
Received 28 December 2022, accepted 16 January 2023, date of publication 18 January 2023, date of current version 24 January 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3237971

An IoT Toolchain Architecture for Planning,
Running and Managing a Complete
Condition Monitoring Scenario
FEDERICO MONTORI 1,2, (Member, IEEE), IVAN ZYRIANOFF1,2,
LORENZO GIGLI 1,2, (Graduate Student Member, IEEE), ALESSANDRO CALVIO 1,
RICCARDO VENANZI 1, (Member, IEEE), SIMONE SINDACO2,
LUCA SCIULLO 1, (Member, IEEE), FEDERICA ZONZINI 2,3, (Member, IEEE),
MATTEO ZAULI 2,3, (Member, IEEE), NICOLA TESTONI 2,3, (Member, IEEE),
ALESSANDRO BERTACCHINI 4, (Member, IEEE), ELISA LONDERO5, ENRICO ALESSI6,
MARCO DI FELICE 1,2, (Member, IEEE), LUCIANO BONONI 1,
PAOLO BELLAVISTA 1, (Senior Member, IEEE), LUCA DE MARCHI 2,3, (Senior Member, IEEE),
ALESSANDRO MARZANI 2,7, PAOLO AZZONI5, AND TULLIO SALMON CINOTTI 2
1Department of Computer Science and Engineering, University of Bologna, 40126 Bologna, Italy
2Advanced Research Center on Electronic Systems ‘‘Ercole De Castro’’, University of Bologna, 40126 Bologna, Italy
3Department of Electrical, Electronic, and Information Engineering ‘‘Guglielmo Marconi’’, University of Bologna, 40126 Bologna, Italy
4Department of Science and Engineering Methods, University of Modena and Reggio Emilia, 41121 Modena, Italy
5Eurotech S.p.A., 33020 Udine, Italy
6Advanced Research and System Platforms RND, Analog, MEMS and Sensors Group, STMicroelectronics, 95121 Catania, Italy
7Department of Civil, Chemical, Environmental, and Materials Engineering, University of Bologna, 41121 Modena, Italy

Corresponding author: Federico Montori (federico.montori2@unibo.it)

This work was supported by the Electronic Components and Systems for European Leadership, ECSEL, Joint Undertaking under Grant
826452; in part by the Arrowhead Tools European Union Horizon 2020 Research and Innovation Program; in part by the member states,
and by Istituto nazionale Assicurazione Infortuni sul Lavoro (INAIL) under Grant BRIC/2018; and in part by the ID=11 Framework, under
Project MAC4PRO, (Smart maintenance of industrial plants and civil structures via innovative monitoring technologies and prognostic
approaches).

ABSTRACT Condition Monitoring (CM) is an extremely critical application of the Internet of Things
(IoT) within Industry 4.0 and Smart City scenarios, especially following the recent energy crisis. CM aims
to monitor the status of a physical appliance over time and in real time in order to react promptly when
anomalies are detected, as well as perform predictive maintenance tasks. Current deployments suffer from
both interoperability and management issues within their engineering process at all phases – from their
design to their deployment, to their management –, often requiring human intervention. Furthermore, the
fragmentation of the IoT landscape and the heterogeneity of IoT solutions hinder a seamless onboarding
process of legacy devices and systems. In this paper, we tackle these problems by first proposing an
architecture for CM based on both abstraction layers and toolchains, i.e., automated pipelines of engineering
tools aimed at supporting the engineering process. In particular, we introduce four different toolchains, each
of them dedicated to a well-defined task (e.g., energy monitoring). This orthogonal separation of concerns
aims to simplify both the understanding of a complex ecosystem and the accomplishment of independent
tasks. We then illustrate our implementation of a complete CM system that follows said architecture as
a real Structural Health Monitoring (SHM) pilot of the Arrowhead Tools project, by describing in detail
every single tool that we developed. We finally show how our pilot achieves the main objectives of the
project: the reduction of engineering costs, the integration of legacy systems, and the interoperability with
IoT frameworks.

INDEX TERMS IoT, WoT, condition monitoring, SHM, arrowhead, toolchain.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mauro Tucci .

VOLUME 11, 2023 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 6837

https://orcid.org/0000-0002-9943-4209
https://orcid.org/0000-0001-9714-3777
https://orcid.org/0000-0002-2403-2969
https://orcid.org/0000-0002-7817-5842
https://orcid.org/0000-0002-8973-4486
https://orcid.org/0000-0002-2429-1469
https://orcid.org/0000-0003-3832-2833
https://orcid.org/0000-0003-3281-137X
https://orcid.org/0000-0001-9899-5365
https://orcid.org/0000-0001-7496-7597
https://orcid.org/0000-0002-3460-6452
https://orcid.org/0000-0003-0992-7948
https://orcid.org/0000-0003-0637-9472
https://orcid.org/0000-0001-7697-6729
https://orcid.org/0000-0002-6877-5254
https://orcid.org/0000-0002-5969-5455


F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

I. INTRODUCTION
The Internet of Things (IoT) is now a dominant technology
for building automation and industrial solutions and the basis
for a variety of application domains [1]. One such is Condi-
tion Monitoring (CM), which is crucial for several scenarios
in Industry 4.0. CM is responsible for monitoring a defined
physical appliance – or a set of those – via a number of sensors
that are deployed in the field. The goal is the monitoring of
certain condition parameters, such as vibrations inmachinery,
in order to identify abnormal values and act in advance in
case a possible fault is detected or predicted to occur (as in
predictive maintenance) [2].

The implementation of CM is widespread in several use
cases, for instance, wind turbines or railway tracks [3],
however, the lack of proper automation over its engineering
process may easily lead to overwhelming deployment and
operation costs. Indeed, managing remotely and automati-
cally CM scenarios and, in general, promoting the automation
of processes, is a very crucial aspect in order to avoid sig-
nificant manual work [4]. This overhead is the major cause
of heavy engineering costs and the slowdown of processes.
Another major cause is the fragmentation of IoT technolo-
gies, which leads to severe interoperability issues that make
the integration of legacy technologies – always present in
industrial monitoring scenarios – challenging and costly.
In certain cases this problem is mitigated by established IoT
frameworks, however, the transition to a single technology is
rarely free of technological obstacles.

In order to tackle these problems, in this paper we design
and propose a toolchain architecture for CM of industrial
scenarios that are characterized by data coming from a set
of heterogeneous sensors. The architecture leverages indeed
the concept of ‘‘toolchain’’, a set of software engineering
tools that are connected to each other via interfaces, thus
enabling automation across abstraction layers. In our case,
the toolchain architecture aims to support a defined engineer-
ing process following the principles of the EU Arrowhead
Tools project,1 in order to meet certain project objectives.
In particular, in this paper we describe four different and
generalizable toolchains, altogether concurring in achieving
the following specific goals: (i) integrating third-party and
legacy devices through a seamless onboarding procedure
supported by translation of standards, (ii) automatically
adjusting the working conditions of the devices in order to
optimize their maintenance and management costs according
to the conditions of the environment, and (iii) supporting
the integration with well-established IoT frameworks and
cloud services to lower the need for on-site intervention.
Within our proposal, the main enabler of toolchains is the
Eclipse Arrowhead framework, which provides local clouds
with service-oriented capabilities, such as loose coupling,
discovery, and orchestration, and represents a single fruition
channel for service providers and consumers.

1https://tools.arrowhead.eu/home/

As a proof-of-concept implementation, we then discuss
a use-case related to Structural Health Monitoring (SHM),
which is also a demonstrator for the Arrowhead Tools project,
also available in a video.2 SHM, a particular instance of
CM, is a relatively young discipline aimed at assessing the
integrity condition of existing structures and critical assets by
means of on-condition inspection procedures, meaning that
the target structure can be controlled in real-time and over
time [5], [6]. SHM shows two main benefits over standard,
scheduled maintenance policies: first of all, it prevents the
normal serviceability to be interrupted, since the target struc-
ture can be inspected while in its operative conditions, and,
secondly, it assists inspectors in the decision-making process
via automated assessment procedures. However, despite the
significant advancements achieved by the information and
structural engineering community, the fulfillment of these
functionalities compatible with the need for a safer, green,
and more digital industry still poses major concerns that
demand novel maintenance strategies and architectures, such
as in our proposal [7]. The current baseline is an SHM sensor
network, hosting a number of inertial sensors that monitor the
vibrations of a model building. We firstly provided sensors
with a degree of interoperability by leveraging the W3CWeb
of Things (WoT) standard [8]. TheW3CWoT is a recent stan-
dardization effort that abstracts simple sensors and actuators
into Web resources that bear a detailed description of their
capabilities, their interaction affordances, and their semantics
[9]. In our case, each of the SHM sensors is equipped with a
WoT counterpart that governs all the incoming and outgoing
communication. The baseline is enriched by the development
of a number of engineering tools, all of them described in
detail, that comply with our proposed toolchain architecture,
making the use case an instance of our proposal.

We then validate the advantages of our approach through
selected experiments and we report the observed system
behavior utilizing the MODRON [10] platform. The paper
is structured as follows: Section II introduces the Arrow-
head Tools project and its related definitions, as well as
the Eclipse Arrowhead framework. Section III presents our
proposed toolchain architecture and how our toolchains are
aiming at fulfilling the project objectives. Section IV presents
our demonstrator pilot, the sensor used, and the tools for
their interoperability. Section V details the implemented tools
and components for the four proposed toolchains within
our demonstrative implementation. Section VI describes the
experiments and the validation results with a particular focus
on the project objectives and discusses takeaway messages.
Section VII discusses related works to better frame our pro-
posal within the literature. Finally, Section VIII concludes the
paper and discusses some future directions of research.

II. THE ARROWHEAD ECOSYSTEM
The use case described in this paper has been developed
within the scope of the ECSEL Arrowhead Tools project,

2https://youtu.be/1nEOJpXu9l8

6838 VOLUME 11, 2023



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

FIGURE 1. A graphical overview of the Arrowhead Tools Engineering Process.

as one of the main demonstrators. This section aims to give an
overview of the project and a handful of general definitions
necessary to understand the concepts of engineering process,
tool, toolchain, and core services.

A. THE ARROWHEAD TOOLS PROJECT
The ECSEL Arrowhead Tools project (running from 2019 to
2022) is one of the biggest and most influential EU projects
of the latest years. It features about 90 partners from 17
EU countries and has triggered an investment of more than
100 million Euros, shared between the industrial partners, the
countries, and the EU commission.

The project aims to provide automation and digitalization
technologies and solutions to the European industry in order
to address the integration gaps of information and operation
technologies. This is achieved by the development of new
open-source tools that operate at design time and run time
in the engineering process of IoT industrial artifacts.

Within the Arrowhead Tools project, a detailed engineer-
ing process model has been proposed lately in [11] and [12]
and to which we will refer to as Arrowhead Tools Engineer-
ing Process (AHT-EP). The current version of the AHT-EP
features concepts that are compatible with earlier similar
models, in order to maintain backward compliance and at
the same time retain the flexibility to meet current industrial
requirements. The AHT-EP is built on top of the well-known
Extended Automation Engineering Model defined in the
ISO/IEC 81346 standard [13]. However, it allows a decoupled
flow of information through the engineering process phases
(EPPs) which no longer need to be traversed in a fixed order,
if needed. The eight EPPs are depicted in Figure 1 and are
connected via interfaces. Each EPP has an incoming (EP-I)
and an outgoing (EP-O) interface. The term engineering pro-
cess unit (EPU) means any of the three concepts. Now, the
main activities within the Arrowhead Tools project demand
the achievement of the project objectives via the development
of software tools. Tools in the project have been precisely
defined as software products (or hardware with adequate soft-
ware on board) that improve an already established industrial
baseline by supporting one or more EPPs [14]. The complete
definition features additional properties, such as atomicity
and interoperability, which enable the combination of a set
of tools, applied in sequence, that can supervise the whole
engineering process of a certain artifact. This makes tools
suitable for compositional architectures, called toolchains,
which are simply defined as the sequential composition of

engineering tools within a fully fledged engineering process.
Finally, tools and toolchains are designed to fulfill a set of
project objectives that provide definedKPIs for the evaluation
of the impact of the tool on the baseline:

1) The seamless integration of legacy components into the
architecture.

2) The reduction of engineering costs.
3) The interoperability with established IoT frameworks.

B. THE ECLIPSE ARROWHEAD FRAMEWORK
The last decade has been dominated by a fast-paced indus-
trial revolution, particularly affecting IoT-based ecosystems.
In particular, Industry 4.0 no longer relies on legacy and
monolithic SCADA/DCS systems, instead, they are sup-
ported by flexible Service-Oriented Architectures (SOA),
where modular systems consume or provide services, ensur-
ing loose coupling between modules and their reusability
acrossmultiple domains [15]. The Eclipse Arrowhead Frame-
work is a software platform released as an open source
product of the Arrowhead Project3 that structures closed
environments as Local Clouds: controlled ecosystems that
implement the base concepts of SOA – loose coupling, late
binding, and discovery – and hosts a single instance of a
central coordination entity, called the Core Services [16].
Then, each Local Cloud acts as a System-of-Systems inwhich
each system is either an application system (if an integral
part of the baseline) or a tool (if it meets our previous defi-
nition). Regardless, they behave as service providers (servers
exposed through endpoints) and/or service consumers (clients
that query other services). Service consumption is super-
vised and managed by the Core Services, which must be
deployed in the Local Cloud in a minimum set. The lat-
ter defines the ‘‘mandatory’’ Core Services in order to be
Arrowhead-compliant; which are the Service Registry, the
Authorization, and the Orchestration. The Service Registry
retains a service record – a set of metadata – for each of
the services in the Local Cloud acting as a registrar which
enables discovery and loose coupling. Service providers can
register themselves or a modeling facility may be used in
the design phase of the Local Cloud, such as SysML [17].
The Authorization is a storage of a set of authorization rules
that specify whether a consumer is authorized to use a certain
service. In addition, it provides a token-based authentication
mechanism. Finally, the Orchestration is the enabler of late

3http://www.arrowheadproject.eu/

VOLUME 11, 2023 6839



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

binding, as it allows an additional actor, the cloud manager,
to associate directly consumers to providers at run-time.
This way, consumers cannot autonomously decide which
service provider to query, instead, they query the Orches-
tration service to obtain the provider that was assigned to
them.

III. TOOLCHAIN ARCHITECTURE
In this section, we present the overall architecture of a
toolchain-enabled complex condition monitoring scenario.
We extend the 4-layer architecture build for SHM (see
Section I) initially proposed in [10], and we take inspiration
from the 5-layer IoTecture defined in [18]. The final objective
is to present a high-level generic and flexible architecture
capable of supporting deployments comprised of numerous
heterogeneous devices, different communication technolo-
gies, applications with non-uniform interfaces, and multiple
end-user roles, ranging from managers to data scientists and
system administrators.

Figure 2 depicts the layered architecture adopted. Each
layer defines a specific function, which can be performed
by one or multiple applications, that connects with the other
adjacent layers.

The L1 - Physical layer encompasses devices responsi-
ble for interacting with the physical world. This category
comprises all sensors and actuators, such as accelerometers,
gas, and piezoelectric sensors. This layer also includes the
physical communication medium of the network stack – e.g.,
Wi-Fi, LTE, LoRa, etc.

The L2 - Interoperability was formally referred to
as data acquisition [10] or as communication layer [18].
We expanded the responsibilities of this layer since it enables
seamless communication between the lower and upper layers.
Hence, this category is comprised of two sets of tools:

1) Communication-enablers: the tools responsible for data
to be delivered, such as protocol-specific message bro-
kers (e.g., MQTT Brokers) and network layer enablers,
(e.g., the LoRaWAN server stack);

2) Homogenization tools: provide uniform interfaces to
consume data (e.g., the WoT standard) and bridge dif-
ferent data structures or protocols.

The L3 - Operation layer encompasses tools that
are responsible for the data storing, filtering, processing,
and transformation operations. This includes time-series
databases and supporting applications that manage the data
insertion and acquisition operations, optimization algorithms
that either aid users in making informed decisions upon the
system or act autonomously, Digital Twins that predict the
future state of the system. Data transformation tools are also
part of this layer since sensor data generally needs calibration
or some data processing – e.g., the cumulative event sum is
a crucial metric in the field of SHM (an event is registered if
a sensor is excited beyond a certain threshold); to calculate it
we need not only the definition of a threshold, but the history
of the system through time.

The L4 - Service layer is comprised of services for end-
users, responsible for supporting their interaction with the
system. This includes data visualization as well as interac-
tions that can potentially lead up to commands that change
the current state of the system. The visualization tools should
consider that complex systems are managed by users per-
forming different roles, each with their concerns and experi-
ences. For instance, a dashboard that enables civil engineers
to assess the health of a given structure is different from aGUI
that assists the system administrator with the current state of
each software application.

On the right-hand side of Figure 3 there is a security block
that crosses all layers. The reason is that each layer needs
to address its security liabilities since they impose different
requirements and constraints. Hence, end-user authorization
and authentication – performed in L4-Service – needs to be
handled differently as the same operations for end-devices –
managed by L2-Interoperability.

The building blocks for IoT data acquisition and process-
ing are already a well-established pipeline in literature [19].
Although adequate for most scenarios, CM has multiple mov-
ing pieces, since it requires scalability and it is an inherently
interdisciplinary domain. The IoT pipeline is the backbone of
the system. However, when the system scales up, it requires
more effort and costs to efficiently manage applications,
devices, and energy. In Section II-A we set three project
objectives for a CM scenario, in order to satisfy a number of
KPIs that are necessary for the current standards. In order to
fulfill said objectives, we propose four different toolchains
– as illustrated in Figure 2 –, each one enabling a distinct
functionality and composing software tools, that perform
tasks determined by their own layer, into pipelines.

The first layer is shared among the toolchains since the
physical components are the base of any IoT-based system.
The Interoperability layer operates as a toolbox, providing
general-purpose tools to each of the toolchains, each of which
selects a subset of components in order to enable its own
interoperability. Tools from L2 up to L4 may be deployed
in the cloud, or in a local cloud (i.e., locally with the struc-
ture). Interactions among tools and application systems in a
local cloud are mediated by a local instance of the Eclipse
Arrowhead framework, which also holds a connection with
the outer world (i.e., the cloud). Following is the description
of our proposed four toolchains:

• Data Toolchain: it is the traditional IoT pipeline,
enabling the main goal of the system. In the specific
case of SHM, it provides end-users with information
about the physical health of the structures over time
and can potentially identify structural damages, which
can lead to predictive maintenance and the avoidance of
accidents.

• Device Toolchain: it supports the management of phys-
ical devices of the system. The toolchain utilizes device
metadata to support system administrators with infor-
mation about device location, capabilities, version, and

6840 VOLUME 11, 2023



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

FIGURE 2. Generic toolchain architecture for condition monitoring.

current configuration. Also, it allows users or tools to
alter the current devices’ settings in order to enhance or
optimize a certain feature of the system.

• Management Toolchain: it supports the monitoring of
the system applications. It is responsible for: orches-
trating the applications in a given infrastructure – often
composed of multiple cloud and edge computational
nodes; performing automated maintenance tasks, such
as sanity checks; providing a flexible ecosystem that
enables software components to be easily integrated,
updated, deprecated, and even removed.

• Energy Toolchain: energy is a crucial factor for
IoT-based systems. Devices are numerous and designed
to last for years, thus, a delicate balance exists between
battery lifetime and device operation. Improper use of
the energy in the system can lead up to a meaning-
ful increase in costs related to maintenance. We lever-
age the energy management of the system bringing it
to the application level. The energy toolchain monitors
the energy harvesters, the consumption of each device,
and the current and future environmental conditions that
may impact the energy, allowing rapid response, optimal
assessment, and leading to more efficient use of the
system energy.

The high-level design of each toolchain is meant to be a
guideline to assist the implementation of IoT-based systems
for the CM domain and can be accomplished with a myriad
of different implementations that perform the roles described.

However, in the next sections, we exemplify and illustrate
how we implemented each toolchain in the scope of our use
case.

IV. THE SHM PILOT: DEVICES AND INTEROPERABILITY
As an instance of the above described toolchain architecture,
we present here its concrete implementation into the SHM
pilot use case within the Arrowhead Tools project, reported
in Figure 3.

The baseline of the use case features a structure to monitor
(e.g., a bridge or a building) and a set of inertial sensors for
SHM permanently attached to it. Each sensor cluster is man-
aged by a Cluster Head (CH) that acts as a sink for the data
and interacts with any external actor. Sensors are abstracted
into Web Things (WTs) in order to be accessible via the Web,
following the W3C WoT standard [8]. Other legacy sensors,
in our case a gas sensor, may be added. Compliance between
the WoT and Arrowhead is achieved via a tool called WAE.
All elements of our pilot that we identify with L1 and L2 of
our toolchain architecture are described in this section.

We then developed a number of engineering tools, orga-
nized into our four distinct toolchains: (i) the Data Toolchain
operates throughMODRON, a visualization andmanagement
dashboard, (ii) the Device Toolchain operates through a num-
ber of tools that are able to dynamically and autonomously
change sensor properties (e.g., the sampling frequency, the
duty cycle, etc.), (iii) the Management Toolchain integrates

VOLUME 11, 2023 6841



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

FIGURE 3. Toolchain architecture of the whole System-of-Systems, with a focus on the separation and the interoperability
between the Arrowhead and the WoT ecosystems.

the scenario with the frameworks Eclipse Kura4 and Eclipse
Kapua,5 enabling the remote management of multiple local
clouds at the same time without having to interact with
each of them separately, (iv) the Energy Toolchain operates
through equipping each sensing device with an energy har-
vester and introduces tools that enable the management of
energy in the application level, allowing to minimize – or,
potentially, zero – the battery depletion. The description of
each toolchain is presented in Section V.

All the interactions taking place among tools and appli-
cation systems are mediated and overseen by an instance
of the Arrowhead Core Services deployed within the local
cloud.We assume that every monitored structure corresponds
to a single local cloud, while multiple of them are man-
aged through Eclipse Kapua, which is able to reach different
instances of the Core Systems at the same time.

A. PHYSICAL LAYER
We consider the baseline of the environment as a physical
structure to monitor and a set of monitoring sensors deployed

4https://www.eclipse.org/kura/
5https://www.eclipse.org/kapua/

on it. Furthermore, we can assume the structure to be in
a poorly connected environment, in which providing cable
connection to all the sensors is hard, therefore edge devices
communicate with each other via wireless connections and
are powered by batteries. Physical layer devices employed in
the pilot are either connected to a sensor network tailored for
SHM – described in Section IV-A1 – or third-party devices
not easily integrated to an already deployed network, as the
gas sensor detailed in Section IV-A2.

1) SHM SENSOR NETWORK
The adopted monitoring network consists of intelligent sen-
sor nodes (SN) and related network interfaces designed
within the Intelligent Sensor System Lab of the University of
Bologna. Each peripheral device is a micro-system unit real-
ized according to a five-building block architecture compris-
ing [20], [21]: (i) one sensing element, i.e., the MEMS-based
iNemo LSM6DSL inertial measurement capable of acquir-
ing, at the same time, triaxial accelerations and triaxial angu-
lar velocities in a broad frequency range, (ii) an STM32F303
microcontroller unit equipped with a floating point unit for
optimized digital signal processing functionalities enabling

6842 VOLUME 11, 2023



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

sensor-near data analytics, (iii) a voltage regulator, which is
necessary to fix the voltage reference of the node, (iv) an
external RAM memory to expand the limited storage capa-
bilities of the resource-constrained micro-processor and (v) a
transceiver for RS-485-based data management and commu-
nication. Once signals are sensed by the peripheral node,
information is then transmitted to the Cluster Head (CH)
controller through the companion gateway network interface
(referred to as SAN interface in [20] and in Figure 3).

2) THE GAS SENSOR NODE
The gas sensor node is an autonomous end-device that
embeds an experimental gas sensor by STMicroelectron-
ics [22]. The sensor is a Metal Oxide Semiconductor (MOX)
sensor that provides information about volatile organic com-
pound (VOC) type (i.e., Ammonia (NH3), Nitrous Oxide
(N2O) and Methane (CH4) and its concentration in the air.
These measurements can support SHM scenarios in a num-
ber of ways – e.g., detecting the presence of heavy traffic
load. In addition to the sensor, the node integrates several
units : a microcontroller unit, a LoRa transceiver, and all the
circuitry needed for the smart power supply system. More
in detail: the MCU is an STM32L0 with ultra-low power
features, the LoRa transceiver is the Semtech SX1276, and
the power supply system includes a solar energy harvester,
a battery management system, and a module that monitors
the condition in which the energy harvester works – more
on the energy harvesting aspect can be found in Section V-C
in which we detail the Energy Toolchain. The low power
features of the node, its power supply system, along with the
long-range communication implemented by the LoRa stack
makes the sensor node extremely versatile for several SHM
purposes.

B. INTEROPERABILITY LAYER
Integration is one of the main factors to make advancements
in digitalization and to achieve interoperability in Industry
4.0 scenarios [23]. This Section presents the interoperabil-
ity tools that were designed to support the four toolchains
proposed. The Arrowhead framework is a key interoper-
ability enabler to the proposed system and its capabilities
were addressed in Section II-A. Further, due to its pervasive
presence in all toolchains, it was omitted for image clarity
in all the following diagrams that illustrate each toolchain,
namely Figure 5, Figure 6, Figure 7 and Figure 10. We detail
the implemented WoT integration (Section IV-B1) and its
conversion to the Arrowhead Services (Section IV-B3), also
the adapter build to integrate other devices directly to the
Arrowhead Framework (Section IV-B2).

1) WEB OF THINGS INTEGRATION
In order to tackle the fragmentation in the IoT landscape,
the W3C consortium recently released a set of standards for
the Web of Things (WoT) whose goal is to provide well-
defined interfaces and guidelines for the deployment of IoT

scenarios, enabling the interoperability among different sys-
tems thanks to the consolidated web technologies [9]. More
in detail, each IoT system component is accurately defined
through a Thing Description (TD),6 a JSON-LD document
semantically enriched that describes the affordances of the
component. An affordance is intended as a fundamental prop-
erty of the component that determines how the thing could
possibly be used, and it can be categorized as Property (an
internal state variable of the Thing), Action (a command
that can be invoked on the Thing), and Event (a notification
fired by the Thing). We followed this approach for mapping
each of the devices in the SHM Sensor network to a W3C
Web Thing (WT), which exposes properties like Acceleration
and AccelerationSamples for reading the data and actions
such as configureFrequency to change the configurations and
behavior of the sensor [24]. The TD is semantically annotated
by using the Semantic Sensor Network Ontology (SOSA).7

2) ARROWHEAD ADAPTER (AHA)
To take advantage of the integration that the Eclipse Arrow-
head Framework offers for components, we developed a
specific component called Arrowhead Adapter (AHA). The
AHA has the role of overcoming components heterogeneity
by making them Arrowhead compliant. It typically acts as a
wrapper for the sensors, targeting both legacy and heteroge-
neous component integration scenarios. In this section, the
functionalities of the AHA are described within the context
of integrating the gas sensor detailed in Section IV-A2 within
the Arrowhead framework. Figure 4 shows the reference
architecture of the Gas Sensor tool, consisting of three main
elements: the physical gas sensor node, the LoRa Gateway
and the AHA.

The infrastructure used for the communication between the
node and the server is provided by The Things Network8

and consists of a Network Server, an Application Server, and
an MQTT broker. The communication, depicted in Figure 4,
is bi-directional, and the node is able to send information
(uplink) and receive commands (downlink) from the server.
In this sense, the role of the MQTT broker is to provide an
interface between the LoRa Server and final users through a
publish-subscribe mechanism.

The AHA is the element that enables compatibility
between any industrial device and the Arrowhead Frame-
work. It acts as an intermediary between the two entities
by exploiting two interfaces: an HTTP/REST one enables
communication with the Arrowhead Framework and acts as
an endpoint for remote interaction with the node, while the
other interface exploits specific protocols to interact directly
with the sensor to be integrated [25]. In the particular case of
the gas sensor, the functionalities to be integrated are related
to the reading of the sampled values and the changing of
the duty cycle in which to operate, while the protocol used

6https://www.w3.org/TR/wot-thing-description/
7https://www.w3.org/TR/vocab-ssn/
8https://www.thethingsnetwork.org

VOLUME 11, 2023 6843



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

FIGURE 4. Gas Sensor Arrowhead Adapter and Network.

for communication with the node is MQTT. At startup, the
adapter connects to the Arrowhead Core Services to reg-
ister the two services by entering information about input
parameters, then the node remains listening for requests from
Arrowhead consumers. When a new data item is available,
theMQTT client receives the sampling on a specific topic and
saves it within the persistence layer present in the structure.
The data thus stored are then made available in JSON format
via the appropriate REST endpoint; here it is the adapter that
handles the conversion of data from the database to the user.

3) WEB OF THINGS ARROWHEAD ENABLER (WAE)
The Web of Things Arrowhead Enabler (WAE) [26] is piv-
otal for the proposed toolchain, and it is an official part
of the Eclipse Arrowhead framework9 – due to Arrow-
head repository naming conventions, WAE is referred as
application-skeleton-wot. Its role is to bridge the
Eclipse Arrowhead Framework with the WoT. It is challeng-
ing since the two ecosystems are heterogeneous, and there is
no direct way to interconnect them. The W3CWoT defined a
strict interface to interact with WTs, however, no methods or
guidelines allow the conversion of dissonant interfaces to the
defined standard. On the other hand, the Arrowhead Frame-
work does not define any standard APIs and can interact with
any web service that exposes a RESTful interface.

WAE performs two critical operations: (i) the discov-
ery and integration of WTs to the Arrowhead Framework;
(ii) The automatic conversion of Arrowhead services’
RESTful interfaces – provided their OpenAPI Specifica-
tion (OAS) – into a Thing Description and the procedures
to instantiate the translated description in a WT. The first
operation integrates WTs towards the Arrowhead Framework
by monitoring both a Thing Directory and the Arrowhead
Service Registry. If an inconsistency is detected, it means
a new device was removed, edited, or added. Thus, the WAE
executes the correspondent operation within the Service Reg-
istry. The second operation implies the WAE monitoring the
Arrowhead Service Registry for new web services. Once one
is identified, WAE translates its REST API (the translation

9https://github.com/arrowhead-f/application-skeleton-wot

FIGURE 5. Data Toolchain.

technique is described in [27]) to a Thing Description and
deploys a WT that acts as a proxy of the actual service.

V. THE SHM PILOT: TOOLCHAINS
This section presents the implementation of the four
toolchains described in Section III. Each subsection details
the operation of each tool that composes the toolchain.

The toolchain deployed in the Pilot is modular. Hence, they
can be deployed independently from each other. However,
it is common for them to be deployed together since their
functionalities are complementary. Once the toolchain that
enables IoT data to reach applications is in place, it is natural
to develop features to easily manage devices – including
their energy capabilities – and applications. Consequently,
many applications will provide functionalities that are use-
ful and intended for multiple toolchains. This is the case
of MODRON, which integrates the Data Toolchain and the
Device Toolchain.

A. DATA TOOLCHAIN
TheData Toolchain is themain functional toolchain in the use
case, as its goal is to acquire data from the sensors deployed
on the structure and report it to the internet for analysis. The
toolchain includes the baseline application systems (i.e., the
SHM sensor network), the gas sensor, AHA, the WoT, and
MODRON time-series storage and visualization tools.
MODRON: MODRON [10] is a specialized framework

for managing SHM data: from saving the measurements to
the database to processing and visualizing them. The system
architecture consists of two macro-blocks that play a specific
role within the Data Toolchain. The first block is an L3 tool
that specializes in collecting and saving data acquired from

6844 VOLUME 11, 2023



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

FIGURE 6. Device Toolchain.

interoperability tools. Specifically, there are multiple micro-
services responsible for querying the devices constantly. Raw
data retrieved in this way is sent to a first time-series database
– i.e., InfluxDB10–, here they are kept in their original state,
without applying any transformation on them. In parallel,
a second pipeline processes the raw data by performing signal
processing techniques for structural integrity evaluation. The
second block is an L4 tool containing all the user-oriented
services for interacting with the collected data. MODRON
exposes two primary tools to the user: (i) the Data Aggre-
gator, which allows the user to combine and perform some
simple operations on the data just before displaying them;
(ii) the Data Plotter, providing various dashboards with mul-
tiple chart options and the ability to export them in different
data formats.

B. DEVICE TOOLCHAIN
TheDevice Toolchain enables a user of the use case to interact
directly with the devices and issue them with commands that
change their operating conditions at runtime. The toolchain
includes the baseline application systems (i.e., the SHM sen-
sor network), the gas sensor, AHA, the WAE, the MODRON
Thing Directory, and the Device Configurator.

1) MODRON THING DIRECTORY
The MODRON Thing Directory is a service dedicated
to managing WoT TDs. While this component is not a
fully W3C Discovery specification-compliant directory,11 it
exposes two APIs – e.g., REST and GraphQL – to perform
all CRUD and search operations necessary for descriptor
manipulation. In detail, the Search API allows the discovery
of devices through semantically enriched query languages
(e.g., JSONPath12) queries. This powerful feature gives the
user the ability to perform a semantic search by taking full
advantage of the metadata present on the device descriptor.

2) DEVICE CONFIGURATOR
We expect real IoT-based SHM systems to have numer-
ous and heterogeneous devices. Even with multiple tools
that enable interoperability, it can be tough to keep track
of all devices. Further, knowing all devices’ capabilities,
values, and interfaces at all times is a herculean task that

10https://www.influxdata.com/
11https://w3c.github.io/wot-discovery
12https://www.ietf.org/archive/id/draft-goessner-dispatch-jsonpath-

00.html

FIGURE 7. Energy Toolchain.

makes altering a device setting or configuring a new fea-
ture very time-consuming; this scales with the complexity
of the deployed system. In order to streamline this process,
we designed and developed an open source tool13 – referred
to here as the Device Configurator – that provides a friendly
browser-based user interface for managing WTs within the
Arrowhead ecosystem, as illustrated by Figure 8. It allows
users to find devices in their system, alter their properties
and trigger their actions. One vital feature is its plug-an-play
capability to detect new devices and automatically show them
since it constantly monitors the Thing Directory where the
WoT TDs are located.

C. ENERGY TOOLCHAIN
Wireless sensors are one of the key elements for many IoT
applications because they are easy to install and simple to
connect to existing networks and infrastructures. One of
the main hardware enhancements to the initial baseline is
a shift from cable-connected edge devices to wireless ones.
However, the latter are traditionally battery-powered, and
this is the main limiting factor to their extensive use in real
applications [28]. To be compliant with application-specific
requirements (e.g., data sampling and transmission rate), the
node power consumption often does not guarantee an accept-
able recharge/replacement rate of the battery leading to not
sustainable maintenance costs and too frequent short inter-
ruption of service. The adoption of Energy Harvesting (EH)
solutions can help to extend the battery life or even obtain
battery-less autonomous devices, because the edge devices
(e.g., Gas Sensor and SHM sensor network) become able to
gather energy directly from the environment where they oper-
ate, by transforming energy from light, thermal gradients or
mechanical vibrations in electrical energy. Unfortunately, the
design of an energy harvesting module is usually a complex
and strictly application-specific task requiring a lot of design
efforts in terms of both time and costs. It is in this context that
an EH toolchain has been developed, composed of the energy
harvesters and a number of software tools: Dr. Harvester and
the E-Lifecycle Tool.

An EH circuit is comprised of three main functional
blocks: i) the energy source module (e.g., solar panel) to
collect energy from the environment where the device works;
ii) the energy conversion and management circuit to effi-
ciently power supply the device by using the collected energy;

13https://github.com/UniBO-PRISMLab/wot-configurator

VOLUME 11, 2023 6845



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

FIGURE 8. A screenshot of the Configurator tool.

iii) the energy buffer (e.g., rechargeable battery or super-
cap) to store the collected energy. As mentioned before,
customization based on application-specific requirements is
needed to obtain effective EH solutions. For example, the
two considered case studies – the Gas Sensor and the SHM
sensor network (entirely powered by the CH, which is host-
ing the harvester) – have very different power consump-
tion and consequently, they need two different EH circuits.
In this work, the design effort to obtain suitable solutions for
both case studies has been reduced thanks to the developed
Dr. Harvester tool.

1) DR. HARVESTER
The tool is comprised of a MATLAB-based core application
able to interact with an electrical circuit simulator and it has
been designed to be used both at design time and at operation
time. It is based on a set of pre-designed EH circuits, each
circuit is designed to match a given set of environmental
working conditions (i.e., solar irradiance, thermal gradients,
and mechanical vibrations) and a range of load power con-
sumption (i.e., power consumption of the edge device). In this
case, LTSpice14 from Analog Devices has been used as an
electrical circuit simulator, but it is worth noting that it is very
easy to adapt the tool to any other PSpice engine-based simu-
lator because the main parameter passed from the MATLAB
core to the electrical simulator is the EH circuit netlist and not
the schematic. Basically, the design-time and operation-time
versions of the tool exploit the same core, while differing in
i) the main purpose; ii) the elements of the tool chain in which
they interact; iii) the interaction methods.

14https://www.analog.com/en/design-center/design-tools-and-
calculators/ltspice-simulator.html

Design-Time Usage – At design time, the main goal of
the tool is to help the designer to add energy harvesting
capabilities to a generic electronic device (an existing one or
a new one designed from scratch) with limited design efforts.
At design time the tool is running locally on a PC and needs
human interaction. In this case, the operating cycle of the tool
is comprised of 4 steps:

1) By exploiting an intuitive Graphical User Interface
(GUI), the designer specifies i) the estimated environ-
mental working conditions of where the device that is
being developed will operate; ii) the estimated electri-
cal characteristics of the device (i.e., supply voltage,
current consumption, application duty cycle).

2) During the data entry, the tool runs a decision logic
algorithm and provides a sorted list of the available
EH solutions supported by the tool, suggesting the
EH solution that best match the combination of pro-
vided environmental and electrical estimated working
conditions.

3) The user selects the desired EH solution and the tool
automatically runs the related circuit simulation.

4) At the end of the simulation, the tool shows in the
GUI both qualitative and quantitative results about the
feasibility and estimated performances of the chosen
EH solution. Once the first iteration is completed, the
designer can iterate the procedure by changing some
input parameters (environmental and/or electrical) and
evaluate a variant of the initial solution. For example,
the designer can define the maximum application duty
cycle allowing obtaining a fully autonomous device
for a given power consumption and a range of real
environmental working conditions.

An example of how the developed GUI appears at the end of
a simulation is shown in Figure 9. The results refer to one of
the iterations carried out during the design of the solar energy
harvester embedded into the Gas Sensor.

Run-time Usage – At operation time, instead,
Dr. Harvester is used to forecast the behavior of a remote-
controlled edge device (e.g., Gas Sensor or SHM sensor
network) under the provided working conditions (real or
estimated). Here the main outputs of Dr. Harvester are the
remaining battery lifetime or the remaining time to fully
recharge the battery depending on the simulated working
conditions. All the tasks are triggered by the E-Lifecycle Tool
through an Arrowhead-enabled REST interface. To decouple
the interaction with other tools, Dr. Harvester was converted
into an Arrowhead Service Provider. The tool, by regis-
tering services on the Arrowhead Framework of the local
cloud, allows remote submissions of simulations via a REST
interface and retrieves results on the remaining battery life
that will then be used for optimization. Each request causes
the input to be validated, which is then forwarded to the
MatLab/LTSPICE process to start the job. Since a simulation
might take time, it is handled asynchronously.

First, the E-Lifecycle Tool transforms sensor data in a
data structure that complies with Dr. Harvester’s simula-

6846 VOLUME 11, 2023



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

FIGURE 9. GUI of the design time version of Dr. Harvester tool. In this
case, under the provided environmental and electrical conditions, the
simulated EH circuit is able to fully sustain the Gas Sensor with a
minimum irradiance of about 360 W/m2.

tion input, gathering the EH system meta-information (e.g.,
battery storage capacity) and the working conditions of inter-
est retrieved from the edge device (i.e., the actual electri-
cal and environmental working conditions and the actual
device’s battery state of charge). Second, the E-Lifecycle
Tool launches Dr. Harvester which executes the simulation of
the EH circuit corresponding to the input parameters. Third,
Dr. Harvester generates an output containing the simulation
results. More precisely, the output generated by Dr. Harvester
contains the battery status (i.e., the battery is actually charg-
ing/discharging), the rate of variation of the battery state-of-
charge and the simulation status to inform the E-Lifecycle
Tool that the simulation has been completed correctly or
not, and consequently if the results are valid or have to be
discarded. It is worth noting that the software architecture
of Dr. Harvester follows a modular approach with an inde-
pendent branch for each EH circuit, and stand-alone models
for both energy transducers (i.e., solar panel, thermoelectric
generators, cantilever-based piezoelectric devices) and batter-
ies (i.e., Li-Ion, Li-Poly, etc.). In this way, it is easy to add
new supported EH circuits to the tool widening the range of
covered IoT or IIoT applications.

2) E-LIFECYCLE TOOL
The Dr. Harvester tool allows executing simulations during
the system operation time about the current environmental
conditions and device state. However, the raw result of a
single simulation is not useful for the system administra-
tor. To leverage that, we implemented a new tool called
the E-Lifecycle Tool. The tool comprises a Web inter-
face, the E-Lifecycle Dashboard, that showcases in an intu-
itive form each device’s current status – highlighting its

FIGURE 10. Management Toolchain.

battery percentage and duration – and the current solar
irradiance. Such data is retrieved by the E-Lifecycle Pro-
cessor, a backend module of the E-Lifecycle Tool. The
E-Lifecycle Processor gathers battery and duty cycle data
from the sensors and translates them into the right format
for Dr. Harvester and vice-versa. Further, we allow users
to experiment through the dashboard with different duty
cycles for a given device and obtain the prediction of the
battery duration for that configuration. Via the dashboard,
the operator can then alter the device’s duty cycle, by issuing
the command to the E-Lifecycle Processor. Like the Device
Configurator presented in Section V-B2, the E-Lifecycle
Tool discovers new things automatically – powered by the
Interoperability layer tools – and is capable of interacting
with heterogeneous devices – from the legacy gas sensor
to the SHM sensor network. As each simulation can take
time to execute, we deployed a caching layer within the
E-Lifecycle Processor. This way, we decrease the significant
waiting time of future requests – enhancing user experi-
ence – and avoid redundant computation on the server side
[29]. The E-Lifecycle Tool is available as an open–source
application.15

D. MANAGEMENT TOOLCHAIN
The Management Toolchain enables a maintenance operator
to have access to the whole fleet of SHM deployments,
in order to perform sanity checks and other maintenance
operations. The toolchain includes the baseline application
systems (i.e., the SHM sensor network), the gas sensor, AHA,
the WAE, the Local Cloud Gateway, the Arrowhead Frame-
work, Kura, Kapua, and the Fleet Management System (we
address a multitude of SHM deployments as a ‘‘fleet’’).

1) LOCAL CLOUD GATEWAY
The Local Cloud Gateway plays a central role on the edge
because it represents the HW/SW stack required to imple-
ment and run a secure, service-oriented, and remotely man-
ageable local cloud. The hardware platform is a Eurotech
Reliagate 20-25 (see Figure 11), a high-performance, glob-
ally certified, multi-service IoT edge gateway for indus-
trial and rugged applications. It features up to four cores,
soldered-down ECC RAM and storage, extended operat-
ing temperature support, wide range power supply, isolated
and protected I/O interfaces, and customizable connectivity

15https://github.com/UniBO-PRISMLab/arrowhead-optimizer

VOLUME 11, 2023 6847



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

FIGURE 11. The Local Cloud Gateway HW platform.

options, providing a very rich and heterogeneous set of
interfaces and functionalities to satisfy the typical require-
ments of SoS remote monitoring and control applications.
On this hardware platform, the local cloud software stack
runs, including the Eclipse Arrowhead framework and the
Eclipse Kura IoT framework, which have been integrated and
extended to allow the remotemonitoring and control of a local
cloud. Eclipse Kura is an open-source IoT framework based
on OSGi16 and intended to provide full control on the data
acquisition from the field, on the gateway hardware and soft-
ware, on the cloud connectivity and intended to offer a rich set
of service-oriented APIs to hide the low-level hardware and
software details, simplifying the application development.
Finally, in addition to enabling system integration on the
edge, the Local Cloud Gateway provides the functionalities
required to enable the integration at SoS level of a fleet of
Local Clouds deployed on the edge (as outlined in detail in
the ‘‘Fleet Management Tool’’ description). SoS integration
is managed through Eclipse Kapua, the open-source version
of Eurotech Everyware Cloud. Kapua is a modular IoT cloud
platform intended to manage and integrate fleets of devices,
their data, and IoT services for IoT applications.

2) DEPLOYMENT OF THE ARROWHEAD CORE SERVICES
The toolchain architecture envisions the gateway as the Local
Cloud manager capable of handling access to all devices
within it. Through light-weighted container virtualization,
it was possible to install the Arrowhead core services locally
dealing with the deployment of the Service Registry, Autho-
risation, and Orchestration components. The WAE made it
possible to register all the SHM sensors, natively born under
the WoT paradigm, within the Service Registry while, on the
other hand, the AHA took care of the registration of the gas
sensor. Furthermore, the role of the gateway consists in the
implementation of all the edge component that allows data
to be read from the physical sensors and sent to the cloud
for data analytics or visualization operations. To do this, the
Kura framework enabled the creation of bundles that were,
then, specialized according to the different sensors to be inter-
faced. Each of them is configured based on a properties file,

16https://www.osgi.org/

FIGURE 12. The local clouds fleet management.

containing both information about where the core services
are maintained and also data about the specific sensor to be
queried (e.g., the definition of the service exposed by the
sensor) and the polling period. The first step in the bundle is
to verify that the services are active and to perform automatic
discovery of the requested service to check that it exists; once
satisfied, one can proceed to request the sensor access data
from the Orchestration core system. Once the data is present,
a periodic task is scheduled with the purpose of querying
the sensor, based on the polling parameter, and retrieving
its significant fields. The Kura administration page provides
access to the configuration of each bundle by allowing both
the polling period and the sensor to be interfaced to be varied.
The last step is to send the data to the cloud, respectively,
the Everyware Cloud and theMODRON framework, for final
visualization.

3) LOCAL CLOUDS FLEET MANAGEMENT TOOL
This cloud-based tool operates at SoS level and is responsible
for the integration and remote monitoring of a fleet of Local
Clouds. The monitoring of a fleet of Local Clouds implies
the capability to communicate with each of the Local Clouds
on the field and to be able to send their information to an
enterprise-level cloud platform where it can be displayed and
monitored. Each of the Local Clouds has the capability to
connect to the enterprise-level cloud through Eclipse Kura.
On the enterprise-level cloud, Eclipse Kapua collects all the
information from the fleet of Local Clouds and makes it
available through a web console (see Figure 12).
The integration between Kura and the Arrowhead Frame-

work is based on the development of a new core system (as
depicted in Figure 13), enabling the remote collection and
monitoring of the Local Cloud information [30]. The new
system has been called Remote Management and it exposes
a single REST endpoint which is the public echo endpoint,
having the sole purpose of checking if the core system is
up and running. The Remote Management communicates
directly with the Service Registry and the Orchestrator sys-
tems through their management endpoints and retrieves infor-
mation about the registered consumer and provider systems,
together with the services they made available. Remote Man-
agement acquires also the Orchestration Store rules which
establish the appropriate providers for the consumers. The
role of RemoteManagement is then to populate the gateway’s

6848 VOLUME 11, 2023



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

FIGURE 13. The new Arrowhead framework core system.

FIGURE 14. Eclipse Kura local web page for local cloud monitoring.

internal database with the Local Cloud information acquired
from the Service Registry and from the Orchestration sys-
tem. The advantage of this solution is that the new system
(Remote Management) has been integrated at the Arrowhead
Core System level, enabling it to seamlessly access endpoint
management information from the Service Registry and from
the Orchestration system. Additionally, this approach has
the advantage that the monitoring of the Local Cloud is
fully integrated within Kura, avoiding any need for external
tools or dashboards for its visualization; besides the standard
device monitoring offered by Kura, the extension allows to
access the full list of providers, consumers, and services.
Indeed, Eclipse Kura accesses directly the gateway’s database
to retrieve the data and has been extended to visualize it on the
Local Cloud Gateway web interface, while delivering it also
to the enterprise-level cloud (see Figure 14). Eclipse Kapua
has been extended to collect the information sent by each
instance of the Local Cloud composing the fleet. Figure 15
shows the new section on Kapua’s web console, under the
‘‘Devices’’ menu, devoted to Local Cloud monitoring. The
new section provides the list of devices connected to the cloud
(green plug symbol). Each of these devices corresponds to a
physical Local Cloud Gateway, which is a Kura instance that
is connected to a Local Cloud through the Remote Manage-
ment system.

VI. RESULTS AND DISCUSSION
The effectiveness of the SHM application is validated on an
existing use case, which consists of an experimental model of
a bridge (Figure 16) located at the Laboratory of Structural
and Geotechnical Engineering (LISG) of the University of
Bologna. The structure represents a 1:4 scale reproduction
of a real composite steel-concrete bridge crossing the A14
highway in Italy, near the city of Bologna. The scale replica
preserves the materials and their properties; changes con-

FIGURE 15. Eclipse Kapua remote monitoring of local clouds.

FIGURE 16. Bridge model under test.

cern only the dimensions. More information about the model
bridge manufacturing process and material properties can be
found in [31].

The deployed Structural HealthMonitoring sensor network
and its main components are displayed in the middle callout
of Figure 16, in which one CH (red point) and seven SNs
(green points) are noticeable, placed at strategic positions for
vibration analysis, i.e., in correspondence of the anti-nodal
points of the first modal components. A snapshot of one SN
installed at the bridge deck joint has also been enclosed in
the upper part of Figure 16. Besides, a vibrodyne (Figure 16
blue point) has been applied to the bridge in order to apply a
variable-intensity harmonic excitation up to its power supply
settings. In addition to the SHM network outlined above, the
deployment includes the gas sensor (Figure 16 orange points).
Both the gas sensor and the CH are powered by an EH circuit
attached to a solar panel. The purpose of this section is to
illustrate howwe highlighted the accomplishment of the three

VOLUME 11, 2023 6849



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

FIGURE 17. The upper figure shows the accelerometer bursts that change
after the vibrodyne is turned on. The lower figure shows how the data
from the gas sensor changes before and after the gas sensor is sprayed
with gas.

project objectives set within the Arrowhead Tools project
through the combined usage of the four toolchains.

A. INTEGRATION WITH LEGACY SYSTEMS
The four toolchains are composed of several tools that alto-
gether concur in achieving the first project objective: the
seamless interoperability and the integration of legacy sys-
tems. This is most evident for the tools that compose the Data
and the Device Toolchains. The demo environment illustrated
above contains a number of off-the-shelf legacy devices and
systems that need an integration step in order to be fully
operational in our heterogeneous scenario. The SHM sensors
were originally abstracted into WTs, however, they lacked
interoperability towards the Arrowhead Local clouds. On the
other hand, the gas sensor was integrated within Arrowhead
via a dedicated adapter. However, only with the WAE and the
integrationwith Kura, we achieved a fully interoperable layer,
so that the interaction with the devices from the upper layers
is totally agnostic of the standard they comply with. The val-
idation of this aspect has taken place by means of the sensor
values shown through the Grafana dashboard of MODRON
via the Data Toolchain. Figure 17 shows the sensor values
reported into said dashboard. In particular, the upper figure
shows howwe solicit sensor readings by turning on the vibro-
dyne and, thus, injecting vibrations into the structure. These
are captured by the accelerometers and reported in one of the
last bursts on their Y and Z axes, also visible in the picture (the
X axis is not very significant as the bridge does not vibrate
much longitudinally). The exact same system is used to detect
variations in the concentration of gas, as captured by the gas
sensor in the lower part of the figure. In particular, we show
how injecting gas in the environment (in this case through a
spray can) causes the sensor resistance to dramatically drop
– note that the readings in absence of gas appear to variate,
however, this is negligible as the scales on the two Y-axes
are very different. The validation shows a small real-world

FIGURE 18. Screenshots showing the E-Lifecycle Dashboard (above)
during the operation of changing the duty cycle of the SHM sensors from
100% to 50%. The result of the duty cycle change is shown through
MODRON on three axes of a single SHM sensor (below): the blue line
identifies the wakeup intervals of the sensors. When the line is not set to
1 the sensors do not perform any read operation.

fully operational system, however, the main advantage here
is the interoperability: in fact, adding more physical sensors
or other systems does not cause the complexity to increase,
as the ‘‘hub’’ systems such as MODRON do not need any
additional interface to cope with onboarding processes, rather
they take place seamlessly.

B. REDUCTION OF ENGINEERING COSTS
All illustrated toolchains increase the automation of the base-
line as well as reduce the need for human intervention, which
implies a significant reduction in the cost of manual effort.
However, the major evidence of cost reduction was brought
in by the Energy Toolchain, presented in Section V-C, which
introduces a number of decision-making tools that support the
engineering process both at design time and runtime, greatly
simplifying the interaction with the physical components as
well as guiding their parameters towards an optimal resource
consumption. Therefore, this toolchain is the main enabler
for the reduction of engineering costs. First of all, controlling
the data rate at which information is gathered is of utmost
importance in energy-efficient monitoring scenarios, espe-
cially when this parameter can be changed remotely. In [24]
we have showcased the capabilities of the Device Configura-
tor in such a sense. In particular, each of the sensor nodes
has been equipped with a WoT writable property through
which such a parameter can be changed. Then, the Device
Configurator has been set in order to be able to operate on
such a property by exposing a number of suitable values
to the system manager. The approach has been validated
and demonstrated on a test frame building where the sam-
pling frequency was decreased from 813Hz to 416Hz. We
validated the combined impact of the E-Lifecycle Tool and
Dr. Harvester on our test environment. Figure 18 shows the
E-Lifecycle Dashboard with two tabs: one for the Gas Sensor
and one for the SHM sensors. Both behave in the exact same
way, thanks to the tools at the Interoperability Layer, that

6850 VOLUME 11, 2023



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

homogenized the access to different systems. In this case, the
operator is changing the duty cycle of the SHM sensors from
100% to 50% obtaining a gain in the battery lifetime prospect,
as calculated byDr. Harvester. Once the operator considers all
the options and changes the duty cycle, then the E-Lifecycle
Processor performs such a change over the sensors via their
WoT writable property, much like the Device Configurator
does for the sampling frequency. The bottom of Figure 18
shows the Grafana-based dashboard of MODRON which
depicts the sensor bursts and their wakeup/sleep state via the
blue line. It is evident how bursts that would be occurring
when the line is not set to 1 are instead not performed.

This demonstration shows the applicability of the
described toolchain to a real system in a small use case, but
also it shows how the combined action of the E-Lifecycle
Tool, the Device Configurator, and Dr. Harvester allows the
implementation of a decision support system operating at sys-
tem level that can be applied in many IoT and IIoT emerging
applications and contributes significantly to the engineering,
deploying, commissioning and maintenance costs reduction.
The possibility to forecast the amount of energy available
at a given time and for a given set of working conditions
(environmental and electrical) and reconfigure all the devices
of a remote complex system is the key factor to obtaining a
context-aware dynamic optimization of the performance of
both single edge device and the whole system. Moreover,
a fundamental feature that guided the design of all applica-
tions that composed the toolchain is that when the system
scales up – i.e., new devices are added –, the complexity of the
operations that the tools enable should not equally increase.
A good illustration of such behavior is perceived in the two
GUI-based tools developed: the E-Lifecycle Dashboard and
the Device Configurator. The two tools which implement a
plug-and-play feel are designed to aid system administrators
in managing devices. The operations enabled by them can
be manually executed, but specific knowledge of the system
and additional time are required – both factors translate
to added costs. Although managing a reduced number of
devices is feasible, that is not true for more elaborate systems.
Hence, the added complexity of changes in IoT-based systems
does not impact the tool’s operation, mitigating the system’s
overall complexity and cost.

C. SYSTEM OF SYSTEMS INTEGRATION
SoS integration represents a challenging task, due to the
complexity of the use case, the heterogeneity of the
hardware devices involved, the adopted connectivity proto-
cols, the different applications running on the devices, etc.
The approach to SoS integration adopted in the proposed
solution relies on the concept of SOA and on the integration
with open IoT platforms (EclipseKura andKapua), supported
by a large community of developers and widely adopted in
industrial applications. The Eclipse Arrowhead framework
represents an efficient solution to manage the interaction of
heterogeneous devices on the edge with an SOA architecture
and introduce an interoperable way to securely share data

and functionalities in the form of services through the Local
Cloud. At this level, the system integration is focused on
the edge and covers the devices installed on the bridge. The
integration between the Eclipse Arrowhead framework and
Eclipse Kura increases the functionalities available on the
edge, providing extended support for field protocols, full con-
trol of the Local Cloud gateway, advanced tools and libraries
to develop the application on the edge, and a rich set of
connectors to the most popular cloud platforms. The con-
nectivity to the cloud, specifically with Eclipse Kapua, and
the remotemanagement and control functionalities offered by
Kura enable the SoS-level integration: the remote systems are
represented by the bridges with their remote Local Clouds,
while the SoS is represented by the ‘‘fleet’’ of structures/local
clouds. The extension and integration with Eclipse Kapua is
the key element for the existence of the SoS, allowing it to
monitor and control it from an enterprise-level cloud and a
specific web console. From the console, a single operator
can monitor and control every single bridge, including the
data streams, the status of the system/services installed on
the bridge, and the application running on the Local Cloud
Gateway, with the possibility of remotely resetting, restarting,
and updating it. Finally, Eclipse Kapua allows the interaction
of the SoS with enterprise-level software (e.g., software for
analytics, DBMS, DMS, administration, operation, andmain-
tenance, etc.), ensuring the inclusion of the SoS in the entire
monitoring, control and maintenance value chain.

D. DISCUSSION AND TRADE-OFFS
Within this Section, we outlined how we technically met
the three main project objectives, taking an important step
forward in the field of CM. These milestones have rarely
been reached all at once in literature, as we will see more
in the subsequent Section. Our proposed architecture, while
composed of several moving pieces, specifically promotes the
separation of concerns: as we can appreciate from Figure 2,
we separated the components into conceptual abstraction
layers, as it is done commonly for complex IoT ecosystems in
literature. Moreover, we also proposed a ‘‘transversal’’ sepa-
ration – corresponding here to toolchains –, which organizes
the features of the architecture into distinct pipelines. These
can run independently without necessarily affecting each
other, thus facilitating the job of specialized personnel. This
further separation of concerns is completely novel and allows
actors to span over multiple abstraction layers without the
full knowledge of the system. However, this toolchain-based
organization brings along a number of trade-offs that cannot
be disregarded, especially in presence of multiple IoT stan-
dards, as in our use case. Specifically, the usage of a compo-
nent along multiple toolchains, at times, implies the related
software entity to be replicated in order to respond to different
uses. It is the case of the sensor nodes for our use case, where
they get abstracted into WTs, ATMs, and Kura bundles. Each
of these abstractions is devoted to differentiating tasks, thus
exposing only a specialized subset of functionalities that do
not allow its consumers to perform unauthorized or dangerous

VOLUME 11, 2023 6851



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

operations. While this is a clear advantage from the safety
and management point of view, we need to ensure that the
mirroring entity, in our case the WAE, does not allow any
misalignment of the representations of the same component
across different domains. Secondly, this practice makes the
number of software entities grow significantly, thus bringing
scalability issues to the forefront. We believe that more work
can be done in the context of Toolchains-of-Toolchains (ToT),
as pointed out in [14], in terms of simplifying the workload
on software entities and avoiding resource redundancy where
possible.

VII. RELATED WORKS
CM assesses the integrity condition of structures and machin-
ery, which is regarded as one of the main priorities for
ensuring a safer environment. Among the very manifold
application domains, this necessity is particularly claimed in
the case of civil infrastructures and industrial installations,
where natural and manufactured aging factors are crucial.
Nonetheless, the evolving complexity inherent in the indus-
trial and construction design process requires the monitoring
system to be resilient, responsive, and robust against flaws.
Satisfying all these features simultaneously poses extreme
challenges, specifically within the Information and Electron-
ics community, which is constantly triggered to provide more
efficient and versatile solutions capable of integrating and
orchestrating different technologies and abstraction layers.
In this paper, wemainly focused on the problems arising from
the high interdisciplinarity of CM. As we have seen, modern
approaches require, on the one hand, a set of abstraction
layers that let diverse technologies work together, on the other
hand, the tools for different human actors to accomplish their
dedicated tasks without affecting other pipelines.

Due to the wide variety of the actors involved, from the
embedded sensors to remote cloud platforms, existing works
usually focus horizontally on one or two sub-components
(e.g., sensing layer vs. data analytics), while providing only
a limited understanding about the remaining elements. This
is the case, for example, of the seminal work by Tokognon
et al. [32], which includes an extensive overview of fun-
damental software-oriented problems, such as the different
wireless communication and routing protocols and the data
storage methodologies. Conversely, the structural character-
ization problem is thoroughly analyzed in [33], from the
feature extraction phase up to the diagnostics and prognos-
tics functionalities, however, all the remaining CM network
components are entirely disregarded. In line with this, Lynch
and Farrar [34] concentrate on the data analytics and struc-
tural inference actions as pivotal elements of the CM pro-
cess. However, the IoT infrastructure and how the latter is
interfaced with the other building blocks are not commented
on. A more comprehensive attempt is performed in [35],
where the authors examine the common layers of a typical
sensor-to-cloud system. Even if the main ingredients of the
CM ecosystem are described, no information about how they
can be arranged is also entailed since they are presented as

standalone blocks. Another work, which shows the same lack
of IoT and edge processing perspective, is the one in [36] in
which the authors focus on the integrity evaluation of long-
span bridges.

In this manuscript, we proposed a four-layer architecture
IoT architecture for CM. It is composed of four toolchains,
each enabling a different feature. There is a vast literature of
layer architectures for IoT-based systems; however, there is
little convergence – or standards –, which led to a myriad
of heterogeneous approaches and taxonomies [37]. Hence,
we identify several layered IoT architectures that can be
applied to CM that stand out, and we compare these to our
proposed solution.

The three-layer architecture was proposed in the early
development stages of IoT [38], [39], and it represents the
most simple and generic definition of an IoT-based archi-
tecture. Thus, it can be implemented in all IoT application
domains. It is composed of: (i) Perception or Sensing Layer,
which includes all the sensors and acquisition devices which
are necessary to collect data; (ii) Network Layer, which serves
as the intermediate layer between the edge devices and the
central unit. Among its primary functions, it is responsible
for transferring data while ensuring a secure connection in a
sensor–to–cloud direction; (iii) Application Layer: it includes
all the essential services themonitoring process requires, such
as data processing and visualization.

Despite its ease of implementation, such an IoT approach
lacks consistency in that it cannot capture the inherent com-
plexities of the current condition monitoring requirements.
A variation of the traditional three-layer architecture for
SHM was proposed by Zonzini et al. [40]. The architecture
encompasses the particular features of SHM-based sensors
(e.g., accelerometers) and introduced computing capabilities
in the network edge, which is responsible for exposing the IoT
devices through an interoperable interface. The same system
was further enhanced in [10], where the importance of the
edge was highlighted, making it a layer of its own.

A four-layer variant of the IoT architecture has been pro-
posed to distribute better the tasks between the architectural
resources of the CM system, thus favoring the development
of a more versatile and timely responsive framework. Com-
pared to the three-layer architectures, the four-layer variant
introduces a purposely–devoted Processing or Support layer
in between the networking substrate and the terminal applica-
tion domain [41]. Regarding architectures that focus on CM
or SHM domains, we highlight Lamonaca et al. [42], which
defines application, event detection, signal processing, and
sensing as the layers of the SHM Systems. Its goal is to create
a framework where all IoT systems for SHM can fit.

Finally, five-layer IoT architectures introduce an additional
level above the application services known as Business layer,
since it orchestrates the entire IoT system as a whole [18].
In the scope of CM, there is a known five-steps architectural
guideline for implementing IoT-based systems for SHM. The
steps – or layers – are sensing, gateway, network, control, and
graphic interface [6], [43].

6852 VOLUME 11, 2023



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

Diverging from the discussed approaches, other researchers
deployed CM systems that do not fit in any of the men-
tioned layer-based IoT architectures. Wang et al. [4] proposes
and implements an architecture to perform continuous CM.
It comprises three tiers: edge, platform, and enterprise. The
edge tier, via the IIoT gateway, connects to the cloud and
platform tier, and the enterprise tier accesses data from the
platform tier. Qian et al. [44] presents an IoT-based approach
to conditionmonitoring of thewave power generation system,
though, they do not present a software architecture to support
it. Yang et al. [45] proposes a cloud-based CM platform
for industrial applications, their system also encompasses
edge computing nodes for performing tasks that require low
latency.

The proposed architecture differs from the ones in liter-
ature mainly due to its toolchain aspect. Each layer of the
presented architecture in Section III describes a high-level
functionality that is needed to implement a system feature.
In turn, system features are enabled by toolchains. What
makes the system design and its features clear and objective
also facilitates integrating more features – i.e., toolchains –
into the system and managing the ones already in place due
to its modularity and loose-coupling features. Additionally,
we do not include infrastructural components – such as edge,
cloud, gateway, and network – as architectural layers. The
layers should reflect the function it enables, not the physical
location of that layer’s computational tasks. Finally, as far as
we know, no system or architecture in literature encompasses
all the features that are included in our architecture, those are:
Management of applications, management of devices, and
management of energy.

VIII. CONCLUSION
In this paper, we proposed an architectural approach for CM
scenarios based on software toolchains that are responsible
for a defined set of tasks. Different toolchains support the
engineering process of the SoS and enable the separation of
concerns for the different actors that typically interact with
complex and scalable CM scenarios. Following the guide-
lines of the Arrowhead Tools project, we first established
a number of goals that our architecture aims to accomplish
and we then developed several engineering tools that com-
pose the proposed toolchains at all layers of the architecture.
We then experimented with the four developed toolchains in
a real SHM scenario that involves inertial and gas sensors
installed over a bridge. The tests proved the efficacy of the
implemented toolchains, in particular the improved automa-
tion of the whole engineering process for wider fruition by
different stakeholders at different levels of abstraction.
Future Directions: The primary purpose of toolchains is to

provide a secure and efficient way of designing and deploying
software and other applications. The various solutions pro-
posed in this paper are designed to address specific problems
involving different types of users. Although our approach
is reasonable, there is still ample room for improvement by
empowering the user to create new toolchains that meet his

specific requirements in the most relevant way possible. It is
imperative to understand that not all users are developers
capable of working at the code level to modify and cre-
ate their systems. For this reason, it might be interesting
to move the focus to a no-code or low-code platform that
enables the composition of new toolchains based on a set
of existing components. This could involve developing new
visual interfaces or improving automation and integration
capabilities. One of the biggest challenges will be achieving
an optimal balance between the abstraction offered to users
and the actual performance of the generated solution. This
trade-off becomes even more significant in the specific case
of toolchains for CM since, in many cases, we have strong
scalability and processing power requirements. In addition
to usability, another aspect to be considered critical in the
management of toolchains is security. Although this aspect
has already been covered in our work, it should be empha-
sized that maintaining a vulnerability-free system is not easy
to achieve, and each solution has its own drawbacks. One
of the most complex issues is ensuring the integrity of the
toolchain despite its security being linked to the security
of its components. To address these issues, it is crucial to
design a platform capable of verifying the quality and the
provenance of the single components and also performing
regular software updates to be sure that the code is patched
against the newest exploits.

REFERENCES
[1] L. Atzori, A. Iera, andG.Morabito, ‘‘Understanding the Internet of Things:

Definition,’’ potentials, and societal role of a fast evolving paradigm,’’ Ad
Hoc Netw., vol. 56, pp. 122–140, Apr. 2017.

[2] R. B. Randall,Vibration-Based ConditionMonitoring: Industrial, Automo-
tive and Aerospace Applications. Hoboken, NJ, USA: Wiley, 2021.

[3] A. Stetco, F. Dinmohammadi, X. Zhao, V. Robu, D. Flynn, M. Barnes,
J. Keane, and G. Nenadic, ‘‘Machine learning methods for wind turbine
condition monitoring: A review,’’ Renew. Energy, vol. 133, pp. 620–635,
Apr. 2019.

[4] G. Wang, M. Nixon, and M. Boudreaux, ‘‘Toward cloud-assisted indus-
trial IoT platform for large-scale continuous condition monitoring,’’ Proc.
IEEE, vol. 107, no. 6, pp. 1193–1205, Jun. 2019.

[5] A. Pegoretti, Structural Health Monitoring: Current State and Future
Trends. Warrendale, PA, USA: SAE, 2018.

[6] C. Scuro, P. F. Sciammarella, F. Lamonaca, R. S. Olivito, and D. L. Carni,
‘‘IoT for structural health monitoring,’’ IEEE Instrum.Meas. Mag., vol. 21,
no. 6, pp. 4–14, Dec. 2018.

[7] A. Massaro, ‘‘Information technology infrastructures supporting industry
5.0 facilities,’’ in Electronics in Advanced Research Industries: Industry
4.0 to Industry 5.0 Advances. IEEE, 2022, pp. 51–101.

[8] M. Kovatsch, R. Matsukura, M. Lagally, T. Kawaguchi, K. Toumura,
and K. Kajimoto. (Apr. 2020). Web of Things (WOT) Architecture.
W3C Recommendation. [Online]. Available: https://www.w3.org/TR/wot-
architecture/

[9] L. Sciullo, L. Gigli, F. Montori, A. Trotta, and M. D. Felice, ‘‘A survey on
the web of things,’’ IEEE Access, vol. 10, pp. 47570–47596, 2022.

[10] C. Aguzzi, L. Gigli, L. Sciullo, A. Trotta, F. Zonzini, L. De Marchi,
M. Di Felice, A. Marzani, and T. S. Cinotti, ‘‘MODRON: A scalable and
interoperable web of things platform for structural health monitoring,’’ in
Proc. IEEE 18th Annu. Consum. Commun. Netw. Conf. (CCNC), Jan. 2021,
pp. 1–7.

[11] G. Urgese, P. Azzoni, J. V. Deventer, J. Delsing, and E. Macii, ‘‘An engi-
neering process model for managing a digitalised life-cycle of products in
the industry 4.0,’’ in Proc. IEEE/IFIP Netw. Operations Manage. Symp.
(NOMS), Apr. 2020, pp. 1–6.

[12] G. Kulcsár, P. Varga, M. S. Tatara, F. Montori, M. A. Inigo, G. Urgese,
and P. Azzoni, ‘‘Modeling an industrial revolution: How to manage large-
scale, complex IoT ecosystems?’’ in Proc. IFIP/IEEE Int. Symp. Integr.
Netw. Manage. (IM), May 2021, pp. 896–901.

VOLUME 11, 2023 6853



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

[13] ISO Central Secretary, Industrial Systems, Installations and Equipment
and Industrial Products—Structuring Principles and Reference Designa-
tions,’’ Standard IEC 81346, Int. Org. Standardization, Geneva, CH, USA,
2019.

[14] G. Kulcsár, M. S. Tatara, and F. Montori, ‘‘Toolchain modeling: Compre-
hensive engineering plans for industry 4.0,’’ in Proc. IECON 46th Annu.
Conf. IEEE Ind. Electron. Soc., Oct. 2020, pp. 4541–4546.

[15] D. G. S. Pivoto, L. F. F. DeAlmeida, R. DaRosa Righi, J. J. P. C. Rodrigues,
A. B. Lugli, and A. M. Alberti, ‘‘Cyber-physical systems architectures
for industrial Internet of Things applications in industry 4.0: A literature
review,’’ J. Manuf. Syst., vol. 58, pp. 176–192, Jan. 2021.

[16] J. Delsing, IoT Automation: Arrowhead Framework. Boca Raton, FL,
USA: CRC Press, 2017.

[17] G. Kulcsár, K. Koltai, S. Tanyi, B. Péceli, A. Horváth, Z. Micskei, and
P. Varga, ‘‘From models to management and back: Towards a system-
of-systems engineering toolchain,’’ in Proc. IEEE/IFIP Netw. Operations
Manage. Symp. (NOMS), Apr. 2020, pp. 1–6.

[18] I. Zyrianoff, A. Heideker, D. Silva, J. Kleinschmidt, J.-P. Soininen,
T. S. Cinotti, and C. Kamienski, ‘‘Architecting and deploying IoT smart
applications: A performance–oriented approach,’’ Sensors, vol. 20, no. 1,
p. 84, Dec. 2019.

[19] M.Marjani, F. Nasaruddin, A. Gani, A. Karim, I. A. T. Hashem, A. Siddiqa,
and I. Yaqoob, ‘‘Big IoT data analytics: Architecture,’’ opportunities, and
open research challenges,’’ IEEE Access, vol. 5, pp. 5247–5261, 2017.

[20] N. Testoni, C. Aguzzi, V. Arditi, F. Zonzini, L. De Marchi, A. Marzani,
and T. S. Cinotti, ‘‘A sensor network with embedded data processing and
data-to-cloud capabilities for vibration-based real-time SHM,’’ J. Sensors,
vol. 2018, pp. 1–12, Jul. 2018.

[21] F. Zonzini, L. De Marchi, and N. Testoni, ‘‘A small footprint, low power,
and light weight sensor node and dedicated processing for modal anal-
ysis,’’ in Convegno Nazionale Sensori. London, U.K.: Springer, 2018,
pp. 361–370.

[22] C. Bruno, A. Licciardello, G. A. M. Nastasi, F. Passaniti, C. Brigante,
F. Sudano, A. Faulisi, and E. Alessi, ‘‘Embedded artificial intelligence
approach for gas recognition in smart agriculture applications using low
cost MOX gas sensors,’’ in Proc. Smart Syst. Integr. (SSI), Apr. 2021,
pp. 1–5.

[23] M. Noura, M. Atiquzzaman, and M. Gaedke, ‘‘Interoperability in Internet
of Things: Taxonomies and open challenges,’’Mobile Netw. Appl., vol. 24,
no. 3, pp. 796–809, 2019.

[24] F. Montori, I. Zyrianoff, L. Gigli, R. Venanzi, S. Sindaco, C. Aguzzi,
F. Zonzini, M. Zauli, N. Testoni, E. Alessi, M. D. Felice, L. Bononi,
P. Bellavista, L. De Marchi, and T. S. Cinotti, ‘‘A toolchain architecture
for condition monitoring using the eclipse arrowhead framework,’’ in Proc.
47th Annu. Conf. IEEE Ind. Electron. Soc. (IECON), Oct. 2021, pp. 1–6.

[25] R. Venanzi, F. Montori, P. Bellavista, and L. Foschini, ‘‘Industry 4.0 solu-
tions for interoperability: A use case about tools and tool chains in
the arrowhead tools project,’’ in Proc. IEEE Int. Conf. Smart Comput.
(SMARTCOMP), Sep. 2020, pp. 429–433.

[26] I. Zyrianoff, L. Gigli, F. Montori, C. Kamienski, and M. D. Felice, ‘‘Two-
way integration of service-oriented systems-of-systems with the web of
things,’’ in Proc. 47th Annu. Conf. IEEE Ind. Electron. Soc. (IECON),
Oct. 2021, pp. 1–6.

[27] I. Zyrianoff, L. Gigli, F.Montori, C. Aguzzi, S. Kaebisch, andM.Di Felice,
‘‘Seamless integration of RESTful web services with the web of things,’’ in
Proc. IEEE Int. Conf. Pervasive Comput. Commun. Workshops Affiliated
Events (PerCom Workshops), Mar. 2022, pp. 427–432.

[28] K. Georgiou, S. Xavier-De-Souza, and K. Eder, ‘‘The IoT energy chal-
lenge: A software perspective,’’ IEEE Embedded Syst. Lett., vol. 10, no. 3,
pp. 53–56, Sep. 2018.

[29] I. Zyrianoff, A. Trotta, L. Sciullo, F. Montori, and M. Di Felice, ‘‘IoT edge
caching: Taxonomy,’’ use cases and perspectives,’’ IEEE Internet Things
Mag., vol. 5, no. 3, pp. 12–18, Sep. 2022.

[30] J. Kristan, P. Azzoni, L. Römer, S. E. Jeroschewski, and E. Londero,
‘‘Evolving the ecosystem: Eclipse arrowhead integrates eclipse IoT,’’ in
Proc. IEEE/IFIP Netw. Operations Manage. Symp. (NOMS), Apr. 2022,
pp. 1–6.

[31] M. Tarozzi, G. Pignagnoli, and A. Benedetti, ‘‘Identification of damage-
induced frequency decay on a large-scale model bridge,’’ Eng. Struct.,
vol. 221, 2020, Art. no. 111039.

[32] C. A. Tokognon, B. Gao, G. Y. Tian, and Y. Yan, ‘‘Structural health
monitoring framework based on Internet of Things: A survey,’’ IEEE
Internet Things J., vol. 4, no. 3, pp. 619–635, Feb. 2017.

[33] M. Azimi, A. D. Eslamlou, and G. Pekcan, ‘‘Data-driven structural health
monitoring and damage detection through deep learning: State-of-the-art
review,’’ Sensors, vol. 20, vol. 10, p. 2778, 2020.

[34] J. P. Lynch, C. R. Farrar, and J. E. Michaels, ‘‘Structural health monitor-
ing: Technological advances to practical implementations,’’ Proc. IEEE,
vol. 104, no. 8, pp. 1508–1512, Aug. 2016.

[35] A. Verma, S. Prakash, V. Srivastava, A. Kumar, and S. C. Mukhopadhyay,
‘‘Sensing, controlling, and IoT infrastructure in smart building: A review,’’
IEEE Sensors J., vol. 19, no. 20, pp. 9036–9046, Jun. 2019.

[36] Z. Chen, X. Zhou, X.Wang, L. Dong, and Y. Qian, ‘‘Deployment of a smart
structural health monitoring system for long-span arch bridges: A review
and a case study,’’ Sensors, vol. 17, no. 9, p. 2151, 2017.

[37] S. A. Al-Qaseemi, H. A. Almulhim, M. F. Almulhim, and S. R. Chaudhry,
‘‘IoT architecture challenges and issues: Lack of standardization,’’ in Proc.
Future Technol. Conf. (FTC), Dec. 2016, pp. 731–738.

[38] M. Wu, T.-J. Lu, F.-Y. Ling, J. Sun, and H.-Y. Du, ‘‘Research on the
architecture of Internet of Things,’’ in Proc. 3rd Int. Conf. Adv. Comput.
Theory Eng. (ICACTE), vol. 5, 2010, pp. V5-484–V5-487.

[39] O. Said and M. Masud, ‘‘Towards Internet of Things: Survey and future
vision,’’ Int. J. Comput. Netw., vol. 5, no. 1, pp. 1–17, 2013.

[40] F. Zonzini, C. Aguzzi, L. Gigli, L. Sciullo, N. Testoni, L. De Marchi,
M. Di Felice, T. S. Cinotti, C. Mennuti, and A. Marzani, ‘‘Structural
health monitoring and prognostic of industrial plants and civil structures:
A sensor to cloud architecture,’’ IEEE Instrum. Meas. Mag., vol. 23, no. 9,
pp. 21–27, Dec. 2020.

[41] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao, ‘‘A sur-
vey on Internet of Things: Architecture,’’ enabling technologies, security
and privacy, and applications,’’ IEEE Internet Things J., vol. 4, no. 5,
pp. 1125–1142, Oct. 2017.

[42] F. Lamonaca, C. Scuro, D. Grimaldi, R. S. Olivito, P. F. Sciammarella, and
D. L. Carnì, ‘‘A layered IoT-based architecture for a distributed structural
health monitoring system system,’’ Acta Imeko, vol. 8, no. 2, pp. 45–52,
2019.

[43] C. Scuro, F. Lamonaca, S. Porzio, G. Milani, and R. S. Olivito, ‘‘Internet of
Things (IoT) for masonry Structural Health Monitoring (SHM): Overview
and examples of innovative systems,’’Construct. BuildingMater., vol. 290,
Jul. 2021, Art. no. 123092.

[44] P. Qian, B. Feng, D. Zhang, X. Tian, and Y. Si, ‘‘IoT-based approach to
condition monitoring of the wave power generation system,’’ IET Renew.
Power Gener., vol. 13, no. 12, pp. 2207–2214, Sep. 2019.

[45] H. Yang, Z. Sun, G. Jiang, F. Zhao, X. Lu, and X. Mei, ‘‘Cloud-
manufacturing-based condition monitoring platform with 5G and standard
information model,’’ IEEE Internet Things J., vol. 8, no. 8, pp. 6940–6948,
Apr. 2021.

FEDERICO MONTORI (Member, IEEE), received
the B.S. and M.S. degrees (summa cum laude),
in computer science, and the Ph.D. degree in com-
puter science and engineering from the University
of Bologna, Italy, in 2012, 2015, and 2019, respec-
tively. Since 2022, he is a Junior Assistant Profes-
sor with the University of Bologna. He has been
a Visiting Researcher at the Swinburne Univer-
sity of Technology, Australia and Luleå Tekniska
Universitet, Sweden. He participated in several

EU projects and he is now a WP Leader for the H2020 Project Arrowhead
Tools. His primary research interests include mobile crowdsensing (MCS),
pervasive and mobile computing, the IoT automation, and data analytics.

IVAN ZYRIANOFF received the B.S. degree in
computer science and the M.S. degree in infor-
mation engineering from the Federal University of
ABC, Brazil. He is currently pursuing the Ph.D.
degree with the University of Bologna. He is a
member of the IoT Prism Laboratory. He was
involved in the SWAMP Project, an EU-Brazil
collaborative research project that developed the
IoT-basedmethods and approaches for smart water
management in precision irrigation. Currently,

he is an Active Member of the Arrowhead Tools project. His current research
topics encompass interoperability for the Internet of Things, edge computing,
and the IoT Architectures.

6854 VOLUME 11, 2023



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

LORENZO GIGLI (Graduate Student Member,
IEEE) received the master’s degree (summa cum
laude) in computer science from the University of
Bologna, Italy, in 2019. He worked as a Research
Fellow on the MAC4PRO Project (INAIL) at
the Department of Computer Science and Engi-
neering (DISI), University of Bologna. Currently,
he is enrolled in a Ph.D. Program in engineering
and information technology at the University of
Bologna. He is a part of the IoT PRISMLaboratory

directed by Prof. Marco Di Felice. His research interests include interop-
erability for the Internet of Things, the IoT and cloud architectures, and
distributed systems.

ALESSANDRO CALVIO received the B.S. and
M.S. degrees (cum laude) in computer engineering
from the University of Bologna, Italy, in 2018 and
2021, respectively. He is currently a Research
Fellow with the University of Bologna, where
he is involved in several EU projects comprises
the H2020 Arrowhead Tools Project. His main
research interests include the IoT, data analysis,
and big-data architectures for smart city contexts.

RICCARDO VENANZI (Member, IEEE) received
the Ph.D. degree in computer engineering from the
University of Ferrara, Italy, in 2019. He is cur-
rently a Postdoctoral Research Fellow with DISI,
Department of Computer Science and Engineer-
ing, University of Bologna, Italy. His research
interests include span cloud and edge computing,
the Internet of Things, distributed systems, mobile
computing, and middleware, and the Industrial
Internet of Things and Industry 4.0.

SIMONE SINDACO received the B.S. and M.S.
degrees (summa cum laude) in electronic engineer-
ing. Since September 2019, he has been a Research
Fellow with the University of Bologna, Italy.
He participated in several EU-H2020 projects such
as SWAMP and Arrowhead Tools. His research
interests include the design of sensors network
for structural and environmental health monitoring
purposes and the design of embedded devices for
the railway sector (ERTMS) in partnership with

the railway Italian company (RFI).

LUCA SCIULLO (Member, IEEE) received the
master’s degree (summa cum laude) in computer
science and the Ph.D. degree in computer science
and engineering from the University of Bologna,
Italy, in 2017 and 2021, respectively. He is a
Postdoctoral Researcher with the University of
Bologna. He was a Visiting Researcher at the
Huawei European Research Center of Munich,
Germany. He is a part of the IoT Prism Labora-
tory directed by Prof. Marco Di Felice and Prof.

Luciano Bononi. His research interests include wireless systems and proto-
cols for emergency scenarios, wireless sensor networks, the IoT systems, and
the Web of Things.

FEDERICA ZONZINI (Member, IEEE) received
the B.S. and M.S. degrees in electronic engi-
neering, and the Ph.D. degree in Structural and
Environmental Health Monitoring and Manage-
ment (SEHM2) from the University of Bologna,
in 2016, 2018, and 2022, respectively. Her
main research interests include advanced signal
processing techniques for structural health mon-
itoring applications, encompassing graph signal
processing, compressive sensing, and artificial
intelligence.

MATTEO ZAULI (Member, IEEE) received the
B.S. and the M.S. degrees in electronics engineer-
ing from the University of Bologna, Italy, where
he is currently pursuing the Ph.D. degree in engi-
neering and information technology for Structural
and Environmental Monitoring and Risk Manage-
ment (EIT4SEMM). His research interests focus
on signal processing, compressed sensing, neural
networks, embedded systems development, and
ultrasonic measurements.

NICOLA TESTONI (Member, IEEE) received the
M.Sc. degree in microelectronics and the Ph.D.
degree in information technology from Bologna
University, in 2004 and 2008, respectively. He is
currently an Adjunct Professor with the Depart-
ment of Electrical, Electronic, and Information
Engineering ‘‘GuglielmoMarconi’’, Bologna Uni-
versity. His research interests include guided
waves, analog circuit design, non-linear signal
processing, wavelet theory and applications, neu-

ral signal denoising, and event sorting.

ALESSANDRO BERTACCHINI (Member, IEEE)
received the master’s degree in computer science
and the Ph.D. degree in industrial management
engineering from the University of Modena and
Reggio Emilia, Italy, in 2001 and 2005, respec-
tively, where he is currently an Assistant Pro-
fessor His research interests are focused on
the design of embedded systems for industrial
and safety-critical applications and the develop-
ment of low-power energy harvesting systems.

He authored and coauthored several peer-reviewed technical papers on these
topics. He is a member of the IEEE-IES (2009) and IEEE IAS (2014).

ELISA LONDERO received the M.Sc. degree in
physics from Trieste University, Italy, in 2008,
and the Ph.D. degree in condensed matter physics
from theChalmersUniversity of Technology, Swe-
den, in 2012. From 2013 to 2016, she was a
Postdoctoral Research Associate with the Wigner
Research Centre for Physics and Optics, Budapest,
Hungary. From 2016 to 2020, she was a Research
Fellow at Trieste Observatory, Italy. Since 2020,
she has been working with the Eurotech, Research

and Development Department, Amaro, Italy, as an Applied Research Scien-
tist.

VOLUME 11, 2023 6855



F. Montori et al.: IoT Toolchain Architecture for Planning, Running and Managing a Complete CM Scenario

ENRICO ALESSI received the M.D. degree in
electronics engineering and the M.D. degree in
computer science. He is currently a Research and
Development Application Manager and a Senior
Member of technical staff at the STMicroelectron-
ics with 20 years of experience in large companies
working mainly in the field of ICT and micro-
electronics. He has matured experience in sensors,
biosensors, andmedical systems for IVD.Hewas a
First author and a Technical Coordinator of several

national and European funding research programs in the domain of environ-
mental sensors, human body sensors, and biosensors for DNA Analysis such
as Lab-on-chips for DNA Amplification and detection and Lab-on-disk for
sample preparation.

MARCO DI FELICE (Member, IEEE) received the
Laurea (summa cum laude) and Ph.D. degrees in
computer science from the University of Bologna,
in 2004 and 2008, respectively. He is a Full
Professor of computer science with the Univer-
sity of Bologna, where he is the Co-Director of
the IoT PRISM Laboratory. He was a Visiting
Researcher with the Georgia Institute of Technol-
ogy, Atlanta, GA, USA, and with Northeastern
University, Boston, MA, USA. He authored more

than 120 articles on wireless and mobile systems. His research interests
include self-organizing wireless networks, unmanned aerial systems, the IoT,
WoT, and context-aware computing. He achieves three best paper awards for
his scientific production. He is the Associate Editor of the IEEE INTERNET OF

THINGS JOURNAL.

LUCIANO BONONI received the M.Sc (summa
cum laude) degree, in 1997 and the Ph.D. degree,
in 2001. He was the Founder of the Wireless and
Mobile Applications Laboratory, in 2010. He is a
Full Professor with the Department of Computer
Science and Engineering, University of Bologna.
He is actively involved in national and interna-
tional research projects and collaborations with
international Universities and Industry partners.
His research fields include wireless systems and

networks, the Internet of Things, smart mobility and mobile applications,
simulation, and digital twins. He is a member of the Doctoral Board for
the Ph.D. Program in computer science and engineering at the University
of Bologna. From 2012 to 2015, he was elected member of the academic
senate of the University of Bologna.

PAOLO BELLAVISTA (Senior Member, IEEE)
received the Ph.D. degree in computer science
engineering from the University of Bologna, Italy,
in 2001, where he is currently a Full Profes-
sor His research interests include middleware for
mobile computing, QoS management in the cloud
continuum, infrastructures for big data process-
ing in industrial environments, and performance
optimization in wide-scale and latency-sensitive
deployment environments. He served as the Sci-

entific Coordinator for the H2020 IoTwins Project. He serves on the
Editorial Boards for IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, IEEE
TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, IEEE TRANSACTIONS ON

SERVICES COMPUTING, ACM CSUR, ACM TIOT, and PMC (Elsevier).

LUCA DE MARCHI (Senior Member, IEEE)
is currently an Associate Professor of electron-
ics with the University of Bologna, Bologna,
Italy. He is the Coordinator with the Univer-
sity of Bologna Ph.D. Program in engineering
and information technology for Structural and
EnvironmentalMonitoring andRiskManagement-
EIT4SEMM.His current research interests include
intelligent sensor systems and embedded signal
processing, with a particular emphasis on vibration

and ultrasound sensing. In this field, he has published more than 180 articles
in international journals or in proceedings of international conferences and
he holds two patents.

ALESSANDRO MARZANI received the M.Sc.
(Laurea) degree in civil engineering from the Uni-
versity of Bologna, Italy, in 2001, theM.Sc. degree
in structural engineering from the University of
California San Diego, USA, in 2004, and the Ph.D.
degree in engineering of materials and structures
from the University of Calabria, Italy, in 2005.
He is currently a Professor of structural mechanics
with the Department of Civil, Chemical, Environ-
mental and Material Engineering, University of

Bologna. His research interests include non-destructive evaluation tech-
niques of materials and structures, structural monitoring, linear and nonlinear
ultrasonic guided wave propagation, structural optimization and identifi-
cation strategies, and structured materials for wave propagation control
metamaterials.

PAOLO AZZONI received the master’s degree in
computer science and the second master’s degree
in intelligent systems. He is the Secretary-General
at Inside-IA (formerly Artemis-IA), the industry
association that serves as the European Technol-
ogy Platform for research, design, and innovation
on Intelligent Digital Systems and their technology
ecosystems. In this context, he is the Chairper-
son of the ECS Strategic Research and Innovation
Agenda, a funding-agnostic document describing

the major challenges and priorities in the ECS domain for the next 10 years.
He is also the Head of European Technology Programs at EUROTECH
Group, planning and directing industrial research projects, investigating
technologies beyond the state of the art in the domains of cyber-physical
systems, intelligent systems, machine-to-machine technologies, edge com-
puting, and the Internet of Things and digitalization solutions.

TULLIO SALMON CINOTTI received the degree
in electrical engineering from the University of
Bologna, in 1974. He is a Honorary Professor
with the School of Engineering and Architecture,
University of Bologna, currently teaching logic
design. He was the Director of ARCES, an Inter-
Department Research Center at the University of
Bologna, from 2015 to 2018. He is the coauthor
of researchers from Intel Labs, Nokia Research,
Siemens Corporate Technology, STMicroelectron-

ics, Telecom Italia Lab, VTT, Politecnico di Milano, University of Kent,
and University of Westminster. His research interests include digital systems
and go from embedded systems to smart spaces and semantics-based data
distribution architectures for cyber-physical systems. He is the Coordinator
at the University of Bologna’s participation in European research initiatives
in the areas of open cultural heritage, electric mobility, smart agriculture,
smart environments, and SoS engineering.

Open Access funding provided by ‘Alma Mater Studiorum - Università di Bologna’ within the CRUI CARE Agreement

6856 VOLUME 11, 2023


