
Received: 6 March 2021 Revised: 15 January 2022 Accepted: 28 April 2022

DOI: 10.1002/mana.202100122

ORIG INAL ARTICLE

An interpolation problem in the Denjoy–Carleman classes

Paolo Albano Marco Mughetti

Dipartimento di Matematica, Università
di Bologna, Bologna, Italy

Correspondence
Marco Mughetti, Dipartimento di
Matematica, Università di Bologna,
Piazza di Porta San Donato 5, 40127
Bologna, Italy.
Email: marco.mughetti@unibo.it

Funding information
Istituto Nazionale di Alta Matematica
“Francesco Severi”

Abstract
Inspired by some iterative algorithms useful for proving the real analyticity (or
the Gevrey regularity) of a solution of a linear partial differential equation with
real-analytic coefficients, we consider the following question. Given a smooth
function defined on [𝑎, 𝑏] ⊂ ℝ and given an increasing divergent sequence 𝑑𝑛 of
positive integers such that the derivative of order 𝑑𝑛 of 𝑓 has a growth of the type
𝑀𝑑𝑛

, when can we deduce that 𝑓 is a function in the Denjoy–Carleman class
𝐶𝑀([𝑎, 𝑏])? We provide a positive result and show that a suitable condition on
the gaps between the terms of the sequence 𝑑𝑛 is needed.
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1 INTRODUCTION AND STATEMENT OF THE RESULTS

A way to prove the local regularity of the solutions of linear elliptic partial differential equations with real-analytic coef-
ficients consists in the so called 𝐿2–methods, that is, an iterative procedure based on the use of the elliptic estimate (see,
e.g., [1, p. 207]). This approach extends to degenerate elliptic equations, such as sums of squares of vector fields, satisfying
a subelliptic estimate (see, e.g., [2, 3] and [4] for recent applications of this method). Then, a natural question is which
derivatives one should control in order to conclude that a function is in a given Gevrey class (or, in particular, is real-
analytic). This is themainmotivation for the present paper. In order to put in evidence the essential points in our proofs, we
state our results for the Denjoy–Carleman classes, and, for the sake of simplicity, we limit our considerations to functions
of one variable. To be definite: let 𝑀0 = 1, 𝑀1,… be a sequence of positive numbers and consider the Denjoy–Carleman
class 𝐶𝑀

𝐶𝑀([𝑎, 𝑏]) = {𝑓 ∈ 𝐶∞([𝑎, 𝑏]) | ∃𝐾 > 0 such that |𝑓(𝑛)(𝑥)| ≤ 𝐾𝑛+1𝑀𝑛 if 𝑥 ∈ [𝑎, 𝑏], 𝑛 = 0, 1, …}.

In what follows, we assume that the sequence𝑀𝑛 is log-convex. That is, for 𝑗 < 𝓁 < 𝑘, we have that

𝑀𝓁 ≤ 𝑀

𝑘−𝓁

𝑘−𝑗

𝑗
𝑀

𝓁−𝑗

𝑘−𝑗

𝑘
. (1.1)
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2 ALBANO and MUGHETTI

We denote by ℕ the set of all the non-negative integers while ℕ+ stands for the set of positive integers. Condition (1.1)
can be equivalently stated as

𝑀2
𝑛 ≤ 𝑀𝑛−1𝑀𝑛+1, ∀𝑛 ∈ ℕ+, (1.2)

that is,𝑀𝑛+1∕𝑀𝑛 is an increasing sequence. In particular, if𝑀𝑛 is log-convex then

𝑀

1

𝑛
𝑛 is an increasing sequence for 𝑛 ∈ ℕ+. (1.3)

For the reader convenience, we provide the proofs of the assertions (1.1) ⟺ (1.2) and (1.2) ⇒ (1.3) in Appendix A.
We will assume the additional condition that there exists𝑚0 ≥ 0 such that

𝑀𝑗 ≤ 𝑀

𝑗

𝑘

𝑘
𝑀

𝑗

𝑖

𝑖
, for 𝑖, 𝑘 > 𝑚0 with 𝑖 < 𝑗 and 𝑗∕𝑖 < 𝑘. (1.4)

Example 1.1.

(i) Our first example of a sequence satisfying (1.1) and (1.4) is𝑀𝑛 = 𝑛𝑛𝑠, 𝑛 ∈ ℕ+, for a suitable 𝑠 ≥ 1. This choice corre-
sponds to the Gevrey class 𝐺𝑠 (the set of all the real-analytic functions in the case 𝑠 = 1). We point out that (1.4) holds
with𝑚0 = 1.

(ii) Our second example is 𝑀0 = 𝑀1 = 1, 𝑀2 =
√

𝑀3, 𝑀𝑛 = 𝑛𝑛𝑠1(log 𝑛)𝑛𝑠2 (𝑛 = 3, 4, …), for suitable 𝑠1, 𝑠2 ≥ 1. This
sequence is log-convex and satisfies (1.4) with 𝑚0 = 𝑒2. By the Denjoy–Carleman theorem, 𝐶𝑀([𝑎, 𝑏]) is a quasi-
analytic class for 𝑠1 = 𝑠2 = 1. (We recall that a class 𝐶𝑀([𝑎, 𝑏]) is called quasi-analytic if for every 𝑢 ∈ 𝐶𝑀 vanishing
of infinite order at a point in [𝑎, 𝑏], it follows that 𝑢 is identically zero on [𝑎, 𝑏].)

We observe that, for 𝑠1 > 1 or 𝑠2 > 1, 𝐶𝑀([𝑎, 𝑏]) is a non-quasi-analytic class (other than Gevrey).
For the proof of the claims in (i) and (ii), we refer the interested reader to Appendix B.

Furthermore, we assume that the class 𝐶𝑀 contains the real-analytic functions on [𝑎, 𝑏], that is, that there exists 𝑐 > 0

such that

𝑀𝑛 ≥ 𝑐𝑛𝑛𝑛. (1.5)

For a smooth function 𝑓 ∶ [𝑎, 𝑏] ⟶ ℝ, we define

𝐹𝑛 = max
𝑥∈[𝑎,𝑏]

|𝑓(𝑛)(𝑥)|, 𝑛 ∈ ℕ. (1.6)

Let 𝑑𝑛 > 0 be an increasing divergent sequence of integers such that for a suitable 𝐾 > 0,

𝐹𝑑𝑛
≤ 𝐾𝑑𝑛+1𝑀𝑑𝑛

, for every 𝑛 ∈ ℕ. (1.7)

We consider the following problem: given a function 𝑓 ∈ 𝐶∞([𝑎, 𝑏]) satisfying (1.7), under what condition on {𝑑𝑛}𝑛 can
we conclude that 𝑓 belongs to the class 𝐶𝑀?
First, we observe that Condition (1.7) yields some additional properties on the function 𝑓 when 𝐶𝑀 is the class of

real-analytic functions, that is,𝑀𝑘 = 𝑘𝑘, 𝑘 ∈ ℕ+. Precisely, we have the following:

Proposition 1.2. Let𝑓 ∈ 𝐶∞([𝑎, 𝑏]) and let𝐶𝐹([𝑎, 𝑏]) be the corresponding Denjoy–Carleman class defined by the sequence
{𝐹𝑛}𝑛 in (1.6). Let 𝑑𝑛 > 0 be an increasing divergent sequence of integers. Assume that 𝐹𝑑𝑛

≤ 𝐾𝑑𝑛+1𝑑
𝑑𝑛
𝑛 for a suitable 𝐾 > 0

and for every 𝑛 ∈ ℕ. Then 𝑓 is identically zero, whenever 𝑓 vanishes of infinite order at a point of [𝑎, 𝑏].

In other words, the class 𝐶𝐹([𝑎, 𝑏]) is quasi-analytic (independently on the sequence 𝑑𝑛).
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ALBANO and MUGHETTI 3

Remark 1.3. In general, we cannot deduce that the class 𝐶𝐹([𝑎, 𝑏]), given by Proposition 1.2, is contained in the class of
the real-analytic functions, this is a consequence of Theorem 1.6 with𝑀𝑛 = 𝑛𝑛.

If we make an additional assumption on the growth of 𝑑𝑛+1 − 𝑑𝑛, we obtain the following

Theorem 1.4. Let 𝑓 ∈ 𝐶∞([𝑎, 𝑏]), assume (1.1), (1.4), (1.5), (1.7) and that there exists 𝑐0 > 0 such that

𝑑𝑛+1∕𝑑𝑛 ≤ 𝑐0, for 𝑛 ∈ ℕ. (1.8)

Then, 𝑓 ∈ 𝐶𝑀([𝑎, 𝑏]).

In particular, for 𝑓 ∈ 𝐶∞ to be in the Gevrey class 𝐺𝑠, it is enough to control only a set of derivatives 𝑓(𝑑𝑛) where the
sequence {𝑑𝑛}𝑛 satisfies (1.8).

Remark 1.5.

(i) We point out that the above result applies to both quasi-analytic and non-quasi-analytic Denjoy–Carleman classes.
(ii) Theorem 1.4 is related to the Carleman problem (see [7] and [9]).

Finally, we show that Theorem 1.4 may fail in the absence of a condition on the sequence {𝑑𝑛}𝑛.

Theorem 1.6. Let {𝑀𝑛}𝑛 be an arbitrary sequence of positive numbers such that

lim sup
𝑛→+∞

𝑀

1

𝑛
𝑛 = +∞. (1.9)

Then, we can find an increasing, divergent, sequence of positive integers {𝑑𝑛}𝑛, and a function 𝑓 ∈ 𝐶∞([𝑎, 𝑏]), such that (1.7)
holds true but 𝑓 ∉ 𝐶𝑀([𝑎, 𝑏]).

2 PROOFS

2.1 Proof of Proposition 1.2

The proof of the Proposition 1.2 is an elementary computation based on the Taylor expansion (see, e.g., [8]). Indeed, let
𝑥0 ∈ [𝑎, 𝑏], then by the Taylor formula, we find that

|𝑓(𝑥)| ≤ 𝐾𝑑𝑛+1 𝑑𝑛
𝑑𝑛

𝑑𝑛!
|𝑥 − 𝑥0|𝑑𝑛 ≤ 𝐾(𝐾𝑒|𝑥 − 𝑥0|)𝑑𝑛 , ∀𝑥 ∈ [𝑎, 𝑏],

and taking the limit as 𝑛 → ∞ in the formula above, we deduce that 𝑓(𝑥) = 0, for every 𝑥 ∈ [𝑎, 𝑏]with |𝑥 − 𝑥0| < 1∕(𝐾𝑒).
Then, the conclusion follows from finitely many interactions.

2.2 Proof of Theorem 1.4

We want to show that 𝑓 ∈ 𝐶𝑀([𝑎, 𝑏]) if 𝑓 ∈ 𝐶∞([𝑎, 𝑏]) and {𝑀𝑛}𝑛 is a log-convex sequence such that

(𝐴) 𝑀𝑗 ≤ 𝑀

𝑗

𝑘

𝑘
𝑀

𝑗

𝑖

𝑖
, for 𝑖, 𝑘 > 𝑚0 with 𝑖 < 𝑗 and 𝑗∕𝑖 < 𝑘, for a suitable𝑚0 ≥ 0;

(𝐵) 𝑀𝑛 ≥ 𝑐𝑛𝑛𝑛, for a suitable 𝑐 > 0;
(𝐶) 𝐹𝑑𝑛

≤ 𝐾𝑑𝑛+1𝑀𝑑𝑛
(see (1.6)),
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4 ALBANO and MUGHETTI

where {𝑑𝑛}𝑛 is an increasing divergent sequence of natural numbers satisfying the gap condition,

𝑑𝑛+1

𝑑𝑛
≤ 𝑐0, ∀𝑛 ∈ ℕ, (2.1)

for a suitable positive integer 𝑐0.
The idea of the proof consists in showing that the control of the derivatives of length 𝑑𝑛 yields, by interpolation, an

estimate for the intermediate derivatives (provided that the rescaled gap (𝑑𝑛+1 − 𝑑𝑛)∕𝑑𝑛 is bounded, uniformly w.r.t. 𝑛).
For this purpose, we recall an estimate due to Cartan and Gorny (see, e.g., [5, 6] and [9]).

Lemma 2.1. Let 𝑔 be a function 𝑚-times differentiable on the closed interval [𝑎, 𝑏] and set 𝐺𝓁 = max𝑥∈[𝑎,𝑏] |𝑔(𝓁)(𝑥)|, for
every 𝓁 ∈ ℕ. Then, for every𝑚 ∈ ℕ, with𝑚 ≥ 2, and 𝑘 ∈ {1, … ,𝑚 − 1}, one has

𝐺𝑘 ≤ 2

(
𝑒2𝑚

𝑘

)𝑘

𝐺
1−

𝑘

𝑚

0

(
max

{
𝑚!𝐺0

(
2

𝑏 − 𝑎

)𝑚

, 𝐺𝑚

}) 𝑘

𝑚

. (2.2)

Let 𝑑𝑛 < 𝓁 < 𝑑𝑛+1 and choose 𝑔 = 𝑓(𝑑𝑛),𝑚 = 𝑑𝑛+1 − 𝑑𝑛 and 𝑘 = 𝓁 − 𝑑𝑛 in (2.2). It turns out that

1

𝑝
∶= 1 −

𝑘

𝑚
=

𝑑𝑛+1 − 𝓁

𝑑𝑛+1 − 𝑑𝑛
,

1

𝑞
∶=

𝑘

𝑚
=

𝓁 − 𝑑𝑛

𝑑𝑛+1 − 𝑑𝑛
,

and

𝑑𝑛

𝑝
+

𝑑𝑛+1

𝑞
= 𝓁. (2.3)

Whence (2.2) reads as

𝐹𝓁 ≤ 2

(
𝑒2(𝑑𝑛+1 − 𝑑𝑛)

𝓁 − 𝑑𝑛

)𝓁−𝑑𝑛

max

⎧⎪⎨⎪⎩
(𝑑𝑛+1 − 𝑑𝑛)!

1

𝑞

((𝑏 − 𝑎)∕2)𝓁−𝑑𝑛
𝐹𝑑𝑛

, 𝐹

1

𝑝

𝑑𝑛
𝐹

1

𝑞

𝑑𝑛+1

⎫⎪⎬⎪⎭. (2.4)

Now, in view of (2.1), we have that

(
𝑒2(𝑑𝑛+1 − 𝑑𝑛)

𝓁 − 𝑑𝑛

)𝓁−𝑑𝑛

=

(
𝑒2
(
1 +

𝑑𝑛+1 − 𝓁

𝓁 − 𝑑𝑛

))𝓁−𝑑𝑛

≤ 𝑒2(𝓁−𝑑𝑛)+𝑑𝑛+1−𝓁
≤ 𝑒

𝓁+𝑑𝑛

(
𝑑𝑛+1

𝑑𝑛
−2

)
≤ 𝑒𝓁(𝑐0−1).

Furthermore,

(𝑑𝑛+1 − 𝑑𝑛)!
1

𝑞

((𝑏 − 𝑎)∕2)𝓁−𝑑𝑛
≤

(𝑑𝑛+1 − 𝑑𝑛)
𝑑𝑛+1−𝑑𝑛

𝑞

((𝑏 − 𝑎)∕2)𝓁−𝑑𝑛
≤

(
2𝑑𝑛(𝑐0 − 1)

𝑏 − 𝑎

)𝓁−𝑑𝑛

,

and, since 𝐹𝑑𝑛
≤ 𝐾𝑑𝑛+1𝑀𝑑𝑛

, we obtain that

𝐹𝓁 ≤ max

{
2𝑒𝓁(𝑐0−1)

(
2𝑑𝑛(𝑐0 − 1)

𝑏 − 𝑎

)𝓁−𝑑𝑛

𝐾𝑑𝑛+1𝑀𝑑𝑛
, 2𝑒𝓁(𝑐0−1)𝐾

𝑑𝑛+1

𝑝 𝑀

1

𝑝

𝑑𝑛
𝐾

𝑑𝑛+1+1

𝑞 𝑀

1

𝑞

𝑑𝑛+1

}
. (2.5)

We observe that by (2.3) and the fact that 𝑑𝑛 < 𝓁, we have that

𝐾
𝑑𝑛+1

𝑝 𝐾
𝑑𝑛+1+1

𝑞 = 𝐾𝓁+1, and 𝐾𝑑𝑛+1
≤ 𝐾𝓁+1 (2.6)
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ALBANO and MUGHETTI 5

Moreover, by Assumption (𝐴) above1 and by the gap condition (2.1), we see that

𝑀

1

𝑝

𝑑𝑛
𝑀

1

𝑞

𝑑𝑛+1
≤ 𝑀

1

𝑝

𝑑𝑛
𝑀

𝑑𝑛+1

𝑐0𝑞

𝑐0
𝑀

𝑑𝑛+1

𝑞𝑑𝑛

𝑑𝑛
.

Whence, as a consequence of the log-convexity of {𝑀𝑛}𝑛, (1.3), and (2.3), we find that

𝑀

1

𝑝

𝑑𝑛
𝑀

1

𝑞

𝑑𝑛+1
≤ 𝑀

𝑑𝑛

𝓁𝑝

𝓁
𝑀

𝑑𝑛+1

𝑐0𝑞

𝑐0
𝑀

𝑑𝑛+1

𝑞𝓁

𝓁
≤ 𝑀𝓁𝑀

𝓁

𝑐0
𝑐0

. (2.7)

Assumption (𝐵) yields that

𝑑
𝓁−𝑑𝑛
𝑛 ≤

⎛⎜⎜⎜⎜⎝
𝑀

1

𝑑𝑛

𝑑𝑛

𝑐

⎞⎟⎟⎟⎟⎠

𝓁−𝑑𝑛

. (2.8)

Hence, taking together (2.5), (2.6), (2.7), (2.8) and using the log-convexity of {𝑀𝑛}𝑛, (1.3), we deduce that

𝐹𝓁 ≤ max

⎧⎪⎪⎨⎪⎪⎩
2𝑒𝓁(𝑐0−1)

⎛⎜⎜⎜⎜⎝
2𝑀

1

𝑑𝑛

𝑑𝑛
(𝑐0 − 1)

𝑐(𝑏 − 𝑎)

⎞⎟⎟⎟⎟⎠

𝓁−𝑑𝑛

𝑀𝑑𝑛
, 2𝑒𝓁(𝑐0−1)𝑀𝓁𝑀

𝓁

𝑐0
𝑐0

⎫⎪⎪⎬⎪⎪⎭
𝐾𝓁+1

≤ max

{
2𝑒𝓁(𝑐0−1)

(
2(𝑐0 − 1)

𝑐(𝑏 − 𝑎))

)𝓁−𝑑𝑛

, 2𝑒𝓁(𝑐0−1)𝑀

𝓁

𝑐0
𝑐0

}
𝐾𝓁+1𝑀𝓁 ≤ 𝐶𝓁

1
𝐾𝓁+1𝑀𝓁,

where

𝐶1 = 2𝑒𝑐0−1

(
2(𝑐0 − 1)

𝑐(𝑏 − 𝑎)
+ 𝑀

1

𝑐0
𝑐0

)
.

Then, we conclude that there exists 𝐾1 > 0 such that

𝐹𝑛 ≤ 𝐾𝑛+1
1

𝑀𝑛, for every 𝑛 ∈ ℕ,

that is, 𝑓 ∈ 𝐶𝑀([𝑎, 𝑏]). This completes our proof of Theorem 1.4.

2.3 Proof of Theorem 1.6

The proof is based on the following result, which ensures the existence, in every class 𝐶𝑁 , of a function that attains the
bounds 𝑁𝑗 . Although different formulations are already present in the literature (see, e.g., [10] for the case of complex-
valued functions), for the sake of completeness we provide its proof.

Lemma 2.2. Let {𝑁𝑗}𝑗 be a positive sequence satisfying (1.1). Then, there exists 𝑓 ∈ 𝐶𝑁([𝑎, 𝑏]) such that

|||||𝑓(𝑗)

(
𝑎 + 𝑏

2

)||||| ≥ 𝑁𝑗, ∀𝑗 ∈ ℕ. (2.9)

Proof. Set𝑚𝑗 = 𝑁𝑗+1∕𝑁𝑗 and observe that, by (1.1), it is an increasing sequence. We note that

(
1

𝑚𝑘

)𝑘−𝑗

≤
𝑁𝑗

𝑁𝑘
∀𝑘, 𝑗 ∈ ℕ. (2.10)
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6 ALBANO and MUGHETTI

Indeed, (2.10) trivially holds in the case of 𝑗 = 𝑘. Moreover, if 𝑗 < 𝑘, we have that

(
1

𝑚𝑘

)𝑘−𝑗

≤
1

𝑚𝑘−1 …𝑚𝑘−(𝑘−𝑗)
=

𝑁𝑗

𝑁𝑘
.

Finally, if 𝑗 > 𝑘, we obtain

𝑚
𝑗−𝑘

𝑘
≤ 𝑚𝑘 …𝑚𝑗−1 =

𝑁𝑗

𝑁𝑘
.

Summing up, (2.10) holds true.
Let us define

𝑔(𝑥) =

∞∑
𝑘=0

𝑁𝑘

(2𝑚𝑘)𝑘
(cos(2𝑚𝑘𝑥) + sin(2𝑚𝑘𝑥)).

We notice that 𝑔 ∈ 𝐶𝑁(𝐼) for every interval 𝐼 ⊂ ℝ. Indeed, in light of (2.10), we get

|𝑔(𝑛)(𝑥)| ≤ ∞∑
𝑘=0

𝑁𝑘

(2𝑚𝑘)𝑘
(2𝑚𝑘)

𝑛2 ≤ 𝑁𝑛

∞∑
𝑘=0

2𝑛+1

2𝑘
≤ 2𝑛+2𝑁𝑛.

Furthermore, we have that

|𝑔(𝑛)(0)| = ||||||
(

∞∑
𝑘=0

𝑁𝑘

(2𝑚𝑘)𝑘−𝑛

)
(cos(𝑛)(0) + sin

(𝑛)
(0))

||||||,
and, since

⎧⎪⎨⎪⎩
cos(𝑛)(0) = (−1)𝑛∕2 and sin

(𝑛)
(0) = 0, for 𝑛 even,

cos(𝑛)(0) = 0 and sin
(𝑛)

(0) = (−1)
𝑛−1

2 , for 𝑛 odd,

we deduce that

|𝑔(𝑛)(0)| = ∞∑
𝑘=0

𝑁𝑘

(2𝑚𝑘)𝑘−𝑛
≥ 𝑁𝑛

The conclusion follows by taking

𝑓(𝑥) ∶= 𝑔

(
𝑥 −

𝑎 + 𝑏

2

)
, (𝑥 ∈ [𝑎, 𝑏]).

Then, the proof of Theorem 1.6 reduces to show that given a positive sequence {𝑀𝑛}𝑛 satisfying (1.9), there exist

∙ a sequence {𝑁𝑛}𝑛 satisfying (1.1),
∙ two divergent sequences of positive integers {𝑑𝑛}𝑛 and {𝑖𝑛}𝑛,

so that

𝑁𝑑𝑛
= 𝑀𝑑𝑛

, 𝑛 = 0, 1, …

and

𝑁𝑖𝑛

𝑀𝑖𝑛

= 22𝑖𝑛 . (2.11)
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ALBANO and MUGHETTI 7

We point out that once the existence of such a sequence {𝑁𝑛}𝑛 is established, Lemma 2.2 yields the existence of a function
𝑓 ∈ 𝐶𝑁([𝑎, 𝑏]) such that 𝑁𝑑𝑛

≤ 𝑀𝑑𝑛
. On the other hand, due to (2.11) , we have that 𝑓 ∉ 𝐶𝑀([𝑎, 𝑏]). In other words, in

general (if the gap (𝑑𝑛+1 − 𝑑𝑛)∕𝑑𝑛 is suitably large), the interpolation between 𝑑𝑛 and 𝑑𝑛+1 does not provide the bounds
on the derivatives of 𝑓 ensuring that 𝑓 ∈ 𝐶𝑀([𝑎, 𝑏]).
We construct inductively the sequences {𝑁𝑛}𝑛, {𝑑𝑛}𝑛, and {𝑖𝑛}𝑛. For this purpose, it is useful to define

𝑚𝑛 =
𝑁𝑛+1

𝑁𝑛
.

We observe that 𝑁𝑛 satisfies (1.1) if and only if 𝑚𝑛 is an increasing sequence; furthermore, without loss of generality, we
may assume that𝑀0 = 𝑁0 = 1. Clearly, we have

𝑚0 ⋅ … ⋅ 𝑚𝑗−1 =
𝑁𝑗

𝑁0
= 𝑁𝑗.

Let us fix an arbitrary positive integer 𝑖0. We claim that there exists a positive integer 𝑑0 > 𝑖0 so that setting

⎧⎪⎪⎨⎪⎪⎩
𝑚0 = ⋯ = 𝑚𝑖0−1 = (22𝑖0𝑀𝑖0

)
1

𝑖0 ,

𝑚𝑖0
= ⋯ = 𝑚𝑑0−1 =

(
𝑀𝑑0

22𝑖0𝑀𝑖0

) 1

𝑑0−𝑖0
(2.12)

we have

𝑚𝑗 ≤ 𝑚𝑗+1, for 𝑗 = 0,… , 𝑑0 − 2. (2.13)

We observe that (2.13) is equivalent to the inequality

(22𝑖0𝑀𝑖0
)

1

𝑖0 ≤

(
𝑀𝑑0

22𝑖0𝑀𝑖0

) 1

𝑑0−𝑖0

⟺ (22𝑖0𝑀𝑖0
)

1

𝑖0 ≤ 𝑀

1

𝑑0

𝑑0
.

In view of (1.9), for every 𝑐 > 0 there exists 𝑑0 such that𝑀
1

𝑑0

𝑑0
≥ 𝑐. Hence, we find that

𝑀

1

𝑑0

𝑑0
≥ 𝑐 ≥ (22𝑖0𝑀𝑖0

)
1

𝑖0 ,

provided that 𝑐 > (22𝑖0𝑀𝑖0
)

1

𝑖0 , that is, (2.13) holds true.
We point out that as a consequence of our construction, we have

⎧⎪⎪⎨⎪⎪⎩
𝑁𝑗 = (22𝑖0𝑀𝑖0

)
𝑗

𝑖0 , for 𝑗 = 0,… , 𝑖0,

𝑁𝑗 = 22𝑖0𝑀𝑖0

(
𝑀𝑑0

22𝑖0𝑀𝑖0

) 𝑗−𝑖0
𝑑0−𝑖0

, for 𝑗 = 𝑖0 + 1,…𝑑0,

(2.14)

𝑁𝑖0

𝑀𝑖0

= 22𝑖0 , and 𝑁𝑑0
= 𝑀𝑑0

. (2.15)
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8 ALBANO and MUGHETTI

Let us show that there exist two positive integers 𝑑1 > 𝑖1 > 𝑑0 so that setting

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑚𝑑0
= ⋯ = 𝑚𝑖1−1 =

(
22𝑖1𝑀𝑖1

𝑀𝑑0

) 1

𝑖1−𝑑0

,

𝑚𝑖1
= ⋯ = 𝑚𝑑1−1 =

(
𝑀𝑑1

22𝑖1𝑀𝑖1

) 1

𝑑1−𝑖1

,

(2.16)

we have that

𝑚𝑗 ≤ 𝑚𝑗+1, for 𝑗 = 0,… , 𝑑1 − 2. (2.17)

We observe that (2.17) is equivalent to ⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
22𝑖1𝑀𝑖1

𝑀𝑑0

) 1

𝑖1−𝑑0

≥

(
𝑀𝑑0

22𝑖0𝑀𝑖0

) 1

𝑑0−𝑖0

,

(
𝑀𝑑1

22𝑖1𝑀𝑖1

) 1

𝑑1−𝑖1

≥

(
22𝑖1𝑀𝑖1

𝑀𝑑0

) 1

𝑖1−𝑑0

.

(2.18)

As for the first inequality in (2.18), it is enough to show that

(
22𝑖1𝑀𝑖1

𝑀𝑑0

) 1

𝑖1−𝑑0

≥
(
𝑀𝑑0

) 1

𝑑0−𝑖0 ,

which is equivalent to

22𝑖1𝑀𝑖1
≥ 𝑀

𝑖1−𝑖0
𝑑0−𝑖0

𝑑0
.

Oncemore, by (1.9), this last inequality can be satisfied provided 𝑖1 > 𝑑0 is chosen suitably large. Furthermore, the second
inequality in (2.18) can be rewritten as

𝑀𝑑1
≥

(22𝑖1𝑀𝑖1
)
𝑑1−𝑑0
𝑖1−𝑑0

𝑀

𝑑1−𝑖1
𝑖1−𝑑0

𝑑0

,

which can be fulfilled, due to (1.9), provided that 𝑑1 > 𝑖1 is large enough.
Summing up, we have constructed a sequence 𝑁𝑗 , 𝑗 = 0,…𝑑1, such that 𝑚𝑗 =

𝑁𝑗+1

𝑁𝑗

is an increasing sequence for 𝑗 =

0,… , 𝑑1, and

𝑁𝑑0
= 𝑀𝑑0

, 𝑁𝑑1
= 𝑀𝑑1

, 𝑁𝑖0
∕𝑀𝑖0

= 22𝑖0 and 𝑁𝑖1
∕𝑀𝑖1

= 22𝑖1 ,

for suitable positive integers 0 < 𝑖0 < 𝑑0 < 𝑖1 < 𝑑1.
Now, let us suppose that we have already defined 𝑑0 < 𝑖0 < … < 𝑖𝑛 < 𝑑𝑛, and 𝑁𝑗 , 𝑗 = 1,…𝑑𝑛, such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑚𝑗 =
𝑁𝑗+1

𝑁𝑗
are increasing for 𝑗 = 0,… , 𝑑𝑛 − 1,

𝑁𝑑𝑘
= 𝑀𝑑𝑘

, 𝑘 = 0,… , 𝑛,

𝑁𝑖𝑘

𝑀𝑖𝑘

= 22𝑖𝑘 , 𝑘 = 0,… , 𝑛.
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ALBANO and MUGHETTI 9

In order to complete the proof of Theorem 1.6 it suffices to show that we can find 𝑖𝑛+1, 𝑑𝑛+1 and 𝑁𝑗 , 𝑗 = 𝑑𝑛 + 1,… , 𝑑𝑛+1

such that

1. 𝑑𝑛 < 𝑖𝑛+1 < 𝑑𝑛+1,
2. 𝑚𝑗 =

𝑁𝑗+1

𝑁𝑗

are increasing for 𝑗 = 0,… , 𝑑𝑛+1,

3. 𝑁𝑑𝑛+1
= 𝑀𝑑𝑛+1

and
𝑁𝑖𝑛+1

𝑀𝑖𝑛+1

= 22𝑖𝑛+1 .

Set

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑚𝑑𝑛
= ⋯ = 𝑚𝑖𝑛+1−1 =

(
22𝑖𝑛+1𝑀𝑖𝑛+1

𝑀𝑑𝑛

) 1

𝑖𝑛+1−𝑑𝑛

,

𝑚𝑖𝑛+1
= ⋯ = 𝑚𝑑𝑛+1−1 =

(
𝑀𝑑𝑛+1

22𝑖𝑛+1𝑀𝑖𝑛+1

) 1

𝑑𝑛+1−𝑖𝑛+1

,

(2.19)

we have that

𝑚𝑗 ≤ 𝑚𝑗+1, for 𝑗 = 0,… , 𝑑𝑛+1 − 2. (2.20)

We observe that (2.20) reduces to verifying

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
22𝑖𝑛+1𝑀𝑖𝑛+1

𝑀𝑑𝑛

) 1

𝑖𝑛+1−𝑑𝑛

≥ 𝑚𝑑𝑛−1,(
𝑀𝑑𝑛+1

22𝑖𝑛+1𝑀𝑖𝑛+1

) 1

𝑑𝑛+1−𝑖𝑛+1

≥

(
22𝑖𝑛+1𝑀𝑖𝑛+1

𝑀𝑑𝑛

) 1

𝑖𝑛+1−𝑑𝑛

.

(2.21)

We observe that the first inequality in (2.21) is equivalent to

𝑀𝑖𝑛+1
≥

𝑀𝑑𝑛
𝑚

𝑖𝑛+1−𝑑𝑛

𝑑𝑛−1

22𝑖𝑛+1

which, by (1.9), can be satisfied provided that 𝑖𝑛+1 > 𝑑𝑛 is large enough. Finally, the second inequality in (2.21), can be
rewritten as

𝑀𝑑𝑛+1
≥

(22𝑖𝑛+1𝑀𝑖𝑛+1
)
𝑑𝑛+1−𝑑𝑛

𝑖𝑛+1−𝑑𝑛

𝑀

𝑑𝑛+1−𝑖𝑛+1

𝑖𝑛+1−𝑑𝑛

𝑑𝑛

which, once more by (1.9), can be satisfied provided that 𝑑𝑛+1 > 𝑖𝑛+1 is large enough. Finally, as a consequence of (2.19)
we have:

𝑁𝑖𝑛+1

𝑁𝑑𝑛

= 𝑚𝑑𝑛
⋅ 𝑚𝑑𝑛+1 ⋅ … ⋅ 𝑚𝑖𝑛+1−1 =

22𝑖𝑛+1𝑀𝑖𝑛+1

𝑀𝑑𝑛

𝑁𝑑𝑛+1

𝑁𝑑𝑛

= 𝑚𝑑𝑛
⋅ 𝑚𝑑𝑛+1 ⋅ … ⋅ 𝑚𝑑𝑛+1−1 =

𝑀𝑑𝑛+1

𝑀𝑑𝑛

Since 𝑁𝑑𝑛
= 𝑀𝑑𝑛

, this completes our proof of Theorem 1.6. □
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APPENDIX A

Let𝑀0 = 1,𝑀1,𝑀2,… be a sequence of positive numbers. In this section, we consider the following assertions

(A) For 𝑗 < 𝓁 < 𝑘,𝑀𝓁 ≤ 𝑀

𝑘−𝓁

𝑘−𝑗

𝑗
𝑀

𝓁−𝑗

𝑘−𝑗

𝑘
;

(B) 𝑀2
𝑛 ≤ 𝑀𝑛−1𝑀𝑛+1, for 𝑛 ∈ ℕ+;

(C) 𝑀

1

𝑛
𝑛 is an increasing sequence for 𝑛 ∈ ℕ+.

We show that (𝐴) ⟺ (𝐵) and (𝐵) ⇒ (𝐶).
We observe that (B) can be rephrased by requiring that𝑀𝑛∕𝑀𝑛−1 is an increasing sequence for 𝑛 ∈ ℕ+. Indeed, dividing

both sides of the inequality in (B) by𝑀𝑛−1𝑀𝑛, we deduce that (B) holds if and only if𝑀𝑛∕𝑀𝑛−1 is an increasing sequence
for 𝑛 ∈ ℕ+.
Now, let us show that (𝐵) ⇒ (𝐶). (B) implies that

𝑀𝑛+1

𝑀𝑛
≥

𝑀𝑛

𝑀𝑛−1
≥

𝑀𝑛−1

𝑀𝑛−2
≥ … ≥

𝑀1

𝑀0
= 𝑀1.
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ALBANO and MUGHETTI 11

In particular, since𝑀𝑛+1∕𝑀𝑛 is greater or equal than each of the factors𝑀𝑛∕𝑀𝑛−1,𝑀𝑛−1∕𝑀𝑛−2, … ,𝑀1, we find that it is
greater or equal than the geometrical mean of these factors, that is,

𝑀𝑛+1

𝑀𝑛
≥

(
𝑀𝑛

𝑀𝑛−1

𝑀𝑛−1

𝑀𝑛−2
…𝑀1

) 1

𝑛

= 𝑀

1

𝑛
𝑛 .

Then, we find that𝑀𝑛+1 ≥ 𝑀

𝑛+1

𝑛
𝑛 , that is,𝑀

1

𝑛
𝑛 is an increasing sequence. This completes the proof of (𝐵) ⇒ (𝐶).

Now, let us consider the implication (𝐴) ⇒ (𝐵).

Choosing 𝑗 = 𝑛 − 1, 𝓁 = 𝑛 and 𝑘 = 𝑛 + 1, the inequality in (A) can be rewritten as𝑀𝑛 ≤ 𝑀

1

2

𝑛−1
𝑀

1

2

𝑛+1
. Then, taking the

square of both sides of the above inequality we deduce that (𝐴) ⇒ (𝐵).
In order to show that (𝐵) ⇒ (𝐴), we need the following

Lemma A.1. Let 𝑀0 = 1, 𝑀1,𝑀2,… be a sequence of positive numbers and assume that Condition (B) above holds. Then,
for every 𝑛 ∈ ℕ, the sequence

ℕ+ ∋ ℎ ↦

(
𝑀𝑛+ℎ

𝑀𝑛

) 1

ℎ

is increasing.

Remark A.2. The geometrical content of the above result is that a function is convex if and only if its slope is increasing.

Proof. The proof of the lemma proceeds by induction on ℎ. We observe that

(
𝑀𝑛+ℎ+1

𝑀𝑛

) 1

ℎ+1

≥

(
𝑀𝑛+ℎ

𝑀𝑛

) 1

ℎ

is equivalent to the inequality

𝑀𝑛+ℎ ≤ 𝑀

1

ℎ+1
𝑛 𝑀

ℎ

ℎ+1

𝑛+ℎ+1
, (A.1)

for every ℎ ∈ ℕ+.
For ℎ = 1, (A.1) reduces to (B). Now, let us suppose that the inequality (A.1) is satisfied for a suitable natural number ℎ

and let us show that it is satisfied for ℎ + 1. Indeed, (B) implies that

𝑀𝑛+ℎ+1 ≤ 𝑀

1

2

𝑛+ℎ
𝑀

1

2

𝑛+ℎ+2
. (A.2)

Furthermore, by the inductive assumption, we have that

𝑀

1

2

𝑛+ℎ
≤ 𝑀

1

2(ℎ+1)

𝑛 𝑀

ℎ

2(ℎ+1)

𝑛+ℎ+1

and plugging the above inequality in (A.2), we find

𝑀𝑛+ℎ+1 ≤ 𝑀

1

2(ℎ+1)

𝑛 𝑀

ℎ

2(ℎ+1)

𝑛+ℎ+1
𝑀

1

2

𝑛+ℎ+2
.

This last inequality yields that

𝑀

ℎ+2

2(ℎ+1)

𝑛+ℎ+1
≤ 𝑀

1

2(ℎ+1)

𝑛 𝑀

1

2

𝑛+ℎ+2
,

that is,

𝑀𝑛+ℎ+1 ≤ 𝑀

1

ℎ+2
𝑛 𝑀

ℎ+1

ℎ+2

𝑛+ℎ+2

and the proof of the lemma is completed. □
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12 ALBANO and MUGHETTI

We observe that (A) can be rewritten as

(A′) for 𝑗 < 𝓁 < 𝑘, log𝑀𝓁 ≤
𝑘−𝓁

𝑘−𝑗
log𝑀𝑗 +

𝓁−𝑗

𝑘−𝑗
𝑀𝑘.

Now, Lemma A.1 implies that for every 𝑛 ∈ ℕ the sequence

ℕ+ ∋ ℎ ↦
log(𝑀𝑛+ℎ) − log(𝑀𝑛)

ℎ
is increasing.

Then for 𝑗 < 𝓁 < 𝑘, we find that

log(𝑀𝓁) − log(𝑀𝑗)

𝓁 − 𝑗
≤

log(𝑀𝑘) − log(𝑀𝑗)

𝑘 − 𝑗
,

that is, (𝐴′) holds. This completes the proof of the equivalence (𝐴) ⟺ (𝐵).

APPENDIX B

In this section, we provide all the computations needed to justify the claims done in Example 1.

(i) Let 𝑠 ≥ 1 and 𝑀𝑛 = 𝑛𝑛𝑠, for 𝑛 ∈ ℕ+. In order to show that 𝑀𝑛 is log-convex it suffices to show that the function
𝑓(𝑥) = 𝑥𝑠 log 𝑥 is convex for 𝑥 ≥ 1 (it is clear that, due to the limitation 𝑠 ≥ 1, the factor 𝑠 here is immaterial). Since
𝑓(2)(𝑥) = 𝑠∕𝑥 > 0, for 𝑥 > 0, we deduce that𝑀𝑛 is log-convex.
Let us verify that𝑀𝑛 satisfies (1.4), that is, there exists𝑚0 ≥ 0 such that

𝑀𝑗 ≤ 𝑀

𝑗

𝑘

𝑘
𝑀

𝑗

𝑖

𝑖
, for 𝑖, 𝑘 > 𝑚0 with 𝑖 < 𝑗 and 𝑗∕𝑖 < 𝑘.

In this case, (1.4) can be written as

𝑗𝑗𝑠 ≤ 𝑘𝑗𝑠𝑖𝑗𝑠, for 𝑖, 𝑘 > 𝑚0 with 𝑖 < 𝑗 and 𝑗∕𝑖 < 𝑘,

that is,

𝑗 ≤ 𝑘𝑖, for 𝑖, 𝑘 > 𝑚0 with 𝑖 < 𝑗 and 𝑗∕𝑖 < 𝑘,

which trivially holds true with𝑚0 = 1.
(ii) Let 𝑠1, 𝑠2 ≥ 1, 𝑀0 = 𝑀1 = 1, 𝑀2 =

√
𝑀3, and 𝑀𝑛 = 𝑛𝑛𝑠1(log 𝑛)𝑛𝑠2 (𝑛 = 3, 4, …). We claim that 𝑀𝑛 is log-convex.

Recalling that the log-convexity of 𝑀𝑛 is equivalent to the fact that the sequence 𝑀𝑛+1∕𝑀𝑛 is increasing, in order
to prove that 𝑀𝑛 is log-convex it suffices to verify that 𝑀′

0
= 𝑀′

1
= 1, 𝑀′

2
= 33𝑠1∕2, 𝑀′

𝑛 = 𝑛𝑛𝑠1 (𝑛 = 3, 4, …) and
𝑀′′

0
= 𝑀′′

1
= 1, 𝑀′′

2
= (log 3)3𝑠2∕2, 𝑀′′

𝑛 = (log 𝑛)𝑛𝑠2 (𝑛 = 3, 4, …) are separately log-convex. In light of (i) above, 𝑀′
𝑛

is log-convex and the proof reduces to show that𝑀′′
𝑛 has the same regularity.

We have that

𝑀′′
1

𝑀′′
0

≤
𝑀′′

2

𝑀′′
1

⟺ 1 ≤ (log 3)3𝑠2 ,

𝑀′′
2

𝑀′′
1

≤
𝑀′′

3

𝑀′′
2

⟺ 𝑀′′
3
≤ 𝑀′′

3
,

𝑀′′
3

𝑀′′
2

≤
𝑀′′

4

𝑀′′
3

⟺ 𝑀′′3
3

= (log 3)9 ≤ 𝑀′′2
4

= (log 4)8.

In order to prove this last inequality it suffices to show that

log 3 ≤ log 4∕ log 3. (B.1)
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ALBANO and MUGHETTI 13

Using the concavity of the logarithm, we have that

log 3 ≤ log 𝑒 +
1

𝑒
(3 − 𝑒) =

3

𝑒
≤

3

2 + 1∕2
=

6

5
, (B.2)

and

log 3 ≤ log 4 −
1

4
⟺

log 4

log 3
≥ 1 +

1

4 log 3
.

The inequality above and (B.2) yield

log 4

log 3
≥ 1 +

5

24

(
> 1 +

1

5
≥ log 3

)
,

and (B.1) follows. It remains to show that (log 𝑛)𝑛𝑠2 is log-convex for 𝑛 ≥ 3. Once more, this fact can be reduced to a
one-variable problem: it suffices to verify that the function 𝑓(𝑥) = 𝑥𝑠2 log(log(𝑥)) is convex for 𝑥 ≥ 3. Now, 𝑓(2)(𝑥) =

𝑠2(log 𝑥 − 1)∕[(log 𝑥)2𝑥] > 0, for 𝑥 > 𝑒, and the log-convexity of𝑀′′
𝑛 (and𝑀𝑛) follows.

It remains to show that𝑀𝑛 satisfies (1.4). Clearly, it suffices to verify that 𝑛𝑛𝑠1 and (log 𝑛)𝑛𝑠2 satisfy separately (1.4). The
factor 𝑛𝑛𝑠1 was already treated in (i) above. Then the proof reduces to show that

(log 𝑗)𝑗𝑠2 ≤ (log 𝑘)𝑗𝑠2(log 𝑖)𝑗𝑠2 , for 𝑖, 𝑘 > 𝑚0 with 𝑖 < 𝑗 and 𝑗∕𝑖 < 𝑘,

that is,

log 𝑗 ≤ log 𝑘 log 𝑖, for 𝑖, 𝑘 > 𝑚0 with 𝑖 < 𝑗 and 𝑗∕𝑖 < 𝑘. (B.3)

Now, the inequality 𝑗∕𝑖 < 𝑘 and the monotonicity of the logarithm imply that

log 𝑗 < log 𝑖 + log 𝑘.

Now, taking𝑚0 = 𝑒2, we have that

log 𝑖 + log 𝑘 ≤ log 𝑖 log 𝑘, for 𝑖, 𝑘 > 𝑚0,

then (B.3), and this completes the proof that𝑀𝑛 satisfies (1.4).
Finally, the fact that the class 𝐶𝑀([𝑎, 𝑏]) is quasi-analytic for 𝑠1 = 𝑠2 = 1while it is non-quasi-analytic for 𝑠1 > 1 or 𝑠2 >

1, follows by the Denjoy–Carleman theorem (see, e.g., [8]). Indeed, since 𝑀

1

𝑛
𝑛 is increasing (in view of the log-convexity

of𝑀𝑛), the Denjoy–Carleman theorem can be stated as follows:
the class 𝐶𝑀([𝑎, 𝑏]) is quasi-analytic if and only if

∞∑
𝑛=1

1

𝑀

1

𝑛
𝑛

= +∞. (B.4)

Hence, since
∑∞

𝑛=1

1

𝑀

1
𝑛
𝑛

behaves as

∞∑
𝑛=3

1

𝑛𝑠1(log 𝑛)𝑠2
, (𝑠1, 𝑠2 ≥ 1),

using the generalized integral associated with the series above, we conclude that the series in (B.4) diverges if and only if
𝑠1 = 𝑠2 = 1.
We point out that, by Lemma 2.2, the class 𝐶𝑀([𝑎, 𝑏]) is a proper sub-class of 𝐺𝑠1+𝜀, for every 𝜀 > 0.
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