
19 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

RLQ: Workload Allocation With Reinforcement Learning in Distributed Queues / Staffolani, Alessandro;
Darvariu, Victor-Alexandru; Bellavista, Paolo; Musolesi, Mirco. - In: IEEE TRANSACTIONS ON PARALLEL AND
DISTRIBUTED SYSTEMS. - ISSN 1045-9219. - ELETTRONICO. - 34:3(2023), pp. 856-868.
[10.1109/TPDS.2022.3231981]

Published Version:

RLQ: Workload Allocation With Reinforcement Learning in Distributed Queues

Published:
DOI: http://doi.org/10.1109/TPDS.2022.3231981

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/913504 since: 2023-02-21

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/TPDS.2022.3231981
https://hdl.handle.net/11585/913504


This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/) 

When citing, please refer to the published version. 

 

 

 

 

 

This is the final peer-reviewed accepted manuscript of:  

A. Staffolani, V. -A. Darvariu, P. Bellavista and M. Musolesi, "RLQ: Workload Allocation With Reinforcement 
Learning in Distributed Queues," in IEEE Transactions on Parallel and Distributed Systems, vol. 34, no. 3, pp. 
856-868, 1 March 2023 

The final published version is available online at: 
https://dx.doi.org/10.1109/TPDS.2022.3231981 

 

Terms of use: 

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are 
specified in the publishing policy. For all terms of use and more information see the publisher's 
website.   

 

https://cris.unibo.it/
https://dx.doi.org/10.1109/TPDS.2022.3231981


1

RLQ: Workload Allocation with Reinforcement
Learning in Distributed Queues

Alessandro Staffolani, Victor-Alexandru Darvariu, Paolo Bellavista and Mirco Musolesi

Abstract—Distributed workload queues are nowadays widely used due to their significant advantages in terms of decoupling,
resilience, and scaling. Task allocation to worker nodes in distributed queue systems is typically simplistic (e.g., Least Recently Used)
or uses hand-crafted heuristics that require task-specific information (e.g., task resource demands or expected time of execution).
When such task information is not available and worker node capabilities are not homogeneous, the existing placement strategies may
lead to unnecessarily large execution timings and usage costs. In this work, we investigate the task allocation problem within the
Markov Decision Process framework, where an agent assigns tasks to an available resource, by receiving a numerical reward signal
upon task completion. This allows our solution to learn effective task allocation strategies directly from experience in a completely
dynamic way. In particular, we present the design, implementation, and experimental evaluation of RLQ (Reinforcement Learning
based Queues), i.e., our adaptive and learning-based task allocation solution that we have implemented and integrated with the
popular Celery task queuing system. By using both synthetic and real workload traces, we compare RLQ against traditional solutions,
such as Least Recently Used. On average, using synthetic workloads, RLQ reduces the execution time by a factor of at least 3×.
When considering the execution cost, the reduction is around 70%, whereas for the time waited before execution, the reduction is close
to a factor of 7×. Using real traces, we observe around 70% improvement for execution time, around 20% for execution cost and a
reduction of approximately 20× for waiting time. We also analyze RLQ performance against E-PVM, a state-of-the-art solution used in
Google’s Borg, showing that we are able to outperform it in the synthetic data evaluation, while we outperform it in all the three settings
based on real data.

Index Terms—task allocation, reinforcement learning, distributed task queuing.

✦

1 INTRODUCTION

THE problem of task scheduling concerns performing al-
locations to resources so as to satisfy desired, often con-

flicting, objectives (such as throughput, latency, or fairness)
while accounting for underlying architectural properties.
This problem presents itself at multiple levels in computer
systems; notable examples include scheduling of threads on
processors [1], [2], scheduling of packets in network infras-
tructure [3], [4], stream processing [5], [6], software cache
management [7], and scheduling of tasks and resources in
clusters [8], [9], [10], [11].

More specifically, in this paper we are interested in
application-level workload scheduling for distributed queues with
zero information about the managed tasks. The goal is to allo-
cate tasks (units of work) to resources (entities capable of
executing said work). In this context, producers place units
of work on shared job queues, which are consumed and
executed by distributed worker nodes. Such middleware
systems are widely used since they provide resilience to
connectivity or node failures. They are also easy to scale
horizontally and allow loose coupling between producers
and consumers. In fact, distributed task queues also allow
for the execution of workloads in third-party environments,
where workers are not owned by the system administrator

• Alessandro Staffolani, Paolo Bellavista and Mirco Musolesi are with the
Department of Computer Science and Engineering, University of Bologna,
Bologna, Italy.
E-mail: alessandro.staffolani, paolo.bellavista, mirco.musolesi@unibo.it

• Victor-Alexandru Darvariu and Mirco Musolesi are with the Department
of Computer Science, University College London, London, UK and with
The Alan Turing Institute, London, UK.
E-mail: v.darvariu, m.musolesi@ucl.ac.uk

and information about the underlying hardware utilization
is not available (or expensive to obtain). A relevant use case
is that of federated cloud deployments, where the cloud
infrastructure belonging to several owners is leased to a
client in order to satisfy its business needs. In this situation,
the infrastructure owners typically limit hardware moni-
toring. Another example is that of citizen science projects
such as SETI@home [12] and Folding@home [13], in which
volunteers lend their computational resources for running
simulations, but extensive and detailed real-time monitor-
ing is avoided because of potential privacy concerns.

Notable distributed queue examples include Celery [14]
and RQ [15] in the Python ecosystem; Resque [16] for Ruby,
and Bull [17] for Node. Such systems are typically built on
top of a message broker (such as RabbitMQ or Redis), which
handles the underlying communication primitives. Tasks
are allocated according to a least recently used strategy to
worker nodes depending on their order of arrival, in accor-
dance with a priority setting, or using various heuristics.
Limitations of Current Approaches. The mechanisms by
which tasks are allocated in the existing solutions above are
general-purpose, definitely far from optimality when tasks
are long-running and the worker capabilities are strongly
heterogeneous. We identify the following shortcomings
present in current state-of-the-art systems and methods:
1) Assumption of uniform worker capabilities: most current
approaches implicitly assume that workers have the same
capability, while in reality they may be highly heteroge-
neous. Variations in hardware (e.g., disk speed, availability
of a GPU) and software (e.g., optimized numerical libraries)
can cause significant differences in task completion times.



2

2) Lack of notion of cost: available task scheduling systems
do not support a notion of monetary cost per unit of time
associated with the execution of tasks. In the context of
cloud-based infrastructures, for example, it may be desirable
to strike a balance between completion time and cost spent
using the hardware. Furthermore, when servers are self-
managed, costs are sustained for managing and running the
resources, which should be kept low.
3) Lack of adaptability in dynamic settings: current task sched-
ulers require tuning in order to function well, but can-
not automatically update such settings in cases where the
frequencies and characteristics of incoming tasks change
significantly. If such a shift is substantial, this can be detri-
mental to performance.
4) Requiring task-specific information: sophisticated task
schedulers necessitate precise information about the tasks
they are going to schedule, such as their estimated time of
completion and the resources that are demanded. However,
in cases where execution happens on third-party devices
that are not under the control of the task queue user, such
information may be unavailable.

Our Contributions. In this paper, we make the following
two contributions in order to overcome these limitations:

1) We cast the allocation problem as a decision-making pro-
cess in which tasks of various classes have to be assigned
to heterogeneous types of worker nodes. A centralized
agent allocates tasks to workers of a particular type,
receiving a numerical reward signal based on a measure
of the fitness of its assignments, adjusting its behavior so
as to maximize it. Several desiderata such as the cumula-
tive time that tasks spend waiting, total execution time,
or total execution cost can be transparently captured
as a reward signal. We contribute a formulation of this
problem based on the Markov Decision Process (MDP)
framework, for which learning is possible via contextual
bandit as well as deep reinforcement learning algorithms.

2) We present the design and implementation of RLQ (Re-
inforcement Learning based Queues), a learning-based
adaptive system for task allocation that is integrated
with Celery, a widely-used platform for distributed task
processing in Python. In our system, tasks arrive on a
“main” queue in an asynchronous way and are allocated
to a specific type of worker based only on a task label
and the current load of the system. We have imple-
mented two learning algorithms for this purpose, based
on the LinUCB contextual bandit algorithm [18] and the
DoubleDQN algorithm [19]. In addition, RLQ includes
several novel architectural components that enable learn-
ing task allocation policies efficiently, while supporting
distributed asynchronous task execution with delayed rewards.

Results. We have thoroughly evaluated RLQ using both
synthetic workload and real workload traces [20] from
Borg [8], [21], [22], Google’s cluster management system.
Our experimental evaluation shows that RLQ achieves sig-
nificantly better performance compared to classic solutions,
such as Least Recently Used, when optimizing for objectives
that capture various execution time, execution cost and
waiting time desiderata. In terms of learning algorithms, we
find that DoubleDQN outperforms LinUCB as the complex-
ity of the problem increases. Compared to these baselines,

over the synthetic data, on average the time of execution
is reduced by a factor of at least 3×; when considering the
execution cost we are able to reduce the expense around
70%; when considering the time waited before executing,
the reduction is near a factor of 7×. Furthermore, our
results show that RLQ is able to adapt to varying workload
frequencies without any need for manual intervention, by
maintaining substantially the same performance gain. Using
real traces, we observe around 70% improvement for execu-
tion time, around 20% for execution cost and a reduction
of approximately 20× for waiting time. Finally, we evaluate
our solution against a well-established cluster management
solution, namely E-PVM [23], the scheduling algorithm used
by Borg, E-PVM requires knowledge about task resource
requirements and workers’ current load in order to allocate
tasks, information that is by design unavailable to RLQ. In
the experiments using synthetic workload we observe that
the additional system information used by E-PVM leads
to better performance when the time waited by a task is
optimized while, on the other hand, it is outperformed
by RLQ when time and cost of the task execution are.
In the experiments based on real-traces, DoubleDQN can
outperform E-PVM on all the three setups.

2 RELATED WORK

Scheduling is a very vast area; below we only cover the
recent papers that are most related and closest to our orig-
inal approach for learning-based allocation in distributed
task queues. Let us note that, to the best of our knowledge,
our proposal is the first one that achieves application-level
adaptive scheduling for distributed task queues.
Conventional Task Scheduling. Conventional schedulers
typically use hand-crafted rules in order to perform allo-
cations. Common examples of strategies include Shortest
Job First and FIFO scheduling, possibly in conjunction with
Backfilling (jobs that require less resources are moved to
the front of the queue) [24]. Other systems allow specifying
priority levels, with higher-priority tasks taking precedence.
If information about the task (e.g, number of cores and
memory required) is known in advance, task allocation
may be seen as a bin packing problem, for which efficient
heuristics are known and have been applied [9], [23]. To
summarize, such approaches typically prioritize simplicity
and ease of implementation at the expense of optimality
of allocations. Specific job scheduling techniques for deep
learning tasks, using features such as predictions of model
convergence, can also be used to optimize a variety of task
completion objectives [25], [26], [27].
Reinforcement Learning for Scheduling. Reinforcement
learning has proven to be an effective tool for solving
optimization problems, ranging from the Traveling Sales-
man Problem (TSP) [28], [29], the vehicle routing problem
(VRP) [30], [31], as well as the Job Shop Scheduling (JSP)
problem [32], [33]. JSP is a classic combinatorial optimiza-
tion problem with similarities to the problem we treat,
but with two important differences: firstly, tasks have an
execution flow, where each task may need to be executed
on more than one machine following a precise order, while
in the type of task scheduling we considered, tasks are
executed only once and only by one machine. Secondly,



3

System Components

Task Broker Environment 

Worker type 1
worker replica 1 worker replica 2

Worker type 2
worker replica 1 worker replica 2

Worker type N
worker replica 1 worker replica 2

worker type 1 queue

worker type 2 queue

worker type N queue

Producer 1Producer 2Producer 3Producer 4

Tasks Producers

Experience
Collector

Shared
Memory

RL Agent 

Fig. 1: Graphical summary of our learning-based scheduler for distributed task queues. Tasks of different classes arrive
at a main queue of the Task Broker, and an agent is responsible for allocating them to a given type of worker (present in
multiple instances). Allocation is performed based on the state and properties of worker nodes, gathered by the Experience
Collector and saved in the Shared Memory. Once a task is completed, the agent receives a reward that quantifies the
optimality of its allocation choice depending on time and cost measured for task execution.

while in the standard JSP the number of tasks is known
in advance, in the setting we consider there is a continuous
flow of tasks and decisions must be made at run-time.

Reinforcement learning has been successfully applied
to workload allocation problems. The authors of [34] use
reinforcement learning in order to allocate jobs for which
the time of execution and resources needed are known
(or can be estimated). In a subsequent work, the authors
use deep RL for scheduling data processing workloads
structured as a Directed Acyclic Graph (DAG), showing
substantial performance gains over standard schedulers in
both a simulated environment as well as in a deployment
based on an Apache Spark cluster [35]. Another line of
research, which addresses a different scheduling problem
than that of RLQ, has focused on workflows that are specific
to deep learning: for example, the authors of [36] train a
policy gradient model to treat the problem of optimizing the
placement of TensorFlow computational graphs on hetero-
geneous devices, while in [37] an improved method based
on separating the device placement problem into multiple
decision-making steps is presented.

All the solutions presented in [34], [35], [36], [37] share
the common assumption of having access to detailed task-
related information (i.e., resource requirements and / or
estimated time for the execution) upon task arrival in or-
der to make an assignment. Such detailed information is
often not available in distributed task queues, in which the
end user may not have full ownership of (or monitoring
capabilities for) worker nodes. Indeed, none of the existing
distributed task queues make use of this type of information
for scheduling workloads, resorting to simpler allocation
strategies that do not require it. Even in cases where such
information may be available, an additional benefit of the
proposed approach is that it does not require the user to go
through the (time-consuming) manual or automatic step of
profiling the resource usages of their tasks on a variety of
heterogenous workers.

3 SCHEDULING IN DISTRIBUTED TASK QUEUES
USING REINFORCEMENT LEARNING

In this section, we provide the necessary background and
fix the notation for decision-making processes. We sub-
sequently introduce two algorithms we use to learn task
allocation strategies: one based on contextual bandits, and
the other on the full reinforcement learning problem. Finally,
we formalize scheduling in distributed task queues as a
reinforcement learning problem, providing details about the
state, action, and reward specifications used.

3.1 Reinforcement Learning (RL) Background
RL is a paradigm for decision-making that is reward and
experience-driven. It has proven to be very effective in learn-
ing how to solve several different kinds of problems such
as games [38], [39], language generation and understanding
[40], [41], packet traffic control [42], [43], and many others.

The underlying formalization of decision-making used
in RL is that of Markov Decision Processes (MDPs). In this
paradigm, an agent interacts with an external environment
by performing actions, receiving as feedback a numerical
signal (reward) that quantifies the “goodness” of the per-
formed action. These interactions form a trajectory, defined
as st, at, rt+1, st+1, at+1, ... for t = 1, 2, 3, ..., where st ∈ S
is the state of the environment at time t, at ∈ A is the action
taken at time t, rt+1 ∈ R is the reward associated to the
execution of at in the current state st. S , A and R are the
set of possible states, actions and rewards respectively. The
transition between st and st+1 is modeled by the transition
dynamics P(st+1|st, at) that determine the probability of
moving from st to st+1 when performing action at.

An MDP is fully characterized by the tuple
⟨S,A,P,R, γ⟩, where γ ∈ [0, 1] is the discount factor.
The goal of the agent is to find the policy π(a|s), a
distribution of actions over states, which maximizes the
discounted return Gt =

∑∞
k=0 γ

krt+k+1 in expectation [44].
At a high level, allocation in distributed task queues may



4

be viewed as an MDP as listed below (in Section 3.3 a fully
specified formulation of it is provided).
• the agent is a centralized entity that receives tasks and is

responsible for performing allocations;
• the state contains information about the task to be as-

signed and the status of worker nodes;
• the action that can be taken by the agent is to allocate a

task to a specific worker node, not preventing assignments
on different workers that are currently idle;

• the reward depends on the allocation optimality.

3.2 Decision-Making Algorithms

Our objective in this work is to determine whether decision-
making algorithms are able to efficiently solve the allocation
problem in distributed task queues. There are two main
classes of algorithms that are applicable in this setting: that
of online learning, in which the learner is only presented with
(and makes decisions using) information about the current
state of the system; as well as the full reinforcement learning
problem, which explicitly accounts for transitions between
states of the system, and for which the learner also considers
future possible states when making allocation decisions.
Since such algorithms have not been applied in this setting,
and we have no a priori knowledge of how they might
perform, we consider representative algorithms from both
families of decision-making approaches.
LinUCB. The LinUCB algorithm, introduced in [18], is an
approach for the online learning problem in which at each
time t the learner is presented with information (called
context) prior to selecting its action. The selection of the
action at time t uses the following criterion:

at
.
= argmax

a∈A

[
θ̂⊺axt,a + α

√
x⊺t,aA

−1
a xt,a

]
(1)

where xt,a represents the context of the action a at time t

with size d, α = 1 +

√
ln( 2

δ )

2 is a constant which for any
δ > 0 controls the degree of exploration and θ̂⊺a = A−1

a ba is
a matrix obtained applying ridge regression to the training
data A and b, with A being an identity matrix of dimension
d and b being a zero vector of size d.
DoubleDQN. One important family of algorithms for the
full RL setting is based on the idea of a action-value function:
given a state s, an action a, and a current policy π, the
state-action value function Qπ(s, a) quantifies the expected
return for taking action a in state s, and subsequently
following policy π. Q-learning algorithms [45] continuously
estimate the Q-function via samples of interactions with the
environment. During learning, the agent selects its action ac-
cordingly to an ϵ-greedy policy: the action argmaxaQ(s, a)
is selected with probability 1− ϵ, and a random exploratory
action a ∈ A(t) is picked otherwise. Once learning is
completed, the agent uses a fully greedy policy.

In practice, state spaces can be considerably large, and
thus value-function approximation methods are used, in which
the lookup table is replaced with a function approxima-
tor (commonly, a deep neural network). Concretely, the
lookup table Q(s, a) is replaced with a deep neural network
Q̂(s, a; θ) parametrized by network weights θ. This helps
generalize across states that are not identical but share

common properties. In this work, we opt for the DoubleDQN
algorithm proposed by [19], which is a modified version of
the DQN algorithm [38], [46], created to better deal with
the overestimation of Q-values of the original approach.
DoubleDQN uses two sets of parameters: θ for the online
network, and θ′ for the target network, with online network
parameters periodically copied to the target network. The
agent collects experience tuples (s, a, r, s′) through environ-
ment interactions, and updates online network weights by
backpropagation using the learning target:

y = r + γQ̂(s′, argmax
a′

Q̂(s′, a′; θ); θ′) (2)

3.3 Task Assignment in Distributed Queues as an MDP
In this section, we construct the formal definition of the
assignment problem in distributed task queues as a Markov
Decision Process. We present an overview of the abstract
architecture in Figure 1. Our formulation addresses the
shortcomings of the current methods described in Section 1:
namely, it is suitable for an environment in which worker
nodes have heterogeneous capabilities, it can account for a
notion of cost associated with the execution of tasks, and it
can capture varying workloads. In this work, we consider a
subset of characteristics as exemplar, without loss of gener-
ality. The proposed approach can be transparently extended
to cases where a larger (or smaller) set of characteristics are
taken into consideration since the learning process is based
only on the measured time of execution.
Asynchronous Task Execution. The scheduling of a task is
an asynchronous operation for which the reward can only
be computed when the task completes its execution and its
outcome is known. Thus, in contrast with the standard MDP
framework, there exists a delay between when an action is
taken and when the reward can be provided. Since blocking
while waiting for a task to complete is wasteful, we instead
assign a new task as soon as it arrives, without waiting
for the previous one to complete. Formally speaking, the
reward R(st, at) for taking action at in state st is only
revealed at timestep t + τ instead, with τ ≥ 1. Therefore,
at each time step t, the agent receives a set Ht comprising
the reward associated to all the tasks allocated in previous
steps that have completed their execution at time t.1

Workers and Tasks. We are given a set of worker nodes of
size D, which we refer to as the worker pool P . Each worker
w ∈ P can execute only one task at a time and belongs to a
worker type ω. We denote the set of all worker types as Ω,
with |Ω| = N . Each worker type ω is characterized by:
• a specification of available resources (e.g., amount of

RAM, CPU cores), which is identical for each worker of
this type;

1. Delays in obtaining feedback occur frequently in practice. We
adapt the learning mechanisms as follows to deal with this: for LinUCB,
at each step we update the weights for all tasks in the set Ht (as also
performed for the recommendation problem for which the algorithm
was originally developed [18]); while for DoubleDQN we add all the
(s, a, r, s′) tuples in Ht to the experience replay buffer. Since the task
execution times are significantly smaller than the full time horizon over
which allocations have to be made (τ ≪ T ), this still enables learning
efficiently. For further results that characterize the ability of agents to
learn in decision-making settings with delayed feedback, we refer the
interested readers to [47], [48] in the online learning setting and [49] in
the full reinforcement learning problem.



5

• the number of replicas available, denoted d(ω);
• a scalar value κexec(ω) ∈ R, which represents the cost per

execution timestep for this worker type.
Each task ut belongs to a task class ψ. We denote the set

of all tasks classes as Ψ, with |Ψ| = M . Each task class ψ
is characterized by its workload, which may take a variable
amount of time to complete depending on its arguments
and the resources of the worker that executes it.
Problem Statement. At each timestep t, the system receives
a task ut, which must be executed by a worker w ∈ P . The
task is completed after τexec(ut) ∈ N timesteps, potentially
having spent τwait(ut) ∈ N timesteps waiting. Given a cost
function ϕ defined over the task, worker type, as well as
waiting and execution intervals, the goal is to assign tasks
such as to minimize the sum:∑

t

ϕ(ut, ω, τwait(ut), τexec(ut)) (3)

We next formalize the states (contexts), actions, and reward
function that we use.
Actions. In the problem considered, tasks that arrive on
the main queue must be allocated to a worker. Perhaps the
most intuitive way to frame the actions available to the task
allocation agent is to explicitly decide which worker node
the task will be scheduled on. While straightforward, this
has the drawback that often worker nodes are unavailable
(since they are executing other tasks). Perhaps more impor-
tantly, if the composition of the worker pool changes (e.g.,
a worker node fails and is taken offline, or if a new one
is added to cope with demand), the allocation strategy is
no longer applicable, and must be re-learned. To deal with
these two issues, we instead frame actions differently. We let
the action taken by the agent to be the assignment of a task
ut to a worker type ω ∈ Ω. Therefore, the set of all the possible
actions is equal to the worker types set, thus A = Ω. Hence, it
is reasonable to assume that the set A remains fixed during
execution. Once a task is assigned to a worker type, it is
moved from the main task queue to the internal queue of
the worker type, from which it will be popped in a FIFO
manner by one of the available worker nodes.
State and Context. In both full RL and online learning the
state st and context xt,a respectively should encapsulate
relevant representations of the setting in which the agent
operates – specifically, for the task allocation problem, it
must capture information about the task to be allocated
as well as the current status of the worker nodes. We
construct the state and context representations using only
the following features:
• task class: the class ψ(ut) of the task to be assigned;
• pool load: represents the current status of the workers in

the worker pool P . This feature captures the load at time
step t for each worker type ω.

The pool load feature encodes two important pieces of
information about the system: it captures whether worker
types are idle and the status of the worker types’ queues.
We represent the load for worker type ω as η(ω), which
takes the following values:
• if η(ω) = 0, then the worker type ω has all its replicas idle;
• if η(ω) = 1, then the worker type ω has one replica busy;
• if η(ω) = d(ω), then all worker type ω replicas are busy;

• if η(ω) > d(ω), then the worker type has η(ω)−d(ω) tasks
in the queue waiting to start executing.

The task class feature is represented as a one-hot encod-
ing vector of dimension M (the number of task classes),
while the pool load feature is a real-numbered vector of
dimension N (the number of worker types). To ensure
comparable statistics across worker types with different
numbers of replicas, we normalize the load η(ω) by the
sum of load statistics of all classes,

∑N
i=1 η(ωi). The state

representation for the full RL problem is obtained by con-
catenating the task class and pool load features, resulting
in a vector of size N + M . For the contextual bandit we
require an additional one-hot feature vector of dimension N
representing the worker type, resulting in a context vector
of size 2N +M .
Rewards. The reward signal is the information used by the
agent for discriminating good from bad actions. We have
briefly described the objective for allocation in distributed
task queues as minimizing the total cumulative cost (as
expressed in Equation 3) over the tasks allocated. Thus, the
agent’s learning process can be guided by minimizing the
cost incurred for each allocation, or conversely, maximizing
the negative cost:

R(st, at) = −ϕ(ut, at, τwait(ut), τexec(ut)) (4)

We now define the specific cost functions that we consider
from which reward functions are derived. As we detail
below, these capture various desirable aspects of allocation
strategies in distributed task queues. Note that, for brevity,
we omit the arguments of ϕ in the definitions below.
• Execution time ϕextime = τexec(ut), which captures the
time needed for executing a task. By minimizing τexec, this
objective leads to the selection of the worker type that (on
average) solves a certain task the fastest.
• Execution cost ϕexcost = τexec(ut)κexec(at), which cap-
tures the cost of executing a task over a certain worker type,
balancing the time for completing the task and the usage
cost for executing it.
• Waiting time ϕwait = τwait(ut), an important objective
to be optimized since it allows to minimize the time spent
waiting in the queue for each task. Hence, tasks must wait
as little as possible before starting execution.

It is worth noting that our agent has no knowledge
of task resource requirements (hardware or software), nor
of the current resources available in the worker types.
Therefore, when it is necessary to deal with failures due
to the violation of hard resource requirements of tasks, it is
sufficient to extend the reward function to provide a penalty
(a negative value) and to requeue the task. The agent will
learn, through experience, to avoid allocations to worker
types that cause failures.

4 RLQ: DESIGN AND IMPLEMENTATION

4.1 System Design
We next present the design of RLQ, our approach for real-
time task scheduling that receives tasks on a distributed
queue and learns to allocate them so as to optimize the
objectives discussed in Section 3. In this section, we dis-
cuss each of the components of RLQ (that we previously



6

presented in Figure 1) in depth, noting that they are imple-
mented as independent entities that can only communicate
using the network.
Task Broker. The Task Broker component is the main entry
point of the RLQ system. It acts as a proxy, receiving all
the tasks generated by Producers, and placing them on an
internal queue (called main task queue). Every time a task
arrives, the Task Broker queries the Agent about which
Worker Type ω it should be allocated to, providing only the
task class. Finally, it performs the allocation by publishing
the task on the separate queue of the Worker Type.
Agent. The Agent component contains the adaptive
decision-making functionality. In order to make an alloca-
tion decision, the Agent must gather the current state of the
environment st from the Shared Memory (see below), and
perform the necessary computations, i.e., matrix operations,
to obtain an action. Having made a decision, the Agent up-
dates the Shared Memory with the experience et generated
at time t, inserting the selected action at and the context xt,at

(if a contextual bandit algorithm is used). Finally, once tasks
complete, the Agent updates its policy using the reward
obtained.
Worker Types. For each Worker Type ω, a queue is created
and d(ω) worker replicas are instantiated, each of them
subscribed only to the corresponding Worker Type queue.
By default, queues are not bounded; therefore, we can assign
as many tasks as desired to a Worker Type. Worker replicas
of a Worker Type are identical in terms of specification (e.g.,
CPU, memory and disk capabilities) and can only execute
one task at a time. Once a worker replica becomes available,
it pops and executes tasks in a FIFO order from its queue.
Experience Collector. The Experience Collector compo-
nent listens for events on the distributed queue to build
the experience entries e and save them into the Shared
Memory. Every experience entry is defined as the tuple
e = ⟨st, at, xt,at

, rt+1st+1⟩, where xt,at
is the context related

to the selected action at, which is part of the tuple only
if the agent is a contextual bandit agent. The Experience
Collector performs three operations. Firstly, it listens on the
main task queue for new tasks and when they arrive it starts
the generation of a new experience entry et by creating the
state st and saving the partial et in the Shared Memory.
Secondly, every time it generates the state st, it attaches the
state as next state to the experience et−1. Thirdly, when a
task ut, completes its execution at time t + τexec(ut), the
Experience Collector computes the reward rt−τexec(ut) and
adds the reward to the experience et−τexec(ut).
Shared Memory. The Shared Memory is a centralized com-
ponent that is used by the other components for saving and
retrieving information, as well as an event broker for sharing
messages and events for synchronization purposes.

4.2 Implementation
Our reference implementation of RLQ is built on top of
Celery, a widely used Python framework for distributed task
processing.2 In this section, we discuss the implementation
details specific to Celery. While some of the implementation
details are necessarily framework-dependent, the design

2. The source code for the RLQ implementation and evaluation is
available at https://github.com/AlessandroStaffolani/rlq-scheduler.

Ask for 
assignment

Task Broker

New task published on 
the main task queue

return selected
worker queue

Agent WorkerShared
Memory

Ask for current 
state

return current
state

Allocate task to the selected worker type queue

Worker Type

Consume
 next task Execute 

task

Fig. 2: Sequence diagram for task arrival and allocation.

Worker

Receive a task

Complete
Task

Experience
Collector

Compute 
reward

Agent

Update Action 
selection
criterion

Fetch 
Task completed

Event

Send 
Trajectory Entry

 Complete Event 
with the reward
 in the payload

Fig. 3: Sequence diagram for task completion.

and architecture principles apply to all distributed task
processing frameworks, such as those discussed in Section 1.
Distributed Task Queue. We delegate the distributed task
queue aspect to Celery, which itself uses a distributed
message queue implementation, with RabbitMQ and Redis
available at the time of writing (Redis in our current imple-
mentation). Celery supports creating different queues and
making workers subscribe to them. In RLQ, as previously
mentioned, we have used several queues: the main task
queue, part of the Task Broker, where all the tasks arrive to
be allocated; additionally, we have created a different queue
for each Worker Type. Celery allows to schedule tasks by
sending a message to a queue. More precisely, it provides
a programming interface through which a function can be
called with additional parameters and annotations that are
used by Celery for specifying the queue on which it will
be ran, the task arguments, and other configuration options.
This programming interface is used by task producers for
placing tasks onto the main task queue, and is also used by
the Task Broker to assign a task to a particular Worker Type
according to the action selected by the Agent.
High-Level Workflows. RLQ operation can be described by
two high-level workflows that rely on Celery events for their
implementation:
1) Task arrival and allocation, illustrated in Figure 2: A new

task is generated by Producers and received by the
Task Broker, which contains the main task queue. Subse-
quently, the Task Broker queries the Agent via HTTP for
the allocation decision, which corresponds to the Worker
Type queue where the task needs to be assigned. The
Agent ingests the current state of the system from the
Shared Memory and uses it to select the action, which
is sent as a response to the Task Broker. Finally, the
Task Broker places the task on the selected Worker Type
queue, from where it is consumed and executed by a
Worker Replica.

2) Task completion, illustrated in Figure 3: when a Worker



7

Replica completes the execution of a task, a Celery task
succeeded event is fired. The Experience Collector, upon
receiving the task succeeded event, computes the reward
based on the time needed for execution and the time
waited by the task. Afterwards, the Experience Collec-
tor notifies the Agent by sending an experience entry
completed event. Finally, the Agent obtains the reward
from the payload of the event and uses it for updating its
policy.

Task Broker. We implement all the logic of the Task Broker
as a Celery task, which is executed by a special Celery
worker that is the unique subscriber of the main task queue.
This enables it to act as a proxy and to intercept all the tasks
sent by task producers. Once a task is generated by task
producers, it is wrapped into a Task Broker task, and the
task class and arguments of the workload itself are passed.
Worker Types. RLQ worker types have been implemented
using Celery workers and making each replica of a Worker
Type subscribe to the same Worker Type queue.
Task Classes. The task classes in RLQ are mapped to Celery
tasks, thus Python functions, which are scheduled and ex-
ecuted on the workers. While tasks of the same class share
the same Python instructions, arguments may differ.
State Feature. The state feature is built using two Celery
events: the task sent event and the task succeeded event. The
former is fired when a task is sent to a Worker Type queue,
while the latter is fired when a task completes its execution.
The pool load feature is built by creating a lookup table,
where each worker type is associated with a number η(ωi)
(initially zero). During execution, when the task sent event
is received, η(ωi) is increased by one. Conversely, when the
task succeeded event is received, η(ωi) is decreased by one.
Measuring Execution and Waiting Time. Algorithms for
decision-making typically use a discrete timestep t as unit
of time. Recall the formulation in Section 3.3, which specifies
that a single task is received per timestep and must be allocated.
Additionally, τexec represents the number of timesteps taken
for executing a task and τwait represents the time the task
has spent waiting, with the reward observed at timestep
t+ τexec. However, measuring execution and waiting times
in terms of discrete timesteps is problematic for two reasons.
Firstly, it would require expensive synchronization using
a global clock such that durations are reported accurately.
Secondly, any variation in the number of tasks received
would cause the waiting and execution times to vary, since
a global clock advances quicker if more tasks are received.
For these reasons, in the implementation, the waiting time
τwait and the time of execution τexec are computed using
the wall clock time measured in seconds.

5 SYNTHETIC WORKLOAD EVALUATION

In this section, we first introduce the environment used for
our first set of experiments that employ synthetic workload.
First we describe the characteristics of the employed deploy-
ment and generated workloads. We then detail the training
and evaluation procedures. Finally, we present and discuss
the results obtained by the considered methods.

5.1 Experimental Settings
Workload. We have created several different task classes,
each of which stresses one or more particular resource of

TABLE 1: Parameters used to configure Task Classes (top)
and Worker Types (bottom).

program n d

ψ1 CPU [1, 5) [40, 60)
ψ2 CPU [3, 8) [50, 80)
ψ3 CPU-memory [1, 5) [40, 60)
ψ4 CPU-memory [3, 8) [50, 80)
ψ5 disk [35, 50) -
ψ6 disk [40, 80) -
ψ7 CPU-disk [2, 6) [40, 60)
ψ8 CPU-disk [3, 10) [50, 80)

ω CPU Memory Disk κexec

ω1 200m 100MB 128MB 0.85
ω2 300m 128MB 256MB 1.93
ω3 500m 180MB 512MB 3.22
ω4 500m 128MB 128MB 2.94
ω5 800m 256MB 256MB 4.02
ω6 1000m 512MB 800MB 5.12

the workers (i.e., they may require a considerable amount
of CPU clocks, memory, disk or a combination thereof).
Each task class is assigned values for parameters n and d,
which are ranges that control the complexity of the task. The
complexity of the task is drawn from a uniform distribution
over the range. Task classes are based on the following
simple programs:
• CPU: generate a matrix M of dimension d × d and com-

pute (M−1 ∗MT )i where i = 0, 1, ..., n− 1;
• Disk: write a string of n megabytes into a file, immedi-

ately close the file, then reopen it and read its contents;
• CPU-memory: perform the same operations as the CPU

program but keep results of all n operations in memory;
• CPU-disk: perform the same operations as the CPU pro-

gram, and additionally save the results to disk.
Task class parameters are shown in Table 1. For each

program, two different task classes ψ have been created,
which share the same program but differ in complexity.

We model the generation of tasks by producers as a
Poisson process in which, on average, λ tasks are generated
per minute. The task class ψ of each generated task is drawn
from a uniform distribution over all the possible task classes.
Worker Types. The RLQ worker pool consists of six distinct
Worker Types, each with distinct hardware allowances. In
the bottom half of Table 1, we show the amount of CPU,
memory and disk that we have used to configure the differ-
ent workers in a heterogeneous deployment environment:
ω6 has roughly five times more resources allocated than
ω1. The relative cost per execution second κexec of each
Worker Type has been chosen by comparing prices per hour
of virtual machines with various capabilities on different
cloud providers. The CPU values shown in Table 1 are
expressed as CPU units where 1000m of CPU is equivalent
to 1vCPU/core for cloud providers and 1 hyperthread on
bare-metal Intel processors. A value smaller than 1000m
means that a fraction of a core is reserved.
Deployment. For deployment, we have used Kubernetes
[50] version 1.2, a production-grade container orchestrator
used for automated container deployment, scaling, and
management. Our cluster is composed of one master and
3 worker nodes, all running Ubuntu 20.04 with reserved
resources managed by an OpenStack tenant, where each
node is based on 2 2.2GHz Intel Xeon Gold 5220R 24C. The



8

TABLE 2: Optimized hyperparameters for the synthetic
workload (S.W.) and real workload (R.W.) evaluations.

Agent Objective Hyperparameters S.W. R.W.

RLQ-LinUCB Execution Time δ 2 1
Execution Cost δ 2 2
Waiting Time δ 2 1

RLQ-DoubleDQN Execution Time layers, lr 2, 0.1 3, 0.001
Execution Cost layers, lr 3, 0.1 3, 0.001
Waiting Time layers, lr 2, 0.1 3, 0.001

master is configured with 8 CPUs, 8GB of RAM and 150GB
of disk. The 3 worker nodes are configured with 16 CPUs,
12GB of RAM and 150GB of disk.

5.2 Training and Evaluation Procedure

To ensure statistical validity of the results, each evaluation
(and training, where applicable) has been executed 20 times,
each using a different random initialization for the agent
initial state. The random initialization of the environment
has been kept the same across the different 20 runs, ensuring
the same workloads are generated. As previously discussed,
we have originally implemented two variants of RLQ:
• RLQ-LinUCB, based on the LinUCB contextual bandit

algorithm. This method has a single hyperparameter,
δ ∈ [0, 2], which controls the level of exploration.

• RLQ-DoubleDQN, based on the DoubleDQN deep re-
inforcement learning algorithm. The neural network ar-
chitecture we use is a fully connected network with
layers hidden layers and ReLU activations, where the
first hidden layer has the same number of units as the
state representation, with each subsequent hidden layer
having half the number of units of the previous layer.
Updates are done with a batch size of 64 using the
Adam [51] optimizer and a learning rate lr. For the level
of exploration ϵ, we use a linearly decayed schedule over
all timesteps, starting from 0.65 and finishing at 0.01.
The experience replay buffer has capacity 5000, the target
network update frequency is 128, and we use a discount
factor γ = 0.99.

Optimized Hyperparameters. For RLQ-LinUCB, we con-
sidered δ ∈ {0.1, 1, 1.5, 2}. RLQ-DoubleDQN has many
hyperparameters that can be explored, however considering
the cost in terms of time, we decided to explore an important
subset. We considered a learning rate lr ∈ {0.1, 0.01, 0.001}
as well as a number of hidden layers layers ∈ {2, 3}. The
optimal values are reported in Table 2.
Baselines. We compare the performance of RLQ against the
baselines listed below.
• A Random policy, which randomly assigns a task to a

Worker Type;
• A Least Recently Used (LRU) policy, which assigns a task

to each Worker Type in a round-robin fashion;
• An E-PVM based policy, a state-of-the art solution used

for cluster scheduling [23]. This method computes a single
cost value that combines the heterogeneous resources
required by a task, minimizing the change in cost obtained
when assigning the task to a worker.

The selection of the first two baselines is motivated by the
need of maintaining the initial assumptions: namely, that the

system has no prior knowledge of the resources needed for
running a task, of how long the tasks take to complete, or of
the number of tasks to be executed. To be able to compute
the cost value, E-PVM needs to access information about
the task resource requirements as well as the current level
of utilization of worker resources. Since this information is
not available by default in our system, we estimate it. The
task requirements are estimated based on the average time
of execution on the different worker types, while the worker
utilization is derived using the capacity of worker resources.
Training Phase. The purpose of the training phase is to let
learning-based agents adjust their task allocation strategies
based on experience. The results of the training phase are
also used to select the hyperparameters of the learning-
based agents. To speed up the training and for balancing
the trade-off between initial exploration and exploitation,
we execute a bootstrapping phase before each training run.
During the bootstrapping phase a random policy is followed,
which allows gathering initial experience. We found that
this greatly speeds up the time required for training. Each
training run has been performed for a total of 5000 tasks,
where the first 1000 represent the bootstrapping phase,
which ended only when all the 1000 tasks have completed
their execution, so to observe and to learn from the reward
of all of them. For the training phase, λ is kept fixed to 60
tasks per minute.
Evaluation Phase. The learning-based agents are initial-
ized with the best model found during the training phase,
and continue learning while the evaluation happens, so that
we may also test scenarios in which workloads vary over
time. In fact, during our evaluation, λ is varied every 1000
tasks. We start with λ = 60 for the first 1000 tasks. We then
increase λ by 10 times (600 tasks per minute). Finally, for the
last 1000 tasks, we reduce λ to 30.
Result Metrics. We measure overall performance in terms
of the total metric value, which indicates the sum of all the
values received for the optimized metric during the entire
execution, and depends on the specific reward function used
(recall Section 3.3). In order to analyze results during the
training and evaluation phases, we consider two additional
metrics: average metric value, which represents the mean
value for each allocation over a time window of 25 time
steps, as well as cumulative metric value, which measures the
sum of the metric value received until a given timestep.

5.3 Evaluation Results

Table 3 presents the overall performance by showing the
average total metric value and its confidence interval among
the 20 runs performed with a different random seed. The
table columns identify the corresponding agent, and the
optimized metric. The plots in Figure 4 illustrate, for each
optimized objective, how the average metric value per time
window and cumulative metric value change over time.

Overall, the results presented in Figure 4 and Table 3
confirm that our solutions, both contextual bandit and re-
inforcement learning, outperform the baselines when the
generation rate is the same used at training time (λ = 60),
but also when it reaches values never seen before. In addi-
tion, for the execution time (Figure 4a) and execution cost
(Figure 4b) objectives, the change in the workload does not



9

TABLE 3: Average total metric value and confidence interval using synthetic workloads. Lower values are better.

Metric Random LRU RLQ-LinUCB RLQ-DoubleDQN E-PVM

Execution Time 10444.1± 180.1 10288.0± 202.5 3084.9± 156.8 2915.9 ± 114.2 7808.4± 253.4
Execution Cost 23325.9± 1002.2 22731.5± 906.4 13144.1 ± 423.0 13029.5 ± 660.6 18601.2± 362.6
Waiting Time 986963.0± 114217.2 1000484.7± 93778.8 305950.6± 81805.9 269408.6± 64116.3 93149.3 ± 3091.8

0

2

4

6

8

Av
er

ag
e 

m
et

ric
 v

al
ue

(a) Execution Time

5

10

15

(b) Execution Cost

0

200

400

600

800

(c) Waiting Time

0 20 40 60 80 100 120
Time window (25 steps)

0

100

200

300

400

Cu
m

ul
at

iv
e 

m
et

ric
 v

al
ue

0 20 40 60 80 100 120
Time window (25 steps)

0

200

400

600

800

1000

0 20 40 60 80 100 120
Time window (25 steps)

0

10000

20000

30000

40000

RLQ-LinUCB RLQ-DoubleDQN Random LRU E-PVM  = 60  = 600  = 30

Fig. 4: Evaluation against baselines for each optimized objective using synthetic workloads. Lower values are better.

affect performance, and both LinUCB and DoubleDQN per-
form nearly the same and even outperform E-PVM which
does not directly optimize those objectives. This confirms
the ability of the agents to find the mappings that execute
the tasks quickest (Figure 4a) or that execute the tasks
fastest while expending the least cost (Figure 4b).

Considering instead more complex objectives such as
waiting time (Figure 4c), we notice that changes in λ cause
noticeable changes in performance. Notwithstanding, RLQ
methods outperform the baselines considerably, while, as
expected, more task information leads to improved per-
formance for E-PVM when optimizing for waiting time.
DoubleDQN seems to be faster in adapting in the scenario
where the rate λ is increased. We believe this adaptability
is due to the generalization power of its state-action value
function approximator, which allows the agent to generalize
between similar situations even if their concrete instances
may have never been seen before. In contrast, LinUCB keeps
no approximation of the context it receives, thus it needs
to effectively change its policy, requiring more time. On
the other hand, LinUCB seems more capable to re-adapt
in situations with a smaller λ. The ability of LinUCB to
change the policy quickly allows reaching a stable regime
quicker. The same does not apply for DoubleDQN, because
once it has changed its policy it requires more iterations
for removing the entries gathered during the period with
higher λ from the experience replay. It is also worth noting
how during the initial few steps, the learning-based agents
(especially LinUCB) perform worse than the baselines for all
the objectives. This behavior is due to distribution changes
from training to evaluation, causing an initial wrong bias
for the agent. Nevertheless, after the initial timesteps, the
agents are able to adapt their policies.
System Scalability. We also stressed the scalability of RLQ
to examine its capacity to manage an intense workload by
increasing the generation rate λ significantly, as shown in
Figure 5. Results show that a bigger generation rate (up

600 1200 1500 2000 2500 3000 4000 5000 6000 8000 10000 12000 15000 180000.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014
Se

co
nd

s
Time for getting an action at agent level for different generation rates

agent
RLQ-LinUCB
RLQ-DoubleDQN
Random
LRU

Fig. 5: Average time taken by the Agent to decide an action
for different generation rates λ.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
Task Class #

0

500

1000

1500

2000

2500

3000

# 
of

 Ta
sk

 in
st

an
ce

s

Fig. 6: Number of task instances for each task class extracted
from Borg’s traces.

to the value of λ = 18000 tasks per minute) does not
affect the time needed for choosing an assignment, which
remains constant among the different agents and baselines.
This is mainly due to the design choice of building RLQ on
top of Celery, which in turn delegates the management of
received tasks to the underlying distributed queue (in our
case Redis). It is worth mentioning that the increased latency
incurred by the LinUCB agent is due to the time needed for
building the additional context feature (recall Section 3.3).



10

TABLE 4: Real workload worker types configuration.

ω s(ω) d(ω) κexec

ω1 0.5 20 1
ω2 0.75 14 2
ω3 1 8 3
ω4 1.5 5 4
ω5 2 3 5

6 REAL-WORLD WORKLOAD EVALUATION

In this section, we describe the real-world traces used for
our second set of experiments, as well as the training and
evaluation protocol. We also present the results we obtained
and the insights we derived from them.

6.1 Experimental Settings
Dataset. In this set of experiments we use the Google
Borg’s cluster dataset version 3 [20], which comprises traces
for the month of May 2019 from 8 different cells. Traces
contain information about two high-level resource request
types: a job (composed of one or more tasks) describing the
program / computation users want to run, and an alloc set
(composed of one or more alloc instances) describing the
resources reserved by jobs for their execution. Each trace is
composed of several tables describing the cluster resources
and their events during a given workload period. For a
detailed description of the dataset, please refer to [52].
Workload. We define 50 task classes from the dataset. We
group jobs that share the same logical collection name, which
is shared by all the jobs that execute the same program. We
select as candidate task classes only the jobs that require
execution in isolation, since one of the assumptions of the
study is that workers execute one task at a time and tasks
do not depend on other tasks. Finally, we filter only jobs
executed successfully with at least one task instance. This
is necessary in order to obtain some statistics in terms of
execution process. The result is a dataset that comprises 347
unique jobs with 13730 task instances. However, since most
task instances belong to few jobs, as shown in Figure 6, we
ultimately created 50 task classes. The first 49 are the jobs
with the highest number of instances, while the last one
contains all the remaining jobs. By doing so, we capture
95% of the total workload while keeping the number of
task classes reasonably low. Tasks wait for a time that
is proportional to the time of execution observed in the
dataset, which fully characterizes each task class ψi. To
avoid unnecessary waiting, without loss of generality, we
map 1 day of execution time in the traces to 20 seconds of
real clock time.
Worker Types. Notwithstanding that workers execute all
the same programs, we need to define different types with
varying capabilities and costs. Therefore, for each worker
type ωi we define the speed factor s(ω), a value that varies
the time of execution with respect to the time recorded in the
traces. The final time of execution for ωi becomes τ ′exec =
τexec

s(ωi)
. The worker pool is composed of 5 worker types with

50 total worker instances, as summarized in Table 4.

6.2 Training and Evaluation Procedure
The procedure for our real workload experiments is the
same as for the synthetic one. For the evaluation, we use

the tasks as they appear in the dataset, respecting the order,
time of execution, and frequency of arrival for new tasks.
On the other hand, for training our model, we generate new
data accordingly to the distributions observed in the dataset.
We set the generation rate λ equal to the number of tasks
observed daily in the dataset. The task classes for new tasks
are drawn proportionally to their frequency in the dataset,
while the time of execution is sampled uniformly from the
execution times of all the instances of a certain task class. We
train for a total of 13730 time steps (the same length of the
dataset), with a bootstrapping phase of 3000 steps. With re-
spect to the agents’ hyperparameters, we set the capacity of
the experience replay buffer to 4000 and the target network
update to 400, while maintaining the others unchanged. We
perform hyperparameter optimization; optimal values are
shown in Table 2.

6.3 Evaluation Results

Table 5 presents the average total metric value with its
confidence interval among the 20 runs performed with a
different random initialization. The table columns identify
the corresponding agent and the optimized metrics. The
plots in Figure 7 illustrate how the average metric value
per time window and cumulative metric value change over
time for each optimized objective.

Despite the additional complexity of the real-world
dataset, and the increased scale of the experiment, both
in terms of task classes and worker pool size, the results
confirm the superiority of RLQ. As shown in Figure 7a and
Figure 7b, both the contextual bandit and reinforcement
learning variants of RLQ outperform all the baselines, in-
cluding E-PVM, in the optimization of the time and cost
of task execution. In the waiting time case (Figure 7c),
DoubleDQN also outperforms E-PVM. This is not the case
for LinUCB. This is probably due to the use of function
approximators, which are better suited for problems charac-
terized by larger state spaces. The high variability is due to
the distribution changes from training to evaluation that we
also observed with the synthetic workload. Nevertheless,
after the initial timesteps, the agent is able to adapt its policy.

7 CONCLUSION AND OUTLOOK

In this work, we have approached the problem of allocation
in distributed task queues, starting from the insight that
allocation strategies currently used in existing solutions are
simplistic. Our paper makes two primary contributions:
firstly, we have formulated the task allocation problem
in distributed queues as a Markov Decision Process, and
we have shown how learning-based decision-making algo-
rithms (contextual bandit and deep reinforcement learning)
can be adapted to the task allocation problem. Secondly, we
have presented the design and implementation of RLQ, an
adaptive system for task allocation built on top of Celery. We
have also conducted an in-depth evaluation, using both syn-
thetic and real workloads, which shows that the learning-
based approaches supported by RLQ lead to significant
improvements over existing baselines and that they are
also able to adapt automatically to changing workloads. In
general, the algorithmic and system components of RLQ can



11

TABLE 5: Average total metric value and confidence interval using real workloads. Lower values are better.

Metric Random LRU RLQ-LinUCB RLQ-DoubleDQN E-PVM

Execution Time 14177.4± 172.8 14123.9± 132.9 9600.3± 523.7 8505.1 ± 184.2 10651.0± 43.5
Execution Cost 32754.0± 104.1 32751.4± 94.2 30882.4± 409.3 27685.2 ± 376.7 33433.9± 26.6
Waiting Time 3124.9± 938.3 2271.2± 694.1 3588.4± 2270.0 117.2 ± 30.9 332.2± 50.9

0

5

10

15

20

25

Av
er

ag
e 

m
et

ric
 v

al
ue

(a) Execution Time

0

10

20

30

40

(b) Execution Cost

0

5

10

15

20 (c) Waiting Time

0 100 200 300 400 500
Time window (25 steps)

0

100

200

300

400

500

600

Cu
m

ul
at

iv
e 

m
et

ric
 v

al
ue

0 100 200 300 400 500
Time window (25 steps)

0

250

500

750

1000

1250

0 100 200 300 400 500
Time window (25 steps)

0

50

100

150

200

250

RLQ-LinUCB RLQ-DoubleDQN E-PVM Random LRU

Fig. 7: Evaluation against baselines for each optimized objective using real workloads. Lower values are better.

be of wider use beyond task queues in other distributed
allocation and scheduling scenarios.

One current shortcoming of our approach is the assump-
tion of atomic tasks, which cannot capture task dependen-
cies (for example, as opposed to [35]); our method is thus
not suitable for situations in which data locality is the most
important factor. We believe that our approach represents
an essential building block towards the development of
architectures able to deal with more complex dependencies.
Finally, it is also possible to extend the problem formulation
to allow dynamically shrinking and expanding the worker
pool so that the system as a whole is cost-effective when the
workload volume changes substantially. It is worth noting
that in the Google Borg cluster traces [20] used in the version
of the revised paper for evaluation, only 0.345% of tasks
in the dataset have dependencies on other tasks. Hence,
while this is a limitation of the implementation used in
the evaluation, the current system can schedule the vast
majority of tasks in a real dataset. Moreover, the system can
just default to the vanilla Celery allocation mechanism when
dependencies are present.

ACKNOWLEDGMENTS

This work was partially supported by The Alan Turing
Institute under the UK EPSRC grant EP/N510129/1. For the
purpose of open access, the authors have applied a Creative
Commons Attribution (CC BY) licence to any Author Ac-
cepted Manuscript version arising. We thank the Big Data
Innovation & Research Excellence (BI-REX) Competence
Center Bologna for access to computational resources.

REFERENCES

[1] C. L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard-real-time environment,” Journal of the ACM
(JACM), vol. 20, no. 1, pp. 46–61, 1973.

[2] S. Zhuravlev, J. C. Saez, S. Blagodurov, A. Fedorova, and M. Prieto,
“Survey of scheduling techniques for addressing shared resources
in multicore processors,” ACM Computing Surveys, vol. 45, no. 1,
pp. 1–28, 2012.

[3] Shang-Tse Chuang, A. Goel, N. McKeown, and B. Prabhakar,
“Matching output queueing with a combined input/output-
queued switch,” IEEE Journal on Selected Areas in Communications,
vol. 17, no. 6, pp. 1030–1039, 1999.

[4] R. Mittal, R. Agarwal, S. Ratnasamy, and S. Shenker, “Universal
Packet Scheduling,” in HotNets’15, 2015.

[5] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-
storm: Resource-aware scheduling in storm,” in Middleware’15,
2015.

[6] G. R. Russo, V. Cardellini, and F. L. Presti, “Reinforcement learning
based policies for elastic stream processing on heterogeneous
resources,” in DEBS’19, 2019.

[7] G. Einziger, O. Eytan, R. Friedman, and B. Manes, “Adaptive
software cache management,” in Middleware’18, 2018.

[8] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at Google with
Borg,” in EuroSys’15, 2015.

[9] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella, “Multi-resource packing for cluster schedulers,” in
SIGCOMM’14, New York, NY, USA, 2014.

[10] J. W. Park, A. Tumanov, A. Jiang, M. A. Kozuch, and G. R. Ganger,
“3Sigma: Distribution-Based Cluster Scheduling for Runtime Un-
certainty,” in EuroSys’18, 2018.

[11] F. Rossi, S. Falvo, and V. Cardellini, “GOFS: Geo-distributed
Scheduling in OpenFaaS,” in ISCC’21, 2021.

[12] SETI@home. [Online]. Available: https://setiathome.berkeley.
edu/

[13] Folding@home. [Online]. Available: https://foldingathome.org
[14] Celery. [Online]. Available: https://docs.celeryproject.org/
[15] RQ. [Online]. Available: https://python-rq.org/
[16] Resque. [Online]. Available: https://rubydoc.info/gems/resque
[17] Bull. [Online]. Available: https://optimalbits.github.io/bull/
[18] L. Li, W. Chu, J. Langford, and R. E. Schapire, “A contextual-

bandit approach to personalized news article recommendation,”
in WWW’10, 2010.

[19] H. van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement
Learning with Double Q-Learning,” in AAAI’16, 2016.

[20] Google. (2019) Cluster Data 2019 traces. [On-
line]. Available: https://github.com/google/cluster-data/blob/
master/ClusterData2019.md



12

[21] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes,
“Omega: Flexible, scalable schedulers for large compute clusters,”
in EuroSys’13, 2013.

[22] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand,
M. Harchol-Balter, and J. Wilkes, “Borg: The next generation,” in
EuroSys’20, 2020.

[23] Y. Amir, B. Awerbuch, A. Barak, R. Borgstrom, and A. Keren,
“An opportunity cost approach for job assignment in a scalable
computing cluster,” IEEE Transactions on Parallel and Distributed
Systems, vol. 11, no. 7, pp. 760–768, 2000.

[24] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn, “Parallel job
scheduling—a status report,” in Workshop on JSSPP, 2004, pp. 1–16.

[25] Y. Peng, Y. Bao, Y. Chen, C. Wu, and C. Guo, “Optimus: an
efficient dynamic resource scheduler for deep learning clusters,”
in EuroSys’18, 2018.

[26] T. N. Le, X. Sun, M. Chowdhury, and Z. Liu, “Allox: Compute
allocation in hybrid clusters,” in EuroSys’20, 2020.

[27] C. Chen, Q. Weng, W. Wang, B. Li, and B. Li, “Semi-dynamic
load balancing: Efficient distributed learning in non-dedicated
environments,” in SoCC’20, 2020.

[28] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neu-
ral combinatorial optimization with reinforcement learning,” in
ICLR’17 Workshop Track, 2017.

[29] E. Khalil, H. Dai, Y. Zhang, B. Dilkina, and L. Song, “Learn-
ing combinatorial optimization algorithms over graphs,” in
NeurIPS’17, 2017.

[30] W. Kool, H. van Hoof, and M. Welling, “Attention, learn to solve
routing problems!” in ICLR’19, 2019.

[31] M. Nazari, A. Oroojlooy, L. V. Snyder, and M. Takác, “Rein-
forcement learning for solving the vehicle routing problem,” in
NeurIPS’18, 2018.

[32] W. Zhang and T. G. Dietterich, “A reinforcement learning ap-
proach to job-shop scheduling,” in IJCAI’95, 1995.

[33] C. Zhang, W. Song, Z. Cao, J. Zhang, P. S. Tan, and X. Chi, “Learn-
ing to dispatch for job shop scheduling via deep reinforcement
learning,” in NeurIPS’20, 2020.

[34] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource
management with deep reinforcement learning,” in HotNets’16,
2016.

[35] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng, and
M. Alizadeh, “Learning scheduling algorithms for data processing
clusters,” in SIGCOMM’19, 2019.

[36] A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou,
N. Kumar, M. Norouzi, S. Bengio, and J. Dean, “Device placement
optimization with reinforcement learning,” in ICML’17, 2017.

[37] Y. Gao, L. Chen, and B. Li, “Spotlight: Optimizing device place-
ment for training deep neural networks,” in ICML’18, 2018.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostro-
vski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level
control through deep reinforcement learning,” Nature, vol. 518, no.
7540, pp. 529–533, 2015.

[39] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lilli-
crap, F. Hui, L. Sifre, G. van den Driessche, T. Graepel, and D. Has-
sabis, “Mastering the game of Go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[40] J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley, and
J. Gao, “Deep reinforcement learning for dialogue generation,” in
EMNLP’16, 2016.

[41] K. Narasimhan, T. D. Kulkarni, and R. Barzilay, “Language under-
standing for text-based games using deep reinforcement learning,”
in EMNLP’15, 2015.

[42] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar, “A
deep reinforcement learning perspective on internet congestion
control,” in ICML’19, 2019.

[43] V. Sivakumar, T. Rocktäschel, A. H. Miller, H. Küttler, N. Nardelli,
M. Rabbat, J. Pineau, and S. Riedel, “MVFST-RL: An asynchronous
rl framework for congestion control with delayed actions,” in
MLSys’19, 2019.

[44] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: MIT Press, 2018.

[45] C. J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning,
vol. 8, no. 3-4, pp. 279–292, 1992.

[46] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing Atari With Deep Rein-
forcement Learning,” in NeurIPS Workshops, 2013.

[47] M. Weinberger and E. Ordentlich, “On delayed prediction of
individual sequences,” IEEE Transactions on Information Theory,
vol. 48, no. 7, pp. 1959–1976, 2002.

[48] P. Joulani, A. Gyorgy, and C. Szepesvari, “Online learning under
delayed feedback,” in ICML’13, 2013.

[49] T. J. Walsh, A. Nouri, L. Li, and M. L. Littman, “Planning and
Learning in Environments with Delayed Feedback,” in ECML’07,
2007.

[50] Google. (2014) Kubernetes. [Online]. Available: https:
//kubernetes.io/

[51] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Opti-
mization,” in ICLR’15, 2015.

[52] Google. (2019) Google cluster-usage traces v3.
[Online]. Available: https://drive.google.com/file/d/
10r6cnJ5cJ89fPWCgj7j4LtLBqYN9RiI9/view

Alessandro Staffolani Alessandro Staffolani is
a Ph.D. candidate in Computer Science and En-
gineering at University of Bologna, Italy. He is
interested in learning-based approaches for ad-
dressing the optimization of resources by means
of scheduling and orchestration, in the context of
distributed systems and network infrastructure.

Victor-Alexandru Darvariu Victor-Alexandru
Darvariu is a Ph.D. candidate in Computer Sci-
ence at University College London and The Alan
Turing Institute, UK. He is interested in tack-
ling combinatorial optimization problems with
learning-based approaches spanning reinforce-
ment learning, planning and graph neural net-
works, as well as their applications in infrastruc-
ture networks and systems.

Paolo Bellavista Paolo Bellavista received MSc
and PhD degrees in computer science engineer-
ing from the University of Bologna, Italy, where
he is a full professor of distributed and mo-
bile systems. His research activities span from
pervasive wireless computing to online big data
processing under quality constraints, from edge
cloud computing to middleware for Industry 4.0
applications. He has published around 300 pa-
pers, with around 120 of them on the major inter-
national journals in the above fields. He serves

on several Editorial Boards of leading IEEE and ACM journals.

Mirco Musolesi Mirco Musolesi is Full Profes-
sor of Computer Science at the Department of
Computer Science at University College London
and a Turing Fellow at the Alan Turing Institute.
He is also Full Professor of Computer Science
at the University of Bologna. Previously, he held
research and teaching positions at Dartmouth,
Cambridge, St Andrews and Birmingham. The
focus of his lab is on Machine Learning/Artificial
Intelligence and their applications to a variety of
practical and theoretical problems and domains.


	Copertina_postprint_IRIS_UNIBO(5)
	RLQ-Staffolani_et_al_2023-accepted

