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Abstract
We show that any subset of the natural numbers with positive logarithmic Banach
density contains a set that is within a factor of two of a geometric progression,
improving the bound on a previous result of the authors. Density conditions on
subsets of the natural numbers that imply the existence of approximate powers of
arithmetic progressions are developed and explored.
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1. Introduction

In [1], the authors introduced a measure space, obtained by taking a quotient of a
Loeb measure space, that has the property that multiplication is measure-preserving
and for which standard sets of positive logarithmic density have positive measure.
The log Banach density of a standard set (see Section 2 below for the definition) was
also introduced, and this measure space framework was used, in conjunction with
Furstenberg’s Recurrence Theorem, to obtain a standard result about the existence
of approximate geometric progressions in sets of positive log Banach density. In this
paper, we improve the bounds of approximation of this result by using Szemerédi’s
Theorem together with a “logarithmic change of coordinates.” More specifically, in
Proposition 3.1, we show that if A is a standard subset of the natural numbers, then
the Banach density of {dlog2(x)e : x 2 A} is greater than or equal to the log Banach
density of A. This allows us to use Szemerédi’s Theorem to show that every set of
positive Banach log density contains a set which is “within a factor of 2” of being a
geometric sequence; Theorem 3.3 provides a precise version of this statement. We
also explore a family of densities on the natural numbers, the (upper) r-Banach
densities for 0 < r  1, which have the property that positive 1/m-Banach density
implies the existence of approximate mth powers of arithmetic progressions, in a
sense made precise in Theorem 3.7. (This family of densities was introduced in [1],
although BDm(A) in that paper corresponds to BD1/m(A) here.)

In Section 2 we establish some properties of the log Banach density and the r-
Banach densities, most notably that the log Banach density of a set A is always less
than or equal to every r-Banach density of A, and that if r < s then the r-Banach
density of A is less than or equal to the s-Banach density of A (Theorem 2.12).
These inequalities can both be strict. In fact, it is easy to see that the log Banach
density of a set A could be 0 while every r-Banach density of A is 1, and in Example
2.13 we see that if r < s then it is possible to have the r-Banach density of a set A
be 0 while the s-Banach density of A is 1.

In Section 3 we establish the aforementioned approximation results and provide
examples to show that the level of approximation is optimal.

We use nonstandard methods, which simplifies a number of the arguments. For
an introduction to nonstandard methods aimed specifically toward applications to
combinatorial number theory, see [3].

2. r-density and Logarithmic Density

Convention 1. In this paper, N denotes the set of positive natural numbers. For
any real numbers a  b, we set [a, b] := {x 2 N : a  x  b}. We make a similar
convention for the intervals (a, b], [a, b), and (a, b).
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We recall some well-known densities on N.

Definition 1. Suppose that A ✓ N and 0 < r  1.

• The upper r-density of A is defined to be

dr(A) := lim sup
n!1

r

nr

X
x2A\[1,n]

1
x1�r

.

• The lower r-density of A is defined to be

dr(A) := lim inf
n!1

r

nr

X
x2A\[1,n]

1
x1�r

.

Note that d1(A) and d1(A) are simply the usual upper and lower asymptotic
densities of A, respectively. For that reason, we omit the subscript r when r = 1.

Definition 2. Suppose that A ✓ N. Then:

• The upper logarithmic density of A is defined to be

ld(A) := lim sup
n!1

1
lnn

X
x2A\[1,n]

1
x

.

• The lower logarithmic density of A is defined to be

ld(A) := lim inf
n!1

1
lnn

X
x2A\[1,n]

1
x

.

The following result establishing relationships amongst the above densities was
proven in [2].

Fact 1. For A ✓ N and 0 < r < s  1, we have

ds(A)  dr(A)  ld(A)  ld(A)  dr(A)  ds(A).

In working with these densities, we often use the following elementary estimates
(established using an integral approximation): for any a < b in N, we have

b�1X
x=a

1
x1�r

 br � ar

r


bX
x=a+1

1
x1�r

.

Theorem 1. For A ✓ N and 0 < r  1, we have

dr(A) � 1�
�
1� d(A)

�r
.
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Proof. Set ↵ := d(A) and take H 2 ⇤N \ N such that N
H ⇡ ↵, where N :=

|⇤A \ [1,H]|. Set ✏ := N
H � ↵, so ✏ is a (possibly negative) infinitesimal. We now

have

dr(A) � st

0
@ r

Hr

X
x2 ⇤A\[1,H]

1
x1�r

1
A

� st

0
@ r

Hr

X
x2 (H�N,H]

1
x1�r

1
A

� st
✓

r

Hr
· Hr � (H �N)r

r

◆

= st(1� (1� (↵ + ✏))r)
= 1� (1� ↵)r.

Corollary 1. If d(A) > 0, then dr(A) > 0 for all 0 < r  1.

Remark 1. It is easy to construct a set A ✓ N with d(A) = 1 and ld(A) = 0. As
a consequence of the theorem above, we also have dr(A) = 1 for any 0 < r  1.

We now introduce the corresponding uniform versions of the above densities.

Definition 3. For A ✓ N and 0 < r  1, the (upper) r-Banach density of A is
defined to be

BDr(A) := lim
n!1

sup
k2N

r

n

X
x2A\[k,(kr+n)1/r]

1
x1�r

.

Note that BD(A) = BD1(A) is the usual upper Banach density of A. Note also
that dr(A)  BDr(A) from the definition.

Definition 4. For A ✓ N, the (upper) log Banach density of A is

`BD(A) := lim
n!1

sup
k�1

1
lnn

X
x2A\[k,nk]

1
x

.

Of course one could also define the lower r-Banach density and the lower log
Banach density, but in this paper we only focus on the upper r-Banach density and
upper log Banach density.

The following nonstandard formulation of r-Banach density and log Banach den-
sity follows immediately from the nonstandard characterization of limit.

Proposition 1. Let A ✓ N, 0 < r  1, and 0  ↵  1.

1. BDr(A) � ↵ if and only if there are k,N 2 ⇤N with N > N such that

st

0
@ r

N

X
x2A\[k,(kr+N)1/r]

1
x1�r

1
A � ↵.
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2. `BD(A) � ↵ if and only if there are k,N 2 ⇤N with N > N such that

st

0
@ 1

lnN

X
x2⇤A\[k,Nk]

1
x

1
A � ↵.

We now establish the uniform version of Fact 1 above. The results in [2] do not
immediately apply in the uniform setting. Nevertheless, our proof is inspired by
the arguments from [2], although we argue in the nonstandard model to make the
idea more transparent.

Theorem 2. For any A ✓ N and 0 < r < s  1, we have

`BD(A)  BDr(A)  BDs(A).

Proof. We first prove that BDr(A)  BDs(A).
Let 0 < ↵ < 1 be such that BDs(A) < ↵. It su�ces to show that � := BDr(A) 

↵. By Proposition 1, we can find a, b 2 ⇤N such that br � ar > N and

BDr(A) = st

0
@
 

bX
n=a

�A(n)
n1�r

! 
bX

n=a

1
n1�r

!�1
1
A .

Here, �A denotes the characteristic function of (the nonstandard extension of) A.
Next note that if c, d 2 ⇤N are such that ds�cs > N, then Proposition 1 once again
implies that

st

0
@
 

dX
i=c

�A(i)
i1�s

! 
dX

i=c

1
i1�s

!�1
1
A  BDs(A) < ↵.

Choose m 2 [a, b] such that mr � ar > N and
 

mX
n=a

1
n1�r

! 
bX

n=a

1
n1�r

!�1

⇡ 0.

(For example, let m = d((br�ar)1/2 +ar)1/re.) Since x 7! mx�ax is an increasing

function, we have that ms � as � mr � ar. Hence
iX

n=a

�A(n)
n1�s

< ↵
iX

n=a

1
n1�s

for any

i > m. Now we have
bX

n=a

�A(n)
n1�r

=
bX

n=a

�A(n)
n1�s

1
ns�r

=
bX

n=a

�A(n)
n1�s

 
bX

i=n

✓
1

is�r
� 1

(i + 1)s�r

◆
+

1
(b + 1)s�r

!
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=
bX

n=a

bX
i=n

�A(n)
n1�s

✓
1

is�r
� 1

(i + 1)s�r

◆
+

bX
n=a

�A(n)
n1�s

1
(b + 1)s�r

=
bX

i=a

iX
n=a

�A(n)
n1�s

✓
1

is�r
� 1

(i + 1)s�r

◆
+

bX
n=a

�A(n)
n1�s

1
(b + 1)s�r

< ↵
bX

i=a

iX
n=a

1
n1�s

✓
1

is�r
� 1

(i + 1)s�r

◆
+ ↵

bX
n=a

1
n1�s

1
(b + 1)s�r

+ (1� ↵)
mX

i=a

iX
n=a

1
n1�s

✓
1

is�r
� 1

(i + 1)s�r

◆

= ↵
bX

n=a

1
n1�s

bX
i=n

✓
1

is�r
� 1

(i + 1)s�r

◆
+ ↵

bX
n=a

1
n1�s

1
(b + 1)s�r

+ (1� ↵)
mX

n=a

1
n1�s

mX
i=n

✓
1

is�r
� 1

(i + 1)s�r

◆

= ↵
bX

n=a

1
n1�s

1
ns�r

+ (1� ↵)
mX

n=a

1
n1�s

1
ns�r

� (1� ↵)
mX

n=a

1
n1�s

1
(m + 1)s�r

 ↵
bX

n=a

1
n1�r

+ (1� ↵)
mX

n=a

1
n1�r

.

We conclude that �  ↵ since

 
mX

n=a

1
n1�r

! 
bX

n=a

1
n1�r

!�1

⇡ 0.

In the arguments above, if we let r = 0 and instead require that ln(m)�ln(a) > N,
then we get `BD(A)  BDs(A).

It is easy to see that the set A =
S1

n=1[n!, 2n!] has the property that `BD(A) = 0
while BDr(A) = 1 for every r 2 (0, 1]. The following example shows that the
r-Banach densities can also disagree to this extent.

Example 1. For any 0 < r < s  1 there is a set A ✓ N such that BDr(A) = 0
and BDs(A) = 1.

Proof. Let (an) be a sequence of positive integers defined by setting a1 to be any
integer larger than 1 and an+1 := a2

n. Let

A =
1[

n=1


a1/(rs)

n ,
⇣
a1/s

n + 1
⌘1/r

�
.
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We show that BDr(A) = 0 and BDs(A) = 1.
Suppose that k,N 2 ⇤N with N > N are such that

BDr(A) = st

0
@ r

N

X
x2⇤A\[k,(kr+N)1/r]

1
x1�r

1
A .

Let ⌫ be the maximal m 2 ⇤N such that

[a1/rs
m , (a1/s

m + 1)1/r \ [k, (kr + N)1/r] 6= ;.

Note then that

⇤A \ [k, (kr + N)1/r] ✓ [k, (
p

a⌫
1/s + 1)1/r] [ [a1/rs

⌫ , (a1/s
⌫ + 1)1/r].

The latter interval is negligble:

st

0
BB@ r

N

X
x2 [a1/(rs)

⌫ ,
⇣

a1/s
⌫ +1

⌘1/r
]

1
x1�r

1
CCA]

= st

0
BB@ r

N

0
BB@
0
BB@
✓⇣

a1/s
⌫ + 1

⌘1/r
◆r

r

1
CCA�

0
BB@
✓⇣

a1/s
⌫

⌘1/r
◆r

r

1
CCA
1
CCA
1
CCA

= st
✓

1
N

◆

= 0.

Next observe that (
p

a⌫
1/s + 1)1/r < 2(

p
a⌫)1/rs  2

p
(kr + N)1/r). If

2
p

(kr + N)1/r) < k, then the above computation shows that BDr(A) = 0. Thus,
we may assume that 2

p
(kr + N)1/r) � k, from which it is readily verified that

N > kr. It follows that

BDr(A)  st

0
@ r

N

X
x2 [k,2(

p
kr+N)1/r]

1
x1�r

1
A

= st
✓

r

N

✓
2r(
p

kr + N)
r

� kr

r

◆◆

 st
✓

r

N

✓
2r(
p

N + N)
r

◆◆

= 0.
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For showing BDs(A) = 1, it su�ces to show that
✓⇣

a1/s
n + 1

⌘1/r
◆s

� a1/r
n > N

when n > N. Indeed, if N 2 ⇤N\N is such that
✓⇣

a1/s
n + 1

⌘1/r
◆s

�a1/r
n > N , then

⇤A contains the interval
[a1/rs

n , ((a1/rs
n )s + N)1/s].

Note that ✓⇣
a1/s

n + 1
⌘1/r

◆s

� a1/r
n

=
⇣
a1/s

n + 1
⌘⇣

a1/s
n + 1

⌘(s�r)/r
� a1/r

n

�
⇣
a1/s

n + 1
⌘

a(s�r)/(rs)
n � a1/r

n

= a
1
s + s�r

rs
n + a

s�r
rs

n � a
1
r
n = a

s�r
rs

n .

It remains to observe that a
s�r
rs

n > N because an > N and (s� r)/(rs) is a positive
standard real number.

3. Polynomial Structure and Multiplicative Structure

In what follows, log denotes log2. For A ✓ N, set

log A := {dlog xe : x 2 A}.

We also introduce some convenient notation: for k,N 2 ⇤N and E ✓ ⇤N, set
Lk,N (E) = 1

ln N

P
x2E\[k,Nk] 1/x.

Proposition 2. If A ✓ N, we have BD(log A) � `BD(A).

Proof. Without loss of generality, we can assume that `BD(A) = ↵ > 0. Take
k,N 2 ⇤N with N > N so that st(Lk,N (⇤A)) = ↵. We first claim that we can
assume that k and kN are integer powers of 2. Indeed, choose integers a, b such
that 2a�1 < k 6 2a and 2b 6 kN < 2b+1. Note that b� a > N. Observe now that

2a�1X
x=k

1/x,
NkX

x=2b+1

1/x  ln 2,

so
Lk,N (⇤A) ⇡ 1

lnN

X
x2⇤A\[2a,2b]

1/x.
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It remains now to notice that ln(2b�a)  lnN  ln(2b�a) + ln 2, whence

1
lnN

X
x2⇤A\[2a,2b]

1/x ⇡ 1
ln 2b�a

X
x2⇤A\[2a,2b]

1/x.

In light of the previous paragraph, we may take a < b in ⇤N so that
st(L2a,2b�a(⇤A)) = ↵. For a  i < b, set Ii := [2i + 1, 2i+1]. Observe that
dlog(x)e = i + 1 for all x 2 Ii. Set I := {i : Ii \ ⇤A 6= ;}. We then have:

|log(⇤A) \ (a, b]| = |I|
=
X
i2I

log(2i+1)� log(2i)

� log(e)
X
i2I

X
x2⇤A\[2i,2i+1)

1
x

.

Recalling that ln(2b�a) = b�a
log(e) , it follows that

BD(log(A)) '
|log(⇤A) \ (a, b]|

b� a
'

1
ln 2b�a

X
x2⇤A\[2a,2b�1)

1
x

= ↵.

We now come to the central notion of this paper.

Definition 5. Fix c, r 2 R>0.

1. For a, x 2 R, we say that a is a (c, r)-approximation of x if a 2 [x, x + cxr).

2. For A,X ✓ R, we say that A is a (c, r)-approximate subset of X if every a 2 A
is an (c, r)-approximation of some x 2 X.

Theorem 3. Suppose that A ✓ N is such that `BD(A) > 0. Then for any l 2 N,
there exist arbitrarily large a, d 2 N such that the geometric sequence G := {2a(2d)n :
n = 0, 1, . . . , l � 1} is a (1, 1)-approximate subset of A.

Proof. Fix m 2 N. Since BD(log A) � `BD(A) > 0, the set log A contains an
arithmetic progression {a + nd : n = 0, 1, . . . , l � 1} with a, d > m. Fix n 2
{0, 1, . . . , l � 1} and take x 2 A and ✓ 2 [0, 1) such that a + nd = log x + ✓. Then
x  2a+nd = 2✓x < 2x.

The following example shows that we cannot improve upon the level of approxi-
mation in the previous theorem.

Example 2. For each ✏ > 0, there is A ✓ N such that ld(A) = ld(A) > 0 and no
positive integer power of 2 is a (1� ✏, 1)-approximation of any element of A.
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Proof. Choose � > 0 such that (2� ✏)2� < 2. Set

A :=
1[

n=1

[2n + 1, 2n+�].

Note that the interval [2n+�, (2�✏)2n+�] does not contain any positive integer power
of 2 as 2n+1 6 (2� ✏)2n+� implies that 2  (2� ✏)2�. It follows that no power of 2
is a (1� ✏, 1) approximation of any element of A. We leave it to the reader to show
that ld(A) = ld(A) � �.

Our next example shows that one cannot prove Theorem 3 under the weaker
assumption of positive Banach density.

Example 3. Let ↵ < 1. Fix a j such that (j�1)/j > ↵. Let u0 = 2, ui+1 > (jui)3,
and set

A =
1[

i=1

[ui, jui].

Then d(A) > ↵. For any n 2 N, there exists an m 2 N such that there does not
exist a 3-term geometric progression G = {a, ar, ar2} with a, r > m and G is an
(n� 1, 1)-approximate subset of A.

For a proof of the claim in the previous example, one can consult our paper [1].

For A ✓ N and 0 < r  1, set Ar := {dxre : x 2 A}. One proves the following
proposition in a manner similar to the proof of Proposition 2.

Proposition 3. For any A ✓ N, we have BD(Ar) � BDr(A).

Theorem 4. Suppose A ✓ N and m 2 N are such that BD1/m(A) > 0. Then for
any ✏ > 0 and l 2 N, there exist arbitrarily large a, d 2 N such that {(a + nd)m :
n = 0, 1, . . . , l � 1} is an (m + ✏, m�1

m )-approximate subset of A.

Proof. Fix p 2 N. Since BD(A1/m) � BD1/m(A) > 0, there are a, d > p such that
{a + nd : n = 0, 1, . . . , l � 1} ✓ A1/m. Choose a su�ciently large so that, for any
z � a� 1, we have

✏zm�1 >

✓
m

m� 2

◆
zm�2 +

✓
m

m� 3

◆
zm�3 + · · · + mz + 1.

Fix n 2 {0, 1, . . . , l� 1} and take x 2 A and ✓ 2 [0, 1) such that a + nd = x1/m + ✓.
Since x1/m > a� 1, we have

x 6 (a + nd)m = (x
1
m + ✓)m = x + (m + ✏)x

m�1
m ✓

+✓

✓
�✏x

m�1
m +

✓
m

m� 2

◆
x

m�2
m ✓ +

✓
m

m� 3

◆
x

m�3
m ✓2 + · · · + ✓m�1

◆

< x + (m + ✏)x
m�1

m .

Hence (a + nd)m is an
�
m + ✏, m�1

m

�
-approximation of x 2 A.
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The next example shows that there is not much room left to improve upon the
level of approximation in the previous theorem.

Example 4. For any ✏ > 0, there exists a � > 0 and there exists a set A ✓ N
such that d1/m(A) = d1/m(A) = � and such that, for any a 2 N, am is not an�
m� ✏, m�1

m

�
-approximation of any element in A.

Proof. Fix 0 < � < ✏/m and set A :=
1[

n=1

[nm + 1, (n + �)m). Suppose, towards a

contradiction, that am 2 [x, x + (m� ✏)x(m�1)/m) for some x 2 [nm + 1, (n + �)m).
It follows that n + 1  a, whence

((n + �) + (1� �))m = (n + 1)m 6 (n + �)m + (m� ✏)(n + �)m�1.

Hence m(n + �)m�1(1 � �) 6 (m � ✏)(n + �)m�1, which implies that �m � ✏, a
contradiction. We leave it to the reader to check that d1/m(A) = d1/m(A) = �.

Corollary 1 and Theorem 4 immediately imply:

Corollary 2. Suppose that A ✓ N is such that d(A) > 0. Then for any l,m 2 N
and ✏ > 0, there exist arbitrarily large a, d 2 N such that {(a+nd)m : n = 0, 1, . . . , l}
is an

�
m + ✏, m�1

m

�
-approximate subset of A.

We should remark that the conclusions of approximate structure really are nec-
essary. For example, if A is the set of all square-free numbers, then d(A) > 0 but A
does not contain any 3-term geometric progression or any m-th power of an integer
greater than 1 with m � 2.
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