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Noise exposure influences the comfort and well-being of people in several contexts,1

such as work or learning environments. For instance, in o�ces, di↵erent kind of2

noises can increase or drop the employees’ productivity. Thus, the ability of separat-3

ing sound sources in real contexts plays a key role in assessing sound environments.4

Long-term monitoring provide large amounts of data that can be analyzed through5

machine and deep learning algorithms. Based on previous works, an entire work-6

ing day was recorded through a sound level meter. Both sound pressure levels and7

the digital audio recording were collected. Then, a dual clustering analysis was car-8

ried out to separate the two main sound sources experienced by workers: tra�c and9

speech noises. The first method exploited the occurrences of sound pressure levels via10

Gaussian Mixture Model and K-means clustering. The second analysis performed a11

semi-supervised deep clustering analyzing the latent space of a Variational autoen-12

coder. Results show that both approaches were able to separate the sound sources.13

Spectral matching and the latent space of the variational autoencoder validated the14

assumptions underlying the proposed clustering methods.15
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I. INTRODUCTION16

A common metric for sound monitoring is represented by the A-weighted continuous17

equivalent level LA,eq. Deeper statistical representations of acoustic monitoring are provided18

by percentile levels, i.e. the 95% SPL (Yadav et al., 2021). However, the LA,eq does not show19

any detail about the acoustic scene (Green and Murphy, 2020). Further, the assessment of20

background noise levels through percentiles relies on temporal assumptions. The need of21

going beyond the LA,eq has been addressed especially in passive acoustic monitoring. In22

works concerning ecology and underwater acoustics, for instance, the assessment of the23

ambient noise levels is carried out through the probability density of the power spectral24

density (Merchant et al., 2013, 2015; Parks et al., 2009). The separation of sound sources25

would allow more detailed analyses of sound contexts. This ability can improve monitoring26

and design of several contexts resulting in the achievement of more comfortable spaces.27

Workplaces are one of the most lived-in spaces by people. The achievement of a comfort-28

able environment is important for both well-being and productivity. In o�ces, the latter29

are deeply influenced by noises. Individual perceptions can be a↵ected by the nature of30

sound (Koskela et al., 2014). The performances can either decrease or increase. It has been31

shown that both high or low frequency noises can improve cognitive tasks (Alimohammadi32

and Ebrahimi, 2017). The most important factor related to workers’ comfort concerns the33

speech intelligibility. Thus, the most distracting noise for workers is represented by col-34

leagues’ speech (Ellermeier et al., 2001; Haapakangas et al., 2020). The NF S31-199 and35

the ISO 22955:2021 highlight the importance of assessing the noise levels at workstations36
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depending on the activity carried out in the o�ce. In particular, the ISO provides a survey37

for employees to rank the level of annoyance of several noise sources. This new approach38

deeply a↵ects the design of open-plan o�ces (Harvie-Clark et al., 2021; ISO 22955, 2021; NF39

S31-199, 2016). Thus, the ability of separating the noise sources is fundamental. However,40

there is a lack of ability in the technical praxis about measuring sound sources in real-world41

contexts.42

Measurement techniques based on the statistical probability densities of SPLs were used43

to monitor noise contributions in classrooms. These methods are based on machine learning44

algorithms. Machine learning is the study of algorithms that improve their performance45

through the experience (Mitchell, 1997). The applications of these techniques frequently46

involve statistical methods and their use is rapidly increasing in acoustics (Bianco et al.,47

2019). Long-term monitoring allow to collect large amounts of data. Thus, sound level meter48

measurements can be exploited using statistical methods. To analyze the collected SPLs,49

clustering techniques can find pattern among data. The multimodal SPLs’ occurrences curve50

were exploited via Gaussian Mixture Model and K-means clustering to separately assess the51

noise due to the HVAC systems, the noise produced by the students, the teachers’ speech,52

and the signal-to-noise ratios (D’Orazio et al., 2020; Hodgson et al., 1999; Wang and Brill,53

2021). An application of the Gaussian Mixture Model in five o�ces was made to measure the54

human activity noise levels (Dehlbæk et al., 2016). Then, two algorithms were proposed as55

unsupervised methods to separate and identify the mechanical noise and the human activity56

during working hours (De Salvio et al., 2021).57
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Blind source separation is a major issue addressed not only in machine learning but in58

deep learning too. This is a type of machine learning based on artificial neural networks59

that learns representations of data with multiple level of abstraction (LeCun et al., 2015).60

Inspired by the cocktail party e↵ect, i.e. the ability of humans to focus the auditory attention61

to one speaker filtering other stimuli (Bronkhorst, 2000), the need of extracting the single62

source from a mixture of signals lies in many useful applications such as speech, music, and63

environmental audio processing (Vincent et al., 2018). In the framework of the acoustic64

source separation, the concept of deep clustering was introduced. Deep clustering refers65

to the ability of performing clustering through deep learning algorithms (Hershey et al.,66

2016). One of the most popular category to perform this is represented by the autoencoders.67

These kind of network performs a non-linear mapping of the data through an encoder and68

a decoder. The first maps the function to be trained, the second learns how to reconstruct69

the original data (Min et al., 2018). Applications of autoencoders in acoustics concerned70

speech enhancement and clustering of geophysical data (Jenkins et al., 2021; Lu et al., 2013;71

Ozanich et al., 2021).72

A variational autoencoder is a deep generative model that forces the latent code of autoen-73

coders to follow a predefined distribution (Min et al., 2018). It has the same architecture74

of autoencoders, high-dimensional data are encoded into a low-dimensional latent space75

(Kingma and Welling, 2014). The ability of parametrizing data through a probability distri-76

butions gained broad attention in the deep learning community. Successful applications of77

variational autoencoders concern speech enhancement, blind source separation, and sound78
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source localization in reverberant spaces (Bianco et al., 2021; Leglaive et al., 2019; Neri79

et al., 2021).80

The present work deals with the blind source separation through a sound level meter81

long-term monitoring. Basing on the methods proposed in previous work (De Salvio et al.,82

2021), a dual analysis of the same phenomenon is proposed. A sound level meter recorded83

both the sound pressure levels and the digital audio of the working activity inside an o�ce.84

Then, two clustering analyses were performed. The first exploited the two machine learning85

algorithms earlier mentioned, i.e. the Gaussian Mixture Model and the K-means clustering;86

the second performed a deep clustering analysis through a variational autoencoder. The87

goal is to identify and separately measure the main sound sources experienced by workers88

during the activity with both approaches.89

II. THEORETICAL BACKGROUND90

A. Clustering techniques91

Clustering algorithms look for pattern in data (Bishop and Nasrabadi, 2006). Data are92

gathered in di↵erent clusters basing on their similarity. This kind of process is very useful93

when a great amount of unlabelled data is available. The task of clustering is finding94

useful properties among data, called features, which allow the data to be labelled. Di↵erent95

algorithms use di↵erent criteria to find similarity in data, i.e. shaping clusters. This study96

used two algorithms: the Gaussian Mixture model, and the K-means clustering.97
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1. Gaussian Mixture Model98

Gaussian Mixture model (GMM) is a model-based clustering technique (McLachlan and99

Peel, 2004). A probabilistic model recovers the original general distribution. The latter100

is described as a linear combination of Gaussian curves. Given a set of N independent101

observations X = {x1, ..., xN}, the density f(xi) is:102

f(xi) =
KX

k=1

⇡kN (xi|µk, �k) (1)

where K are the number of components, N (xi|µk, �k) represents a Normal distribution with103

mean µk and covariance �k, and ⇡k is the mixing proportion or weights, that is:104

0  ⇡k  1 (k = 1, ..., K) (2)
105

KX

k=1

⇡k = 1. (3)

The most common approach to fit mixtures of distributions is represented by the maximum106

likelihood (ML). ML means that, given a set of observations, the assumed statistical model is107

the most probable. The likelihood function L of a mixture of univariate normal distributed108

heteroscedastic components is defined as:109

L(x) =
nY

i=1

KX

k=1

⇡kN (xi|µk,�k) =
nY

i=1

KX

k=1

⇡k
1p
2⇡�2

e
(xi�µk)2

2�2
k . (4)

In the present study, the local ML are found via the iterative Expectation-Maximization110

(EM) algorithm (Dempster et al., 1977).111

2. K-means clustering112

K-means clustering (KM) is a distance-based clustering technique (Bishop and Nasrabadi,113
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2006). It aims to shape a number of K clusters given a set of independent observations114

X = {x1, ..., xN}. Data are gathered minimizing the squared error Euclidean distance115

between the empirical mean cki , called centroid, of a cluster ki and the data points in the116

cluster. The squared error J is defined as:117

J(ki) =
X

xki
2ki

||xki � cki ||2. (5)

The goal is to minimize the sum of the squared error over all K clusters:118

J(K) =
KX

i=1

J(ki). (6)

K-means minimizes the objective function J(K) through an iterative process. The main119

steps of the iterations are:120

1. Selection of an initial partition of data into K clusters.121

2. Generation of a new partition by assigning each pattern to its closest cluster center.122

3. Compute new cluster centres.123

After the first step, steps 2 and 3 are repeated until convergence (Jain, 2010).124

B. Model selection125

An important issue in data clustering concerns the optimal number of clusters in data.126

For some classes of algorithms, such as GMM and KM, the number of clusters has to be127

specified before running the iterative process. Estimating the number of clusters is an open128

problem (Aggarwal and Reddy, 2014). Several metrics allow to find the most likely number129
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of clusters with di↵erent approaches. Here, four metrics were used to assess the models’130

number of components, i.e. sound sources, in the collected data, as next.131

1. Davies-Bouldin132

The Davies-Bouldin index assesses similarity among clusters through the ratio of within-133

and between-cluster distances (Davies and Bouldin, 1979).134

The within-to-between cluster distance ratio for the clusters ki and kj is defined as:135

Di,j =
d̄xki

+ d̄xkj

dcki ,ckj

(7)

where136

d̄xki
=

1

nki

X

xki
2ki

|xki � cki | (8)

is the average distance between each point in the cluster ki and its centroid and nki is the size137

of the cluster. Similarly, d̄xkj
is defined for the cluster kj. The Euclidean distance between138

the centroids of both clusters is:139

dcki ,ckj
= (|cki � ckj |2)1/2. (9)

Then, with K as the number of clusters, the Davies-Bouldin index DB is defined as:140

DB =
1

K

KX

i=1

maxj 6=i{Di,j}. (10)

The optimal model is represented by the smallest value obtained in equation 10.141
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2. Gap statistic142

Gap statistic was introduced by Tibshirani et al. and formalizes the ”elbow” method143

(Tibshirani et al., 2001). The latter is a common empirical approach to find the best number144

of clusters by visualizing and assessing the highest decrease of the error measurement among145

models. The Gap criterion estimates the elbow by finding the largest gap value between146

the within-cluster dispersion of the model and the expected within-cluster dispersion of a147

reference distribution.148

Let dxki
,xk0i

be the distance between observations xki and xk0i
belonging to the same cluster149

ki. The within-cluster dispersion is defined as:150

WK =
KX

i=1

1

2nki

Dki (11)

where nki is the number of data in the cluster ki, and Dki is:151

Dki =
X

xki
,xki0

2ki

dxki
,xki0

. (12)

the pairwise distances of all points in the cluster ki.152

Then, the Gap value is defined as:153

Gap(K) = E⇤
r{log(WK)}� log(WK). (13)

where E⇤
r is the expectation under a sample size r from the reference distribution. In154

the present study, the expected within-cluster dispersion of the reference distribution is155

evaluated via Monte Carlo sampling. The reference distribution is represented by a uniform156

distribution. The optimal model is represented by the highest value obtained in equation157

13.158
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3. Calinski-Harabasz159

The Calinski-Harabasz index measures the similarity of data points in clusters through the160

ratio between the separation and the cohesion of the model (Caliński and Harabasz, 1974).161

It is also know as variance ratio criterion. The separation SSB is measured through the162

inter-cluster dispersion, i.e. the weighted sum of the Euclidean squared distances between163

the centroids of a clusters and the centroid of the whole dataset. It is defined as:164

SSB =
KX

i=1

nki ||cki � C||2 (14)

where nki is the number of observations in the cluster ki, cki is the centroid of the cluster165

ki, and C is the centroid of the whole dataset.166

The cohesion SSW is measured through the intra-cluster dispersion, i.e. the sum of the167

Euclidean squared distances between each observation and the centroid of the same cluster.168

It is defined as J(K) in equation 6:169

SSW = J(K) =
KX

i=1

X

xki
2cki

||xki � cki ||2 (15)

where xki is a data point in the cluster ki.170

Then, the Calinski-Harabasz index CH is defined as:171

CH =
SSB

SSW

N �K

K � 1
(16)

The optimal model is represented by the highest value obtained in equation 16.172

4. Silhouette coe�cient173

The silhouette coe�cient is a graphical quantitative evaluation of the degree of separation174
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among clusters (Rousseeuw, 1987). Given two data points xki and xki0 in the cluster ki, the175

within-cluster mean distance, i.e. the similarity, between xki and the other xki0 th points in176

the same cluster is defined as:177

a(i) =
1

|nki |� 1

X

xki
,xki0

2ki

dxki
,xki0

. (17)

The dissimilarity between xki and the other xkjth points belonging to the cluster kj, is178

defined as the mean distance between xki and xkj . Hence, the shortest distance between xki179

and the other points of other clusters is defined as:180

b(i) = min
1

|nkj |
X

xki
2ki,xkj

2kj

dxki
,xkj

. (18)

The cluster with the lowest dissimilarity is defined as ”neighbor” and represents the second181

best choice for ki. The silhouette value s(i) is defined as:182

s(i) =

8
>>>>>>>>><

>>>>>>>>>:

1� a(i)/b(i) if a(i) < b(i),

0 if a(i) = b(i),

b(i)/a(i)� 1 if a(i) > b(i).

(19)

It can be deduced that �1  s(i)  1. Thus, xki is deemed properly clustered if s(i) is close183

to 1, and wrongly clustered if close to -1. In case s(i) is close to 0, either ki or kj represent184

a good choice for xki . If ¯s(i) is the mean of each s(i), the silhouette coe�cient SC can be185

defined as:186

SC = max
K

s̄(K) (20)

where K is the number of clusters. The SC is defined only for a number of clusters K > 1.187

The optimal model is represented by the highest value obtained in equation 20.188
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C. Variational Autoencoder189

The variational autoencoder (VAE) is a way to realize inference and learning in prob-190

abilistic models and was introduced by Kingma and Welling (Kingma and Welling, 2014;191

Kingma et al., 2019). From a deep learning perspective, a VAE has the same architecture of192

autoencoders. Thus, it is made by an encoder and a decoder. Both are connected by a latent193

space. One of the most important qualities of VAEs concerns their ability of describing ob-194

servations through a probabilistic approach in the latent space. Like classical autoencoders,195

a VAE tries to reconstruct output from input. Thus, it learns a latent variable model for its196

input data.197

The encoder is represented by a neural network. Its aim is to output a latent hidden198

representation z of the input x with weights and biases ✓. Typically, the latent space has a199

lower dimension with respect to the input size. Thus, it can be deduced that the encoder200

learns a compressed representation of the input data according to the distribution q✓(z|x).201

In the present study, the input x 2 Rm1⇥m2 and its latent representation z 2 Rn and the202

distribution q✓(z|x) is represented by a Gaussian probability density.203

The decoder is a neural network as well. Typically, it has a mirrored architecture of the204

encoder. Its aim is to reconstruct the input sampling only from the compressed representa-205

tion of the latent space z. Thus, it outputs parameters to the probability distribution of data206

with weight and biases �. The decoder process is denoted by the distribution p�(x|z). The207

latter is represented by a standard Normal distribution N (0, 1) with mean 0 and variance208

1.209
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The whole process is assessed by the evidence lower bound (ELBO) loss function. For a210

datapoint xi, it is defined as:211

li(✓,�) = �Ez⇠q✓(z|xi)[logp�(xi|z)] +DKL(q✓(z|xi)||p�(z)) (21)

where the first term is called reconstruction loss and it is represented by the expected212

negative loglikelihood of the ith datapoint. It describes the amount of information lost for213

the reconstruction through the whole process. The expectation is calculated with respect214

to the encoder’s distribution over the representations. The second term is called regularizer215

term and it is represented by the Kullback-Leibler divergence between the two distributions216

q✓ and p� (Kullback and Leibler, 1951). Thus, it describes how the two distributions are217

close one each other. The
PN

i=1 li is the total loss evaluated over the whole dataset of N218

datapoints.219

III. EXPERIMENTAL SETUP220

The case study is represented by a small o�ce with 3 workers placed in 3 di↵erent221

workstations. The monitoring was conducted after the COVID-19 emergency. Hence, people222

wore face masks. The type of work carried out in the o�ce is collaborative. Thus, there223

is high interaction between colleagues. The analysis is based on two recordings of the224

same event: the sound pressure levels (SPLs) and the digital audio. The sound level meter225

acquired octave band filtered (125 – 4000 Hz) sound pressure levels every 0.1 seconds. The226

digital audio was recorded with a sample rate of 51.2 kHz and a depth of 32 bit. These227

recordings represent the raw data used in the experimental process. Figure 1 shows the plan228
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of the o�ce and the arrangement of the workstations besides the placement of the sound229

level meter. The sound level meter collected about 6 hours of working activity in the o�ce.230

FIG. 1. (Color online) Plan of the o�ce under study.

The air conditioning system was turned o↵ during the measurement and the window is231

exposed towards an highly busy road. Thus, the sound environment can be described as232

made by two kinds of sound sources: the tra�c and the speech. The room has volume233

of about 60 m3 with no acoustic treatments and can be considered as a ”lightly damped”234

environment. The acoustical properties of the o�ce, in particular the reverberation time235

and the façade sound insulation, are shown in Section IVA2. Figure 2 shows a sample of236

the data used. The waveform on the top represents a 10-minute recording, the time series237

of SPLs in the middle is used in the machine learning approach, the spectrograms at the238

bottom are exploited for the deep learning process.239
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FIG. 2. (Color online) Example of the data used in this study. On the top, a sample of 10 minutes

recording. In the middle, the sound pressure levels obtained in the same sample. This constitutes

one of the databases for the machine learning approach. On the bottom, the spectrograms obtained

by the same sample used for the deep learning approach.

A. GMM and KM analyses240

The procedure of the clustering analyses via GMM and KM follows the same flow de-241

scribed in a previous work (De Salvio et al., 2021). Once the distribution of the SPLs242

occurrences is obtained, the number of clusters to look for in the collected data has to be243

set first. Thus, models with 2 up to 10 components, i.e. sound sources, for both GMM244
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and KM were used as candidates. Each metric used for searching the most likely number of245

clusters finds similarity among clusters according to its own approach. Hence, the metric’s246

highest value represents the best model for Silhouette, Calinski-Harabasz, and Gap statistic,247

while the metric’s lowest value represents the best choice for Davies-Bouldin coe�cient. In248

this study, the the majority rule was used to obtain the optimal number of clusters. Thus,249

the most frequent number obtained comparing each metric represents the number of active250

sound sources during the event.251

Figure 3 shows the type of distribution used for the clustering. On the left, the SPLs252

occurrences are collected and analyzed through the normalized occurrences distribution. In253

the middle, an example of processing via GMM and on the right, an example of processing254

via KM.255

Following a brief summary of the procedure:256

• Step 1: Clustering analysis performed over several candidate models.257

• Step 2: Selection of the best model among candidates.258

• Step 3: Spectral analysis and sources labelling according to statistical or distance259

metrics.260

The three steps are applied for each di↵erent clustering algorithm we want to use. Basing261

on the acoustic task, any SPLs’ frequency band can be used to complete the process. In262

this study, the whole procedure is carried out in the range from 125 up to 4000 Hz octave263

bands. Hence, each occurrences’ curve is analyzed looking for the most likely number of264

clusters. Both GMM and KM were set to repeat the iterative process with di↵erent initial265

17



values. In general, using di↵erent starting points typically results in a solution that is a266

global minimum (Jain et al., 1999).267

(a) Occurrences of SPLs (b) Gaussian Mixture Model

(c) K-means clustering

FIG. 3. (Color online) Machine learning approach: example of a sound level meter’s measurement

processing. The figure on the left shows the occurrences distribution of the measured SPLs. The

distribution can be processed via GMM (at the center) and KM clustering (on the right).

After the step 2, each model for each octave band can be collected. The means of each268

Gaussian component obtained by the GMM represent the SPLs of each source. Similarly,269

the centroids of each cluster obtained via KM represent the SPLs of each sound source.270

Thus, the spectra can be reconstructed.271
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Labelling the sound sources, i.e. linking each spectra to each bunch of clusters found in272

each octave band, exploits the temporal parameters of the clusters. The dispersion of data273

can be associated to the temporal behavior of the sound sources. Dense clusters represent274

nearly stationary noises, while spread data refer to a random source. Being the machine275

learning approach an unsupervised analysis, this step is performed after the optimal model276

is selected and depends on the clusters’ features given by the algorithm. Concerning the277

GMM, a cluster’s standard deviation (SD) equal or greater than 5 dB refers to a speech278

source. Values lower than 5 dB describe a mechanical source. In fact, preliminary studies279

show that this value is deemed as a good threshold to separate continuous sound sources280

from human-related noises (Leonard and Chilton, 2019; Olsen, 1998). Regarding the KM,281

the temporal properties of the sound sources are described by the square root of the average282

intra-cluster Euclidean distance (AICD) of data points. Similarly to the SD, lower values283

are associated to continuous noises, otherwise to human noises.284

B. VAE analysis285

The digital audio recording has been chunked in 1-second length samples to obtain the286

dataset for the analysis through the VAE. Power spectrograms of each chunk were used287

as input for the network. A pre-processing procedure has been carried out before feeding288

the encoder. The audio has been resampled at 11025 Hz to make the input comparable to289

the octave band range (125-4000 Hz) used in the cluster analysis. Moreover, visualizing the290

spectrograms, no useful information were found above 5 kHz. Short-time Fourier Transforms291

(STFT) with a segment length of NFFT = 256 and an overlap area of 50% were used to obtain292
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the spectrograms. With these values each audio chunk is processed with an FFT with a293

physical length of about 20 ms. Thus, it can be deemed that in each FFT only one sound294

source is detected. A minMAX normalization has been applied to each spectrogram to have295

all the amplitude values in [0,1] range. Overall, the dataset contained about 23k samples.296

Input Conv1 Conv2 Conv3 Conv4

Flatten

Reshape

FCµ

FC

ConvT1µ

ConvT1σ ConvT2σ ConvT3σ ConvT4σ

Output

ConvT2µ ConvT3µ ConvT4µ

FCɊ

FIG. 4. (Color online) Architecture of the VAE. The encoder is constituted by four convolutional

layers, shown in light blue. The latent space is shown in red and the decoder is represented by the

yellow blocks.

Samples of 1-second length can be easily listened. Then, the dataset has been manually297

labelled listening each sample of the recording in three classes: tra�c, speech, and unclas-298

sified sounds. The latter category was useful to label all the samples where the main sound299

source was represented by impulsive noises like slammed doors. It is worth noting that,300

during the labelling process, audio chunks containing only whispers were labelled as speech.301

This choice can create uncertainties on the dataset’s labels. At the end of the labelling302
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TABLE I. Architecture of the variational autoencoder. The type of layers and their properties,

like input shape, filters, kernel size, the activation functions, and the output size are shown.

Layer Input shape Filters Kernel size Activation Output shape

Input Reshape [128,87] – – – [1,128,87]

Encoder

Convolutional (stride = 2) [1,128,87] 16 [3,3] ReLU [16, 64, 44]

Convolutional (stride = 2) [16, 64, 44] 32 [3,3] ReLU [32, 32, 22]

Convolutional (stride = 2) [32, 32, 22] 64 [3,3] ReLU [64, 16, 11]

Convolutional (stride = 2) [64, 16, 11] 128 [3,3] ReLU [128, 8, 6]

Flatten [128,8,6] – – – [6144]

Fully connected mu [6144] – – – [30]

Fully connected sigma [6144] – – – [30]

Latent space Fully connected [30] – – – [30]

Decoder

Fully connected [30] – – ReLU [6144]

Reshape [6144] – – – [128, 8, 6]

Transpose convolutional mu (stride = 2) [128,8,6] 128 [3,3] ReLU [64, 16, 11]

Transpose convolutional mu (stride = 2) [64, 16, 11] 64 [3,3] ReLU [32, 32, 22]

Transpose convolutional mu (stride = 2) [32, 32, 22] 32 [3,3] ReLU [16, 64, 44]

Transpose convolutional mu (stride = 2) [16, 64, 44] 16 [3,3] ReLU [1,128,87]

Transpose convolutional sigma (stride = 2) [128,8,6] 128 [3,3] ReLU [64, 16, 11]

Transpose convolutional sigma (stride = 2) [64, 16, 11] 64 [3,3] ReLU [32, 32, 22]

Transpose convolutional sigma (stride = 2) [32, 32, 22] 32 [3,3] ReLU [16, 64, 44]

Transpose convolutional sigma (stride = 2) [16, 64, 44] 16 [3,3] ReLU [1,128,87]

Output

Reshape mu [1,128,87] – – Tanh [128,87]

Reshape sigma [1,128,87] – – Sigmoid [128,87]
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process, the dataset had more than 12k tra�c samples and about 10.5k speech samples.303

Only 139 samples were labelled as unclassified. The dataset can be considered balanced.304

The 80% of the dataset was used for the training set, the remaining 20% for the test set.305

The VAE was built in Pytorch. The input size of the spectrograms is 128⇥ 87. The306

encoder is made by four strided convolutional layers (stride = 2). Then, a flatten layer307

allows the convolutional layers to be linked to the fully connected layers. As highlighted in308

Section IIC, a VAE maps the input to a multivariate latent distribution. The distribution309

used in the present work is the Gaussian distribution. Parameters of the distribution, the310

mean and standard deviation, i.e. mu and sigma, are the outputs of the encoder. For this311

reason, the fully connected layer of the encoder is doubled. Here are the inputs for the312

30-dimensional latent space. The decoder uses a di↵erent distribution, the prior on the313

latent distribution. The architecture of the decoder depends on the parameters needed to314

specify the multivariate generative distribution. In the present work, two parameters are315

needed: the mean and the variance. Thus, the decoder is made by four strided transposed316

convolutional layers (stride = 2) for both parameters. The Pyro library was used for the317

stochastic variational inference. Then, spectrograms are reconstructed reshaping the output318

of mean and variances obtained by the decoder. Non-linearities are activated through ReLU319

functions for all layers except for the output parameters. The decoder is parametrized320

according to a standard Normal distribution N (0, 1). Thus, a Tanh activation function321

is used for the output of means and a Sigmoid activation function for the the output of322

variances. The VAE was trained using a batch size of 32, the Adam optimizer and ✓ and323

� weights were updated with a learning rate equal to 1⇥ 10�5. Figure 4 shows a graphical324
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scheme of the VAE’s architecture. The light blue and yellow layers represent, respectively,325

the encoder and the decoder. Both are linked by the latent space represented with the326

red fully connected layer. Details about the architecture of the whole network are listed in327

Table I. Here, the type, the input size, the number of filters, the kernel size, the activation328

functions, and the output size are shown for each layer. Training stopped after 400 epochs329

since not relevant improvements of the loss function on the test dataset were detected.330

IV. RESULTS331

A. Machine Learning results332

1. Source separation via GMM and KM333

Previous work (De Salvio et al., 2021) used only one metric per each algorithm to assess334

the optimal number of cluster. Moreover, the elbow technique made the analysis influenced335

by the operator’s choice. Thus, the step 2 described in section IIIA is di↵erent. The336

comparison among di↵erent metrics makes the analysis more robust and inclined to the337

automation. Table II shows the results of model selection. Silhouette (SC), Davies-Bouldin338

(DB), Gap statistic (GS), and Calinski-Harabasz (CH) coe�cients were used to assess the339

most likely number of clusters for each octave band (125-4000 Hz) and the A-weighted340

continuous level LA,eq. Concerning GMM, the model selection metrics found that the optimal341

number of clusters is equal 2 according to the majority rule. This is true for SC and DB342

for each octave band and LA,eq. Di↵erent results were found only for GS in the 125 Hz343

octave band and for CH in the 500 and 4000 Hz octave bands. The same analysis was344
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carried out for KM. Here, SC, DB, and GS found an optimal number of clusters equal to 2345

for each occurrences curve analyzed. Completely di↵erent results were shown by CH that346

found 6 clusters in each octave band and LA,eq as the best model. Overall, comparing all347

metrics, the number of active sources in the o�ce is 2. These results are consistent with348

the expectations. The main sound sources experienced during a common working day by349

employees were speech and tra�c, indeed.350

Figure 5 shows the reconstructions of the spectra of both sound sources. Then, the plots351

in the middle and on the bottom show the relative spectra compared with references from352

standards. Blue lines show results for GMM, red lines for KM. In the relative analyses,353

yellow lines show reference spectra. To compare the reconstructed one with reference, each354

relative spectrum is obtained by setting the 1 kHz octave band to 0 dB. Table III shows the355

quantitative results obtained via clustering analysis.356

Both algorithms showed very similar qualitative results. Spectra have the same tenden-357

cies, indeed. The most noticeable di↵erence concerns the peak of the speech spectra. It is358

detected in the 500 Hz octave band for KM while in the 250 Hz octave band for GMM. With359

respect to previous work, low frequencies seem to be easier to separate in this case for both360

algorithms (De Salvio et al., 2021). This may be due to the di↵erent background noise, the361

tra�c outside the o�ce instead of a mechanical noise inside the same space.362

Concerning the tra�c noise, the reference is represented by the normalized spectrum363

shown in EN 1793-3 (EN 1793-3, 1997). It is worth noting that the reference spectrum364

refers to free field conditions. Thus, acoustical properties of the room and the facade’s365

insulation can a↵ect the shape of the results. The shape of the tra�c spectra seem to be366
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TABLE II. Analysis of the most likely number of clusters in the measured SPLs. Results are

shown per each metric, octave band from 125 up to 4000 Hz, and the continuous A-weighted level

LA,eq. Metric abbreviations refer to silhouette (SC), Davies-Bouldin (DB), Gap statistic (GS), and

Calinski-Harabasz (CH) coe�cients. Majority rule’s row show the optimal number of clusters used

to run both GMM and KM algorithms.

GMM

Metric

Frequency octave band (Hz)

LA,eq

125 250 500 1k 2k 4k

SC 2 2 2 2 2 2 2

DB 2 2 2 2 2 2 2

GS 5 2 2 2 2 2 2

CH 2 2 4 2 2 5 2

Majority rule

No. Sources 2 2 2 2 2 2 2

KM

Metric

Frequency octave band (Hz)

LA,eq

125 250 500 1k 2k 4k

SC 2 2 2 2 2 2 2

DB 2 2 2 2 2 2 2

GS 2 2 2 2 2 2 2

CH 6 6 6 6 6 6 6

Majority rule

No. Sources 2 2 2 2 2 2 2
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FIG. 5. (Color online) Results of clustering analyses. On the top: reconstruction of the spectra

from 125 up to 4000 Hz. Blue and red lines represent the spectra reconstructed respectively via

GMM and KM. Dashed and solid lines represent respectively the tra�c and the speech spectra.

In the middle and on the bottom: relative spectra of tra�c and speech spectra compared with

references curves. Tra�c reference is taken from EN 1793-3, speech reference is taken from ISO

3382-3.

very similar. The most noticeable di↵erence concerns the 500 Hz octave band. However,367

both low-frequencies emitted at slow speeds and the 1 kHz frequencies emitted at free-flow368

speed seem to be accurately detected (Can et al., 2010).369
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TABLE III. SPLs of each sound source obtained via GMM and KM. Standard deviations SD for

GMM and average intra-cluster distance AICD for KM are reported.

Source

Frequency octave band (Hz)

LA,eq

125 250 500 1k 2k 4k

GMM

Tra�c 42.0 39.0 36.0 39.5 35.0 24.3 42.5

SD 3.0 3.0 3.3 4.3 4.0 3.7 3.5

Speech 50.5 54.7 54.9 52.0 48.3 37.7 57.5

SD 5.8 7.1 9.1 8.9 8.5 8.7 7.8

KM

Tra�c 42.2 40.0 37.5 39.7 35.6 25.6 43.3

AICD 2.9 3.7 4.5 4.2 4.2 4.3 4.0

Speech 53.1 57.5 59.0 56.2 52.3 42.5 60.8

AICD 4.1 5.2 6.4 6.3 6.1 6.3 5.8

The ISO 3382-3 shows the reference speech spectrum of a directional source at a distance370

of 1 m in free field from the speaker (ISO 3382 - 3, 2012). This is the reference for the371

speech source; the related spectra obtained via clustering have similar tendencies as shown372

on the bottom of Figure 5. Di↵erences can be referred to several factors. The first concerns373
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the influence of the acoustical properties of the room. As noticed for the tra�c noise, the374

ISO spectrum is evaluated at a distance of 1 m from the source in free field. As opposed375

to previous work, slight di↵erences concern low frequencies for speech sources. However,376

these can be due to the change of the spectrum in noisy environments and the measurement377

uncertainty at low frequencies, especially in the 125 and 250 Hz octave bands (Leembruggen378

et al., 2016; Rindel et al., 2012). Directivity of the source can a↵ect spectra tendencies379

too. In the present study, there are 3 speakers in 3 di↵erent positions. Thus, the overall380

directivity of the measured source cannot be considered the same as the reference. Moreover,381

at low frequencies, modal e↵ects could have a↵ected the results since the sound level meter382

was used only in one position.383

Both sources show a drop concerning the 4 kHz octave band. This may be attributed to384

the acoustical properties of the room since higher frequencies can be strongly a↵ected by385

their interactions with surfaces and furnitures in the room.386

Further considerations can be made regarding the clusters size. This is described by the387

SD and the AICD; both are shown in brackets in Table III. The physical meaning associated388

to SD and AICD is the temporal randomness of the source. Mechanical sources produce389

the same SPLs occurrences depending on their mechanical cycle, indeed. This results in low390

SDs for continuous sources because the corresponding Gaussian curve will be narrow. On391

the contrary, a human-related noise produce higher SDs. The tra�c noise can be deemed in392

the middle of these two categories of noise sources. It does not have the same continuity of a393

mechanical device but it has specific spectral properties. Moreover, the road has to be busy394

to be detected in a long-term monitoring because the occurrences curve has to be a↵ected395
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by the noise source. Thus, tra�c can be deemed more continuous than the speech but not396

like a mechanical source. These considerations are confirmed by the results obtained. Tra�c397

SDs lie in the range 3.0 - 4.3 dB for each octave band. Previous work showed mechanical398

SDs due to the HVAC system in the range 0.9 - 3.9 dB. Thresholds analyses deserve detailed399

studies in future works. However, all non-human sound sources were confirmed to be under400

the threshold of 5 dB (De Salvio et al., 2021).401

The absolute spectra shown on the top of Figure 5 point out di↵erences between SPLs of402

the two methods that can be related to the homoscedasticity of data, i.e. constant variances403

of data. GMM can be considered as a general case of KM. The two algorithms show the same404

results only if the homoscedasticity condition is fulfilled (MacKay, 2003). This is shown in405

Table III. SPLs are the same for GMM and KM when SD and AICD are almost equal, e.g.406

in the 125 and 1000 Hz octave bands of the tra�c source. This result confirms that AICD407

is a reliable metric to assess the shape of the cluster. It has to be noted that the size of408

clusters can be a↵ected by the type of clustering performed by the algorithm, especially for409

large SDs. GMM is a soft clustering algorithm, i.e. it can assign data points to more than410

one cluster with proportional weights. KM performs hard clustering, instead, i.e. assign411

each data point to one and only one cluster (Bishop and Nasrabadi, 2006). The GMM’s412

fuzziness can a↵ect the resulting SD of clusters associated with random sound sources.413

2. Hints on the influence of the o�ce’s acoustical properties414

As noted in previous section IVA1, the acoustical properties of the o�ce influence the415

spectra obtained via GMM and KM. Thus, the reverberation time T20 and the façade416
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sound level di↵erence D2m,nT were measured respectively according to the precision method417

described in the ISO 3382-2 and the global method of the ISO 16283-3 (ISO 16283 - 3, 2016;418

ISO 3382 - 2, 2008). Measurements’ results are shown in Figure 6. Solid and dashed lines419

show respectively the T20 and D2m,nT tendencies in octave bands from 125 up to 4000 Hz.420

FIG. 6. Acoustical properties of the o�ce under study. The reverberation time T20 is shown on

the left axis, the façade sound level di↵erence D2m,nT on the right axis.

The o�ce has a reverberation time averaged on the mid frequencies of 500-1000 Hz of421

about 0.72 s. The environment can be deemed as “live” because there are no acoustic422

treatments. There is a reverberation’s drop in the 500 Hz band maybe due to two steel423

closets. The façade has an average insulation of about 22 dB at the mid frequencies of 500424

and 1000 Hz. The drop of D2m,nT in the 1 kHz band is due to the coincidence e↵ect of the425

window glass.426

The tendencies of measurements’ results in Figure 6 may bring preliminary insights about427

the comparison of measured and reference spectra shown in Figure 5. Tra�c and speech428

spectra seem to be related to the tendency of the T20. In fact, the drop in the 500 Hz octave429
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band is visible in both sources. Further, the reverberation time has its minimum value in430

the same band, as well as one of the highest values of the façade insulation. The energy of431

both sources in the 4 kHz octave band seems to be a↵ected respectively by the T20 for the432

speech and by the D2m,nT for the tra�c. Thus, a preliminary analysis of the room’s acoustics433

seems to support the results obtained through the machine learning approach.434

B. Deep learning results435

1. Latent space436

The clustering analysis carried out through the machine learning approach has been based437

on assumptions and spectral matching. The discussion of these evidences depends on the438

operators’ knowledge. Hence, it is useful to find an objective method to either confirm or not439

the goodness of using GMM and KM. A semi-supervised analysis via deep learning allows440

the results to be directly evaluated. This is possible because the audio recording can be441

listened. Further, the latent space of a VAE is able to perform a clustering analysis. Thus,442

the deep and the machine learning approaches can be compared. The di↵erence between443

the two approaches is due to the labelling step. In the machine learning approach, the step444

was made at the end of the process, in the deep learning approach, the data were previously445

labelled. Thus, the latent space of the VAE aims to be a qualitative tool to assess the446

machine learning approach.447

Figures 7(a) and 7(b) show the latent distributions of respectively the untrained and448

trained network. Because the dimension of the latent space is equal to 30, a 2D t-stochastic449
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(a) Untrained network (b) Trained network

FIG. 7. (Color online) Latent space of the untrained 7(a) and trained 7(b) VAE. Histograms

show the x and y projections of the density distributions of the data. Blue and orange dots and

histograms represent respectively the tra�c and the speech data.

neighbor embedding (t-SNE) visualization was used (Van der Maaten and Hinton, 2008).450

This is a dimensionality reduction technique commonly used to visualize high-dimensional451

data. The t-SNE algorithm evaluates similarity between pairwise instances in both high452

and low dimensional space. Then, through a cost function, the similarities are optimized.453

Figures 7(a) and 7(b) are obtained with a perplexity equal to 30.454

Data in the latent space are represented basing on their categorical label. The untrained455

latent space in Figure 7(a) shows a circular distribution of data since it is perfectly described456

by a Gaussian distribution (Connor et al., 2021). However, there is no categorical separation457

among data, i.e. blue and orange dots are mixed up. Figure 7(b) shows the results of the458

training. After the network has learnt the latent representation of the input data, the latent459
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space shows a clear separation of the two categories. Clusters are well-defined. On the sides,460

histograms show the 1D projection of the plot along the main axes. These distributions help461

to assess whether the two clusters in the 2D plot are overlapped or not. In the present case,462

histograms of the trained network show that the two clusters are close but not overlapped.463

Thus, clusters are well-separated too. The VAE is able to identify and separate the two464

sound sources through a Gaussian latent space. Di↵erent densities within clusters may refer465

to further properties, e.g. timbre, not considered in the categories taken into account in this466

study. Uncertainties on data distributions, i.e. speech frames in the tra�c cluster and vice467

versa, can be attributed to the manual labelling. For instance, whispers can be manually468

labelled as speech but classified by the network as tra�c.469

2. The reconstruction of the spectrograms470

The aim of these approaches is to measure di↵erent sound sources. Thus, the reconstruc-471

tion of the audio recording can be post-processed to achieve sound level meter measurements.472

An example of the comparison between the original input and its reconstruction obtained473

via VAE is shown in Figures 8(a) and 8(b). The reconstruction is blurred and this is com-474

mon in VAEs (Neri et al., 2021). The blur does not allow a quantitative analysis through475

the audio recording. From an energy point of view, the reconstruction has lost resolution in476

the frequency domain, especially at low frequencies, where the fundamental frequencies of477

the speech lie. At the same time, low energy areas in the mid and high frequencies (around478

3000 and 4000 Hz) show higher amplitudes in the reconstruction with respect to the original479

spectrogram. Reconstructed samples are highly noisy. Thus, a reconstruction of the sound480
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level meter measurement through the reconstructed spectrograms would not be reliable.481

However, this loss of information concerns not only the reconstructed data but the original482

too. The heavy preprocessing needed to obtain a fast network results in low resolution audio483

samples that cannot be considered reliable for a sound level meter measurement. In other484

words, the preprocessing step itself adds further uncertainty to the results.485

(a) Original sample (b) Reconstructed sample

FIG. 8. (Color online) Example of original 8(a) and reconstructed 8(b) magnitude spectrograms

obtained through the VAE.

VAEs can identify underlying structures of data. With respect to standard autoencoders,486

they push the latent code to follow a predefined distribution (Min et al., 2018). In the487

present study, the VAE uses an isotropic Gaussian distribution as prior. The Gaussian488

representation of the two sound sources is the common thread among GMM, KM, and VAE.489

The ability of identifying the two sound sources through all the methods used in this work490

leads to deem reasonable to describe sound sources in long-term monitoring with Gaussian491

distributions. Further, the goal of these methods is measuring the single contribution of each492

sound source in mixtures obtained in real-world conditions. Thus, clustering techniques seem493
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to provide more reliable methods than the VAE. This is mainly due to two factors. The first494

concerns the ability of GMM and KM to perform blind source separation without particular495

pre-processing steps on the measured data. Analyses are carried out directly on the SPLs496

occurrences. The second factor concerns the need of deep learning approach of recording497

audio in work contexts. This can arise privacy issues, one of the most important aspects on498

the application of big data approaches in real contexts (Kelleher and Tierney, 2018). On the499

contrary, clustering techniques provide simple and smooth applications for measuring sound500

environments. As stated in Section IVA1, GMM can be considered as a generalization501

of KM. Recollecting the better performance in the step concerning the optimal number of502

clusters, GMM seems to be the most reliable method to perform blind source separation of503

sound level meter data. Further studies have to deal with the quantitative aspects of these504

methods.505

V. CONCLUSIONS506

In this study, the blind source separation methods carried out via clustering algorithms507

have been qualitatively validated through a deep learning approach. A dual analysis was508

performed. The first exploits the occurrence curve of the SPLs through GMM and KM, the509

second uses the audio recording through a VAE. The goal of both analyses was to separately510

measure the two main sound sources that describe the sound context inside the o�ce selected511

as case study: the tra�c due to the busy nearby road and the speech of workers.512

Clustering algorithms confirmed the robust results obtained in previous works and the513

reliablity in the separation of spectra in mixtures, identifying both sources. The reliability514
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was assessed through a spectral matching. Relative spectral tendencies in free-field condi-515

tions were taken from standards and used as reference curves with respect to the results516

obtained. Taking into account the experimental conditions, such as reverberation e↵ects on517

the spectra, it is possible to assess the reliability of cluster analysis in each octave band.518

The deep clustering analysis performed by the encoder of the VAE into its latent space519

was analyzed. The two categories manually labelled were represented by the VAE as two520

well-defined and separated clusters. Thus, the VAE learned di↵erent features from the two521

sound sources. However, this technique cannot be used to measure the separated sound522

sources because of the heavy preprocessing on the audio data led to noisy spectrograms.523

The ability of measuring sound components in real-world conditions represent an essential524

issue in sound contexts analyses. The dissection of complex sound environments leads to a525

deeper understanding of the interactions among sound sources and heavy improvements on526

the acoustic design processes. The results obtained by the VAE validate the assumptions and527

the observation made in the assessment of the clustering analyses. However, the validation528

concerns only the qualitative results. Further studies have to examine the quantitative529

results obtained by these methods because the goal is to provide a reliable automated analysis530

of measured data.531
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