure in
a data-driven way. In this perspective we add to a growing literature on identifying latent
group structures in panel data (Su, Shi and Phillips (2016), Gu and Volgushev (2019), Oh and
Patton (2020), Wang and Su (2021)). We also contribute to recent literature on extreme value
clustering methods for spatial data (Carreau, Naveau and Neppel (2017), Reich and Shaby
(2019), Rohrbeck and Tawn (2021), Vignotto, Engelke and Zscheischler (2021)).

Our new methodology offers a solution to the challenges encountered in the three data sets.
Comparing our data-driven group structure with groupings based on domain knowledge, we
find that our approach always yields superior predictions and offers more reliable inference.
In the first study, the SIC grouping only partially explains the heterogeneity in the assets,
and our model with data-driven group assignments produces superior risk estimates. In the
second study, our grouped panel model yields more precise estimates, identifying locations
where extreme temperatures are more severely impacted by the global temperature anomaly
and crop yields are more threatened. In the third study, our optimal panel model discovers
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coherent spatial similarity without using domain knowledge, yields smaller BIC values than
grouping based on domain knowledge, and provides a good fit, even for stations with a lot of
missing data.

The remainder of the paper is structured as follows. In Section 2, after a brief introduction
to extreme value theory, we present our panel model for extremes. Section 3 studies the finite
sample properties of the proposed EM algorithm. In Sections 4 to 6 we use our panel model
for extremes in our three studies to provide superior estimates and more reliable inference.
Section 7 concludes. The Supplementary Material contains additional results.

2. A panel model for extremes.

2.1. Extreme value theory. Let Z1, . . . ,Zs be a sample of independent observations of a
distribution F , and define the sample block maximum Y (s) = max{Z1, . . . ,Zs}, where s is
called the block size. The Fisher–Tippett–Gnedenko theorem (e.g., Embrechts, Klüppelberg
and Mikosch (1997), Theorem 3.2.3) states that if there exist sequences of normalizing con-
stants as and bs such that the normalized Y (s) converges in distribution to a nondegenerate
limit distribution G,

lim
s→∞P

(
Y (s) − as

bs

≤ y

)
= G(y),(1)

then G must be the generalized extreme value (GEV) distribution

H(y | μ,σ, ξ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
exp

{
−

(
1 + ξ

y − μ

σ

)−1/ξ

+

}
ξ �= 0,

exp
{
− exp

(
−y − μ

σ

)}
ξ = 0,

y ∈ R,(2)

where x+ = max(0, x). In this case, F is said to be in the max-domain of attraction of the
GEV distribution H . The parameters μ ∈ R, σ > 0 and ξ ∈ R are the location, scale, and
shape parameters, respectively. The shape is the most important parameter since it charac-
terizes the heaviness of the tail of the distribution F : if ξ > 0, then F is heavy tailed (e.g.,
Cauchy, Pareto), and the GEV is a Fréchet distribution; if ξ = 0, then F is light-tailed (e.g.,
Gaussian, exponential), and the GEV is a Gumbel distribution; if ξ < 0, then F has a finite
upper endpoint (e.g., uniform, beta), and the GEV is a Weibull distribution; see Coles (2001)
for details.

The limiting result (1) holds under a very mild assumption on the tail of F which is sat-
isfied for almost all relevant continuous distributions. Since the GEV distribution is the only
possible limit for sample maxima, it is an asymptotically motivated model for the distribution
of Y (s) for finite values of s. Suppose we have N independent observations Y

(s)
1 , . . . , Y

(s)
N of

the block maximum Y (s). We use maximum likelihood estimation to obtain the parameters
of the GEV distribution that best approximate the distribution of Y (s),

(μ̂, σ̂ , ξ̂ ) = arg max
μ,σ,ξ

N∑
i=1

logh
(
Y

(s)
i | μ,σ, ξ

)
,(3)

where logh(· | μ,σ, ξ) is the log-likelihood of the GEV distribution

(4) logh(y | μ,σ, ξ) = − log(σ ) −
(

1 + 1

ξ

)
log

(
1 + ξ

y − μ

σ

)
−

(
1 + ξ

y − μ

σ

)−1/ξ

.

The maximum likelihood estimator is consistent and asymptotically normal if ξ > −1/2
(Smith (1985), Bücher and Segers (2017)). Under mild conditions on the dependence struc-
ture of a stationary time series, the GEV also emerges as the only possible nondegener-
ate limiting distribution for normalized maxima of blocks of observations from this series
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(Leadbetter, Lindgren and Rootzén (1983)). Asymptotic properties of the maximum likeli-
hood estimator continue to hold in this setting (Bücher and Segers (2018)).

In applications the GEV distribution is often fitted to observations of Y (s) to estimate return
levels. The p-quantile of the GEV distribution is

Qp(μ,σ, ξ) =
⎧⎨⎩μ − σ

ξ

[
1 − {− log(p)

}−ξ ]
ξ �= 0,

μ − σ log
{− log(p)

}
ξ = 0,

(5)

and the Sth return level, for S > 1, is defined as the (1 − 1/S)-quantile. It represents the level
that is expected to be exceeded, on average, once in S time periods, where the time period
corresponds to the block length s. For instance, if Y (s) represents a yearly maximum, then

RLS(μ,σ, ξ) = Q(1− 1
S
)(μ,σ, ξ) is the S-year return level.

2.2. A panel GEV regression model. Panel data studies have flourished over the last years
(Hsiao (2007)). Some of the advantages of panel data, compared to cross-sectional and time
series data, are more efficient estimates of the model parameters, the possibility to test more
complicated models, controlling the impact of omitted variables (fixed effects), and gener-
ating more accurate predictions by pooling information across individuals. Nowadays, static
and dynamic panel models are available for linear regression (Hsiao (2014)), count data re-
gression (Cameron and Trivedi (2015)), discrete choice models (Greene (2009)), and volatil-
ity models (Pakel, Shephard and Sheppard (2011)). We consider a panel of maxima Yi,t , with
i = 1, . . . ,N and t = 1, . . . , T , extracted for N individuals in T blocks. We omit the super-
script for the block size s but still assume that Yi,t is a block maximum and can be reasonably
approximated by a GEV distribution. We further let the GEV model parameters depend on
a covariate vector Xi,t ∈ R

K measured for each ith individual in each t th block. The panel
GEV regression model is defined as

Yi,t | Xi,t ∼ H(y | μi,t , σi,t , ξi,t ),(6)

where the model parameters depend on the covariates as

μi,t = eμ

(
κ�Xi,t

)
,

σi,t = eσ

(
γ �Xi,t

)
,

ξi,t = eξ

(
δ�Xi,t

)
,

where θ = (κ,γ , δ) ∈ � ⊂ R
P is a vector of regression parameters and eμ, eσ , and eξ are

suitable link functions that can be adapted to the requirements in applications. As we are not
interested in the cross-sectional dependence structure in Yt = (Y1,t , . . . , YN,t ), we can make
inference on the marginals by estimating the model parameters by quasi maximum likelihood
(QML), pooling information across individuals, that is,

(7) θ̂QML = arg max
θ

N∑
i=1

T∑
t=1

logh(Yi,t | μi,t , σi,t , ξi,t ),

where the log-likelihood of the GEV distribution is defined in (4). Under the usual regularity
conditions and as T → ∞ (see Chandler and Bate (2007)), we have

θ̂QML
d−→ N

(
θ ,H−1VH−1)

,

where H is the expected Hessian of the log-likelihood and V is the covariance matrix of the
score evaluated at the true parameter. Consistent estimates of these two quantities can be
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obtained as

Ĥ =
T∑

t=1

N∑
i=1

∂sit (θ)

∂θ

∣∣∣∣̂
θQML

,

V̂ =
T∑

t=1

(
N∑

i=1

sit (̂θQML)

)(
N∑

i=1

sit (̂θQML)

)�
,

where sit (θ) = ∂/∂θ logh(Yi,t | μi,t , σi,t , ξi,t ).

2.3. A grouped panel GEV regression model. To introduce flexibility in panel models,
a fast-growing literature explores the existence of latent group structures: see Su, Shi and
Phillips (2016) and Wang and Su (2021) for examples in linear and nonlinear panel regression
models, Gu and Volgushev (2019) for an example in panel quantile models, and Oh and Patton
(2020) for an example with dynamic copula models. We assume that each of the N individuals
is a member of one of G ≥ 1 groups. We let τ = (τ1, . . . , τN) be the N -dimensional vector
whose ith entry τi ∈ {1, . . . ,G} denotes the group membership of the ith individual. The
grouped panel GEV model is defined as

Yi,t | Xi,t ∼ H
(
y | μi,t (τi), σi,t (τi), ξi,t (τi)

)
,(8)

with

μi,t (τi) = eμ

(
κ�

(τi )
Xi,t

)
,

σi,t (τi) = eσ

(
γ �

(τi )
Xi,t

)
,

ξi,t (τi) = eξ

(
δ�
(τi )

Xi,t

)
,

(9)

where θ (g) = (κ (g),γ (g), δ(g)) ∈ � ⊂ R
P is the vector of regression parameters for the gth

group, g ∈ {1, . . . ,G}. We denote the full parameter vector by θ = (θ (1), . . . , θ (G)). In the
existing literature the individuals are typically grouped according to observed characteristics,
such as physical distance in spatial applications and business lines in economic applications
(Asadi, Davison and Engelke (2015), Mhalla, Hambuckers and Lambert (2020)). Given the
group assignments, the parameters of the grouped panel GEV model can be estimated group-
wise using the QML estimator in (7). However, a priori assignments may not provide the best
fit to the data; see the applications in Sections 4 and 6.

We, therefore, propose a data-driven method that jointly estimates the group assignments
τ and the vector of model parameters θ based on an EM algorithm. This algorithm iterates
between estimating the regression parameters, given the group assignments, and estimating
the group assignments, given the regression parameters. Disentangling the estimation of the
regression parameters and the group assignments drastically simplifies the estimation prob-
lem.

Let (Yi,t ,Xi,t ) be the observations from the grouped panel GEV model, where i =
1, . . . ,N and t = 1, . . . , T . Our algorithm has the following steps:

0. Initialization. For a fixed value of G, select an initial group assignment τ̂ (0) at random.
1. Iteration. We iterate between the following two steps until convergence. At the j th itera-

tion, we have:

1.1 Maximization. Conditioning on the group structure τ̂ (j−1), identified at the previ-
ous iteration, we apply the QML estimator over each of the G groups. The EM estimator

is thus defined as θ̂
(j) = (̂θ

(j)

(1)(τ̂
(j−1)), . . . , θ̂

(j)

(G)(τ̂
(j−1))) with

θ̂
(j)

(g)(τ ) = arg max
θ

∑
i:g=τi

T∑
t=1

logh
(
Yi,t | μi,t (τi), σi,t (τi), ξi,t (τi)

)
, g = 1, . . . ,G.
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1.2 Expectation. Given the estimated parameters θ̂
(j)

, we can find the best group as-
signments τ̂ (j) maximizing the individual contribution to the likelihood, that is,

τ̂
(j)
i = arg max

g∈{1,...,G}

T∑
t=1

logh
(
Yi,t | μ̂i,t (g), σ̂i,t (g), ξ̂i,t (g)

)
, i = 1, . . . ,N,

where μ̂i,t (g) = eμ(κ̂�
(g)Xi,t ), σ̂i,t (g) = eσ (γ̂ �

(g)Xi,t ), ξ̂i,t (g) = eξ (̂δ
�
(g)Xi,t ). This step

only requires the comparison of G constants for each individual.

The output of the EM algorithm is the estimated group assignments τ̂T and the estimated
group parameters θ̂T , where we sometimes drop the subscript T for the number of samples
in time. We call Step 1.2 an expectation step for familiarity, even though we do not compute
an expectation. We rather use the alternative approach of assigning each observation to the
likelier group (McLachlan and Krishnan (2008)) as per Oh and Patton (2020).

Theorem 1 in the Supplementary Material (Dupuis, Engelke and Trapin (2023)) provides
a consistency result for this EM algorithm, proving that, for a fixed number of individuals N

and a growing number of samples per individual T → ∞, the group assignments and esti-
mated group parameters converge to their true counterparts, that is, we have the convergences
in probability

τ̂T
p−→ τ 0, θ̂T

p−→ θ0, T → ∞.

Our assumption on the sequence of samples (Yi,t ,Xi,t ), i = 1, . . . ,N , t = 1, . . . , T , for grow-
ing T is that they form a stationary and erdogic sequence. We note that this is fairly general
since, despite the stationarity of the joint sequence, the conditional distributions Yi,t | Xi,t

vary across individuals and over time with the covariate vector Xi,t , according to the panel
model in (8). We also require a set of regularity conditions on the log-likelihood of the GEV
distribution as a function of the model parameters θ . We note here that such regularity condi-
tions are not always easy to verify for the GEV distribution because of the changing support,
and, in general, it will depend on the link functions used in the grouped panel GEV model
whether these conditions are met. The asymptotic theory of maximum likelihood estimation
for the GEV under the most general conditions remains an active area of research, even in the
i.i.d. case; see Dombry (2015), Bücher and Segers (2017), and Dombry and Ferreira (2019)
for recent results.

Inference on the parameters of the grouped panel is performed as in the single group setting
in Section 2.2. Standard errors for the parameters of each group are computed assuming
independence among observations in different groups. An important topic in the clustering
literature is the selection of the number of groups (Su, Shi and Phillips (2016), Oh and Patton
(2020)), and we face an analogous challenge. As the number of groups is unknown, we repeat
our procedure for different values of G and rely on the BIC to select the optimal number of
groups G∗, that is,

G∗ = arg min
G∈N

BIC(G),

where

BIC(G) = −2
G∑

g=1

∑
i:τ̂i=g

T∑
t=1

logh
(
Yi,t | μ̂i,t (τ̂i), σ̂i,t (τ̂i), ξ̂i,t (τ̂i)

) + log(NT ) × PG

and P is the dimension of the parameter vector � in (8) in each group.
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3. Simulation study. We design a comprehensive simulation study in order to assess the
finite sample properties of our EM algorithm for the grouped panel GEV model in typical
settings. We generate sample maxima Yt = (Y1,t , . . . , YN,t ) for t = 1, . . . , T , according to
the following model:

Ut = (U1,t , . . . ,UN,t ) ∼ Cα,

Yt = (
H−1

1,t (U1,t ), . . . ,H
−1
N,t (UN,t )

)
,

where Cα is a copula characterizing the cross-sectional dependence structure with depen-
dence parameter α and Hi,t (y) = H(y | μi,t (τi), σi,t (τi), ξi,t (τi)) is the marginal GEV distri-
bution. We assume constant shape parameters through time and across individuals in the same
group, that is, ξi,t (g) = δ0,(g), and time-varying location and scale parameters as functions of

the vector of covariates Xi,t = (X
(1)
i,t ,X

(2)
i ). In particular,

μi,t (τi) = κ0,(τi ) + κ1,(τi )X
(1)
i,t + κ2,(τi )X

(2)
i ,

σi,t (τi) = exp
(
γ0,(τi ) + γ1,(τi )X

(1)
i,t + γ2,(τi )X

(2)
i

)
,

with τi ∈ {1, . . . ,G}. We let X
(1)
i,t evolve according to the factor model

X
(1)
i,t = ω + λt + βft + εi,t ,

where ft ∼ N(0, νf ) and εi,t ∼ N(0, νi). These dynamics are designed to characterize a time-
varying individual-specific covariate, as in the financial risk application of Section 4. We
let X

(2)
i be uniformly distributed within the interval (u,u) to characterize a time-invariant

individual-specific covariate like the spatial characteristics used in the climatological and
hydrological applications of Sections 5 and 6, respectively.

For 100 repetitions, we generate samples {Yi,t ,Xi,t }N,T
i=1,t=1 with N = 24 and T ∈

{10,20,50}. The performance of the EM algorithm should improve as T increases. We con-
sider three copula functions to assess how the algorithm behaves under different dependence
structures: the independence copula (CInd) imposing zero cross-sectional dependence, the
Gaussian copula (CGauss

0.5 ) with constant correlation coefficient α = 0.5 across the individu-
als, implying a moderate cross-sectional dependence (Kendall’sτ = 0.33) but zero tail de-
pendence, and the Gumbel copula (CGum

2 ) with parameter α = 2 implying similar moderate
cross-section dependence (Kendall’sτ = 0.5) but positive tail dependence. We assume that
the true number of groups is G0 = 4 and fix the model parameters as in Table 1. We as-
sign an equal number of individuals N/G0 = 6 to each group. We estimate the grouped

TABLE 1
True value of parameters used in simulations to study the finite sample properties of the EM algorithm

Group parameters

g = 1 g = 2 g = 3 g = 4 Covariate parameters

κ0,(g) 3.10 3.40 3.20 3.10 ω −0.8
κ1,(g) 2.40 1.40 1.10 1.70 λ 0.4/T
κ2,(g) 2.00 1.00 0.50 1.50 β 0.8
γ0,(g) −0.05 −0.15 −0.20 −0.10 νf 0.5
γ1,(g) 0.10 0.06 0.04 0.08 νI 0.5
γ2,(g) 0.17 0.07 0.02 0.12 u 2
δ0,(g) 0.30 0.27 0.24 0.20 u 6
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TABLE 2
Performance of the BIC in selecting the correct number of groups and average Rand index computed between the

true and estimated group structures when G0 = 4 over 100 replications: Independence (CInd), Gaussian
(CGauss

0.5 ), and Gumbel (CGum
2 ) dependence

CInd CGauss
0.5 CGum

2

Size BIC Rand BIC Rand BIC Rand

T = 10 24% 88% 34% 91% 42% 93%
T = 20 78% 94% 92% 97% 88% 98%
T = 50 100% 99% 99% 99% 100% 99%

panel GEV model, considering G ∈ {1, . . . ,6}, and select the optimal number of groups us-
ing the BIC. Table 2 reports the performance of this approach. The ability of the BIC to
recover the correct number of groups is already very good with only 20 time points and is
perfect when T = 50. The quality of the assignment when G = 4, as measured by the Rand
index (Rand (1971)), a measure of similarity between two partitions, is good for small T ,
and it is almost perfect for T = 50. An interesting aspect emerging from Table 2 is that
the ability of the BIC to recover the correct number of groups grows with increasing cross-
sectional dependence. Stronger dependence helps the group identification because it reduces
the variance among the individuals in the same group. Consequently, as this variance is lower,
the variance of the estimator must increase, as expected by QML estimation under depen-
dence.

As applications are often concerned with the estimation of high quantiles of the GEV dis-
tribution, we also assess the performance of the EM algorithm from this perspective. First,
we assess the quality of the quantile estimates for the different group structures obtained with
the algorithm. We compute the mean relative absolute error (MRAE) between the true 99th
quantiles Q0.99

it (see equation (5)) and those estimated with G ∈ {1, . . . ,6}. Figure 1 shows
that the quality of the estimates is poor when the panel size is very small (T = 10). As T in-
creases, G = G0 = 4 provides the best quantile estimates. Interestingly, even though stronger
dependence improves the group assignments (Table 2), the quality of the quantile estimates
deteriorates as the dependence increases. This is coherent with the higher uncertainty of the
QML estimator under dependence. Second, we assess the quality of the quantile estimates
under the BIC-selected number of groups. We compute the MRAE between Q0.99

it and the
quantiles estimated with the selected model. Figure 1 shows that the quantiles estimated with
the BIC-selected model attain almost optimal performance in terms of MRAE, compared to
the preselected number of groups for T as small as 20.

4. Financial risk management. Extreme value theory offers suitable instruments for
stress testing of extreme losses (Committee on the Global Financial System (2001)). The
GEV distribution in (2) is commonly employed in the financial literature to model maximum
losses over a fixed horizon, both in unconditional static (Bali (2003), McNeil, Frey and Em-
brechts (2015)) and conditional dynamic (Zhao, Zhang and Chen (2018)) settings. In a stress
testing setup a GEV regression model ties maximum losses to a time-varying market risk fac-
tor to study how changes to the latter affect large losses. An example for such a risk factor is
the semivariance, the average of the squared deviations of values that are less than the mean.
It is a measure for downside risk, unlike the variance which provides a measure of volatility.
The semivariance is a widely used measure of downside risk in finance (Barndorff-Nielsen,
Kinnebrock and Shephard (2010)) which is strongly related to macroeconomic uncertainty
(Jurado, Ludvigson and Ng (2015), Segal, Shaliastovich and Yaron (2015)).
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FIG. 1. Median MRAE when estimating Q0.99
it using the model with G ∈ {1, . . . ,6} and the BIC selected model

(B) over 100 replications: Independence (CInd), Gaussian (CGauss
0.5 ), and Gumbel (CGum

2 ) dependence.

We consider an institutional investor diversifying across 48 U.S. industry portfolios and
interested in a stress test analysis of the portfolios’ annual maximum daily loss using the
portfolios’ annual realized semivariance as a risk factor. Table 3 shows the 48 U.S. indus-

TABLE 3
Industry portfolios and corresponding group assignments obtained by the EM algorithm (τ̂∗) and defined by the

SIC (τSIC)

Name Description τ̂∗ τSIC Name Description τ̂∗ τSIC

Agric Agriculture 4 1 Ships Shipbuilding, Railroad Equipment 4 2
Food Food Products 2 1 Guns Defense 1 2
Soda Candy & Soda 4 1 Gold Precious Metals 4 5
Beer Beer & Liquor 1 1 Mines Nonmetallic and Industrial Metal Mining 4 5
Smoke Tobacco Products 2 1 Coal Coal 4 2
Toys Recreation 1 1 Oil Petroleum and Natural Gas 4 2
Fun Entertainment 1 5 Util Utilities 2 2
Books Printing and Publishing 3 1 Telcm Communication 3 3
Hshld Consumer Goods 3 1 PerSv Personal Services 1 1
Clths Apparel 3 1 BusSv Business Services 3 3
Hlth Healthcare 4 4 Comps Computers 4 3
MedEq Medical Equipment 3 4 Chips Electronic Equipment 4 3
Drugs Pharmaceutical Products 4 4 LabEq Measuring and Control Equipment 4 3
Chems Chemicals 1 2 Paper Business Supplies 1 2
Rubbr Rubber and Plastic Products 1 2 Boxes Shipping Containers 1 2
Txtls Textiles 3 1 Trans Transportation 3 5
BldMt Construction Materials 3 5 Whlsl Wholesale 2 1
Cnstr Construction 1 5 Rtail Retail 3 1
Steel Steel Works 4 5 Meals Restaraunts, Hotels, Motels 3 5
FabPr Fabricated Products 4 2 Banks Banking 2 5
Mach Machinery 3 2 Insur Insurance 3 5
ElcEq Electrical Equipment 1 2 RlEst Real Estate 1 5
Autos Automobiles and Trucks 1 2 Fin Trading 3 5
Aero Aircraft 1 2 Other – 1 5
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try portfolios for which we collect daily returns from 1950 to 2018.1 Let Zi,t,j be the daily
return of the ith industry portfolio on the j th day of the t th year, with i = 1, . . . ,48 and
t = 1, . . . ,69. We define the annual maximum loss Yi,t = maxj=1,...,s(−Zi,t,j ) and the an-
nual realized semivariance RSi,t = ∑s

j=1 Z2
i,t,j I{Zi,t,j < 0}, where I{·} denotes the indicator

function. Accurate stress testing requires a model that properly characterizes the variation
in the extreme quantiles of such industry portfolios to changes in the annual realized semi-
variance. We model the panel of maximum losses with the following grouped panel GEV
model:

log
(
μi,t (τi)

) = κ0,(τi ) + κ1,(τi ) log(RSi,t ),

log
(
σi,t (τi)

) = γ0,(τi ),

log
(
ξi,t (τi)

) = δ0,(τi ) + δ1,(τi ) log(RSi,t )

with τi ∈ {1, . . . ,G}. The realized semivariance in the location parameter accounts for the
heteroskedasticity characterizing financial data. As periods of high volatility should lead to
larger extremes, we expect the κ1 parameters to be positive. Similarly, we model the shape
parameter ξi,t as a function of the realized semivariance to account for the changing nature
of tail risk. Previous analyses have shown that the shape parameter changes over time, and
it is positively associated to market volatility and economic uncertainty (Massacci (2017),
Zhao, Zhang and Chen (2018)); therefore, we expect the δ1 parameters to be positive. We
consider the logarithm of RSi,t , as it is convenient from a modeling perspective (Bee, Dupuis
and Trapin (2019)).

We first estimate the model using all the available observations simultaneously, that is,
setting G = 1. Table 4 shows that the QML estimate for κ1,(g) is positive and strongly statis-
tically significant. The parameter δ1,(g) is positive but not statistically significant. This would
lead us to conclude that the variation in the realized semivariance is not informative of tail
risk in the stock market, as measured by the shape parameters ξi,t . However, a more careful
analysis shows that the omitted heterogeneity is leading to misguided inference. We explore

TABLE 4
Parameter estimates and log-likelihood values (LLH) of the models for the industry portfolios: Single group

G = 1, optimal group structure τ̂∗ from the EM algorithm, and SIC-based τSIC. Standard errors in parentheses

τ̂∗ τSIC

G = 1 g = 1 g = 2 g = 3 g = 4 g = 1 g = 2 g = 3 g = 4 g = 5

κ0,(g) −0.88 −1.23 −1.12 −0.98 −0.89 −0.91 −0.89 −0.74 −0.82 −0.91
(0.07) (0.05) (0.16) (0.04) (0.05) (0.09) (0.07) (0.39) (0.25) (0.06)

κ1,(g) 0.43 0.49 0.49 0.45 0.43 0.43 0.43 0.40 0.42 0.43
(0.02) (0.01) (0.04) (0.01) (0.01) (0.02) (0.02) (0.09) (0.06) (0.01)

γ0,(g) −0.37 −0.47 −0.73 −0.57 −0.21 −0.50 −0.46 −0.30 −0.32 −0.42
(0.08) (0.07) (0.19) (0.09) (0.08) (0.08) (0.11) (0.19) (0.15) (0.08)

δ0,(g) −3.63 −6.03 −5.83 −4.89 −5.61 −5.11 −3.54 −3.62 −6.53 −5.09
(1.36) (2.25) (3.73) (2.72) (2.18) (1.36) (1.11) (4.46) (5.69) (1.81)

δ1,(g) 0.33 0.81 0.84 0.68 0.65 0.71 0.41 0.30 0.87 0.60
(0.22) (0.42) (0.52) (0.55) (0.33) (0.27) (0.23) (0.78) (0.91) (0.29)

LLH −4225.01 −4065.24 −4199.68

1Details on the composition of the portfolios and data are available from the Kenneth French Data Library at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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TABLE 5
Summary statistics for the average number of exceedances of the 90th and 95th quantile for 48 U.S. industry

portfolios: Minimum (Min), 25th quantile (Q1), median (Med), 75th quantile (Q3), and maximum (Max). The
expected number of exceedances is 0.10 and 0.05 for the 90th and 95th quantile, respectively

90th quantile 95th quantile

Min Q1 Med Q3 Max Min Q1 Med Q3 Max

G = 1 0.057 0.098 0.116 0.134 0.261 0.014 0.041 0.058 0.087 0.161
τ̂∗ 0.072 0.101 0.116 0.130 0.203 0.018 0.043 0.058 0.072 0.125
τSIC 0.072 0.089 0.116 0.130 0.247 0.018 0.043 0.058 0.072 0.161

possible group structures and estimate the panel GEV model with the EM algorithm using
G ∈ {2,3,4,5,6}. The BIC-based optimal number of groups is G∗ = 4. Table 3 shows the
optimal group assignments τ̂ ∗, and Table 4 shows the estimated parameters. The results sug-
gest that there is strong group heterogeneity in the panel, particularly on the constant terms
of the regression, that is, the parameters κ0, γ0, δ0. Estimates for κ1,(g) are still positive and
strongly statistically significant for each g ∈ {1, . . . ,G}. The size of the δ1 parameters is now
larger and statistically significant at the 5% level for two of the four groups. The benefit
of the grouped panel GEV model from a stress testing perspective is clear when comparing
the 90th (Q0.90

it ) and 95th (Q0.95
it ) quantiles computed by (5) for G = 1 and for the optimal

group structure τ̂ ∗. Table 5 reports summary statistics for the quantile exceedances on each
industry portfolio, that is, V

p
i = 1

T

∑T
t=1 I{Yit > Q

p
it }, with p ∈ {0.90,0.95}. While the me-

dian number of exceedances across portfolios is similar when using one group or the optimal
assignments τ̂ ∗, the spread is considerably larger in the case of the former, both for the 90th
and 95th quantiles, highlighting the greater accuracy of the latent group panel GEV model.

Standard practice in finance would group industry portfolios based on the Standard In-
dustrial Classification (SIC) (Oh and Patton (2020)), and for comparison we carry out our
previous calculations based on this group assignment τSIC. Table 3 shows the group assign-
ments and Table 4 shows the estimated parameters. Estimates uncover the heterogeneity in
the δ1 parameters associated to the realized semivariance, thus improving upon the G = 1
estimates, but the group assignments are quite different from those identified with the EM
algorithm and the corresponding maximized log-likelihood value is much smaller. As for
quantile exceedances on each industry portfolio, Table 5 shows that the medians are similar,
but the spread is greater when using τSIC rather than τ̂ ∗, particularly on the 90th quantile.
This suggests that the SIC grouping only partially explains the heterogeneity in the panel
GEV model and that a data-driven procedure to group the portfolios is beneficial.

5. Effect of climate change on extreme temperatures. There is a large literature on
global mean temperature change and an increasing literature focusing on trends of temper-
ature extremes; see, respectively, for example, Hansen et al. (2010) and Papalexiou et al.
(2018) and references therein. The global mean temperature has recently been increasing
at an increasing rate, but local temperature extremes have not always changed at the same
rate or even in the same direction. Temperature extremes have well-documented detrimental
health and social impacts (IPCC (2008)). Nighttime warming reduces crop yields (García et
al. (2015), Sadok and Krishna Jagadish (2020)) and can have large economic consequences
for crop-producing regions. Assessing the global mean to local extreme temperature rela-
tionship makes the effects of climate change more relatable to economically vulnerable con-
stituents and can guide public policy at the local level. Extreme value theory and the latent
group panel GEV model, developed in Section 2.3, allow us to seek this relationship for the
crop-producing region in the U.S. Midwest in Figure 4.
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The GEV distribution in (2) is a widely used model for annual daily minimum temper-
atures (Zwiers and Kharin (1998), Wang et al. (2016)). Including the global land temper-
ature anomaly as a covariate in the GEV location and scale parameters allows us to infer
the sought-after global mean/local extreme relation at a given location, but short series yield
large standard errors and a panel model could provide more precise estimates. We consider
the negative annual daily minimum temperature Yi,t (in °C), i = 1, . . . ,N , t = 1, . . . , T , at
N = 127 stations in seven crop-producing states in the U.S. Midwest (Ohio, Indiana, Illinois,
Iowa, Missouri, Nebraska, and Kansas) during T = 99 years; see Figure 4 for the locations of
the weather stations. Data are available for the 1912 to 2010 period in the USHCNTemp data
set of the R package SpatialExtremes (Ribatet (2019)). Elevation and latitude should
explain some of the variation in extremes across the U.S. Midwest, so we let the parameters
of the panel GEV model to vary as a function of Xi,t = (elevi , lati , anomt ) with

μi,t (τi) = κ0,(τi ) + κ1,(τi )elevi + κ2,(τi )lati + κ3,(τi )anomt ,

log
(
σi,t (τi)

) = γ0,(τi ) + γ1,(τi )elevi + γ2,(τi )lati + γ3,(τi )anomt ,

ξi,t (τi) = δ0,(τi )

(10)

for τi ∈ {1, . . . ,G}, where elevi and lati denote, respectively, the elevation (in 103 feet)
and (normalized) latitude at station i, and anomt denotes the annual global land anomaly
(in °C) in year t . Elevation and latitude are provided in the USHCNTemp data set. An-
nual global land anomalies are available at https://www.ncei.noaa.gov/access/monitoring/
global-temperature-anomalies/anomalies. We expect κ0,(g) to capture some of the group-
specific idiosyncrasies, and κ1,(g) and κ2,(g) to be positive. The tail index δ0,(g) should be
negative as annual daily minimum temperature has a lower bound. The effect of the global
anomaly on the location and scale parameters of the GEV, as measured by κ3,(g) and γ3,(g),
respectively, is of interest.

Figure 2 shows BIC values of optimal panel fits for different group sizes. Table 6 shows the
estimated parameters for panel model (10) with G = 1 group as well as the estimated param-
eters with G = G∗ = 4, the optimal number of groups based on the BIC criterion. Figure 3
shows the (local) estimates of κ3,(g) when a GEV model with covariates, as in (10), is fitted
to data at each of the 127 locations, that is, G = 127 groups, as well as the estimates based on
the GEV panel model with G∗ = 4. The panel estimates with G∗ = 4 have better precision by
pooling information across all stations within a group, showing 29, 39, 37, and 28% mean re-
duction in estimated standard errors, compared to local estimates for groups g = 1 to g = 4,
respectively. The panel fit allows us to infer that a 1°C increase in the annual global land

FIG. 2. BIC values for the optimal panel fits as a function of different group sizes (solid line). The horizontal
dashed line corresponds to the BIC of the local model, that is, when G = N = 127.

https://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies/anomalies
https://www.ncei.noaa.gov/access/monitoring/global-temperature-anomalies/anomalies
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TABLE 6
Parameter estimates of the models for negative annual daily minimum temperatures: Single group G = 1 and

optimal group structure τ̂∗ from the EM algorithm

τ̂∗

Parameter G = 1 g = 1 g = 2 g = 3 g = 4

κ0,(g) −23.7 −24.2 −22.9 −22.1 −22.6
(0.5) (0.8) (0.5) (0.5) (0.6)

κ1,(g) 3.7 3.3 2.9 4.0 5.1
(0.5) (0.5) (0.5) (0.8) (0.5)

κ2,(g) 17.7 18.3 18.4 17.8 10.7
(0.4) (0.8) (0.5) (0.5) (0.8)

κ3,(g) −2.2 −2.0 −2.8 −2.2 −1.7
(0.7) (0.8) (0.7) (0.8) (0.8)

γ0,(g) 1.59 1.87 1.55 1.53 1.64
(0.06) (0.12) (0.08) (0.07) (0.08)

γ1,(g) −0.09 0.13 −0.22 0.03 −0.01
(0.06) (0.08) (0.09) (0.15) (0.08)

γ2,(g) −0.30 −0.9 −0.4 −0.4 −0.4
(0.09) (0.2) (0.1) (0.1) (0.1)

γ3,(g) 0.04 0.10 0.10 0.03 0.02
(0.07) (0.09) (0.08) (0.09) (0.1)

δ0,(g) −0.24 −0.25 −0.27 −0.23 −0.25
(0.01) (0.02) (0.02) (0.02) (0.02)

FIG. 3. Effect of global anomaly on negative annual daily minimum temperature, based on GEV model fitted
to data at each of the 127 locations (black, plotted by group) and panel estimates (color). Grouping and colors
shown in Figure 4. Horizontal dotted line indicates a 1:1 mean annual global anomaly to mean annual minimum
temperature increase.
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FIG. 4. Seven U.S. Midwest states and 127 weather stations. The G∗ = 4 different colors of the stations corre-
spond to the optimal grouping for the panel GEV model fitted to the negative annual daily minimum temperature.

anomaly results in mean increases in the annual daily minimum temperature between 1.7 and
2.8°C in the area under study. Figure 4 shows the panel groupings. Largest mean increases in
annual daily minimum temperature are predominantly in the western-most states (Nebraska,
Kansas, Iowa, and Missouri). The panel fit with G = 1 in Table 6 yields κ̂3,(g) = −2.2°C for
the entire area under study, but the qq-plots at each station (not shown) for this G = 1 model
are quite poor, and inference is questionable. Stationwise qq-plots (not shown), based on the
G∗ = 4 panel model, are very good, so the panel model allows us to confidently infer that a
1°C increase in the annual global anomaly results in mean increases to annual daily minimum
temperature in some U.S. Midwest regions that are up to almost three-fold that amount. Con-
tinued exacerbated local effects of likely global increases would be particularly problematic
for these important crop-producing U.S. Midwest states where temperature-driven crop yield
variability is already well documented (Kukal and Irmak (2018), Petersen (2019)). Changes
to the annual global land anomaly do not have a significant effect on the variability of annual
daily minimum temperatures as γ3,(g) estimates in Table 6 are small when compared to their
associated standard errors.

6. Flood risk assessment. Floods are major natural hazards that threaten human lives
and cause huge damages to the environment and the economy. Effective flood protection is,
therefore, crucial, and this requires an accurate assessment of the risk related to high river
flows.

The GEV distribution H in (2) is a widely-used model for yearly maxima of river dis-
charges, thanks to its mathematical justification and good properties in applications (e.g.,
Katz, Parlange and Naveau (2002)). At a gauging station with many consecutive years of
observations, the parameters μ, σ , and ξ of this distribution family can be fitted locally, as in
(3), that is, using only data from this particular station.

In many hydrological applications, analysis of flood risk is required at stations with little
or no data, and in such cases estimates of the return level RLS(μ,σ, ξ) for long return periods
S, based on the the local fit, may exhibit huge variances. Regionalization is a common alter-
native way of estimating such high quantiles. It relies on identifying groups of stations that
are similar to each other and on sharing their information on extreme flows to obtain more
accurate estimates. There exists a vast literature that contains many different methods to con-
struct such groupings and different ways of sharing the information (e.g., Burn (1990), Merz
and Blöschl (2005), Asadi, Engelke and Davison (2018)). For a fixed grouping, a widely used
model for the ith station is

log
(
μi,t (τi)

) = κ�
(τi )

log(Xi,t ),

log
(
σi,t (τi)

) = γ �
(τi )

log(Xi,t ),(11)

ξi,t (τi) = ξ(τi )
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FIG. 5. Upper Danube river basin and 31 gauging stations. The G∗ = 2 different colors of the stations corre-
spond to the optimal grouping for the GEV panel.

with τi ∈ {1, . . . ,G}. We consider yearly maxima of river flow data Yi,t , i = 1, . . . ,N ,
t = 1, . . . , T , at N = 31 stations in the upper Danube catchment during T = 50 years; see
Figure 5 for the river network and the locations of the gauging stations. This data set has been
used in Asadi, Davison and Engelke (2015), Gnecco et al. (2021), Mhalla, Chavez-Demoulin
and Dupuis (2020), Röttger, Engelke and Zwiernik (2021), and Engelke and Hitz (2020) for
univariate and multivariate extreme value analyses. In addition to the river flow measure-
ments, for each observation Yi,t we use a corresponding covariate vector Xi,t that contains
the latitude of the station, and the size, the mean altitude, and the mean slope of the corre-
sponding subcatchment. Since the data are yearly maxima, we can interpret this as a grouped
panel GEV regression as in (8), and we see that the covariate vectors are time-invariant, that
is, Xi,t ≡ Xi .

For risk assessment at each of the N = 31 stations, there are several possibilities. One may
locally fit at each station separately a GEV distribution. As discussed above, this becomes in-
feasible or highly suboptimal if the data record is too short at some stations. To illustrate this,
we choose six stations and randomly delete 80% of their T = 50 observations. A local fit at
each station can be seen as a grouped panel with G = N = 31 groups, that is, every station is
in its own group, and no information is shared. To borrow information across the 31 stations,
one can use a covariate model, as in (11), for all stations simultaneously. This corresponds
to a panel model with G = 1 group only. Since the effect of the covariates might, however,
not be the same for all stations, a regionalization approach with a good group assigment of
the stations should provide a superior fit. Asadi, Davison and Engelke (2015) choose such a
grouping with G = 4 groups in an ad hoc way and fit model (11) to the data.

Our grouped panel approach allows us to find the optimal group assignments, as described
in Section 2.3. The number of groups for this data set is G∗ = 2 and is chosen as the panel that
minimizes the BIC; see Figure 7 for the BIC for different numbers of groups. The optimal
number of groups chosen by our algorithm is smaller than in Asadi, Davison and Engelke
(2015) and, therefore, allows for more efficient pooling of information. Note that even if we
consider a fixed group size G = 4, the group assignments of our panel with four groups differ
from the grouping in their approach. While they use an ad hoc grouping based on domain
knowledge, we optimize our assignment in a purely data-driven way, according to the second
step in the EM algorithm in Section 2.3.
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FIG. 6. The rows correspond to QQ-plots of four stations: Fit with G = 1 group (left), fit with G∗ = 2 groups
(center), and local fit (right). Red points are missing data that are not used for fitting in any of the models.

Figure 6 shows the QQ-plots of the different fitted models for four exemplary stations,
where two of them have missing data. It can be seen that the local fit (figures on the right)
performs well for stations where enough data are available, but naturally it is not able to
capture well the tail if data at a station are scarce. For the other boundary case of a global fit
with only one group, G = 1, the left-hand side of Figure 6 shows that such a model is not
flexible enough to model the extremes at all locations well. Our optimized panel with data-
driven group assignments is shown in the center column of Figure 6. We see that it combines
the advantages of the local and the global fits. It is flexible enough to model the tail at all
stations sufficiently well. Moreover, the fact of pooling the information from all stations in a
group helps to obtain a good fit, even for stations with a lot of missing data. The BIC values in
Figure 7 provide further evidence that our optimized grouped panel GEV regression performs
better than the local and global models as well as the model of Asadi, Davison and Engelke
(2015).
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FIG. 7. BIC values for the optimal panel fit as a function of different number of groups (solid line). The hori-
zontal lines correspond to the BIC of the local model (dashed line) and the model in Asadi, Davison and Engelke
(2015) (dotted line), respectively.

Figure 5 shows the final group assignments of our optimal panel model in two different
colors. We recognize a clear spatial pattern in the sense that stations on the same river tend
to fall into the same group. This is astonishing since our method does not enforce this in
any way. This shows the big advantage of our methodology, namely, that it does not require
domain knowledge to produce sensible panel groupings.

7. Discussion. Sections 4 to 6 present three applications demonstrating the practical use-
fulness of our model in very diverse settings, but the benefits of properly grouping individ-
uals to estimate extreme events extend to other situations. We mention a few of the many
applications when applying our grouped panel GEV regression model to: i) annual maxi-
mum subhourly precipitation would reduce the estimation error of design storms at more
recent gauging sites where only short series of precipitation data are available (Alila (1999),
Buishand (1991)); ii) annual maximum three-day snow fall depth data would reduce the es-
timation error of the extreme return levels required in avalanche hazard mapping (Bocchiola
et al. (2008)); iii) annual fastest-mile wind speed data would reduce the estimation error of
at-site minimum design wind loads (Cheng (1998)).

We present our approach and applications based on the GEV regression model where
extremes are defined as the maximum (or minimum) observation from blocks of equal size.
A different modeling framework for extremes is the peaks-over-threshold method that uses
the generalized Pareto (GP) distribution (Pickands (1975)). In the Supplementary Material
(Dupuis, Engelke and Trapin (2023)), we outline how such a grouped panel GP regression
model can be implemented.

The parameters in our grouped panel GEV or GP model are linear functions of the co-
variates. If more flexibility is needed, it is straightforward to generalize our approach to
other forms of regression functions, such as additive models (Chavez-Demoulin and Davi-
son (2005)), neural networks (Cannon (2010), Velthoen et al. (2021)), or random forests
(Gnecco, Terefe and Engelke (2022)). Variable selection through lasso-type techniques is
another possible extension (de Carvalho et al. (2022)).

Future research may also extend our methodological framework to modeling of panels of
multivariate extremes where the dependence structure of the maxima depends on a vector of
covariates, as in de Carvalho and Davison (2014). Latent groups with different dependence
regimes could then be defined, and our EM algorithm could be extended to estimate the
regression parameters and group allocations in the dependence structure, following the lines
of Oh and Patton (2020).
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SUPPLEMENTARY MATERIAL

Supplement to “Modeling panels of extremes” (DOI: 10.1214/22-AOAS1639SUPP;
.pdf). (Dupuis, Engelke and Trapin (2023)) In this Supplementary Material, a consistency
result for our EM algorithm is provided, and a grouped panel Generalized Pareto regression
model is described.
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