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Abstract

We consider bootstrap-based testing for threshold effects in non-linear
threshold autoregressive (TAR) models. It is well-known that classic tests
based on asymptotic theory tend to be biased in case of small, or even
moderate sample sizes, especially when the estimated parameters indicate
non-stationarity, or in presence of heteroskedasticity, as often witnessed
in the analysis of financial or climate data. To address the issue we pro-
pose a supremum Lagrange Multiplier test statistic (sLM), where the null
hypothesis specifies a linear autoregressive (AR) model against the alter-
native of a TAR model. We consider both the classical recursive residual
i.i.d. bootstrap (sLMi) and a wild bootstrap (sLMw), applied to the
sLM statistic, and establish their validity under the null hypothesis. The
framework is new, and requires the proof of non-standard results for boot-
strap analysis in time series models; this includes a uniform bootstrap law
of large numbers and a bootstrap functional central limit theorem. The
Monte Carlo evidence shows that the bootstrap tests have correct empiri-
cal size even for small samples; the wild bootstrap version (sLMw) is also
robust against the presence of heteroskedasticity. Moreover, there is no
loss of empirical power when compared to the asymptotic test and the
size of the tests is not affected if the order of the tested model is selected
through AIC. Finally, we use our results to analyse the time series of
the Greenland ice sheet mass balance. We find a significant threshold ef-
fect and an appropriate specification that manages to reproduce the main
nonlinear features of the series, such as the asymmetric seasonal cycle,
the main periodicities and the multimodality of the probability density
function.
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1 Introduction

The problem of testing for a linear time series model versus its threshold ex-
tension has attracted considerable attention for a number of reasons. First
and foremost, threshold autoregressive models (TAR) are among the simplest
nonlinear specifications and retain a good interpretability. Second, they can en-
compass many complex features such as jumps, limit-cycles, time irreversibility
and chaos, see e.g. Tong [1990, 2011]. Petruccelli [1992] proved that TAR mod-
els approximate a wide range of nonlinear autoregressive processes. Moreover,
they have been proven to describe successfully many real-world phenomena in
economics and finance, see e.g. Chan et al. [2017], Hansen [2011], Tong [2017].

Seminal works on asymptotic quasi-likelihood ratio tests for threshold au-
toregression include Chan [1990], Chan and Tong [1990], Chan [1991]. Other
contributions include those of Petruccelli and Davies [1986], Su and Chan [2017]
and that of Tsay [1998] for the multivariate case. Tests based upon Lagrange
Multipliers were proposed in Luukkonen et al. [1988] for the smooth transi-
tion case and in Wong and Li [1997, 2000] for TAR models with conditional
heteroscedasticity, see also Tong [2011] for a review.

The main theoretical problem associated with testing for threshold autore-
gression is the nuisance parameter (the threshold) being present only under the
alternative hypothesis, as adduced in Davies [1977, 1987] and Andrews [1993].
In the present context, one solution is to derive the test statistic as a random
function of the nuisance parameter. Then, the overall test statistic is the supre-
mum (or some other convenient function) of the statistic over the grid of values
of the nuisance parameter. The derivation of the null distribution of the overall
test statistic requires proving the stochastic equicontinuity (tightness) of the
sequence of random functions, see e.g. van der Vaart [1998], and this is often
the most challenging task.

One key issue with asymptotic tests is the sample size requirement to deliver
a good performance. Typically, the rate of convergence towards the asymptotic
null distribution depends upon the true parameters values of the data generating
process and might produce a size bias that can be severe, for instance when these
are close to non-stationarity and/or non-invertibility, see e.g. Goracci et al.
[2023]. Furthermore, the null distribution, which has no closed analytical form,
depends both upon the threshold range and the number of tested parameters,
so that one has to make use of simulated critical values for each combination of
the threshold grid and number of parameters, see e.g. Andrews [2003]. Also, the
presence of unaccounted heteroskedasticity can produce a substantial bias that
increases with sample size. One way to overcome the aforementioned problems
is to resort to resampling methods. Hansen [1996] proposes tests based on a
randomization device where the score function is perturbed through an auxiliary
random variable. The same approach has been deployed in Li and Li [2011] to
test a linear model against its threshold ARMA extension by means of a quasi
likelihood ratio statistic. More recently, Hill [2021] adopts a similar approach
to introduce robust conditional moment tests of omitted nonlinearity. To the
best of our knowledge, to date, there are no available results on the validity of

2



the classical bootstrap (both parametric and nonparametric) for testing a linear
AR model against a TAR model.

In this paper we fill this gap and provide a proof of the validity of the tests
(under H0) based upon two residual bootstraps combined with a supremum
Lagrange Multiplier test statistic where the null hypothesis specifies a linear
AR(p) model against the alternative of a TAR(p) model. The first bootstrap
test, denoted with sLMi, is valid under the hypothesis of i.i.d. errors, whereas
the wild bootstrap test (sLMw) is valid under the error process having a mar-
tingale difference structure. One of the main advantages of Lagrange multiplier
tests over likelihood ratio tests is that the former only need estimating the model
under the null hypothesis and avoid direct estimation of the TAR model.

We prove that, under the null hypothesis, the bootstrap distributions of
the test statistics sLMi and sLMw converge to the corresponding asymptotic
distributions, namely, a functional of a centered Gaussian process. Note that,
as also shown in Hansen [1996], the Wald, the supLM and the likelihood-ratio
test statistics share the same asymptotic distribution. The inherent difficulties
associated with working in the bootstrap framework, i.e. simultaneously coping
with the two kinds of randomness (the first one is the sampling variability and
the second one is the bootstrap variability) are amplified by the discontinuity
of the threshold function and the absence of the nuisance parameter under the
null hypothesis. To this end, we provide a uniform bootstrap law of large num-
bers and a functional bootstrap central limit theorem that represent a general
theoretical framework that can be adapted to other situations.

We carry out a simulation study where we compare the finite sample per-
formance of our bootstrap tests, the asymptotic test and Hansen’s test Hansen
[1996], both under i.i.d. errors and under GARCH errors. The results show
that the bootstrap tests have a correct empirical size for a series’ length as
small as 50, whereas both the asymptotic test and Hansen’s test tend to be un-
dersized and this impinges negatively upon their power. Additional simulations
also show that the tests are well behaved in case of near-integrated processes
or local unit-roots, see Section B of the Supplementary Material. The good
performance of the bootstrap tests in small samples makes them suitable to
many situations where either data collection/production is expensive, as in the
experimental context, or longer series are simply not available. Moreover, the
wild bootstrap test is robust against the presence of heteroskedasticity, which
induces a non-negligible size bias both on the asymptotic test and on the i.i.d.
bootstrap test. The simulations also show that the size of the tests is not af-
fected if the order of the autoregression is treated as unknown and is selected
by means of the AIC.

In the last section we apply our methodology to the monthly time series of
the Greenland ice sheet mass balance [Sasgen et al., 2020a]. The sheet covers
around the 85% of the island and the ice loss in the last decades is one of the
main contributors to the rise of sea level at a global scale. For this reason,
its study is of key importance for monitoring climate change. The series is
characterised by a declining trend, an asymmetric seasonal cycle, a multimodal
density, and complex patterns of spectral modes and resonances. We find a
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significant threshold effect and an appropriate two-regime specification that
manages to reproduce the main nonlinear features of the series. The lower
regime corresponds to the slow, rising phase of the cycle, whereas the upper
regime is associated to the fast declining phase occurring in the summer season.

The rest of the paper is organised as follows. Section 2 introduces the prob-
lem and describes the theory behind the standard asymptotic sLM test. In
Section 3 we present the two bootstrap versions of the test, together with the
main results on their validity. Section 4 shows the finite sample behaviour of
the tests where our bootstrap tests (sLMi and sLMw) are compared to the
asymptotic test (sLMa) and Hansen’s test (sLMh). Section 5 is devoted to the
application to the Greenland ice sheet mass balance. All the proofs are detailed
in A. The Supplementary Material contains technical lemmas, further results
from the simulation study and from the analysis of the Greenland ice sheet mass
balance. The tests introduced in this work are implemented in routines included
in the forthcoming R package tseriesTARMA.

1.1 Notation

We write P ∗(·), E∗[·] to indicate probability and expectation conditional on

the data, respectively;
w∗

−−−−→
n→∞ p

denotes the weak convergence in probability and

Y ∗
n

p∗

−−−−→
n→∞ p

Y or, equivalently, Y ∗
n − Y = op∗(1), means that, for any δ > 0,

P ∗(∥Y ∗
n − Y ∥ > δ)

p−−−−→
n→∞

0; lastly, Y ∗
n = Op∗(1) means that, for any δ > 0,

there exists M > 0 such that P (P ∗(∥Y ∗
n ∥ > M) < δ) is arbitrarily close to one

for sufficiently large n. Here, ∥ · ∥ is the L2 matrix norm (the Frobenius’ norm,

i.e. ∥A∥ =
√∑n

i=1

∑m
j=1 |aij |2, where A is a n×m matrix); ∥A∥ = (E[A]r)1/r

is the Lr norm of a random matrix. Moreover, let DR(a, b), a < b be the space
of functions from (a, b) to R that are right continuous with left-hand limits.

2 Preliminaries

Let the time series {Xt} follow the threshold autoregressive TAR(p) model
defined by the difference equation:

Xt = ϕ0 +

p∑
i=1

ϕiXt−i +

(
Ψ0 +

p∑
i=1

ΨiXt−i

)
I(Xt−d ≤ r) + εt. (1)

The positive integers p and d are the autoregressive order and the delay param-
eter, respectively; we assume p and d to be known. Moreover I(·) indicates the
indicator function and r ∈ R is the threshold parameter. {εt} is the innovation
process, we assume E[εt] = 0 and, for each t, εt is independent of Xt−1, Xt−2,
. . . . Further assumptions on {εt} will be detailed in Section 3.1.
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Clearly, Eq. (1) specifies a regime-switching process where each regime fol-
lows a linear autoregressive process. The parameters are given by

ϕ = (ϕ0, ϕ1, . . . , ϕp)
⊺ ∈ Θϕ;

Ψ = (Ψ0,Ψ1, . . . ,Ψp)
⊺ ∈ ΘΨ;

η = (ϕ⊺,Ψ⊺, σ2)⊺ ∈ Θ = Θϕ ×ΘΨ × (0,+∞),

with Θϕ and ΘΨ being subsets of Rp+1. We use η = (ϕ⊺,Ψ⊺, σ2)⊺ to refer to
unknown parameters, whereas the true parameters are indicated by

η0 = (ϕ⊺
0 ,Ψ

⊺
0 , σ

2
0)

⊺ = (ϕ0,0, ϕ0,1, . . . , ϕ0,p,Ψ0,0,Ψ0,1, . . . ,Ψ0,p, σ
2
0)

⊺.

We test whether the TAR model fits the data significantly better than its linear
counterpart. As Ψ contains the differences of the autoregressive parameters in
the two regimes, the system of hypotheses reduces to{

H0 : Ψ = 0

H1 : Ψ ̸= 0,

where 0 is the vector of zeros. Suppose we observe {Xt, t = 1, . . . , n}. We
develop the Lagrange Multiplier (hereafter LM) test based on the quasi Gaussian
log-likelihood conditional on the initial values X0, X−1, . . . , X−p+1:

ℓn(η, r) = − 1

2σ2

n∑
t=1

ε2t (η, r), (2)

where

εt(η, r) = Xt −

{
ϕ0 +

p∑
i=1

ϕiXt−i

}
−

{
Ψ0 +

p∑
i=1

ΨiXt−i

}
I (Xt−d ≤ r) . (3)

Under the null hypothesis, model (1) reduces to an AR(p) model:

Xt = ϕ0 +

p∑
i=1

ϕiXt−i + εt, (4)

and let ϕ̃ = (ϕ̃0, ϕ̃1, . . . , ϕ̃p)
⊺ be the Maximum Likelihood Estimator (hereafter

MLE) of the autoregressive parameters in Eq. (4) based upon the Gaussian
likelihood, i.e.:

ϕ̃ =
(
ϕ̃0, ϕ̃1, . . . , ϕ̃p

)⊺
= argmin

ϕ∈Θϕ

[
− 1

2σ2

n∑
t=1

ε2t ((ϕ,0, σ
2), r)

]
.

Note that ϕ̃ coincides with the least squares estimator. The associated residuals
(restricted residuals) are

ε̃t = Xt − ϕ̃0 −
p∑

i=1

ϕ̃iXt−i = (ϕ0,0 − ϕ̃0) +

p∑
i=1

(ϕ0,i − ϕ̃i)Xt−i + εt. (5)
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Moreover, σ2 is estimated by

σ̃2 =
1

n− p− 1

n−p−1∑
t=1

ε̃2t . (6)

Lastly, define η̃ = (ϕ̃
⊺
,0⊺, σ̃2), i.e. η̃ is the restricted MLE under the null

hypothesis.
In order to test the null hypothesis define:

∂ℓ̃n
∂Ψ

(r) =
∂ℓn(η, r)

∂Ψ

∣∣∣∣∣
η=η̃

i.e. the first derivative with respect to the tested parameters evaluated at the
restricted estimators. Moreover, let

Dt(r) = (−1,−Xt, . . . ,−Xt−p+1,−I(Xt−d+1 ≤ r),

−XtI(Xt−d+1 ≤ r), . . . ,−Xt−p+1I(Xt−d+1 ≤ r))
⊺
. (7)

Hence, the Fisher information matrix is as follows:

In(r) =

(
In,11 In,12(r)

In,21(r) In,22(r)

)
:=

(
−∂2ℓn(η,r)

∂ϕ∂ϕ⊺ −∂2ℓn(η,r)
∂ϕ∂Ψ⊺

−∂2ℓn(η,r)
∂Ψ∂ϕ⊺ −∂2ℓn(η,r)

∂Ψ∂Ψ⊺

)

=
1

σ2

n∑
t=1

Dt−1(r)D
⊺
t−1(r). (8)

The supremum Lagrange Multipliers test statistic (hereafter supLM) is

Tn = sup
r∈[rL,rU ]

Tn(r), (9)

where

Tn(r) =

(
∂ℓ̃n
∂Ψ

(r)

)⊺ (
In,22(r)− In,21(r)I

−1
n,11In,12(r)

)−1 ∂ℓ̃n
∂Ψ

(r) (10)

with [rL, rU ] being a data driven interval, e.g. rL and rU can be some percentiles
of the observed data.

In order to define the asymptotic null distribution of Tn, define

I∞(r) =

(
I∞,11 I∞,12(r)

I∞,21(r) I∞,22(r)

)
(11)

where I∞,22(r) = I∞,12(r) = I⊺∞,21(r) are (p+ 1)× (p+ 1) symmetric matrices
whose (i+ 1, j + 1)th element is

E[I(Xt−d ≤ r)], if i = 0, j = 0

E[Xt−jI(Xt−d ≤ r)], if i = 0, j ̸= 0

E[Xt−iXt−jI(Xt−d ≤ r)], if i ̸= 0, j ̸= 0
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and I∞,11 = I∞,22(∞). Here and in the following, P (·) and E[·] are, respectively,
the probability and expectation taken under the true probability distribution
for which the null hypothesis holds. Note that

I∞(r) = E [Dt−1(r)Dt−1(r)
⊺] . (12)

The null distribution of the supLM test statistic is a functional of the centered
Gaussian process {ξ(r), r ∈ R} with covariance kernel

Ξ(r1, r2) = E
[
ε2tDt−1(r1)D

⊺
t−1(r2)

]
, (13)

where a1 ∧ a2 = min{a1, a2}, for any a1, a2 ∈ R. Under standard regularity
conditions as in Li and Li [2011], it holds that

Tn
w−−−−→

n→∞
sup

r∈[rL,rU ]

ξ(r)⊺Σ(r)ξ(r) := T∞ (14)

where
w−−−−→

n→∞
means the convergence in distribution as the sample size n in-

creases, and

Σ(r) = σ−2
(
−I∞,21(r)I

−1
∞,11, Ip+1

)⊺(
I∞,22(r)− I∞,21(r)I

−1
∞,11I∞,12(r)

)−1 (−I∞,21(r)I
−1
∞,11, Ip+1

)
with Ip+1 being the p+ 1 identity matrix.

Remark 1. For any fixed r, if {εt} is an i.i.d. process then T∞ reduces to a
χ2 random variable with p + 1 degrees of freedom. This is not the case if the
innovation process presents heteroskedasticity.

Remark 2. Note that if H1 is true and Xt follows a stationary TAR(p) DGP,
then there can be a local unit-root regime but Xt is still globally stationary.
This is does not entail additional complications and is encompassed within our
testing framework. On the other hand, testing for Xt being a I(1) process under
H0 and a stationary TAR(p), possibly with local unit-root regimes, under H1

requires a different asymptotic theory based upon the limit theory of stochastic
integrals, see e.g. Chan et al. [2024] and references therein.

3 The bootstrap

We focus on the following residual-based bootstrap approaches. Consider the
recursively defined bootstrap process generated by the bootstrap parameters
ϕ∗ = (ϕ∗

0, ϕ
∗
1, . . . , ϕ

∗
p)

⊺:

X∗
t = ϕ∗

0 +

p∑
i=1

ϕ∗
iX

∗
t−i + ε∗t , (15)

where the initial values X∗
0 , X

∗
1 , . . . , X

∗
−p+1, are equal to their sample counter-

part. We consider the case where the bootstrap parameters are the restricted
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MLE, i.e. ϕ∗ = ϕ̃; therefore the process defined in Eq. (15) equals:

X∗
t = ϕ̃0 +

p∑
i=1

ϕ̃iX
∗
t−i + ε∗t , (16)

which is an example of the so-called restricted bootstrap, see Cavaliere and
Rahbek [2021]. Different types of bootstrap can be introduced according to the
definition of the bootstrap innovation process {ε∗t }. In this work we focus upon
the following two cases:

(B.iid) i.i.d. bootstrap: for each t, ε∗t is sampled with replacement from the
re-centred residuals ε̃ct := ε̃t−n−1

∑n
t=1 ε̃t, where ε̃t are defined in Eq. (5).

(B.wild) wild bootstrap: for each t, ε∗t = ε̃t · υt, ε̃t are defined in Eq. (5)
and {υt} is a sequence of i.i.d. random variables with zero mean and
unit variance. Typically, {υt} follows either the standard normal or the
Rademacher random variable.

Remark 3. Conditionally upon the data, under the i.i.d. bootstrap scheme {ε∗t }
is a sequence of i.i.d. random variables, whereas in the wild bootstrap scheme
it is a sequence of independent random variables with E[ε∗2t ] = ε̃2t .

Given {X∗
t , t = 1, . . . , n}, the bootstrap sample from Eq. (16), the bootstrap

log-likelihood function results:

ℓ∗n(η, r) = − 1

2σ2

n∑
t=1

ε∗2t (η, r), (17)

where ε∗t (η, r) is defined as in Eq. (3) with X being replaced by X∗:

ε∗t (η, r) = X∗
t −

{
ϕ0 +

p∑
i=1

ϕiX
∗
t−i

}
−

{
Ψ0 +

p∑
i=1

ΨiX
∗
t−i

}
I
(
X∗

t−d ≤ r
)
.

(18)

In analogy with the standard asymptotic case, we present the methodology and
the related theory for the two bootstrap schemes. Let

ϕ̃
∗
= (ϕ̃∗

0, ϕ̃
∗
1, . . . , ϕ̃

∗
p)

be the MLE computed upon {X∗
t , t = 1, . . . , n} defined in Eq. (15) and σ̃∗2 =

(n−p−1)−1
∑n−p−1

t=1 ε̃∗2t , with ε̃∗2t being the corresponding bootstrap restricted

residuals. Hence, we define η̃∗ = (ϕ̃
∗⊺
,0⊺, σ̃∗2) to be the bootstrap estimator

maximising the bootstrap log-likelihood function in Eq. (17). Let

∂ℓ∗n
∂ϕ

=
∂ℓ∗n(η, r)

∂ϕ

∣∣∣∣
η=η̃

,
∂ℓ∗n
∂Ψ

(r) =
∂ℓ∗n(η, r)

∂Ψ

∣∣∣∣
η=η̃

and

∇∗
n(r) =

((
∂ℓ∗n
∂ϕ

)⊺

,

(
∂ℓ∗n
∂Ψ

(r)

)⊺)⊺

, (19)
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thereby
{∇∗

n(r)} = {∇∗
n(r), rL ≤ r ≤ rU} (20)

is the bootstrap score process as a function of r, evaluated in η = η̃. In order
to build the bootstrap LM test statistic, we also need the first derivative of the
bootstrap log-likelihood function with respect to Ψ evaluated in η̃∗, i.e:

∂ℓ̃∗n
∂Ψ

(r) =
∂ℓ∗n(η, r)

∂Ψ

∣∣∣∣∣
η=η̃∗

. (21)

Moreover, let D∗
t (r) denote the first-order derivative of ε∗t+1(η, r) with respect

to η. It follows that:

D∗
t (r) =

(
−1,−X∗

t , . . . ,−X∗
t−p+1,−I(X∗

t−d+1 ≤ r),

−X∗
t I(X

∗
t−d+1 ≤ r), . . . ,−X∗

t−p+1I(X
∗
t−d+1 ≤ r)

)⊺
. (22)

Similar to Eq. (8), the bootstrap observed information matrix is defined by:

I∗n(r) =

(
I∗n,11 I∗n,12(r)

I∗n,21(r) I∗n,22(r)

)
=

(
−∂2ℓ∗n(η,r)

∂ϕ∂ϕ⊺ −∂2ℓ∗n(η,r)
∂ϕ∂Ψ⊺

−∂2ℓ∗n(η,r)
∂Ψ∂ϕ⊺ −∂2ℓ∗n(η,r)

∂Ψ∂Ψ⊺

)
=

1

σ∗2

n∑
t=1

D∗
t−1(r)D

∗⊺
t−1(r). (23)

We compute the bootstrap supLM statistic T ∗
n as:

T ∗
n = sup

r∈[rL,rU ]

T ∗
n(r); (24)

T ∗
n(r) =

(
∂ℓ̃∗n
∂Ψ

(r)

)⊺ (
I∗n,22(r)− I∗n,21(r)(I

∗
n,11)

−1I∗n,12(r)
)−1 ∂ℓ̃∗n

∂Ψ
(r). (25)

Finally, the bootstrap p-value is given by

B−1
B∑

b=1

I(T ∗b
n ≥ Tn),

where T ∗b
n , b = 1, . . . B is the bootstrap test statistics and Tn is the value of the

supLM statistic computed on the original sample, defined in Eq. (9).

3.1 Bootstrap asymptotic theory

In order to derive the bootstrap asymptotic theory we rely on some assumptions
involving both the process {Xt} and the innovation process {εt}.

Assumption 4. {Xt} is stationary and ergodic under the null hypothesis.
Moreover, εt has a continuous and strictly positive density on the real line and
E[ε4t ] = κ < ∞.

9



This is a standard assumption since, under H0, {Xt} reduces to a AR(p)
process. The existence of the density of the innovation process {εt} implies the
existence of the density of {Xt}. Moreover, we consider two different sets of
additional assumptions on the innovation process.

(A.iid) {εt} is a sequence of independent and identically distributed random
variables with E[εt] = 0, E[ε2t ] = σ2 < ∞.

(A.wild) εt = ht ·zt, with {zt} being a sequence of i.i.d. random variables with
zero mean and unit variance. ht > 0 is a strictly stationary and ergodic
random process bounded away from zero with probability one and with
finite fourth moments. Also it is measurable with respect to the filtration
Ft = σ{zt, zt−1, . . . }.

In Theorem 12, under Assumption (A.iid), ((A.wild), respectively) we prove the
validity of the i.i.d. bootstrap, (wild bootstrap) by showing that T ∗

n converges
weakly in probability to T∞. To this aim, in Proposition 5 we derive a new
uniform bootstrap law of large numbers (hereafter UBLLN) that allows us to
(i) verify that n−1I∗n(r) converges in probability (in probability) to σ−2I∞(r)
uniformly on r (Proposition 7) and (ii) derive an approximation of ∂ℓ̃∗n/∂Ψ(r)
in terms of ∇∗

n(r) (Proposition 8). We next state the UBLLN in Proposition 5
that establishes a new result which is of independent interest since it is the
first proof of the validity of the bootstrap when testing for a regime switching
mechanism where a nuisance parameter is absent under the null hypothesis.
The main difficulty here resides in the indicator function I(y ≤ r) being not
differentiable. Hence, standard methods based upon Taylor’s expansion can-
not be applied. Notice that in Hansen [1996], the problem is circumvented by
adopting a stochastic perturbation of the score vector for which no UBLLN
is required. Our proof of the bootstrap validity also extends the approach of
Chan et al. [2020]. One of the key aspects of our approach is the approximation
of the step function with a parameterised sequence of continuous and differen-
tiable functions. The results can be used as the building block for proving the
validity of bootstrap testing in all those situations where additive nonlinearity
is tested within a (auto)regression framework. These include threshold regres-
sion, regime-switching processes with exogenous threshold variables, testing for
structural breaks. Establishing the validity of bootstrap testing in such cases
requires checking additional assumptions on a case by case basis and will be
studied in future works.

Proposition 5. (UBLLN) Let {Xt} and {X∗
t } be defined in Eq. (4) and

Eq. (16), respectively. Assume that Assumption 4 holds and one of the two
following conditions is satisfied:

(i) {ε∗t } is defined as in (B.iid) and Assumption (A.iid) is fulfilled;

(w) {ε∗t } is defined as in (B.wild) and Assumption (A.wild) is fulfilled.

Under the null hypothesis, it follows that:
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1. if E[|Xt|u] < ∞, for u ≥ 0, then:

sup
r∈[rL,rU ]

∣∣∣∣∣ 1n
n∑

t=1

X∗u
t I(X∗

t ≤ r)− E[Xu
t I(Xt ≤ r)]

∣∣∣∣∣ p∗

−−−−→
n→∞ p

0. (26)

2. if E[|Xt|u] < ∞, for u = 1, 2, then, for every i, j, d:

sup
r∈[rL,rU ]

∣∣∣∣∣ 1n
n∑

t=1

X∗
t−iX

∗
t−jI(X

∗
t−d ≤ r)− E[Xt−iXt−jI(Xt−d ≤ r)]

∣∣∣∣∣ p∗

−−−−→
n→∞ p

0.

(27)

Remark 6. Under the null hypothesis, E[εt] = 0 and E[εt] = σ2 < ∞ imply
that E[|Xt|u] < ∞, for u = 1, 2.

In the next proposition we prove that n−1I∗n(r) converges in probability (in
probability) to σ−2I∞(r) uniformly on r.

Proposition 7. Let {Xt} and {X∗
t } be defined in (4) and Eq. (16), respectively.

Assume that Assumption 4 holds and if one of the two following conditions is
satisfied:

(i) {ε∗t } is defined as in (B.iid) and Assumption (A.iid) is fulfilled;

(w) {ε∗t } is defined as in (B.wild) and Assumption (A.wild) is fulfilled.

Under the null hypothesis, it follows that:

sup
r∈[rL,rU ]

∣∣n−1I∗n(r)− σ−2I∞(r)
∣∣ p∗

−−−−→
n→∞ p

0,

with I∗n(r) and I∞(r) being defined in Eq. (23) and Eq. (12), respectively.

Now, we derive an approximation of ∂ℓ̃∗n/∂Ψ(r) in terms of ∇∗
n(r).

Proposition 8. Let {Xt} and {X∗
t } be defined in Eq. (4) and Eq. (16), respec-

tively. Assume that Assumption 4 holds and one of the two following conditions
is satisfied:

(i) {ε∗t } is defined as in (B.iid) and Assumption (A.iid) is fulfilled;

(w) {ε∗t } is defined as in (B.wild) and Assumption (A.wild) is fulfilled.

Under the null hypothesis, it holds that the bootstrap score defined in Eq. (21)
satisfies:

∂ℓ̃∗n
∂Ψ

(r) =
∂ℓ∗n
∂Ψ

(r)− In,21(r)I
−1
n,11

∂ℓ∗n
∂ϕ

.

Remark 9. By analogy with standard, non-bootstrap, asymptotics [Chan, 1990,
Ling and Tong, 2005, Goracci et al., 2023], thanks to Proposition 8 the asymp-
totic null distribution of T ∗

n is predominantly determined by the asymptotic

behaviour of {∇∗
n(r)} rather than

{
∂ℓ̃∗n/∂Ψ(r)

}
and this simplifies substan-

tially the derivations.
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In Proposition 11 we prove a bootstrap central limit theorem (hereafter BCLT)
for {∇∗

n(r)}, the bootstrap score process defined in Eq. (20). The BCLT is the
key result to obtain the validity of the bootstrap schemes and requires proving
the following UBLLN.

Proposition 10. (UBLLN) Let {Xt} and {X∗
t } be defined in Eq. (4) and

Eq. (16), respectively. Assume that Assumption 4 holds and one of the two
following conditions is satisfied:

(i) {ε∗t } is defined as in (B.iid) and Assumption (A.iid) is fulfilled;

(w) {ε∗t } is defined as in (B.wild) and Assumption (A.wild) is fulfilled.

Under the null hypothesis, it follows that:

1. if E[|Xt|u] < ∞, for u = 1, 2, then, for every i, d:

sup
r∈[rL,rU ]

∣∣∣∣∣ 1n
n∑

t=1

ε∗2t X∗
t−iI(X

∗
t−d ≤ r)− E[ε2tXt−iI(Xt−d ≤ r)]

∣∣∣∣∣ p∗

−−−−→
n→∞ p

0. (28)

2. if E[|Xt|u] < ∞, for u = 1, 2, then, for every i, j, d:

sup
r∈[rL,rU ]

∣∣∣∣∣ 1n
n∑

t=1

ε∗2t X∗
t−iX

∗
t−jI(X

∗
t−d ≤ r)− E[ε2tXt−iXt−jI(Xt−d ≤ r)]

∣∣∣∣∣ p∗

−−−−→
n→∞ p

0.

(29)

Proposition 11. (BCLT) Assume that Assumption 4 holds and one of the
following two conditions is satisfied:

(i) {ε∗t } is defined as in (B.iid) and Assumption (A.iid) is fulfilled;

(w) {ε∗t } is defined as in (B.wild) and Assumption (A.wild) is fulfilled.

Under the null hypothesis, for any fixed r, it holds that

1√
n
∇∗

n(r)
w∗

−−−−→
n→∞ p

ξ(r),

where ∇∗
n(r) is defined in Eq. (19), ξ(r) is a Gaussian distributed 2(p + 1)-

dimensional random vector with zero-mean and variance-covariance matrix Ξ(r, r)
defined in Eq. (13).

Next, we present the main result that guarantees the validity of the proposed
bootstrap methods.

Theorem 12. (BFCLT) Let T ∗
n be the supLM statistic defined in Eq. (24).

Assume that Assumption 4 holds and one of the following two conditions is
satisfied:

(i) {ε∗t } is defined as in (B.iid) and Assumption (A.iid) is fulfilled;

12



(w) {ε∗t } is defined as in (B.wild) and Assumption (A.wild) is fulfilled.

Then, under the null hypothesis it holds that

T ∗
n

w∗

−−−−→
n→∞ p

T∞,

where T∞ is defined in Eq. (14).

4 Finite sample performance

In this section we investigate the finite sample performance of the bootstrap sLM
tests. We adopt the following notation: sLMi is the residual i.i.d. bootstrap test,
sLMw is the residual wild bootstrap test. We compare them with the asymptotic
test (sLMa) and with Hansen’s bootstrap test (sLMh) [Hansen, 1996]. The
length of the series is n = 50, 100, 200. These are small to moderate sample sizes
that are quite common in many fields, especially when the cost of producing the
data is not negligible. The nominal size is α = 5% and the number of Monte
Carlo replications is 10000. For the asymptotic test we have used the tabulated
values of Andrews [2003], whereas the bootstrap p-values are based on B = 999
resamples. The threshold is searched from percentile 25th to 75th of the sample
distribution. In Section 4.1 we study the size and the power of the tests when
the innovation process is i.i.d. Also, in Section 4.2 we assess the behaviour of
the tests when the order of the AR process tested is treated as unknown and
is selected through the AIC. Then, in Section 4.3 we study the performance of
the tests when the innovation process presents conditional heteroskedasticity.
Section B of the Supplementary Material contains additional simulations. In
particular, in Section B.1 we study the size of the tests when the DGP is close
to non-stationarity, whereas Section B.2 contains additional results on the power
of the tests, covering the case of unit root regimes and white noise regimes. All
the results are presented as percentages as to enhance the readability of the
tables.

4.1 i.i.d. innovations

Throughout this section the innovation process {εt} is simulated from a i.i.d.
N(0, 1) random process. To study the size of the tests, we generate time series
from the following AR(1) model:

Xt = ϕ0 + ϕ1Xt−1 + εt (30)

where ϕ1 = 0,±0.3,±0.6,±0.9. Also, we set ϕ0 = 0 since preliminary investiga-
tions showed that its value has no impact upon the results. Figure 1 shows the
boxplots of the rejection percentages for the four tests. Each boxplot groups
together the size for all the 7 values of ϕ1. The bootstrap tests sLMi and sLMb
present a size very close to the nominal 5% even for a sample size as small as
50 and are not influenced by the value of the autoregressive parameter close
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Figure 1: Empirical size in percentage, at nominal 5% level, of the four sLM
tests for varying sample size n. sLMa: asymptotic test; sLMi: residual i.i.d.
bootstrap test, sLMw: residual wild bootstrap test; sLMh: Hansen’s test. Each
boxplot groups together the size for the 7 cases.

to non-stationarity, see also Section B.1 of the Supplementary Material. On
the contrary, both the asymptotic test sLMa and Hansen’s test sLMh result
undersized, especially for small sample sizes. As we will show, this impinges
negatively upon the power of the tests.

As concerns power, we simulate from the following TAR(1) model:

Xt = ϕ0 + ϕ1Xt−1 + (Ψ +ΨXt−1) I(Xt−1 ≤ 0) + εt. (31)

where (ϕ0, ϕ1) = (−0.1,−0.8) (M1) and (0.8, 0.2) (M2). Also, Ψ ∈ {0.0, 0.3, 0.6, 0.9}
as to obtain 8 different parameter settings. Note that the parameter Ψ repre-
sents the departure from the null hypothesis and in all the simulations below
we take sequences of increasing distance from H0. The case Ψ = 0 corresponds
to H0. Table 1 presents the empirical power (in percentage) at nominal level
5% where, for each sample size, the first row corresponds to the null hypothesis
and reflects the size of the tests, while the subsequent three rows represent in-
creasing departures from H0 and reflect the power of the tests. As expected, the
bootstrap tests sLMi and sLMw have superior power with respect to Hansen’s
test sLMh. The asymptotic test sLMa is also slightly inferior in terms of power.
As the sample size increases the four tests tend to have comparable power but
the bootstrap tests retain a small advantage. Additional simulations show that
the tests have power also in case of local unit-roots or in the local white noise
case, see Section B.2 of the Supplementary Material.

4.2 The impact of order selection

In practical situations, the order of the autoregressive model to be tested is
unknown and has to be estimated. This can impinge on the performance of the
tests so that we assess the impact of treating the order p of the AR model as
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M1 M2

n Ψ sLMa sLMi sLMw sLMh sLMa sLMi sLMw sLMh

50 0.0 3.1 4.8 4.7 2.6 3.5 5.2 5.4 3.3
0.3 8.8 12.0 11.9 7.4 4.1 6.1 6.2 3.8
0.6 29.5 35.4 34.4 24.6 6.8 9.5 9.2 5.6
0.9 60.5 66.5 65.3 51.2 12.8 16.6 16.1 9.7

100 0.0 4.1 5.0 5.0 4.0 4.3 5.1 5.3 4.3
0.3 20.1 22.6 22.3 18.2 6.4 7.4 7.3 6.0
0.6 64.1 66.6 66.2 59.4 15.1 16.8 16.2 13.0
0.9 94.1 94.9 94.6 91.8 33.2 35.4 34.5 29.2

200 0.0 4.6 4.7 4.7 4.4 4.8 4.9 5.0 4.6
0.3 40.8 41.1 40.8 38.7 10.2 10.4 9.9 9.0
0.6 94.2 94.2 94.2 92.9 34.4 34.4 33.5 31.4
0.9 99.9 99.9 99.9 99.9 67.6 67.7 66.6 64.1

Table 1: Empirical power (%) at nominal level α = 5% for the TAR(1) process
of Eq. (31) and sample size n = 50, 100, 200. The parameter Ψ represents the
departure from the null hypothesis.

unknown and selecting it by means of the AIC. We study the impact on the size
of the tests by simulating from the following AR(2) model.

Xt = ϕ0 + ϕ1Xt−1 + ϕ2Xt−2 + εt (32)

where ϕ0 = 0, whereas ϕ1 and ϕ2 are as follows:

ϕ1 -0.65 0.80 -0.35 1.15 0.45 0.45 -0.90
ϕ2 0.25 0.10 -0.45 -0.55 0.25 -0.55 -0.25

The results are presented in the boxplots of Figure 2 where in the upper panel
we have used the true AR order, whereas in the lower panel the order is selected
using the AIC. Each boxplot groups together the size for all the 7 values of
(ϕ1, ϕ2). The results confirm that treating the order of the autoregression as
unknown has negligible impact upon the size of the four tests.

We study the impact of model selection upon the power of the tests by
simulating from the following TAR(2) process:

Xt = −0.35Xt−1 − 0.45Xt−2 + (Ψ +ΨXt−1 +ΨXt−2) I(Xt−1 ≤ 0) + εt. (33)

as before, Ψ ∈ {0.0, 0.3, 0.6, 0.9} represents the level of departure from H0. The
rejection percentages are shown in Table 2, where in the left panel the true
order of the autoregression is used, whereas in the right panel it is selected
using the AIC. Contrarily to size, the procedure of order selection does have a
negative impact upon power for n = 50, 100, much less so for n = 200. This can
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Figure 2: Empirical size in percentage, at nominal 5% level, of the four sLM tests
for varying sample size n for the AR(2) process of Eq. (32). sLMa: asymptotic
test; sLMi: residual i.i.d. bootstrap test, sLMw: residual wild bootstrap test;
sLMh: Hansen’s test. Upper panel: the true AR order is used in the test. Lower
panel: the AR order is treated as unknown and selected using the AIC. Each
boxplot groups together the size for the 7 cases.
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true AIC

n Ψ sLMa sLMi sLMw sLMh sLMa sLMi sLMw sLMh

50 0.0 2.7 5.0 5.1 2.2 2.7 4.9 5.0 2.1
0.3 6.5 11.3 11.1 5.3 5.6 10.0 10.1 4.4
0.6 27.3 37.5 36.7 22.7 18.4 25.3 25.1 14.5
0.9 68.6 77.2 76.0 60.5 37.9 45.1 44.1 30.6

100 0.0 3.3 4.7 4.9 3.5 3.2 4.6 4.8 3.3
0.3 17.8 22.2 22.3 17.2 16.3 20.3 20.2 15.2
0.6 72.6 77.0 76.5 70.8 54.8 58.9 58.3 52.1
0.9 98.8 99.1 99.0 98.3 77.9 79.5 78.5 75.5

200 0.0 4.2 4.9 5.1 4.5 4.1 5.0 5.1 4.3
0.3 43.5 46.1 45.7 42.8 40.4 43.2 42.9 39.7
0.6 98.7 98.8 98.7 98.4 92.5 92.7 92.4 91.5
0.9 100.0 100.0 100.0 100.0 97.8 97.8 97.5 97.4

Table 2: Empirical power (in percentage) at nominal level α = 5% for the
TAR(2) process of Eq. (33). In the left panel the true order of the autoregression
is used, whereas in the right panel it is selected through AIC.

be somehow expected since the AIC is prone to overfitting and leads to using
critical values larger than the correct ones. This suggests that other model
selection criteria might be more appropriate in this context, such as the BIC or,
as advocated in Goracci et al. [2023], the Hannan-Rissanen criterion.

4.3 Heteroskedastic innovations

In this section we investigate the performance of the tests when the innovation
process {εt} presents conditional heteroskedasticity. As for the size, we generate
time series from 7× 3 = 21 different simulation settings of the following AR(1)-
GARCH(1,1) model:

Xt = ϕ1Xt−1 + εt

εt = σtzt (34)

σ2
t = 1 + a1ε

2
t−1 + b1σ

2
t−1

where zt ∼ i.i.d. N(0, 1) and, as before, ϕ1 = 0,±0.3,±0.6,±0.9. We combine
these with the following parameters for the GARCH specification: (a1, b1) =
(0.04, 0.95) (case A), (0.3, 0.0) (case B), (0.4, 0.4) (case C). Note that case B
corresponds to an ARCH(1) process. Also, all three cases fulfil the condition of
finite fourth moments. The boxplots of the size of the four tests are presented
in Figure 3, where we have grouped together the three cases since they behave
similarly. Hence, each boxplot contains the size for 7 · 3 = 21 parameters’
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Figure 3: Empirical size (%) in presence of heteroskedasticity, at nominal 5%
level, of the four sLM tests for varying sample size n. sLMa: asymptotic test;
sLMi: residual i.i.d. bootstrap test, sLMw: residual wild bootstrap test; sLMh:
Hansen’s test. Each boxplot groups together the size for the 21 cases.

combinations. Clearly, both the asymptotic test sLMa and the i.i.d. bootstrap
test sLMi present a size bias that increases with sample size, whereas the wild
bootstrap test sLMw behaves as expected even for n = 50 and its size tends to
the nominal 5% as the sample size increases. Hansen’s sLMh test is undersized
also in this scenario and approaches the nominal size from below as the sample
size increases. Note that in Hansen [1996] p. 422, Corollary 2, the innovations
are assumed to be i.i.d. to guarantee absolute regularity of the TAR process,
but the author remarks that the condition could be relaxed to a martingale
difference sequence. Our results confirm that this is indeed the case. Finally, we
have replicated the same experiment when the DGP is near to non stationarity
and found no significant differences from the above results. These latter findings
are reported in Section B.1 of the Supplementary Material.

In order to study the power of the tests we simulate from the following
TAR(1)-GARCH(1, 1) model:

Xt = ϕ0 + ϕ1Xt−1 + (Ψ +ΨXt−1) I(Xt−1 ≤ 0) + εt.

εt = σtzt (35)

σ2
t = 1 + a1ε

2
t−1 + b1σ

2
t−1

where, as above, (ϕ0, ϕ1) = (−0.1,−0.8) (M1) and (0.8, 0.2) (M2), Ψ ∈ {0.0, 0.3, 0.6, 0.9},
and (a1, b1) = (0.04, 0.95) (case A), (0.3, 0.0) (case B), (0.4, 0.4) (case C). We
test the following system of hypotheses:{

H0 : Ψ = 0

H1 : Ψ ̸= 0,

where Ψ = (Ψ,Ψ), so that the parameter Ψ represents the departure from
the null hypothesis. The empirical power (rejection percentages) is shown in

18



n = 50 n = 100 n = 200

Ψ sLMa sLMi sLMw sLMh sLMa sLMi sLMw sLMh sLMa sLMi sLMw sLMh

M1-A 0.0 3.2 5.0 5.1 2.7 4.0 4.8 4.7 3.8 5.0 5.1 5.0 4.7
0.3 5.8 8.1 8.0 5.0 12.4 13.9 13.7 11.0 23.9 24.3 23.4 21.4

0.6 13.7 17.6 16.9 11.1 31.9 34.3 32.9 28.4 64.6 64.5 63.0 59.9
0.9 25.6 30.7 29.5 20.9 57.1 59.7 57.7 52.1 89.7 89.7 88.9 87.3

M2-A 0.0 3.8 5.4 5.5 3.2 4.4 5.1 5.1 4.2 5.1 5.3 4.9 4.4

0.3 4.6 6.5 6.8 4.3 8.4 9.8 9.7 8.0 14.8 15.1 14.7 13.6

0.6 9.6 13.5 13.2 9.1 22.6 25.4 24.8 22.0 50.8 51.3 49.6 47.3
0.9 20.3 27.1 26.3 18.5 52.0 56.0 54.7 50.1 88.8 89.4 88.8 87.5

M1-B 0.0 4.5 6.2 5.2 2.7 5.7 6.8 5.1 3.9 7.0 7.1 5.0 4.2

0.3 10.3 13.7 11.5 6.7 21.7 23.6 20.0 15.0 41.8 42.4 35.5 31.1

0.6 28.9 34.8 31.5 19.9 60.0 62.5 57.9 48.6 89.9 89.9 86.8 81.2
0.9 55.2 60.5 57.6 41.7 89.9 91.0 89.0 81.5 99.7 99.7 99.3 98.0

M2-B 0.0 5.2 7.3 6.0 3.3 6.9 8.1 5.4 3.8 9.8 10.1 5.9 4.7

0.3 6.5 8.8 7.4 4.3 11.0 12.4 9.1 7.0 18.1 18.5 12.2 10.2
0.6 9.6 12.9 11.1 6.7 21.9 24.0 19.4 15.2 43.6 44.3 35.7 31.4

0.9 17.3 22.1 19.4 12.6 41.7 44.1 39.1 33.2 75.6 76.1 70.3 65.8

M1-C 0.0 5.6 7.6 5.4 2.8 7.9 8.8 4.8 3.6 12.2 12.8 5.1 4.2

0.3 11.6 14.4 11.2 6.4 21.9 24.1 16.2 12.1 38.6 39.4 25.3 20.8
0.6 24.3 28.8 23.7 14.8 48.6 51.0 41.0 32.6 78.3 78.9 65.8 57.5

0.9 41.6 47.4 42.0 28.8 74.7 76.8 69.0 58.9 96.2 96.3 90.8 85.3

M2-C 0.0 5.7 8.0 5.9 3.3 10.0 11.6 6.4 4.2 15.2 16.0 6.5 4.3

0.3 7.0 9.8 7.7 4.7 14.3 16.5 10.4 7.6 24.3 25.6 13.3 10.5
0.6 11.7 15.4 12.8 8.4 27.3 29.9 22.5 17.7 52.3 53.6 39.0 33.9

0.9 21.8 27.2 24.1 17.0 49.9 53.0 46.0 40.2 82.9 83.7 74.4 69.2

Table 3: Empirical power (%) in presence of heteroskedasticity, at nominal
level α = 5% for the TAR(1)-GARCH(1,1) process of Eq. (35) and sample
size n = 50, 100, 200. The parameter Ψ represents the departure from the null
hypothesis.

Table 3, where each block of four rows represents one of the six combinations
above. Note that the first values of each block correspond to Ψ = 0.0 and
reflect the size for that specific parameterization. In general, when the size of
the four tests is comparable, also their power is. However, Hansen’s test sLMh
tends to be undersized also in this case and this causes its ensuing inferior
power. As also shown above, the tests sLMa and sLMi are oversized in a num-
ber of situations and their power reflects this. The comparison of these results
with the case of i.i.d. innovations of Table 1 shows that, the presence of het-
eroskedastic innovations interacts non-trivially with the discriminating power
of the tests, depending also upon the TAR parameters. For instance, case M1
with i.i.d. innovations presents higher power than cases M1-A, M1-B, M1-C
with heteroskedastic innovations, while the reverse holds for case M2.
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5 An application: the Greenland ice sheet mass
balance

We apply our methodology to the time series of the Greenland ice sheet mass
balance. The Greenland ice sheet covers around 85% of the whole island and
can reach more than 3 km of height. After decades of relative stability, in 1998
the ice sheet began to lose mass every year and marked records of ice loss in
2012 and 2019. A decline is observed when the mass gain from snow accumu-
lation is exceeded by mass loss due to several factors: surface meltwater runoff,
marine-terminating glacier calving, submarine melting, basal melting. This has
been recognized as one of the main contributors to the rise of global sea-level
and its study is of fundamental importance for monitoring and understand-
ing climate change. In particular, the contribution from the Arctic, primarily
Greenland, Alaska, and Arctic Canada, is approximately 350 billion tons/yr,
which corresponds to an increase of 1 mm of the sea level each year.

It is now recognised that the behaviour of the Greenland ice sheet mass
subject to global warming is governed by feedback mechanisms and coupling
[Zeitz et al., 2022]. As argued in Wouters et al. [2013], ice sheets can be affected
by processes with very different timescales: from daily variations in incoming
radiation and transient stormy events to low-frequency atmospheric (e.g. the
El Niño–Southern Oscillation, the North Atlantic Oscillation, the Southern An-
nular Mode) and oceanic fluctuations (e.g., changes in ocean circulation leading
to warm water intruding into glacier fjords). In particular, the major driv-
ing forces determining mass loss are identified as increasing temperatures and
decreasing reflectivity of surface snow. However, the latter is also influenced
by temperature, so that warming is recognised as the most important factor
[Scambos et al., 2021]. Notably, the causes of such an increase are to be found
in changes in the seasonal pattern with greater influence of meridional heat ad-
vection during the summer. Indeed, years with dominant meridional circulation
have become more frequent since the end of the 1990s [Sasgen et al., 2022]. For
this reason, even if the majority of past studies focused on the long-term trend,
recent works highlighted the importance of investigating both the interannual
variability and seasonal patterns [Zhang et al., 2020]. In particular, the increase
in mass loss of the last decades was also accompanied by an increase in vari-
ability both at the seasonal level and in the interannual component. This was
also noted in Sasgen et al. [2020a], that found out that the variability observed
in the rates of mass loss were due to anomalous seasonal behaviour. Moreover,
there is increasing consensus on the fact that the dynamics underlying the ice
sheet mass balance contain a stochastic component [Wouters et al., 2013, Zhang
et al., 2020]. For instance, Zhang et al. [2020] propose a specification contain-
ing a polynomial deterministic trend, a trigonometric, non-random, seasonality
and a linear autoregressive model, estimated through a Kalman filter, for the
interannual component.

Given the importance of the matter, many different projects are devoted to
estimating mass balance of the Greenland ice sheet and three methods can be
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Figure 4: Monthly time series of the Greenland ice sheet mass balance (in
Gigatons) from April 2002 to June 2017. Left: time series with the estimated
local linear trend and robust confidence bands. Right: detrended series.

identified, each one with its pros and cons. The first method measures changes
in gravity, the second one measures changes in volume, and the third method is
based upon an input-output model. In Mankoff et al. [2021] these are reviewed
and it is shown that they produce data that are in general agreement. Here we
focus on the data originating from the Gravity Recovery and Climate Experi-
ment (GRACE), a joint mission of NASA and the German Aerospace Center
that monitors ice-sheet dynamics through the measurement of anomalies in the
Earth’s gravitational field. The monthly time series comes from Sasgen et al.
[2020a] and is available at Sasgen et al. [2020b]; in October 2017 the mission
ended and was replaced by a follow-on mission (GRACE-FO) launched in May
2018. This produced a gap of almost one year in the data so that we focused on
the GRACE data that ranges from April 2002 to June 2017 (n = 183). By using
spline interpolation, we imputed the missing values and rendered the series reg-
ularly spaced. The time plot of the resulting series is presented in Figure 4(left).
A local linear trend and associated robust wild bootstrap confidence bands at
95% are superimposed in light blue. The bandwidth for the trend spans ap-
proximately two years of data, whereas the robust confidence bands have been
derived according to Friedrich et al. [2020] and are valid under serial dependence
and heteroskedasticity. Since 2002, there has been a 281 Gigatons/years average
mass loss with a partial slowdown from 2013 onwards. The detrended series is
shown in Figure 4(right). It is characterised by a strongly asymmetric yearly
cyclical component where the slow-rising phase of the cycle lasts 8 months, from
October to May, and is followed by a fast decline from June to September, see
Figure 5(left). The lag plot of Figure 5(right) hints at the presence of a non-
linear oscillatory mechanism. The months associated to the rising/declining
phase of the cycle are coloured in orange/blue and are clearly separated in the
state space. The power spectral density of the detrended series is shown in
Figure 6, where the frequencies associated to the dominant peaks are annotated
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Figure 5: Monthly time series of the Greenland ice sheet mass balance (in Gi-
gatons) from April 2002 to June 2017. Left: month plot with monthly averages.
Right: lag plot of the series Xt vs Xt−3. Months corresponding to the rising
phase of the cycle are coloured in orange/light gray, whereas those associated
to the declining phase are coloured in blue/dark gray).

as fractions to facilitate the identification of the corresponding periodicities (in
months). Besides the yearly cycle and its harmonics, the spectrum has a com-
plex pattern of peaks that hints at the presence of resonances induced by forcing
mechanisms, responsible of the ice melting, interacting with the nonlinear dy-
namics. Resonances, also known as phase-lockings, are produced by nonlinear
systems subject to external forcing frequencies that lock into a resonant periodic
response possessing a rational frequency ratio [Cartwright et al., 1999, 2001].
In particular, a non-dynamic nonlinearity forced quasiperiodically by two fre-
quencies ω1 and ω2 generates a resonance at frequency ωR, which is a solution
of the equation pω1 + qω2 + ωR = 0, where p, q are integer numbers. This ap-
pears to be the case for the Greenland ice sheet as it is immediate to show that
1/12+ 1/27.5 ≈ 1/8.4 and 1/12− 1/27.5 ≈ 1/21.3. Three-frequency resonances
can also be identified. A full analysis of the resonances of the Greenland ice
sheet mass balance dynamics is beyond the scope of the present work and will
be pursued in future projects. The above exploratory analysis indicates that
threshold autoregressive models appear as natural candidates to describe the
Greenland ice sheet dynamics, especially due to their ability to reproduce the
nonlinear features of the series. Indeed, they are the discrete-time version of
differential equations [see Tong, 1990], which are commonly used in climate mod-
els. The direct modelling of the asymmetric limit cycle as a nonlinear stochastic
oscillator can provide additional insights with respect to existing approaches.
Hence, we test for the presence of a significant threshold effect by applying our
methodology.

Table 4 shows the results of the application of the sLM tests upon the de-
trended series, for different values of the delay parameter d = 1, . . . , 7. In the
first four columns the AR(1) specification is tested against the alternative of
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Figure 6: Power spectral density of the detrended time series of the Greenland
ice sheet mass balance. The frequencies corresponding to the main peaks are
annotated as fractions to facilitate the identification of the associated periods
(in months).

a TAR(1), whereas in the last four columns we used AR order 13, which was
selected by means of the AIC. The columns denoted by sLMa report the value
of the test statistic, whereas the other columns contain the bootstrap p-values
of the tests based upon B = 9999 resamples. Our bootstrap tests clearly re-
ject the null hypothesis for values of d greater than one, both for order 1 and
order 13. Note that the rejection is less neat for Hansen’s test when the AR
order tested is 13, and this probably reflects its inferior power. Overall, there
is a strong indication of a threshold effect and this justifies the adoption of
a threshold autoregressive specification. The series is likely to be affected by
measurement error so that a threshold ARMA specification is more appropriate
than the TAR model (see Chan et al. [2024] for the theoretical justification).
Typically, the MA parameters greatly enhance the flexibility of the model, while
retaining parsimony Goracci [2020b,a]. We adopt a TARMA model where the
MA component is fixed across regimes. As also discussed in Goracci et al. [2023],
the asymptotic behaviour of the test statistics is not affected by the presence
of the MA part, if it is not tested, but depends only upon the number of tested
parameters. The proposed TARMA specification is presented in Eq. (36), where
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AR order = 1 AR order = 13

d sLMa sLMi sLMw sLMh sLMa sLMi sLMw sLMh

1 4.2 0.576 0.589 0.685 33.5 0.042 0.102 0.236
2 70.1 0.000 0.000 0.000 46.5 0.001 0.003 0.034
3 94.5 0.000 0.000 0.000 48.9 0.000 0.001 0.026
4 85.1 0.000 0.000 0.000 45.4 0.001 0.004 0.037
5 68.9 0.000 0.000 0.000 45.3 0.001 0.003 0.024
6 58.7 0.000 0.000 0.000 62.5 0.000 0.000 0.001
7 28.2 0.000 0.000 0.002 47.6 0.000 0.002 0.020

Table 4: Results of the application of the sLM tests to the detrended time series
for delay d = 1, . . . , 7. sLMa columns report the value of the sLM test statistic,
whereas remaining columns contain the p-values of the bootstrap tests. The AR
order 13 was selected through AIC.

the standard errors are reported in parenthesis below the estimates.

Xt = 0.46
(0.05)

Xt−1 + 0.75
(0.07)

εt−1+ (36)
56.39
(8.85)

+ 0.21
(0.08)

Xt−6 + 0.30
(0.05)

Xt−11 + εt, if Xt−6 ≤ −5.86

−24.14
(6.41)

+ 0.21
(0.11)

Xt−12 − 0.26
(0.07)

Xt−13 + 0.37
(0.08)

Xt−24

−0.15
(0.04)

Xt−27 + 0.07
(0.09)

Xt−36 + εt, if Xt−6 > −5.86

The model includes a common ARMA(1,1) effect plus two regimes separated
by a threshold close to zero, which is consistent with the state space partition
suggested in Figure 5(right). Hence, the lower regime corresponds to the slow,
rising phase of the cycle, whereas the upper regime is associated to the fast de-
clining phase and depends upon seasonal lags, multiple of the dominant yearly
period. The delay d = 6 also seems to imply a seasonal dependence from forcing
factors. In Figure 7(left) we show a simulated path from the deterministic skele-
ton of the fitted model, i.e. the fitted model without noise components: it is a
stable limit cycle with an ascending phase of 8 months and a descending phase
of 4 months that matches the observed asymmetric cycle. Also, Figure 7(right)
presents the histogram of the series with its kernel density estimate (red line).
We have superimposed in blue the estimated density of a realization of 100k
observations from the fitted model. The density of the estimated model man-
ages to reproduce in part the complex multimodal asymmetric density of the
series. The main observed periodicities are also captured by the fitted model.
This is shown in Figure 8(left) that contains the power spectral density of the
simulated series, where we have reported the main observed frequencies derived
from Figure 6. The plot of the observed series (light blue) and the superim-
posed fitted series (dark blue) is shown in Figure 8(right). The diagnostic
analysis performed both on the residuals and on the squared residuals of the
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fitted models does not show any unaccounted dependence, see Figures 10, 11
of the Supplementary Material. Finally, the Shapiro-Wilk test applied to the
residuals does not show departures from normality (see also Figure 12 of the
Supplementary Material). A more parsimonious model that reproduces the ob-
served asymmetric limit cycle is presented in Eq. (37).

Xt = 0.61
(0.05)

Xt−1 + 0.58
(0.07)

εt−1 +


24.66
(7.06)

+ 0.22
(0.05)

Xt−11 + εt, if Xt−6 ≤ −3.85

−41.05
(6.66)

− 0.34
(0.04)

Xt−27 + εt, if Xt−6 > −3.85

(37)

Also in this case, the associated deterministic map of the fitted model (skeleton)
converges to a stable limit cycle with an ascending phase of 8 months and a fast
4-month declining phase.

The nonlinearity in the seasonal cycle is expected since it is heavily influ-
enced by the atmospheric dynamics, which is known to be highly nonlinear.
An analysis of the association between temperature and ice loss is performed in
Hanna et al. [2021]. They found that the Greenland Ice Sheet dynamics is highly
sensitive to global warming and anomalies in seasonal temperature. They also
highlight a high positive association between coastal Greenland mean surface
air temperatures and the Greenland Blocking Index (GBI), which measures the
tendency of large anticyclones to develop and persist for several days or longer
in the vicinity of southern Greenland. The limitation of existing studies that
typically assume linear dependence is pointed out in Woollings et al. [2010],
which suggest that the frequency of Greenland blocking occurrence determines
the two-regime behaviour observed in the North Atlantic Oscillation. To the
best of our knowledge this is the first time a threshold autoregressive model
is applied in this field and we believe it complements existing approaches by
taking into account different aspects of the modelling: first, the endogeneity of
the threshold variable automatically accounts for the unknown/unobservable,
possibly multifactorial, cause of the regime switching behaviour; moreover, the
TARMA fit manages to reproduce the main nonlinear features of the observed
series, such as its dominant spectral modes and hints at the presence of complex
resonances, whose study can prompt further research and help elucidating the
forcing mechanisms behind the dynamics of the ice sheet mass balance.
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Appendix

This appendix contains the proofs of theorems, lemmas, and propositions. The
online supplement contains technical lemmas, further results from the simulation
study and from the analysis of the Greenland ice sheet mass balance.

A Proofs

A.1 Proof of Proposition 5

PART 1. The proof is divided in two parts: first, we show Eq. (26) for a given
r and then we prove that the result holds also uniformly for r ∈ [rL, rU ].

Pointwise convergence. We assume r to be fixed and, for each η > 0, we
show that

P ∗

(∣∣∣∣∣ 1n
n∑

t=1

X∗u
t I(X∗

t ≤ r)− E[Xu
t I(Xt ≤ r)]

∣∣∣∣∣ > 2η

)
p−−−−→

n→∞
0. (38)

Since the indicator function I(y ≤ r) is not differentiable, standard methods
based upon Taylor’s expansion cannot be applied. We exploit the fact that the
function is discontinuous only at r. By extending the approach used in Chan
et al. [2020], we approximate the step function with a sequence of continuous
and differentiable functions Gα(y), parameterized by α ≥ 0:

Gα(y) =

{
1
2 + 1

π arctan( r−y
α ) if y ̸= r

1
2 if y = r

(39)

In Figure 9 we show the plot of Gα(y) for three values of α, together with the
limit value α = 0 for which Gα(y) = I(y ≤ r) almost surely. For each δ > 0,
define the interval

[Lα,δ, Uα,δ] := r ± qα,δ, (40)

where qα,δ = α tan(π(δ − 1/2)). This implies:

|I(y ≤ r)−Gα(y)| < δ if y /∈ [Lα,δ, Uα,δ]; (41)

|I(y ≤ r)−Gα(y)| < 1 if y ∈ [Lα,δ, Uα,δ]. (42)

Conditions Eq. (40)–(42) assure that, when α and δ approach zero, the interval
[Lα,δ, Uα,δ] collapses on r and the distance between Gα(·) and I(· ≤ r), which
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Figure 9: Gα(y) for α = 1, 0.5, 0.1, together with the limit value α = 0 for which
Gα(y) = I(y ≤ r) almost surely.

is bounded by δ, vanishes. Now, it holds that:

P ∗

(∣∣∣∣∣ 1n
n∑

t=1

X∗u
t I(X∗

t ≤ r)− E[Xu
t I(Xt ≤ r)]

∣∣∣∣∣ > 2η

)

≤ P ∗

(∣∣∣∣∣ 1n
n∑

t=1

X∗u
t I(X∗

t ≤ r)− 1

n

n∑
t=1

X∗u
t Gα(X

∗
t )

− E[Xu
t I(Xt ≤ r)] + E[Xu

t Gα(Xt)]

∣∣∣∣ > η

)
(43)

+ P ∗

(∣∣∣∣∣ 1n
n∑

t=1

X∗u
t Gα(X

∗
t )− E[Xu

t Gα(Xt)]

∣∣∣∣∣ > η

)
. (44)

Markov’s inequality implies that, in order to prove that Eq. (43) is op∗(1), it
suffices to show that the following two expectations vanish in probability:

E∗ [|E[Xu
t I(Xt ≤ r)]− E[Xu

t Gα(Xt)]|] , (45)

E∗

[∣∣∣∣∣ 1n
n∑

t=1

X∗u
t I(X∗

t ≤ r)− 1

n

n∑
t=1

X∗u
t Gα(X

∗
t )

∣∣∣∣∣
]
. (46)

As for Eq. (45): let fX(·) be the stationary probability density function of the
AR(p) process {Xt}. Since it is continuous [see e.g. Anděl and Hrach, 2000,
theorem 1.3] and E[|Xt|u] < ∞, by using the same argument developed in Ling
and Tong [2005], it is possible to show that there exists a positive finite constant,
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say M , such that supx∈R |x|ufX(x) < M . It holds that:

E∗ [|E[Xu
t I(Xt ≤ r)]− E[Xu

t Gα(Xt)]|] = |E[Xu
t I(Xt ≤ r)]− E[Xu

t Gα(Xt)]|
≤ E[|Xu

t | · |I(Xt ≤ r)−Gα(Xt)|]
= E[|Xu

t | · |I(Xt ≤ r)−Gα(Xt)|I(Xt /∈ [Lα,δ, Uα,δ])]

+ E[|Xu
t | · |I(Xt ≤ r)−Gα(Xt)|I(Xt ∈ [Lα,δ, Uα,δ])]

≤ δE[|Xt|u] +M(Uα,δ − Lα,δ),

where the last inequality follows from Eq. (40), Eq. (41) and Eq. (42). Hence,
Eq. (45) can be made arbitrarily small in probability by choosing α and δ
sufficiently small. A similar argument handles Eq. (46):

E∗

[∣∣∣∣∣ 1n
n∑

t=1

X∗u
t I(X∗

t ≤ r)− 1

n

n∑
t=1

X∗u
t Gα(X

∗
t )

∣∣∣∣∣
]

≤ E∗

[
1

n

n∑
t=1

|X∗u
t | · |I(X∗

t ≤ r)−Gα(X
∗
t )|

]

= E∗

[
1

n

n∑
t=1

|X∗u
t | · |I(X∗

t ≤ r)−Gα(X
∗
t )|I(X∗

t /∈ [Lα,δ, Uα,δ])

]

+ E∗

[
1

n

n∑
t=1

|X∗u
t | · |I(X∗

t ≤ r)−Gα(X
∗
t )|I(X∗

t ∈ [Lα,δ, Uα,δ])

]

≤ δ
1

n

n∑
t=1

E∗[|X∗u
t |] +M 1

n

n∑
t=1

P ∗(X∗
t ∈ [Lα,δ, Uα,δ]),

whereM = max{|Lα,δ|u, |Uα,δ|u, 1}. Lemma 13 implies that n−1
∑n

t=1 P
∗(X∗

t ∈
[Lα,δ, Uα,δ]) ≤ n−1 with probability 1, hence Eq. (46) is op∗(1). Lastly, in order
to show that also Eq. (44) is op∗(1), we use the following two expansions:

Gα(X
∗
t ) = Gα(Xt) + gα(Y

∗
t )(X

∗
t −Xt); (47)

Gα(Xt) = Gα(qα,δ + 2r) + gα(Yt)(Xt − qα,δ − 2r) (48)

where qα,δ is defined in Eq. (40), Y ∗
t = λ1,tX

∗
t +(1−λ1,t)Xt and Yt = λ2,tXt +

(1− λ2,t)(qδ + 2r) for some λj,t with 0 ≤ λj,t ≤ 1 and j = 1, 2; moreover,

gα(y) =
∂Gα(y)

∂y
=

{
− α

π(α2+(r−y)2) if y ̸= r

0 if y = r.

Note that gα(y) −−−→
α→0

0 for each y. Since the ergodicity of {Xt} implies that

1

n

n∑
t=1

Xu
t Gα(Xt)

p−−−−→
n→∞

E[Xu
t Gα(Xt)],
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it suffices to prove that

P ∗

(∣∣∣∣∣ 1n
n∑

t=1

X∗u
t Gα(X

∗
t )−

1

n

n∑
t=1

Xu
t Gα(Xt)

∣∣∣∣∣ > η/2

)
p−−−−→

n→∞
0, (49)

which can be achieved by using Markov’s inequality. Indeed, by using Eq. (47),
Eq. (48) and since Gα(qδ + 2r) = δ we have

E∗

[∣∣∣∣∣ 1n
n∑

t=1

X∗u
t Gα(X

∗
t )−

1

n

n∑
t=1

Xu
t Gα(Xt)

∣∣∣∣∣
]

≤ E∗

[∣∣∣∣∣ 1n
n∑

t=1

(X∗u
t −Xu

t ) {δ + gα(Yt)(Xt − qδ − 2r)}

∣∣∣∣∣
]

+ E∗

[∣∣∣∣∣ 1n
n∑

t=1

X∗u
t gα(Y

∗
t )(X

∗
t −Xt)

∣∣∣∣∣
]

which can be made arbitrarily small in probability by taking α and δ sufficiently
small and this completes the proof.

Uniform convergence. By deploying arguments similar to Cavaliere et al.
[2017], we show that for each η > 0

P ∗

(
sup

r∈[rL,rU ]

|∆∗
n(r)| > 2η

)
p−−−−→

n→∞
0, (50)

where ∆∗
n(r) = n−1

∑n
t=1 X

∗u
t I(X∗

t ≤ r)− E[Xu
t I(Xt ≤ r)]. Since [rL, rU ] is a

compact subset of R, for any c > 0, there exists a finite coverage {[ri−1, ri]; i =
1, . . . ,m}, with m being a constant, such that rL = r0 < r1 < . . . < rm−1 <
rm = rU ad ri − ri−1 ≤ c, for each i = 1, . . . ,m. Therefore, it holds that

sup
r∈[rL,rU ]

|∆∗
n(r)| ≤ max

i=0,...,m
|∆∗

n(ri)|+ max
i=1,...,m

sup
r∈[ri−1,ri]

|∆∗
n(r)−∆∗

n(ri−1)|

which implies:

P ∗

(
sup

r∈[rL,rU ]

|∆∗
n(r)| > 2η

)

≤ P ∗
(

max
i=0,...,m

|∆∗
n(ri)| > η

)
+ P ∗

(
max

i=1,...,m
sup

r∈[ri−1,ri]

|∆∗
n(r)−∆∗

n(ri−1)| > η

)
(51)

By combining Bonferroni’s inequality, the pointwise convergence and the finite-
ness of m, we have that

P ∗
(

max
i=1,...,m

|∆∗
n(ri)| > η

)
≤

m∑
i=1

P ∗ (|∆∗
n(ri)| > η)

p−−−−→
n→∞

0.
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It remains to show that the second term of the RHS of Eq. (51) converges to
zero in probability (in probability), which is the case because:

E∗

[
sup

r∈[ri−1,ri]

|∆∗
n(r)−∆∗

n(ri−1)|

]

≤ E∗

[
sup

r∈[ri−1,ri]

1

n

n∑
t=1

|X∗u
t |I(ri−1 < X∗

t ≤ r) + sup
r∈[ri−1,ri]

E[|Xt|uI(ri−1 < Xt ≤ r)]

]

≤ E∗

[
1

n

n∑
t=1

|X∗u
t |I(ri−1 − c < X∗

t ≤ ri−1 + c) + E[|Xt|uI(ri−1 < Xt ≤ ri)]

]

≤ M1

n

n∑
t=1

P ∗(ri−1 − c < X∗
t ≤ ri−1 + c) +M2P (ri−1 < Xt ≤ r),

with M1 = max{|ri−1 − c|u, |ri−1 + c|u, 1} and M2 = max{|ri−1|u, |ri|u, 1}. By
combining Lemma 13 and Markov’s inequality, the proof is completed since c
can be chosen arbitrarily small.

PART 2. The proof follows via the same arguments used in 1. and, hence,
it is omitted.

A.2 Proof of Proposition 7

By routine algebra it holds that I∗n,22(r) = I∗n,12(r) = I∗ ⊺
n,21(r) are (p+1)×(p+1)

symmetric matrices whose (i+ 1, j + 1)th element is

1

σ∗2

n∑
t=1

I(X∗
t−d ≤ r), if i = 0, j = 0

1

σ∗2

n∑
t=1

X∗
t−jI(X

∗
t−d ≤ r), if i = 0, j ̸= 0

1

σ∗2

n∑
t=1

X∗
t−iX

∗
t−jI(X

∗
t−d ≤ r), if i ̸= 0, j ̸= 0

and I∗n,11 = I∗n,22(∞). The results readily follows by combining Proposition 5
with u = 0, 1, 2 for point 1 and standard results of bootstrap asymptotic anal-
ysis.

A.3 Proof of Proposition 8

The proof is based upon verifying the following two equalities:

√
n(ϕ̃− ϕ̃

∗
) = −

(
I∗n,11
n

)−1
1√
n

∂ℓ∗n
∂ϕ

(52)

1√
n

∂ℓ̃∗n
∂Ψ

(r) =
1√
n

∂ℓ∗n
∂Ψ

(r) +
I∗n,21(r)

n

√
n(ϕ̃− ϕ̃

∗
), (53)
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where
∂ℓ∗n
∂ϕ ,

∂ℓ∗n
∂Ψ (r) and

∂ℓ̃∗n
∂Ψ (r) are defined in Eq. (19) and (21) whereas I∗n,11

and I∗n,21(r) in Eq. (23). As previously stated we use ϕ as to refer to a generic

parameter and let
∂ℓ∗n
∂ϕ (ϕ) be the partial derivative of the bootstrap log-likelihood

computed under the null hypothesis, i.e.:

∂ℓ∗n
∂ϕ

(ϕ) =
∂ℓ∗n(η, r)

∂ϕ

∣∣∣∣
Ψ=0,σ2=σ̃2

.

Next, we derive two first order Taylor expansions of the function
∂ℓ∗n
∂ϕ (ϕ): one

at the true bootstrap value ϕ̃ ad the other at the bootstrap MLE ϕ̃
∗
. Note

that, since the νth partial derivatives of ℓ∗n(η, r) are zero for ν > 2, the Taylor

expansion of
∂ℓ∗n
∂ϕ (ϕ) coincides with its first-order Taylor polynomial; moreover,

the Jacobian matrix of ∂ℓ∗

∂ϕ (ϕ) is −I∗n,11, defined in Eq. (23), which does not
depend on ϕ. Hence it results that:

∂ℓ∗n
∂ϕ

(ϕ) =
∂ℓn

∗

∂ϕ
− In,11(ϕ− ϕ̃), (54)

∂ℓ∗n
∂ϕ

(ϕ) =
∂ℓ̃∗n
∂ϕ

− In,11(ϕ− ϕ̃
∗
) (55)

with
∂ℓ̃∗n
∂ϕ and

∂ℓ∗n
∂ϕ being defined in Eq. (19). By subtracting Eq. (55) from

Eq. (54) and dividing by
√
n, we get

1√
n

∂ℓ̃∗n
∂ϕ

=
1√
n

∂ℓ∗n
∂ϕ

+
I∗n,11
n

√
n(ϕ̃− ϕ̃

∗
). (56)

Since ϕ̃
∗
is the bootstrap MLE obtained under the null hypothesis,

∂ℓ̃∗n
∂ϕ = 0

thence Eq. (56) implies

I∗n,11
n

√
n(ϕ̃

∗
− ϕ̃) = − 1√

n

∂ℓ∗n
∂ϕ

.

and hence Eq. (52) follows. We prove Eq. (53) componentwise. We detail below
the argument only for the first component since it can be easily adapted to the
other ones. Therefore, we show that:

1√
n

∂ℓ̃∗n
∂Ψ0

(r) =
1√
n

∂ℓ∗n
∂Ψ0

(r) +
√
n(ϕ̃0 − ϕ̃∗

0)
1

n

n∑
t=1

I(X∗
t−d ≤ r)

+

p∑
i=1

√
n(ϕ̃i − ϕ̃∗

i )
1

n

n∑
t=1

X∗
t−iI(X

∗
t−d ≤ r). (57)

Let ε̃∗t be the residuals obtained from the ML fit upon the bootstrap sample
{X∗

t , t = 1 . . . , n}, i.e.:

ε̃∗t = X∗
t − ϕ̃∗

0 −
p∑

i=1

ϕ̃∗
iX

∗
t−i = (ϕ̃0 − ϕ̃∗

0) +

p∑
i=1

(ϕ̃i − ϕ̃∗
i )Xt−i + ε∗t .
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By definition:

ε∗t − ε̃∗t = (ϕ̃∗
0 − ϕ̃0) +

p∑
i=1

(ϕ̃∗
i − ϕ̃i)X

∗
t−i. (58)

Note that ε∗t (η, r), defined in Eq. (18), does not depend on σ2 and ε̃∗t and ε∗t
correspond to the function ε∗t (η, r) evaluated at ϕ = ϕ̃

∗
, Ψ = 0 and ϕ = ϕ̃,

Ψ = 0, respectively. Consider the partial derivatives of the function ε∗t (η, r)
and denote:

D∗
Ψ0t(r) =

∂ε∗t (η, r)

∂Ψ0

∣∣∣∣
ϕ=ϕ̃,Ψ=0

, D̃∗
Ψ0t(r) =

∂ε∗t (η, r)

∂Ψ0

∣∣∣∣
ϕ=ϕ̃

∗
,Ψ=0

.

Note that:
D∗

Ψ0t(r) = D̃∗
Ψ0t(r) = −I(X∗

t−d ≤ r)

therefore, we get:

1√
n

∂ℓ̃∗n
∂Ψ0

(r) = − 1√
n

n∑
t=1

ε̃∗t D̃
∗
Ψ0t(r) = − 1√

n

n∑
t=1

ε̃∗tD
∗
Ψ0t(r)

= − 1√
n

n∑
t=1

ε̃∗tD
∗
Ψ0t(r)−

1√
n

n∑
t=1

ε∗tD
∗
Ψ0t(r) +

1√
n

n∑
t=1

ε∗tD
∗
Ψ0t(r)

=
1√
n

∂ℓ∗n
∂Ψ0

(r) +
1√
n

n∑
t=1

(ε∗t − ε̃∗t )D
∗
Ψ0t(r).

The expression of (ε∗t − ε̃∗t ) in Eq. (58) implies that

1√
n

∂ℓ̃∗n
∂Ψ0

(r) =
1√
n

∂ℓ∗n
∂Ψ0

(r) +
1√
n

n∑
t=1

{
(ϕ̃∗

0 − ϕ̃0) +

p∑
i=1

(ϕ̃∗
i − ϕ̃i)X

∗
t−i

}
D∗

Ψ0t(r)

=
1√
n

∂ℓ∗n
∂Ψ0

(r) +
1√
n

n∑
t=1

{
(ϕ̃∗

0 − ϕ̃0) +

p∑
i=1

(ϕ̃∗
i − ϕ̃i)X

∗
t−i

}{
−I(X∗

t−d ≤ r)
}

=
1√
n

∂ℓ∗n
∂Ψ0

(r) +
√
n(ϕ̃0 − ϕ̃∗

0)
1

n

n∑
t=1

I(X∗
t−d ≤ r)

+

p∑
i=1

√
n(ϕ̃i − ϕ̃∗

i )
1

n

n∑
t=1

X∗
t−iI(X

∗
t−d ≤ r)

and this completes the proof.

A.4 Proof of Proposition 10

The proof follows by using the same arguments developed to prove Proposition 5
by deploying that {ε∗t } is a sequence of independent random variables in both
bootstrap schemes.
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A.5 Proof of Proposition 11

We start by proving the proposition for the i.i.d. bootstrap case. Since−
∑n

t=1 ε
∗
tD

∗
t−1(r),

with D∗
t (r) being defined in Eq. (22), forms a sequence of martingale difference

arrays with respect to the filtration F∗
t−1 := σ{X∗

t−1, X
∗
t−2, . . . }, the result holds

upon proving, uniformly on r, the following two conditions:

1

n

n∑
t=1

E∗ [ε∗2t (D∗
t−1(r))(D

∗
t−1(r))

⊺|F∗
t−1

] p∗

−−−−→
n→∞ p

E
[
ε2tDt−1(r)D

⊺
t−1(r)

]
; (59)

1

n

n∑
t=1

E∗ [ε∗2t Λ∗2
t−1(r)I

(∣∣ε∗tΛ∗
t−1(r)

∣∣ > η
√
n
)
|F∗

t−1

] p∗

−−−−→
n→∞ p

0, (60)

with Λ∗
t (r) := (λ1, . . . , λ2(p+1)) ·D∗

t (r), with λi, i = 1, . . . , 2(p + 1), being real
numbers. In order to prove Eq. (59) note that the independence between ε∗t and
X∗

t−j , j ≥ 1 implies that

1

n

n∑
t=1

E∗ [ε∗2t (D∗
t−1(r))(D

∗
t−1(r))

⊺|F∗
t−1

]
= E∗ [ε∗2t ] 1n

n∑
t=1

D∗
t−1(r)(D

∗
t−1(r))

⊺,

which converges in probability (in probability) to σ2I∞(r) uniformly on r by
Lemma 14 (Supplementary Material) and Proposition 7. As for Eq. (60) first
observe that, by using Jensen’s inequality and Proposition 5, n−1

∑n
t=1 Λ

∗2
t−1(r)

is bounded by

2(p+ 1)

n

n∑
t=1

[(
λ2
1 + λ2

p+2

)
+

p+1∑
i=2

(
λ2
i + λ2

i+p+1

)
X∗2

t−i+1

]
= Op∗(1), (61)

whereas n−1
∑n

t=1 Λ
∗4
t−1(r) is bounded by

8(p+ 1)3

n

n∑
t=1

[(
λ4
1 + λ4

p+2

)
+

p+1∑
i=2

(
λ4
i + λ4

i+p+1

)
X∗4

t−i+1

]
= Op∗(1). (62)

Now, since |xy| ≤ x2 + y2, it follows that

1

n

n∑
t=1

E∗ [ε∗2t Λ∗2
t−1(r)I

(∣∣ε∗tΛ∗
t−1(r)

∣∣ > η
√
n
)
|F∗

t−1

]
≤ 1

n

n∑
t=1

E∗ [ε∗2t Λ∗2
t−1(r)I

(
Λ∗2
t−1(r) > 2−1η

√
n
)
|F∗

t−1

]
+

1

n

n∑
t=1

E∗ [ε∗2t Λ∗2
t−1(r)I

(
ε∗2t > 2−1η

√
n
)
|F∗

t−1

]
≤ 2

η
√
n

{
1

n

n∑
t=1

Λ∗4
t−1(r)E

∗[ε∗2t ] +
1

n

n∑
t=1

Λ∗2
t−1(r)E

∗[ε∗4t ]

}
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which is op∗(1) by combining Eq. (61), Eq. (62) and Lemma 14 (Supplementary
Material).

As for the wild bootstrap case, by exploiting the same arguments of Propo-
sition 10 it can be shown that, for every i, j, d

sup
r∈[rL,rU ]

∣∣∣∣∣ 1n
n∑

t=1

ε2tX
∗
t−iI(X

∗
t−d ≤ r)− E[ε2tXt−iI(Xt−d ≤ r)]

∣∣∣∣∣ p∗

−−−−→
n→∞ p

0, (63)

and

sup
r∈[rL,rU ]

∣∣∣∣∣ 1n
n∑

t=1

ε2tX
∗
t−iX

∗
t−jI(X

∗
t−d ≤ r)− E[ε2tXt−iXt−jI(Xt−d ≤ r)]

∣∣∣∣∣ p∗

−−−−→
n→∞ p

0.

(64)
Hence, Eq. (59) holds for the wild bootstrap case, since

1

n

n∑
t=1

E∗ [ε∗2t (D∗
t−1(r))(D

∗
t−1(r))

⊺|F∗
t−1

]
=

1

n

n∑
t=1

ε̃2t (D
∗
t−1(r))(D

∗
t−1(r))

⊺

=
1

n

n∑
t=1

ε2t (D
∗
t−1(r))(D

∗
t−1(r))

⊺ + op(1)
p∗

−−−−→
n→∞ p

E
[
ε2tDt−1(r)D

⊺
t−1(r)

]
.

We now prove the following (unconditional) Lindeberg condition:

1

n

n∑
t=1

E∗ [ε∗2t Λ∗2
t−1(r)I

(∣∣ε∗tΛ∗
t−1(r)

∣∣ > η
√
n
)] p∗

−−−−→
n→∞ p

0. (65)

Routine algebra implies

1

n

n∑
t=1

E∗ [ε∗2t Λ∗2
t−1(r)I

(∣∣ε∗tΛ∗
t−1(r)

∣∣ > η
√
n
)]

≤ 1

n

n∑
t=1

E∗ [ε∗2t Λ∗2
t−1(r)I

(
Λ∗2
t−1(r) > 2−1η

√
n
)]

+
1

n

n∑
t=1

E∗ [ε∗2t Λ∗2
t−1(r)I

(
ε∗2t > 2−1η

√
n
)]

≤ 2

η
√
n
E∗

[
1

n

n∑
t=1

ε∗2t Λ∗4
t−1(r) +

1

n

n∑
t=1

ε∗4t Λ∗2
t−1(r)

]

which is also op∗(1), and this completes the proof.

A.6 Proof of Theorem 12

In view of Proposition 11 and Theorem 18.14, p. 261 of van der Vaart [1998],
it suffices to prove the stochastic equicontinuity of ∇∗

n(r) = −
∑n

t=1 ε
∗
tD

∗
t−1(r),
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where D∗
t−1(r) is defined in Eq. (22). The envelope of ε∗tD

∗
t−1(r) is L2 integrable

in probability:

1

n

n∑
t=1

E∗

[
sup

r∈[rL,rU ]

∥ε∗tx∗
t−1(r)∥2

]
=

1

n

n∑
t=1

E∗

[
sup

r∈[rL,rU ]

(ε∗tx
∗
t−1(r))

⊺(ε∗tx
∗
t−1(r))

]

=
1

n

n∑
t=1

E∗

 sup
r∈[rL,rU ]

ε∗2t

{
1 +

p∑
i=1

X∗2
t−i + I(X∗

t−d ≤ r) +

p∑
i=1

X∗2
t−iI(X

∗
t−d ≤ r)

}2


≤ 2

n

n∑
t=1

E∗

[
ε∗2t

{
1 +

p∑
i=1

X∗2
t−i

}]
= Op∗(1).

Define the norms:

ρ∗n(r1, r2) =

∥∥∥∥ 1√
n
(∇∗

n(r2)−∇∗
n(r1))

∥∥∥∥
2

and ρ(r1, r2) = ∥εtDt−1(r2)− εtDt−1(r1)∥2 ,

where, in analogy with Eq. (22), Dt(r) is the first-order derivative of the function
εt(η, r) defined in Eq. (3), i.e.:

Dt(r) = (−1,−Xt, . . . ,−Xt−p+1,

−I(Xt−d+1 ≤ r),−XtI(Xt−d+1 ≤ r), . . . ,−Xt−p+1I(Xt−d+1 ≤ r))
⊺
.

It holds that

ρ∗2n (r1, r2) = E∗
∥∥∥∥ 1√

n

(
∂ℓ∗

∂η
(r2)−

∂ℓ∗

∂η
(r1)

)∥∥∥∥2
= E∗

[
1

n

n∑
t=1

ε∗2t

(
I(r1 < X∗

t−d ≤ r2) +

p∑
i=1

X∗2
t−iI(r1 < X∗

t−d ≤ r2)

)]
.

Proposition 10 implies that ρ∗n(r1, r2) converges uniformly to{
E
[
ε2t I(r1 < Xt−d ≤ r2)

]
+

p∑
i=1

E[ε2tX
2
t−iI(r1 < Xt−d ≤ r2)]

}
= ρ2(r1, r2).

Thence the same argument of Theorem 2 of Hansen [1996] holds, and this com-
pletes the proof.
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larvae population dynamics under the effect of warming.

Abstract

This Supplement has 2 sections. In Section A we present auxiliary
technical lemmas used in the proofs. Section B contains supplementary
results from the simulation study. Section C presents supplementary re-
sults on the analysis of the Greenland ice sheet mass balance.

A Auxiliary Lemmas

Lemma 13. Let {X∗
t , t = 1, . . . , n} be defined in Eq. (16) and assume b1(c) and

b2(c) to be two continuous functions in c such that

lim
c→0

b1(c) = lim
c→0

b2(c) = C,

with C being a real number. Then, for each γ > 0 we can choose c sufficiently
small such that

P ∗(b1(c) ≤ X∗
t ≤ b2(c)) ≤

1

n
+ γ (66)

with probability one.

Proof. From the definition of limit, for each γ > 0 we can choose c sufficiently
small such that

P ∗(b1(c) ≤ X∗
t ≤ b2(c)) ≤ P ∗(X∗

t = C) + γ;

hence it remains to show that P ∗(X∗
t = C) ≤ 1/n in probability. Define A∗

t to
be the set of values that X∗

t can assume conditionally to the data. By using the

1



fact that: (i) for any real number κ ∈ R, P ∗(ε∗t = κ) ≤ 1/n with probability
one and (ii)

∑
a∈A∗

s
P ∗(X∗

s = a) = 1, for any integer s, it holds that

P ∗(X∗
t = C) =

∑
a∈A∗

t−1

P ∗(X∗
t = C|X∗

t−1 = a)P ∗(X∗
t−1 = a)

=
∑

a∈A∗
t−1

P ∗(ε∗t = C− ϕ̃0 − ϕ̃1a)P
∗(X∗

t−1 = a)

≤ 1

n

∑
a∈A∗

t−1

P ∗(X∗
t−1 = a) =

1

n

and the proof is completed.

Lemma 14. (LLN) Assume that Assumption 4 holds and the following condi-
tion is satisfied:

(i) {ε∗t } is defined as in (B.iid) and Assumption (A.iid) is fulfilled;

It holds that:
E∗[ε∗2t ]

p−−−−→
n→∞

σ2 and E∗[ε∗4t ]
p−−−−→

n→∞
κ.

Proof. Since

ε̃t = (ϕ0,0 − ϕ̃0) +

p∑
i=1

(ϕi,0 − ϕ̃i)Xt−i + εt

and (ϕ̃− ϕ0) = Op(n
−1/2), it follows that

¯̃ε :=
1

n

n∑
t=1

ε̃t =
1

n

n∑
t=1

[
(ϕ0,0 − ϕ̃0) +

p∑
i=1

(ϕi,0 − ϕ̃i)Xt−i + εt

]

converges in probability to zero. Similarly, by routine algebra, it is possible to

show that E∗[ε∗2t ] = 1
n

∑n
t=1 (ε̃t − ¯̃ε)

2
and E∗[ε∗4t ] = 1

n

∑n
t=1 (ε̃t − ¯̃ε)

4
converge

in probability to σ2 and κ respectively.

B Supplementary Monte Carlo results

In Section B.1 we study the size of the tests when the DGP is close to non-
stationarity, whereas Section B.2 contains additional results on the power of the
tests, covering the case of unit root regimes and white noise regimes.

B.1 Near non-stationarity and heteroskedasticity

We study the size of the tests when the DGP is near to non-stationarity. We
simulate from the AR(1)-GARCH(1,1) of Eq. 67
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Xt = ϕ1Xt−1 + εt

εt = σtzt (67)

σ2
t = 1 + a1ε

2
t−1 + b1σ

2
t−1

where zt ∼ i.i.d.N(0, 1). We choose ϕ1 = ±0.95,±0.99 and combine these with
the following parameters for the GARCH specification: (a1, b1) = (0.00, 0.00)
(case N), (a1, b1) = (0.04, 0.95) (case A), (0.3, 0.0) (case B), (0.4, 0.4) (case C).
The empirical size (rejection percentages) is presented in Tables 1, 2 and 3 for
n = 50, 100, 200, respectively. The four tests appear well behaved and the nearly
non-stationary DGP has negligible influence. Indeed, the results are consistent
with those of Figure 1 and Figure 3 of the main article: in case of GARCH
innovations the wild bootstrap test sLMw has a correct size for small n whereas
both sLMa and sLMi tests are oversized and the bias increases with sample size.
Hansen’s sLMh test is undersized and approaches the nominal size from below
as the sample size increases.

ϕ1 a1 b1 sLMa sLMi sLMw sLMh

N -0.99 0.00 0.00 5.3 5.6 5.8 1.9
-0.95 0.00 0.00 3.9 5.0 4.9 2.2
0.95 0.00 0.00 3.3 5.6 5.5 1.8
0.99 0.00 0.00 3.8 6.1 5.9 1.8

A -0.99 0.04 0.95 5.2 5.6 5.4 1.8
-0.95 0.04 0.95 3.8 4.7 4.8 2.0
0.95 0.04 0.95 3.4 5.7 5.6 2.0
0.99 0.04 0.95 3.7 5.9 5.9 1.8

B -0.99 0.30 0.00 6.5 6.7 5.3 1.5
-0.95 0.30 0.00 5.3 6.6 5.4 2.2
0.95 0.30 0.00 5.3 8.2 6.1 1.9
0.99 0.30 0.00 6.6 9.2 7.2 2.1

C -0.99 0.40 0.40 9.4 9.2 6.4 1.7
-0.95 0.40 0.40 6.5 7.8 5.8 2.4
0.95 0.40 0.40 6.8 10.0 7.1 2.1
0.99 0.40 0.40 9.5 12.3 8.4 2.2

Table 1: Empirical size (in percentage) for a nearly-non stationary AR(1) with
GARCH innovations at nominal level α = 5%. n =50

3



ϕ1 a1 b1 sLMa sLMi sLMw sLMh

N -0.99 0.00 0.00 6.3 5.2 5.3 3.4
-0.95 0.00 0.00 4.8 5.0 4.9 3.7
0.95 0.00 0.00 4.1 5.1 5.0 3.1
0.99 0.00 0.00 5.5 6.0 5.9 3.1

A -0.99 0.04 0.95 6.9 5.7 5.2 3.5
-0.95 0.04 0.95 4.7 5.0 4.8 3.6
0.95 0.04 0.95 4.6 5.4 5.3 3.2
0.99 0.04 0.95 5.6 6.2 5.9 3.3

B -0.99 0.30 0.00 8.0 6.7 5.4 3.5
-0.95 0.30 0.00 5.8 6.0 4.9 3.5
0.95 0.30 0.00 6.6 7.8 5.7 3.5
0.99 0.30 0.00 8.9 9.3 6.8 3.8

C -0.99 0.40 0.40 11.0 8.8 5.6 3.2
-0.95 0.40 0.40 7.9 8.0 5.1 4.1
0.95 0.40 0.40 8.8 10.2 6.2 3.6
0.99 0.40 0.40 12.2 12.7 7.7 3.8

Table 2: Empirical size (in percentage) for a nearly-non stationary AR(1) with
GARCH innovations at nominal level α = 5%. n =100

ϕ1 a1 b1 sLMa sLMi sLMw sLMh

N -0.99 0.00 0.00 6.9 4.8 4.9 4.6
-0.95 0.00 0.00 5.6 5.2 5.2 4.6
0.95 0.00 0.00 5.4 5.2 5.3 4.4
0.99 0.00 0.00 6.6 5.7 5.8 4.4

A -0.99 0.04 0.95 7.3 5.4 4.9 4.6
-0.95 0.04 0.95 5.9 5.4 5.2 4.9
0.95 0.04 0.95 5.9 5.8 5.4 4.3
0.99 0.04 0.95 7.4 6.5 5.8 4.9

B -0.99 0.30 0.00 8.2 6.3 5.2 4.7
-0.95 0.30 0.00 6.7 6.4 5.1 4.6
0.95 0.30 0.00 7.1 6.9 5.1 4.5
0.99 0.30 0.00 8.4 7.4 5.4 4.6

C -0.99 0.40 0.40 11.3 8.8 5.1 4.4
-0.95 0.40 0.40 9.5 9.2 4.8 4.6
0.95 0.40 0.40 10.0 10.1 5.4 4.3
0.99 0.40 0.40 13.1 12.0 6.6 5.1

Table 3: Empirical size (in percentage) for a nearly-non stationary AR(1) with
GARCH innovations at nominal level α = 5%. n =200
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B.2 Power of the tests: further results

In this section we present further results regarding the empirical power of the
tests, also covering the cases of unit root regimes and white noise regimes. We
include 4 additional models (M3–M6), which are combined with the vector Ψ
as to obtain the 16 combinations of parameters presented in Table 4. As before,
for each of the models M3–M6, the parameters of the lower regime deviate
from those of the upper regime due to |Ψ|, which represents the distance from
H0. Hence, the first rows correspond to the null hypothesis (Ψ = 0.0). The
16 parameters are meant to explore the range of dynamic features of threshold
models and all of them lie in the stationarity region: in model M3, (M4) the
null hypothesis entails a very weak positive (negative) linear dependence, i.e.
ϕ1,1 = ϕ2,1 = 0.1 (−0.1) and approaches a unit root in the lower regime, i.e.
ϕ1,1 = 1 (−1) as |Ψ| increases. Conversely, model M5 (M6) specifies a quasi-
unit root in H0, i.e. ϕ1,1 = ϕ2,1 = 0.9 (−0.9) and becomes a local white noise
(ϕ1,1 = 0) for |Ψ| = 0.9. The results for models M3 and M4 are shown in
Table 5, whereas those for models M5, M6 are presented in Table 6. As a

lower upper

Ψ ϕ1,0 ϕ1,1 ϕ2,0 ϕ2,1

M3 0.0 -0.3 0.1 -0.3 0.1
0.3 0.0 0.4 -0.3 0.1
0.6 0.3 0.7 -0.3 0.1
0.9 0.6 1.0 -0.3 0.1

M4 0.0 0.3 -0.1 0.3 -0.1
-0.3 0.0 -0.4 0.3 -0.1
-0.6 -0.3 -0.7 0.3 -0.1
-0.9 -0.6 -1.0 0.3 -0.1

M5 0.0 -0.5 0.9 -0.5 0.9
-0.3 -0.8 0.6 -0.5 0.9
-0.6 -1.1 0.3 -0.5 0.9
-0.9 -1.4 0.0 -0.5 0.9

M6 0.0 0.5 -0.9 0.5 -0.9
0.3 0.8 -0.6 0.5 -0.9
0.6 1.1 -0.3 0.5 -0.9
0.9 1.4 0.0 0.5 -0.9

Table 4: 16 combinations of TAR parameters used in the simulations. Ψ indi-
cates the departure from H0 so that, for each of the models M3–M6, the first
row (Ψ = 0) corresponds to the null hypothesis.

general comment to both tables: the results confirm that both the asymptotic
test sLMa and Hansen’s test sLMh are undersized for sample sizes n = 50, 100
and this is associated to their inferior power. The bootstrap tests sLMi and
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sLMw have correct size also for small sample sizes. Moreover, all the tests seem
to have power as |Ψ| increases, irrespective of the presence of either a local unit-
root or a local white noise under H1. Specifically, all the tests present higher
power for M3 and M6 than for M4 and M5, respectively and this indicates that
the power of the tests depends non trivially upon the combination of the slopes
and intercepts of the two regimes.

M3 M4

n Ψ sLMa sLMi sLMw sLMh Ψ sLMa sLMi sLMw sLMh

50 0.0 2.9 4.8 4.9 2.9 0.0 2.8 4.3 4.6 2.6

0.3 6.0 9.1 9.2 6.2 -0.3 5.1 7.6 7.4 4.5

0.6 19.0 25.6 25.9 19.3 -0.6 13.9 18.4 17.2 10.7

0.9 47.6 56.4 56.3 46.8 -0.9 33.6 39.7 38.0 26.3

100 0.0 3.9 4.8 4.9 4.0 0.0 4.1 4.7 5.0 4.0

0.3 12.8 15.5 15.4 13.1 -0.3 9.0 10.5 10.3 8.8

0.6 51.1 55.2 54.7 51.1 -0.6 35.2 38.2 36.8 32.2

0.9 90.0 91.6 91.4 89.7 -0.9 73.0 75.4 73.6 67.6

200 0.0 4.6 4.8 4.9 4.6 0.0 4.7 4.8 5.0 4.6

0.3 28.1 28.7 28.7 27.7 -0.3 18.7 18.9 18.6 17.4

0.6 88.6 88.7 88.6 87.9 -0.6 70.1 70.4 69.3 67.3

0.9 99.9 99.9 99.9 99.9 -0.9 98.2 98.2 98.1 97.4

Table 5: Empirical power (in percentage) for models M3 and M4, at nominal
level α = 5%.

C Supplementary results from the real applica-
tion: the Greenland ice sheet mass balance

Figure 10 shows the global and partial correlograms up to lag 32 for the residuals
(upper row) and for the squared residuals (lower row) of the TARMA model
of Eq. (36). The confidence bands at level 99% under the null hypothesis of
no-correlation are reported as blue dashed lines.
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M5 M6

n Ψ sLMa sLMi sLMw sLMh Ψ sLMa sLMi sLMw sLMh

50 0.0 2.8 5.0 5.1 1.8 0.0 3.2 4.8 4.8 2.4

-0.3 2.8 5.1 5.2 2.9 0.3 10.5 13.6 13.4 7.6

-0.6 8.6 13.6 13.7 9.0 0.6 29.6 35.6 35.2 22.2

-0.9 27.0 34.4 33.8 25.9 0.9 59.5 65.9 64.9 47.6

100 0.0 4.2 5.4 5.4 3.5 0.0 4.0 4.6 4.7 3.8

-0.3 6.2 8.1 8.1 6.8 0.3 22.8 24.9 25.0 20.1

-0.6 28.6 32.4 32.5 29.5 0.6 66.1 68.9 68.3 60.4

-0.9 68.5 71.3 71.0 67.7 0.9 93.9 94.6 94.4 90.4

200 0.0 4.8 5.0 5.0 4.6 0.0 5.2 5.1 5.1 4.9

-0.3 15.6 16.5 16.3 15.8 0.3 46.4 46.5 46.6 43.5

-0.6 63.3 64.6 64.2 62.9 0.6 95.4 95.4 95.3 93.8

-0.9 95.8 95.8 95.8 95.4 0.9 100.0 100.0 100.0 99.9

Table 6: Empirical power (in percentage) for models M3 and M4, at nominal
level α = 5%.
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Figure 10: Correlograms of the residuals and squared residuals of the TARMA
model of Eq. (36). Autocorrelation function (left) and partial autocorrelation
function (right). The blue dashed lines indicate the rejection bands at 99% level.
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Figure 11 reports the entropy based metric of serial dependence [Giannerini
et al., 2015] up to lag 32 for the same residuals. The green and blue dashed lines
indicate the confidence bands at levels 99% and 99.5% under the null hypothesis
of serial independence. Figure 11 reports the histogram of the standardised
residuals and the p-value of the Shapiro-Wilk test for normality. A standard
Gaussian density is superimposed as a blue line.
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Figure 11: Entropy measure of serial dependence Sρ(k) computed on the residu-
als of the TARMA model of Eq. (36). The green and blue dashed lines indicate
the rejection bands at levels 99% and 99.5%.
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8



References

D.W.K. Andrews. Tests for parameter instability and structural change with
unknown change point. Econometrica, 61(4):821–856, 1993. ISSN 00129682,
14680262. URL http://www.jstor.org/stable/2951764.

D.W.K. Andrews. Tests for parameter instability and structural change with
unknown change point: A corrigendum. Econometrica, 71(1):395–397, 2003.
doi: 10.1111/1468-0262.00405.
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J.H.E. Cartwright, D.L. González, and O. Piro. Universality in three-frequency
resonances. Phys. Rev. E, 59:2902–2906, Mar 1999. doi: 10.1103/PhysRevE.
59.2902. URL https://link.aps.org/doi/10.1103/PhysRevE.59.2902.
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