
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 10, OCTOBER 2022 19817

An End-to-End Curriculum Learning Approach
for Autonomous Driving Scenarios

Luca Anzalone , Paola Barra , Silvio Barra , Aniello Castiglione , Member, IEEE,

and Michele Nappi , Senior Member, IEEE

Abstract— In this work, we combine Curriculum Learning
with Deep Reinforcement Learning to learn without any prior
domain knowledge, an end-to-end competitive driving policy for
the CARLA autonomous driving simulator. To our knowledge,
we are the first to provide consistent results of our driving policy
on all towns available in CARLA. Our approach divides the
reinforcement learning phase into multiple stages of increas-
ing difficulty, such that our agent is guided towards learning
an increasingly better driving policy. The agent architecture
comprises various neural networks that complements the main
convolutional backbone, represented by a ShuffleNet V2. Further
contributions are given by (i) the proposal of a novel value
decomposition scheme for learning the value function in a stable
way and (ii) an ad-hoc function for normalizing the growth in
size of the gradients. We show both quantitative and qualitative
results of the learned driving policy.

Index Terms— Autonomous driving, CARLA simulator, auto-
motive, deep reinforcement learning, curriculum learning.

I. INTRODUCTION

AUTONOMOUS Driving (AD) technology promises to
change the way we travel. Thanks to the emerging auto-

motive applications, Autonomous Vehicles (AV) will be able to
recognize the road and the driving context so to plan the route
by monitoring the dynamics of the other vehicles and subjects
within the scene. Thanks to AV, people will be able to travel
from place to place in a safer, more environmentally friendly
and even more time-efficient way. These new technologies are
expected to reduce road fatalities, pollution and have greater
autonomy.

Such complex goals can be only achieved by highly
autonomous vehicles, classified as level 4 (high automation)

Manuscript received 30 June 2021; revised 27 October 2021; accepted
22 February 2022. Date of publication 26 May 2022; date of current version
11 October 2022. This work was supported in part by PRIN 2017 PREVUE:
“PRediction of activities and Events by Vision in an Urban Environment,”
through the Italian Ministry of Education, University and Research, under
Grant 2017N2RK7K. The Associate Editor for this article was B. B. Gupta.
(Corresponding author: Aniello Castiglione.)

Luca Anzalone is with the Department of Physics and Astronomy
(DIFA), University of Bologna, 40127 Bologna, Italy (e-mail:
luca.anzalone2@unibo.it).

Paola Barra is with the Department of Computer Science, Sapienza Univer-
sity of Rome, 00185 Rome, Italy (e-mail: barra@di.uniroma1.it).

Silvio Barra is with the Department of Electrical and Information Technol-
ogy Engineering (DIETI), University of Naples “Federico II”, 80138 Naples,
Italy (e-mail: silvio.barra@unina.it).

Aniello Castiglione is with the Department of Science and Technology
(DIST), University of Naples “Parthenope”, 80133 Naples, Italy (e-mail:
castiglione@ieee.org).

Michele Nappi is with the Department of Computer Science, University of
Salerno, 84084 Salerno, Italy (e-mail: mnappi@unisa.it).

Digital Object Identifier 10.1109/TITS.2022.3160673

and level 5 (full automation) by the SAE J3016 standard [1].
High-to-full autonomous vehicles must master tasks known as
perception, planning, and control [2], [3]. Perception refers to
the ability of an autonomous system to collect information and
extract relevant knowledge from the environment. In order to
do so, the autonomous vehicles need to understand the driving
scenario (environmental perception), to compute its pose and
motion (localization), and to determine which portions of the
driving space are occupied by other objects (occupancy grids).
Planning relies on the output of the perception component to
devise and obstacle-free route, that the vehicle has to follow to
avoid any collision while reaching its indented destination. The
planned route is made of high-level commands that do not tell
the vehicle’s software how to actually implement them in terms
of torques and forces. Finally, motion control does account for
this, converting high-levels commands to low-levels actions,
consisting of specific torques and forces values to be applied
to the vehicle’s actuators in order to make it move and steer
properly.

For such purpose, both level 4 and 5 autonomous vehicles
are equipped with a variety of exteroceptive sensors, like cam-
eras, LiDAR, RADAR, and ultrasonic sensors, to perceive the
external environment including dynamic and static objects, and
proprioceptive sensors, like IMUs, tachometers and altimeters,
for internal vehicle state monitoring [4]. Moreover, high sensor
redundancy along with sensor fusion are often necessary to
achieve improved performance and high robustness especially
in degraded driving and weather conditions.

The tasks of perception, planning and control can be solved
in isolation or jointly. In the isolated approach it is interpreted
with a modular pipeline in which each module is separate
and performs a specific task [4]. The resulting system suffers
from error propagation: the modules are designed by humans
and therefore potentially imperfect; every small error would
propagate in the system joining with any errors in other
modules. Basically, the isolated approach is not optimal and
not reliable. These weaknesses motivate the choice of the
end-to-end driving paradigm. With end-to-end guidance, the
perception, planning and control tasks are solved jointly and
are not presented explicitly. These systems have a more
functional design and are easier to develop and maintain.

In general, we can distinguish various categories of sys-
tem architectures for autonomous vehicle design which also
accounts (or not) for connectivity among vehicles [4]:
• Ego-only systems (or standalone vehicles) do not

share information among other autonomous vehicles.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-0399-8836
https://orcid.org/0000-0002-7692-0626
https://orcid.org/0000-0003-4042-3000
https://orcid.org/0000-0003-0571-1074
https://orcid.org/0000-0002-2517-2867

19818 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 10, OCTOBER 2022

A standalone vehicle uses only its knowledge to devise
driving decisions. The lack of connectivity, makes this
category of AVs simpler to design compared to vehicles
that are connected together.

• Connected systems are able to distribute the basic oper-
ations of automated driving among other autonomous
vehicles, thus forming a connected multi-agent system.
In this way, vehicles can share detailed driving infor-
mation and use such additional information to perform
better decisions. Communication among vehicles requires
a specific infrastructure and communication protocols,
other than being able to efficiently transmit and store large
amounts of data.

• Modular systems are structured as a pipeline of sepa-
rate components (as discussed previously), each of them
solving a specific task. The main advantage is that the
complex problem of autonomous driving can be decom-
posed in smaller and easier-to-solve set of problems.

• End-to-end driving generate ego-motion directly
from (raw) sensory inputs (e.g. RGB camera images),
without the need to design any intermediate module. Ego-
motion can be either the continuous operation of steering
wheel and pedals (i.e. acceleration and breaking) or a
discrete set of actions. End-to-end driving is simple to
implement, but often leads to less interpretable systems.

Imitation Learning [5], [6] is the preferred approach for end-
to-end driving, given its design simplicity and optimization
stability, despite requiring a considerable amount of expert
data for learning a competitive policy. Deep Reinforcement
Learning (RL) is gaining interest for its encouraging results
in the field [7], [8], without requiring to collect expert trajec-
tories: just a real or simulated environment (e.g. CARLA [9],
or AirSim [10]) is needed, instead. Moreover, RL can poten-
tially discover better-than-expert behavior since it maximizes
the agent’s performance with respect a designed reward
function.

In this paper, we provide the following contributions:
• We combine the Proximal Policy Optimization (PPO) [11]

algorithm with Curriculum Learning [12], showing how
to learn an end-to-end urban driving policy for the
CARLA driving simulator [9].

• We evaluate our curriculum-based agent on various met-
rics, towns, weather conditions, and traffic scenarios.
To our knowledge, we are the first to demonstrate con-
sistent results on all towns provided by CARLA, by just
training the agent on only one town.

• Moreover, we point out two important sources of insta-
bility in reinforcement learning algorithms: learning the
value function V (s), and normalizing the estimated
advantage function A(s, a).

• Finally, we provide two novel techniques to solve these
issues. The two methods can be applied to any value-
based RL algorithm, as well as actor-critic algorithms.
More notably, the same technique we use to learn the
value function is general enough to be employed in almost
any ML regression problem.

The paper is organized as follows: Section II defines
and describes the related works in the topic, categorizing

them in (i) Autonomous Driving approaches based on
Deep Learning techniques, (ii) Reinforcement Learning for
Autonomous Driving and (iii) Autonomous Driving Simu-
lators. In Section III several formalisms and definitions are
proposed, so to allow the reader to ease the understanding
of the background context of the paper. In Section IV the
proposed approach is presented. Sections V shows the obtained
results on the CARLA Towns. Finally, Section VI concludes
the paper.

II. RELATED WORK

A. Deep Learning-Based Autonomous Driving

Deep learning-based end-to-end driving systems aim to
achieve human-like driving simply by learning a mapping
function from inputs to output targets, so being able to imitate
human experts. These inputs are often (monocular) camera
images, while the targets can be quantities like the steering
angle, the vehicle’s speed, the route-following direction, throt-
tle and breaking values, or even high-level commands.

Reference [13] trained a convolutional neural network to
map raw pixels from a single front-facing camera directly to
steering commands. The authors managed to drive in traffic on
local roads, on highways, and even in areas with unclear visual
guidance. To correct the vehicle drifting from the ground-truth
trajectory, the authors employed two additional cameras to
record left and right shifts. The authors evaluated their system
by measuring the autonomy metric, being autonomous 98%
of the time. To mitigate this shifting problem, [14] developed
a sensor setup that provides a 360-degree view of the area
surrounding the vehicle by using eight cameras. Their driving
model uses multiple Convolutional Neural Networks (CNNs)
as feature encoders, four Long-short Term Memory (LSTM)
recurrent networks [15] as temporal encoders, and a fully-
connected network to incorporate map information. Their
system is trained to minimize the mean squared error (MSE)
against speed and steering angle.

Reference [5] propose to condition the imitation learning
procedure on a high-level routing command (i.e. a one-hot
encoded vector), such that trained policies can be controlled
at test time by a passenger or by a topological planner.
The authors evaluated the approach in a simulated urban
environment provided by the CARLA driving simulator [9]
and on a physical system: a 1/5-scale truck. For goal-based
navigation they recorded a success rate of 88% in Town 1
(training scenario), and of 64% in Town 2 (testing scenario);
two of the simplest towns available.

End-to-end behavioral cloning is appealing for its sim-
plicity and scalability but there are limitations [6], such
as: dataset bias and overfitting when data is not diverse
enough, generalization issues towards dynamic objects seen
during training, and domain shifting between the off-line
training experience and the on-line behavior. Despite these
limitations, behavioral cloning can still achieve state-of-the-art
results as demonstrated by [6]. In fact, the authors proposed
a ResNet-based [16] architecture with a speed prediction
branch. According to them, in presence of large amounts
of data a deep model can reduce both bias and variance
over data, also having better generalization performances on

ANZALONE et al.: END-TO-END CURRICULUM LEARNING APPROACH FOR AUTONOMOUS DRIVING SCENARIOS 19819

learning reactions to dynamic objects and traffic lights in
complex urban environments. The authors also proposed a
novel CARLA driving benchmark, called NoCrash, in which
the ability of the ego vehicle is tested on three urban sce-
narios with different weather conditions: empty town with no
dynamic objects, regular traffic with a moderate amount of
cars and pedestrians, and dense traffic with a large number of
vehicles and pedestrians.

Reference [17] proposed the first direct perception method -
an emerging paradigm that combines both end-to-end learning
and control algorithms - named Conditional Affordance Learn-
ing (CAL), to handle traffic lights and speed signs by using
image-level labels, as well as smooth car-following, resulting
in a significant reduction of traffic accidents in simulation.
Their CAL agent consists of a neural network that predicts
six types of affordances from input observation, and a lateral
and longitudinal controller which predicts the throttle, brake,
and steering values.

Reference [18] proposed the first interpretable neural
motion planner for learning to drive autonomously in com-
plex urban scenarios that include traffic-light handling, yield-
ing, and interactions with multiple road-users. Their model
employs a convolutional backbone to predict the bounding
boxes of other actors, as well as a space-time cost volume
for planning. The input representation consists of Lidar point
clouds coupled with annotated HD maps of the road. The
space-time cost volume represents the goodness of each
location that the self-driving car can take within a planning
horizon. Their model is trained end-to-end with a multi-task
objective: the planning loss encourages the minimum cost plan
to be similar to the trajectory performed by human demon-
strators, and the perception loss encourages the intermediate
representations to produce accurate 3D detection and motion
forecasting. According to the authors, the combination of
these two losses ensures the interpretability of the intermediate
representations.

B. Reinforcement Learning-Based Autonomous Driving

Reference [8] demonstrated the first application of deep
reinforcement learning to autonomous driving. Their model
is able to learn a policy for lane following in a handful of
training episodes using a single monocular image as input.
The authors used Deep Deterministic Policy Gradient (DDPG)
algorithm [19] with prioritized experience replay [20] with all
exploration and optimization performed on-vehicle. Their state
space consists of monocular camera images compressed by a
learned Variational Auto-Encoder (VAE) [21] together with the
observed vehicle speed and steering angle. The authors defined
a two-dimensional continuous action space: steering angle, and
speed set-point. The authors utilize a 250 meter section of
road for real-world driving experiments. Their best performing
model is capable of solving a simple lane following driving
task in half an hour.

Reference [7] proposes Controllable Imitative Reinforce-
ment Learning (CIRL) to learn a diving policy based only
on vision inputs from the CARLA simulator [9]. CIRL
adopts a two-stage learning procedure: a first imitation stage

pretrains the actor’s network on ground-truth actions recorded
from human driving videos, and the subsequent reinforcement
learning stage employs DDPG [19] to improve the driving
policy. According to the authors, the first imitation stage is
necessary to prevent DDPG to fall in local optima due to poor
exploration. CIRL uses a four-branch network with a speed
prediction branch, similar to [6]. The authors conducted exper-
iments on the CARLA simulator benchmark, showing that
the CIRL performance are comparable to the best imitation
learning methods, such as CIL [5], CAL [17], and CIRLS [6].

Often, training a competitive driving policy from high-
dimensional observations is often too difficult or expensive
for RL. [22] propose to visual encode the perception and
routing information the agent receives into a bird-view image,
which is further compressed by a VAE [21]. To reduce training
complexity the authors employed the frame-skip trick, in which
each action made by the ego-vehicle is repeated for subse-
quent k= 4 frames. The authors evaluated their approach on
CARLA [9], specifically on a challenging roundabout scenario
in Town 3. They compared three RL algorithms: Double
DQN [23], TD3 [24], and SAC [25]. The latter achieved the
best performance.

Reference [26] proposed a multi-objective DQN agent moti-
vated by the fact that a multi-objective approach can help
overcome the difficulties of designing a scalar reward that
properly weighs each performance criteria. Furthermore, the
authors suggest that when each aspect is learned separately,
it is possible to choose which aspect to explore in a given state.
In particular, they learned a separate agent for each objective
which, collectively, form a combined policy that takes all these
objectives into account. The authors trained the agent on two
four-way intersecting roads with random surrounding traffic
provided by the SUMO traffic simulator [27], demonstrating
very low infraction rate.

C. Autonomous Driving Simulators

Autonomous driving research requires a considerable
amount of diversified data, collected on a variety of driving
scenarios with different weather conditions as well. Collecting
such amount of data in the real-world is difficult, time-
consuming, and costly. Moreover, driving datasets often focus
only on specific aspects of the driving task, also collected
with specific sensor modalities (e.g. RGB cameras vs Lidar
sensors).

An increasing popular alternative to real-world data are
autonomous driving simulators. Modern driving simulators
like CARLA (Car Learning to Act) [9], and AirSim [10]
provide realistic 3D graphics and physics simulation, traffic
management, weather conditions, a variety of sensors, pedes-
trian management, different vehicles, and various driving sce-
narios as well. In particular, AirSim also supports autonomous
aerial vehicles, like drones. These kind of simulators are very
flexible providing an easy way to collect data in different
driving scenarios, weather conditions, with different vehi-
cles and sensor modalities. TORCS (The Open Racing Car
Simulator) [28] is a modular, multi-agent car simulator that
focus on racing scenarios, instead. Compared to CARLA and

19820 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 10, OCTOBER 2022

AirSim, TORCS has a lower-quality graphics, no traffic and
pedestrian simulation, and a limited set of sensors. Other kind
of driving simulators focus solely on traffic simulation. SUMO
(Simulation of Urban Mobility) [27] is a microscopic traffic
simulation tool that models each vehicle and their dynamics
individually. In particular, SUMO can even simulate railways
and the CO2 emissions of individual vehicles.

III. BACKGROUND

In this section we provide basic formalism and results about
Reinforcement Learning [29], Generalized Advantage Estima-
tion [30], and Proximal Policy Optimization [11], needed for
understanding and developing the subsequent sections.

A. Reinforcement Learning

Reinforcement Learning (RL) [29] is a learning paradigm
to tackle decision-making problems that provides a formalism
for modeling behavior, in which a software or physical agent
learns how to take optimal actions within an environment
(i.e. a real or simulated world) by trial and error, guided only
by positives or negatives scalar reward signals (sometimes
called reinforcements).

Formally, an environment is a Markov Decision Process
(MDP) represented by a tuple �S,A,P, r, γ �, in which: S is
the state space, A is the action space, P(s� | s, a) is the
transition model (also called the environment dynamics) with
which is possible to predict the evolution of the environment’s
state, r : S×A→ R is the reward function, finally γ ∈ (0, 1]
is the discount factor.

The state space defines all the possible states s ∈ S (of the
environment) that can be experienced by the agent. Instead,
the action space depicts all the possible actions a ∈ A that the
agent can predict. If the state space is not fully-observable, the
agent perceives observations o ∈ O, instead, which are yield
by the environment itself. The observation space O contains
only a partial amount of information described by S, the others
(such as the environment’s internal stat) are hidden. In order
to recover such hidden information the agent usually retains
(or processes somehow) the full (or partial) history of the
previous observations, i.e. o1:t , until the current timestep t .
This setting is usually referred to be a partially-observable
Markov decision process (POMDP).

The agent derives actions according to its policy π :S→A
which can be either deterministic at = π(st) or stochastic
π(at |st) mapping states st to actions at . Note that in a
partially-observable setting (i.e. POMDP) the true states are
not available to the agent, which derives actions by condi-
tioning on (one or more) past observations instead: π(at |
o j :t), where the index j (j ≤ t) indicates how much past
observations are considered. For our purposes, we restrict the
policy to be a Deep Neural Network (DNN) [31], πθ with
learnable parameters θ , that samples actions from a probability
distribution, i.e. at ∼ πθ(·|st). In our case, our agent predicts
two continuous actions so we need to sample them from a
continuous probability distribution like a Gaussian. Motivated
by [32], we use a Beta distribution instead, which, apart
from outperforming the Gaussian distribution, it is particularly
suited for continuous actions that are also bounded.

In order to learn the desired behavior, the agent has to
interact with the target environment: at the first timestep
(t = 0) the environment provides the agent with an initial
state s0∼ ρ(s0) sampled from the initial state distribution
ρ(s0), usually implicitly defined by the environment. Then,
the agent uses its policy to predict and execute the actions a0
affecting the environment, resulting in state s1 according to the
environment dynamics, i.e. s1 ∼ P(· | s0, a0). Consequently,
the environment evaluates the newly reached state s1 with
its reward function also providing the agent the respective
immediate reward r0 = r(s0, a0). Then, the interaction loop
repeats for the next timestep until either a final state or the
maximum number of timesteps have been reached. In general,
the interaction loop proceeds as follows: at a generic timestep t
the agent experiences a state st , then it computes actions at

resulting in state st+1 for which it receives a reward rt =
r(st , at) from the environment. In practice, we consider finite
horizon episodes of maximum length T .

B. Proximal Policy Optimization

Proximal Policy Optimization (PPO) [11] is a model-free
RL algorithm from the policy optimization family that aims
to learn policies in a faster, more efficient, and more robust
way compared to vanilla policy gradient [33], and TRPO [34].
In general, the aim of RL algorithms is to indirectly maximize
the performance objective J (θ) in order to maximize the
agent’s performance on the given task:

J (θ) = E

[T−1∑
t=0

γ trt

]
, (1)

Maximizing the performance objective J (θ) means maximiz-
ing the expected sum of discounted rewards, seeking for a
policy π� = arg maxπ J (θ) that achieves maximal perfor-
mance (i.e.

∑
t rt is maximal). The objective (1) is stochastic

(since the rewards results from sampled states and actions
by following π), apart from being not directly differentiable.
Hence, policy optimization algorithms (likewise other RL
methods) optimize a surrogate objective J̃ (θ), instead, called
the policy gradient:

∇θ J̃ (θ) = E

[T−1∑
t=0

∇θ logπθ(at | st)A(st , at)

]
, (2)

where πθ is a policy parameterized by θ , and A(s, a) is the
advantage function. The PPO algorithm optimizes a slightly
different policy gradient objective to maximize J (θ). In par-
ticular we utilize the following clipping objective variant
(borrowing notation from [11]):

Lclip(θ)

= Et

[
min

(
ratiot (θ) Ât , clip(ratiot (θ), 1− ε, 1+ ε) Ât

)]

(3)

where: ratiot (θ) = πθ (at |st)
πθold(at |st)

denotes the probability ratio

between the current πθ and old policy πθold , Ât represents
the advantages estimated by using GAE, lastly the function

ANZALONE et al.: END-TO-END CURRICULUM LEARNING APPROACH FOR AUTONOMOUS DRIVING SCENARIOS 19821

clip(·) truncates ratiot (θ) at 1 − ε if the advantages Ât are
negatives, otherwise the ratio is clipped at 1 + ε. Lastly, the
hyper-parameter ε is usually set to 0.2. In practice, we also
add an entropy regularization term H[πθ] to the objective (3)
to ensure diverse enough actions.

Equation (3) depicts the clipping objective used by PPO
to improve the policy’s parameters θ , moreover the clipping
function ensures the current policy to be not too different
from the old policy so that divergent behavior is less likely.
Finally, the agent’s parameters θ got updated by performing
multiple gradient descent steps (usually by using the Adam
optimizer [35]) with respect to (3). The update rule looks like
the following:

θ � ← θ − η∇θLclip(θ)

where θ � are the new parameters, and η is the learning rate.

C. Generalized Advantage Estimation

Many RL algorithms belonging to the policy optimization
family – REINFORCE [33], TRPO [34], PPO [11], and
A3C [36] – require to estimate the advantage function A(s, a)
in order to learn the desired behavior. The advantage function
A(s, a) = Q(s, a) − V (s) is defined as being the difference
between the action-value function Q(s, a) and the state-value
function V (s):

Q(s, a) = r(s, a)+ γ · Es �∼P(s,a)
[
V (s�)

]
(4)

V (s) = Ea∼π(s)
[
Q(s, a)

]
(5)

Intuitively, the advantage function tells us how much the action
a is better or worse than the average action while being in
state s. In particular, the action a is better-than-average if
Q(s, a) > V (s), and is worse-than-average if Q(s, a) < V (s).

To estimate the advantage function is only necessary to
learn either the state-value function V (s) or the action-value
function Q(s, a), since both functions can be defined in terms
of the other. In particular we use the Generalized Advantage
Estimation (GAE) [30] technique, which is an exponentially-
weighted estimator of the advantage function that only requires
a learned state-value function. The GAE estimator has two
hyper-parameters γ ∈ (0, 1] and λ ∈ [0, 1] which allows us
to trade variance for bias. Finally, the generalized advantage
estimator GAE(γ, λ) is defined as follows:

AGAE(γ ,λ)
t = (1− λ)

(
A(1)t + λA(2)t + λ2 A(3)t + · · ·

)

=
T−1∑
k=0

(γ λ)kδt+k

it builds from the n-step return estimator A(n)t which is defined
as the sum of n TD-residual δt+k terms:

A(n)t =
n−1∑
k=0

γ kδt+k = −Vφ(st)+ rt + γ rt+1 + γ 2rt+2

+ · · · + γ n−1rt+n−1 + γ n Vφ(st+n)

where Vφ is a learned state-value function.

IV. METHOD

A. Learning Environment

The learning environment E = �S,O,A,P, r, γ �, formally
a Partially Observable Markov Decision Process (POMDP),
defines the task that agent has to complete. This environment E
was built by combining the CARLA driving simulator (version
0.9.9) [9] and the OpenAI’s gym library [37]:
• State space S is implicitly defined by CARLA, contain-

ing ground-truth information about the whole world. The
agent cannot observe the environment’s state st ∈ S, thus
the states are hidden. At each timestep t , the state st

yields the corresponding observation ot , which is what
the agent observes.

• Observation space O: similarly to [38], an observation
ot ∈ O is a stack of K = 4 sets of tensors from the
last K timesteps. Specifically, ot =

{[I,G, V , N]k
}4

k=1,
where: I is a 90 × 360 × 3 image obtained by con-
catenating (along the width axis) three 90 × 120 × 3
images from left, middle, and right RGB camera sen-
sors, G is a 9-dimensional vector that encodes road
features, V is a 4-dimensional vector that embeds vehi-
cle features, and, lastly, N is a 5-dimensional vector
that contains navigational features. The road features G
comprise: three Boolean values (is_intersection,
is_junction, and is_at_traffic_light), the
speed limit (a float), and the traffic light state
(a 5-dimensional one-hot vector). The vehicle features
V contains: the current vehicle speed, the actual throttle
and brake values, and the vehicle similarity score vsim ∈
[−1, 1] w.r.t. the next planned route waypoint (center of a
road segment). Lastly, the navigational features N include
n = 5 distances between the actual location of the vehicle
and the next n planned route waypoints.

• Action space A:composed of two continuous actions
with value in the range [−1,+1]. These two actions are
the accelerator or brake value, and the steering angle.

• Transition dynamics P(st+1 | st , at): defines how the
environment’s state st ∈ S evolves in time due to the
application of the predicted actions at ∈ A. The transition
dynamics is defined by CARLA, and is not explicitly
learned by the agent (model-free setting).

• Reward function r : penalizes any collision, as well
as following the wrong planned route. Compared to
other methods [7], [22] our reward function is simple,
as it relates vehicle’s speed, direction, infractions, and
collisions in an intuitive way, thus avoiding the need to
optimally weight many different terms:

rt =

⎧⎪⎪⎨
⎪⎪⎩

−cp if collision,

slimit − vspeed if vspeed > slimit,
vspeed · vsim

(dw/2)2
otherwise

(6)

where vspeed is the vehicle’s speed, vsim is the vehicle’s
(cosine) similarity with next waypoint w, dw is the l2
distance between the vehicle’s position and w, slimit is
the speed limit, lastly cp is the penalty for colliding with
objects, vehicles, and pedestrians.

19822 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 10, OCTOBER 2022

Fig. 1. Example results of applying data augmentation. The original image is at the top-left corner.

• Discount factor γ ∈ (0, 1]: future rewards are discounted
by a factor of γ at each timestep.

B. Data Augmentation

As demonstrated by previous work [5], [17], [39] data
augmentation is crucial to let the agent generalize across
different towns and weather conditions. Similarly to [5], the
augmentations used are: color distortion (i.e. changes in con-
trast, brightness, saturation, and hue), Gaussian blur, Gaussian
noise, salt-and-pepper noise, cutout, and coarse dropout. Each
augmentation function is applied with a certain probability and
intensity (see Fig. 1).

Geometrical transformations, commonly used for image
detection tasks, including horizontal or vertical flipping, rota-
tion, and shearing, are not applied in this case since they would
significantly alter the driving scene.

Note that data augmentation have been only used in the last
two stages of the reinforced curriculum learning procedure
(more details in section IV-F).

C. Agent Architecture

The agent is implemented by a deep neural network [31]
that takes the current observation ot as input, and outputs the
next action at ∼ πθ(zt) along its value vt = Vφ

(
zt), where

zt = Pψ(ot). The deep neural network represented by the
agent has two branches: the policy branch πθ with parameters
θ (the actor), and the value branch Vφ with parameters φ
(the critic). The policy branch samples a actions from a Beta
distribution as motivated by [32]. The value branch outputs the
value v of the states s that are used to estimate the advantage
function A(s, a) with the GAE [30] technique. Both branches
share a common neural network Pψ with parameters ψ , that
processes observations o into an intermediate representation z.
Since each observation ot is a stack of 4 sets of tensors
(see section IV-A), i.e. ot = [o1

t , . . . , o4
t], the network Pψ

is applied sequentially on each oi
t , yielding four zi

t which
are aggregated by Gated Recurrent Units (GRUs) [40] to
obtain zt . Moreover, Pψ embeds a ShuffleNet v2 [41] to
process image data. Finally, both Vφ and πθ are feed-forward
NNs with two layers with 320 units SiLU-activated [42] and
batch normalization [43].

The overall architecture of the agent is depicted in Fig. 2.
The blue rectangles indicate fully-connected (or dense) layers.
The blue circle, i.e. ⊕, denotes layer concatenation along
the first dimension (or axis), where the batch dimension is

Fig. 2. The neural network architecture of the proposed agent (with minor
omissions). The first half depicts the shared network Pψ , while the second
half shows, respectively from top to bottom, the value Vψ and policy πθ
branches. At the center, the outputs of the first half of the network is first
concatenated and then linearly combined, before feeding it to both the value
and policy branches.

at axis zero. The shared network Pψ (first half) processes
each component of the observation tensor oi

t separately, which
are independently aggregated by GRU layers [40] into single
vectors. Then, the output of the concatenation is linearly
combined and fed to the two branches. Lastly, values are
decomposes into two numbers, bases b and exponents e,
as motivated in the following section.

D. Learning the Value Function

The value function is learned by minimizing the squared
loss Lv (φ) = �v − R�22 of the network estimate of the values
v = [vt]T−1

t=0 , towards the true returns R = [Rt]T−1
t=0 , where

each return Rt =∑T−1
i=t γ

iri is the discounted sum of rewards
from timestep t to the end of the episode T − 1.

Let’s notice that when the quantity �v − R�22 is large,
because the estimate v is far from the ground-truth R, also (the
norm of) its gradient ∇φLv (φ) is large, and so the parameters
φ got a big update that can cause training to be less stable.
Both values and returns are normalized to have zero mean
and unitary variance, this is a commonly used practice to
reduce variance, so that the magnitude of the error is always
small. It is not known in advance to what proportion the values
and returns are normalized to avoid bias, for this reason this
approach is biased: the scale of such quantities changes as the
performance of the agent improves.

The following outlines the approach used to learn the func-
tion solidly and accurately, even without any normalization
bias: both values v and returns R are respectively divided into
bases bv , bR ∈ [−1, 1] and exponents ev , eR ∈ [0, k] such that

v = bv · 10ev

ANZALONE et al.: END-TO-END CURRICULUM LEARNING APPROACH FOR AUTONOMOUS DRIVING SCENARIOS 19823

Fig. 3. Example of value function learned through base-exponent decomposition. In the leftmost plot, the learned value function compared to returns; in the
center plot, the regression of bases; in the rightmost plot, the regression of exponents.

R = bR · 10eR ,

where k ∈ N is a positive constant that should be large enough
to represent even the largest returns. For example, we set k = 6
so that even returns up to ±106 can be properly depicted. With
such base-exponent decomposition, learning the value function
is a matter of regressing both bases and exponents; the new
loss function L�v (φ) is defined as follows:

L�v (φ) =
T−1∑
t=0

(bvt − bRt)
2

4
+ (evt − eRt)

2

k2 (7)

Hence, even large errors now lie in a small interval because
both the base b and exponent e take values in a small interval,
and so the gradient ∇φL�v (φ) is always reasonably small,
resulting in more stable training. Note that the bases b have
a different scale from the exponents e, so we normalize them
(by respectively dividing by 4 and k2) such that they equally
contribute to the loss value, once again avoiding the need to
weight these two error terms. The normalizing coefficients
are obtained by considering the worst case in the squared
differences. Since the bases b ∈ [−1, 1], the worst case (i.e. the
larger error value) is given by (1 − (−1))2 = 4: supposing
bvt = 1 and bRt = −1 (or vice-versa). Similarly for the
exponents (0 − k)2 = k2, since e ∈ [0, k], again supposing
evt = 0 and eRt = k (or vice-versa).

E. Sign-Preserving Advantage Normalization

The estimated advantages Ât directly affect the norm of
the gradient ∇θLclip(θ) of the PPO’s policy objective (3) as
being a multiplicative factor. Consequently, if the advantages
are large also the norm of ∇θLclip(θ) is large, resulting in
a considerable change of the policy’s parameters: resulting
in a probable change of the agent behavior, which may
easily diverge; otherwise we could lower the learning rate
by several factors, potentially slowing-down training. Note
that the magnitude of the advantages strictly depends on the
quality of the learned value function, thus: poorly estimated
values imply large advantages, since Â ≈ Vφ(s) − R, where
Vφ is a learned value function and R the true returns. So,
it is important to scale the advantages in a reasonable range
without introducing any bias to stabilize learning (Fig. 4).

For such purpose we propose the sign-preserving normal-
ization function which separately normalizes positive values
from negative ones. The function is defined by the following
TensorFlow 2 [44] code:

Fig. 4. Normalized advantages (b) now have a small scale, roughly in
[−1, 1]. The magnitude of the original advantages (a) was much larger, in the
order of 105. This ensures the policy gradient’s norm to be small as well.
Notice the scale of the normalized advantages is almost 104 times smaller.
Moreover, our normalization scheme ensures the preservation of the sign, that
is if in (a) some advantages were positive, they will be still positive after our
normalization in (b).

def sign_preserving_norm (adv, eps=1e-3):
adv_max = tf.reduce_max(adv)
adv_min = tf.reduce_min(adv)

first, filter positives and negatives
pos = adv * tf.cast(adv > 0, tf.float32)
neg = adv * tf.cast(adv < 0, tf.float32)

then, normalize them separately
return (pos / (adv_max + eps)) +

(neg / -(adv_min - eps))

Advantages normalized with the above function have the
benefit to have the same sign (and, thus, meaning) of the
original advantages (Fig. 5), while having a small and con-
trollable scale which we argue contribute to stabilize train-
ing. Preserving the sign is an important property which
avoids detrimental gradient flipping issues that cause ambigu-
ity in the policy between better-than-average actions against
worse-than-average actions, which are mismatched and vice-
versa: for example, widely used normalization techniques like
min-max normalization and standardization (i.e. zero-mean
unit-variance normalization) lack this property. In particular,
min-max normalization transforms values to be in range
[0, 1] such that the minimum value corresponds to 0 and
the maximum to 1. Such normalization would make the
normalized advantages to be always positive: thus, the sign
is lost. Similarly, standardization would change the sign to be
negative for those values which are below the mean value.

F. Reinforced Curriculum Learning

Since the problem of autonomous driving is extremely
complex we adopt a stage-based learning procedure for our
PPO agent, inspired by Curriculum Learning [12]. We divide

19824 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 10, OCTOBER 2022

TABLE I

PERFORMANCE OF OUR AGENTS: Curriculum (C), Standard (S), AND Untrained (U). BEST RESULTS ARE HIGHLIGHTED IN BOLD. THE RESULTS HAVE
BEEN AGGREGATED OVER THE TWO WEATHER SETS (Soft AND Hard), AND THREE TRAFFIC SCENARIOS (No, Regular, AND Dense)

Fig. 5. How normalization alters the sign of the estimated advantages. The
blue curve shows the true estimated advantages (notice they are all positive).
Standardized advantages (red) became negative if they were below the average,
compared to sign-preserved advantages (purple) which are still positive.

the whole reinforcement learning procedure into five stages
of growing difficulty, such that the agent is guided to learn
increasingly complex behavior. Each stage has a version of the
learning environment (E) that emphasizes specific aspects of
the driving tasks. All the following stages occur in Town 3:
one of the most complete and challenging town available in
CARLA.
• Stage 1: the agent starting point is sampled from a fixed

set of n = 10 locations (determined by fixing the random
generator’s seed). the agent’s initial position is sampled
from n = 10 positions. Also, in this situation the agent has
to respect the speed limits and there are no other dynamic
objects other than the one controlled by the agent (no
traffic scenario).

• Stage 2: n is set to 50, to let the agent experience
more diverse starting locations. In addition, the simulator
tries to randomly generate a maximum of 50 pedestrians
walking freely across the map, possibly crossing streets.

• Stage 3: there are no more restrictions on the start
locations. Moreover, the weather condition is randomly
set to one of the presets [ClearNoon, ClearSunset,

WetSunset, SoftRainSunset, CloudyNoon,
WetNoon, SoftRainNoon]. Finally, in addition to the
50 pedestrian, CARLA also inserts 50 vehicles into the
map thus creating the regular traffic scenario.

• Stage 4: same conditions of Stage-3 but with data-
augmentation enabled (as detailed in section IV-B).

• Stage 5: the dense traffic scenario is developed, 100 vehi-
cles and 200 pedestrians are placed within the city. (Data
augmentation is still enabled.)

Each stage lasts for 500 episodes of 512 timesteps, for a total
of 1.28M timesteps.

V. RESULTS

In this section we provide both quantitative (Table I) and
qualitative (Fig. 6) results of the driving policy resulting from
our reinforced curriculum learning procedure [45].

A. Evaluation Procedure

We perform extensive evaluation of our agent against six
metrics, on all CARLA’s towns with different weather con-
ditions, as well as three traffic scenarios as proposed in the
NoCrash benchmark [6]:
• Metrics: collision rate, similarity, waypoint distance,

speed, total reward, and timesteps.
• Towns: in CARLA each town has its own unique features.

We trained our agent only on one town, Town03, and
evaluated it on Town01, Town02, Town03, Town04,
Town05, Town06, Town07, Town10.

• Weather: we evaluate on two disjoint sets of weather
presets. The first set (described in section IV-F) has
been only used for training, the other is novel for
the agent: [WetCloudyNoon, WetCloudySunset,
CloudySunset, HardRainNoon, MidRainyNoon,
MidRainSunset].

• Traffic: as in the NoCrash benchmark [6], we eval-
uate our agent on three different traffic scenarios: no

ANZALONE et al.: END-TO-END CURRICULUM LEARNING APPROACH FOR AUTONOMOUS DRIVING SCENARIOS 19825

Fig. 6. Performance of our agent in various settings, towns and weather.
Notice that scenario (a) and (c) are novel, not experienced by the agent during
training.

traffic (without any pedestrian nor vehicle), regular traf-
fic (50 pedestrians and 50 vehicles), and dense traffic
(200 pedestrians and 100 vehicles).

We also evaluate the benefit of curriculum learning, comparing
the same agent with and without curriculum: we refer to the
former agent as curriculum (C), and the latter as standard (S).
Moreover, we also provide (non-trivial) baseline performance
of an agent with the same architecture as the other two but
with random weights being fixed for the entire evaluation
procedure: we refer to this agent as untrained (U). Notice
that the untrained agent is a stronger (but still naive) baseline
compared to a purely random-guess agent, which completely
discards the input observations it receives solely sampling
actions uniformly. Relative performance, aggregated over the
three traffic scenarios as well as the two weather sets, are
shown in Table I. Qualitative results are provided by Fig. 6.

B. Discussion

From the detailed evaluation results, we point out two
major weaknesses of our approach: (1) the agent struggles at
coordinating acceleration and breaking, and (2) at recognizing
obstacles. This results in low speed (about 9 km/h) and many
collisions as well. Such behavior could be due to lack of
exploration, network capacity and/or architecture, as well as
various difficulties in optimizing the policy gradient.

We also demonstrate the following: (1) emerging driving
behavior without leveraging any domain knowledge, that is
(2) robust and consistent across towns and weather condi-
tions, furthermore (3) the stage-based reinforcement learning
procedure has proven to be competitive, even better, compared
to plain reinforcement learning.

VI. CONCLUSION

Deep reinforcement learning is still a relatively new field
with lots of unexplored research directions, that enable us to
solve even complex decision-making problems in a completely
end-to-end fashion, thus without leveraging any domain-
specific knowledge or expensive sets of highly-annotated data.
On the contrary, imitation learning is a stronger approach for
autonomous driving that heavily relies on high-quality and
high-quantity datasets, which also should provide demonstra-
tions of recovery from driving mistakes in order to learn a
reliable driving policy.

Although our approach is not yet competitive with the state-
of-the-art (CIRL [7], CAL [17], and CIRLS [6]), we demon-
strate emerging driving behavior that is consistent across all
CARLA towns and robust to change in weather. To our
knowledge, we are the first to provide baseline performance
on all towns, and to demonstrate such consistency. We also
provide a decomposition of the returns that allows learning
the value function in a stable and accurate way, as well as a
proper normalization function for the estimated advantages.

REFERENCES

[1] International: On-Road Automated Vehicle Standards Committee,
S. SAE, Taxonomy Definitions Terms Rel. On-Road Motor Vehicle
Automated Driving Syst., Warrendale, PA, USA, Inf. Rep., 2014.

[2] S. Pendleton et al., “Perception, planning, control, and coordination for
autonomous vehicles,” Machines, vol. 5, no. 1, p. 6, Feb. 2017.

[3] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey
of deep learning techniques for autonomous driving,” J. Field Robot.,
vol. 37, no. 3, pp. 362–386, 2020.

[4] E. Yurtsever, J. Lambert, A. Carballo, and K. Takeda, “A survey of
autonomous driving: Common practices and emerging technologies,”
IEEE Access, vol. 8, pp. 58443–58469, 2020.

[5] F. Codevilla, M. Müller, A. Lopez, V. Koltun, and A. Dosovitskiy, “End-
to-end driving via conditional imitation learning,” in Proc. IEEE Int.
Conf. Robot. Automat. (ICRA), May 2018, pp. 1–9.

[6] F. Codevilla, E. Santana, A. Lopez, and A. Gaidon, “Exploring the limi-
tations of behavior cloning for autonomous driving,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis. (ICCV), Oct. 2019, pp. 9329–9338.

[7] X. Liang, T. Wang, L. Yang, and E. Xing, “CIRL: Controllable imitative
reinforcement learning for vision-based self-driving,” in Proc. Eur. Conf.
Comput. Vis. (ECCV), Sep. 2018, pp. 584–599.

[8] A. Kendall et al., “Learning to drive in a day,” in Proc. Int. Conf. Robot.
Automat. (ICRA), May 2019, pp. 8248–8254.

[9] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun,
“CARLA: An open urban driving simulator,” 2017, arXiv:1711.03938.

[10] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and Service
Robotics, M. Hutter and R. Siegwart, Eds. Cham, Switzerland: Springer,
2018, pp. 621–635.

[11] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[12] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 41–48.

[13] M. Bojarski et al., “End to end learning for self-driving cars,” 2016,
arXiv:1604.07316.

[14] S. Hecker, D. Dai, and L. Van Gool, “End-to-end learning of driving
models with surround-view cameras and route planners,” in Proc. Eur.
Conf. Comput. Vis. (ECCV), 2018, pp. 435–453.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2016, pp. 770–778.

[17] A. Sauer, N. Savinov, and A. Geiger, “Conditional affordance learning
for driving in urban environments,” 2018, arXiv:1806.06498.

[18] W. Zeng et al., “End-to-end interpretable neural motion planner,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2019, pp. 8660–8669.

19826 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 23, NO. 10, OCTOBER 2022

[19] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” 2015, arXiv:1509.02971.

[20] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” 2015, arXiv:1511.05952.

[21] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” 2013,
arXiv:1312.6114.

[22] J. Chen, B. Yuan, and M. Tomizuka, “Model-free deep reinforcement
learning for urban autonomous driving,” in Proc. IEEE Intell. Transp.
Syst. Conf. (ITSC), Oct. 2019, pp. 2765–2771.

[23] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double Q-learning,” 2015, arXiv:1509.06461.

[24] S. Fujimoto, H. van Hoof, and D. Meger, “Addressing function approx-
imation error in actor-critic methods,” 2018, arXiv:1802.09477.

[25] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” 2018, arXiv:1801.01290.

[26] C. Li and K. Czarnecki, “Urban driving with multi-objective deep
reinforcement learning,” 2018, arXiv:1811.08586.

[27] P. A. Lopez et al., “Microscopic traffic simulation using sumo,” in Proc.
21st Int. Conf. Intell. Transp. Syst. (ITSC), Nov. 2018, pp. 2575–2582.

[28] B. Wymann, E. Espié, C. Guionneau, C. Dimitrakakis, R. Coulom, and
A. Sumner, (2000). TORCS, The Open Racing Car Simulator. [Online].
Available: http://torcs.sourceforge.net

[29] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[30] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
2015, arXiv:1506.02438.

[31] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learning,
vol. 1, no. 2. Cambridge, MA, USA: MIT Press, 2016.

[32] P.-W. Chou, D. Maturana, and S. Scherer, “Improving stochastic pol-
icy gradients in continuous control with deep reinforcement learning
using the beta distribution,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 834–843.

[33] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, nos. 3–4,
pp. 229–256, 1992.

[34] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 1889–1897.

[35] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[36] V. Mnih et al., “Asynchronous methods for deep reinforcement learning,”
in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[37] G. Brockman et al., “OpenAI gym,” 2016, arXiv:1606.01540.
[38] V. Mnih et al., “Playing atari with deep reinforcement learning,” 2013,

arXiv:1312.5602.
[39] F. Codevilla, A. M. Lopez, V. Koltun, and A. Dosovitskiy, “On offline

evaluation of vision-based driving models,” in Proc. Eur. Conf. Comput.
Vis. (ECCV), 2018, pp. 236–251.

[40] K. Cho et al., “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” 2014, arXiv:1406.1078.

[41] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “ShuffleNet V2: Practical
guidelines for efficient CNN architecture design,” in Proc. Eur. Conf.
Comput. Vis. (ECCV), 2018, pp. 116–131.

[42] S. Elfwing, E. Uchibe, and K. Doya, “Sigmoid-weighted linear units
for neural network function approximation in reinforcement learning,”
Neural Netw., vol. 107, pp. 3–11, Nov. 2018.

[43] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” 2015,
arXiv:1502.03167.

[44] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in Proc. 12th USENIX Symp. Operating Syst. Design Implement.
(OSDI), 2016, pp. 265–283.

[45] L. Anzalone, S. Barra, and M. Nappi, “Reinforced curriculum learning
for autonomous driving in CARLA,” in Proc. IEEE Int. Conf. Image
Process. (ICIP), Sep. 2021, pp. 3318–3322.

Luca Anzalone received the B.Sc. and M.Sc. degrees (cum laude) in computer
science from the University of Salerno, in 2018 and 2020, respectively. He is
currently pursuing the Ph.D. degree in data science and computation with the
University of Bologna. His research interests include deep learning and deep
reinforcement learning.

Paola Barra received the B.S. degree in computer
science from the University of Salerno, the M.S.
degree in business informatics from the Univer-
sity of Pisa, the Ph.D. degree from the Univerisity
of Salerno in 2021. Her research interests include
machine learning techniques to solve issues using
computer, as vision facial and gait recognition,
action recognition, and tumor detection. She is a
member of GIRPR/IAPR.

Silvio Barra was born in Battipaglia, Salerno,
Italy, in 1985. He received the B.Sc. and M.Sc.
degrees (cum laude) in computer science from the
University of Salerno, in 2009 and 2012, respec-
tively, and the Ph.D. degree from the University
of Cagliari, in 2017. Currently, he is a Research
Assistant with the University of Naples, Federico
II. He has authored more than 50 papers, published
in international journals, conferences, and books.
His main research interests include pattern recog-
nition, biometrics, video analysis and analytics, and
financial forecasting.

Aniello Castiglione (Member, IEEE) received the
Ph.D. degree in computer science from the Univer-
sity of Salerno, Italy. He is currently an Associate
Professor with the University of Naples Parthenope,
Italy. He received the Italian National Qualification
as a Full Professor of computer science in 2021.
He published more than 240 papers in international
journals and conferences. Considering his journal
articles, more than 85 of them are ranked Q1 in
Scopus/Scimago classification and more than 70 of
them are ranked Q1 in the Clarivate Analytics/ISI-

WoS classification. The international academic profile of him is spread among
his 86 international coauthors who belong to 75 different institutions located in
18 countries. He served in the organizations as the Program Chair and a TPC
Member in around 250 international conferences (some of them are ranked
A+/A/A- in the CORE, LiveSHINE, and Microsoft Academic international
classifications). His current research interests include information forensics,
digital forensics, security and privacy on cloud, communication networks,
applied cryptography, and sustainable computing. Currently, he is the Editor-
in-Chief of the Special Issues for the Journal of Ambient Intelligence and
Humanized Computing (Springer). He served as the Managing Editor for
two ISI-ranked international journals and as a Reviewer for 110 international
journals. In addition, he served as a Guest Editor for 30 Special Issues
and served as the Editor of more than ten Editorial Boards of international
journals, such as IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING,
IEEE ACCESS, IET Image Processing (IET), Journal of Ambient Intelligence
and Humanized Computing (Springer), MTAP, Sustainability (MDPI), Smart
Cities (MDPI), and Future Internet (MDPI). One of his papers (published
in the IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING)
was selected as “Featured Article” in the “IEEE Cybersecurity Initiative” in
2014. In October 2020 and October 2021, he was included into the ranking
of the top 100,000 scientists for the years 2019 and 2020. He is a member
of ACM.

Michele Nappi (Senior Member, IEEE) received
the laurea degree (cum laude) in computer science
from the University of Salerno, Italy, in 1991, the
M.Sc. degree in information and communication
technology from I.I.A.S.S. E.R. Caianiello, in 1997,
and the Ph.D. degree in applied mathematics and
computer science from the University of Padova,
Italy, in 1997. He was one of the founders of the spin
off BS3 (biometric system for security and safety) in
2014. He is currently a Full Professor of computer
science with the University of Salerno. He is a Team

Leader of the Biometric and Image Processing Laboratory (BIPLAB). He has
authored more than 180 papers in peer-reviewed international journals, inter-
national conferences, and book chapters. His research interests include pattern
recognition, image processing, image compression and indexing, multimedia
databases and biometrics, human–computer interaction, and VR/AR. He is a
member of TPC of international conferences. He is a GIRPR/IAPR Member.
He received several international awards for scientific and research activities.
He is the Co-Editor of several international books. He serves as an Associate
Editor and a Managing Guest Editor for several international journals. He is
the President of the Italian Chapter of the IEEE Biometrics Council.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

