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There is experimental evidence that the brain systems involved in action

execution also play a role in action observation and understanding. Recently, it

has been suggested that the sensorimotor system is also involved in language

processing. Supporting results are slower response times and weaker motor-

related MEG Beta band power suppression in semantic decision tasks on

single action verbs labels when the stimulus and the motor response involve

the same effector. Attenuated power suppression indicates decreased cortical

excitability and consequent decreased readiness to act. The embodied

approach forwards that the simultaneous involvement of the sensorimotor

system in the processing of the linguistic content and in the planning of

the response determines this language-motor interference effect. Here, in

a combined behavioral and MEG study we investigated to what extent the

processing of actions visually presented (i.e., pictures of actions) and verbally

described (i.e., verbs in written words) share common neural mechanisms.

The findings demonstrated that, whether an action is experienced visually

or verbally, its processing engages the sensorimotor system in a comparable

way. These results provide further support to the embodied view of semantic

processing, suggesting that this process is independent from the modality of

presentation of the stimulus, including language.

KEYWORDS

semantics, embodiment, language processing, motor responses, beta rhythm, MEG
(magnetoencephalography), sensorimotor system

Introduction

Accumulating evidence suggests that during action perception the same neural
structures necessary for the execution of that action are recruited (Jeannerod et al.,
1995; Rizzolatti et al., 1998; Fogassi et al., 2001; Rizzolatti and Matelli, 2003; Buccino
et al., 2004; Binkofski and Buccino, 2006; Hardwick et al., 2018; Borra and Luppino,
2019). A matching mechanism in which the visual processing of an action activates a
corresponding motor representation has been forwarded, namely action re-enactment, in
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order to attribute meaning and decoding others’ behavior
(Gallese et al., 1996; Rizzolatti and Craighero, 2004; Rizzolatti
and Fogassi, 2014). At a neuronal level, this matching
mechanism has its counterpart in the presence of the so-called
mirror neurons (Di Pellegrino et al., 1992). In the monkey, these
neurons were recorded in the ventral premotor area F5 and in
the inferior parietal area PFG, and constitute a fronto-parietal
network devoted to planning actions and understanding others’
motor acts (Rizzolatti and Fogassi, 2014).

In humans, the neural structures implicated in the execution
and understanding of observed actions also appear involved in
the understanding and processing of action-related language
(Vigliocco et al., 2011; Marino et al., 2014; Borghi and
Riggio, 2015; Buccino et al., 2016, 2018; García and Ibáñez,
2016; Sakreida et al., 2016; Zhang et al., 2016; Horoufchin
et al., 2018; Garofalo et al., 2022; Visani et al., 2022). In
this respect, accumulating empirical evidence suggested that
the sensorimotor and even emotional systems involved in
experiencing the content expressed by verbal material are
causally involved in understanding the content of that linguistic
stuff (Pulvermüller, 2002, 2010; Barsalou, 2008; Fischer and
Zwaan, 2008; Gallese, 2008; Jirak et al., 2010; Buccino et al.,
2016).

In addition, there is evidence that depending on the effector
typically used in the expressed action, language that describes
that action recruits the sector of the motor system where the
effector is motorically represented (Hauk et al., 2004; Tettamanti
et al., 2005; Aziz-Zadeh et al., 2006; Baumgaertner et al., 2007;
Kemmerer et al., 2008; de Vega et al., 2014). In keeping with
this, studies using neurophysiological techniques demonstrated
that when processing verbs connected to concrete actions, the
motor system is recruited quite early, just 150–170 ms after
verbal stimuli are presented auditorily or visually (Pulvermüller
et al., 2001; Pulvermüller and Shtyrov, 2005; Pulvermüller et al.,
2005). The behavioral counterpart of this early activation is an
interference effect. In detail, when participants are required to
solve a hand-related semantic task and to give a motor response
with the same effector, there is a slowing down of reaction
times (Buccino et al., 2005; Boulenger et al., 2006; Sato et al.,
2008; Dalla Volta et al., 2009; de Vega et al., 2013, 2014). This
interference effect has been explained in terms of competition of
neuronal resources (Buccino et al., 2005; de Vega et al., 2013).
Specifically, in this context, the motor system is simultaneously
processing the meaning of the action as well as preparing the
motor response needed to complete the task, leading to a cost
for the motor system that will be less prompt to give the motor
output. In support of this interpretation, Transcranial Magnetic
Stimulation (TMS) studies showed a decrease in Motor-Evoked
Potentials (MEPs) during verb listening (Buccino et al., 2005).
Furthermore, a weaker suppression of Beta band oscillations
was found when motor responses are given with the same
body part normally used to perform the action expressed by
the verb (Klepp et al., 2015; Visani et al., 2022). Beta band

oscillations are the main rhythm deriving from the motor cortex,
and it is characterized by a pattern of suppression and rebound
during movement (Pfurtscheller and Lopes da Silva, 1999). Beta
suppression, or event-related desynchronization (ERD), starts
several 100 ms before the start of the movement (both when
the movement is internally or externally triggered) and becomes
maximal around the time of movement. Hence, due to these
features, the ERD is frequently used to investigate the brain
correlates of action-related processes, such as action observation
(Hari and Kujala, 2009; Moreno and de Vega, 2013), motor
imagery (Schnitzler et al., 1997; de Lange and Roelofs, 2008;
Brinkman et al., 2014), and the processing of action-related
language (Weiss and Mueller, 2012; Klepp et al., 2015; Visani
et al., 2022). In general terms, a weaker suppression (minor
decrease of ERD) of Beta rhythm indicates that the motor system
is less ready for generating a motor output, while an increased
suppression (greater decrease of ERD) indicates that the motor
system is more ready to generate a motor response.

A still open question is related to the degree of overlap
among action execution, understanding of actions visually
presented, and understanding of actions verbally described. In
a very recent behavioral study of our group (Garofalo et al.,
2022), the interference effect was found during the processing
of visually presented actions (i.e., pictures depicting hand- and
foot-related actions) and actions verbally described (i.e., verbs
expressing hand- and foot-related actions). The results of a
go/no-go task revealed that when hand actions and hand-related
verbs were presented, hand motor responses were slower than
when foot actions and foot-related-verbs were presented. We
hypothesized that the same semantic mechanisms underlie the
understanding of observed actions and verbs.

The aim of the current study was to investigate the
neurophysiological underpinnings of the interference effect
using oscillatory Magnetoencephalography (MEG) analysis to
study Beta band power suppression. The MEG signals were
recorded while the participants carried out the same go/no-
go task used in a previous study (Garofalo et al., 2022). We
expected a replica of the behavioral results and, according to
the hypothesis of competition of neuronal resources (Buccino
et al., 2005; de Vega et al., 2013), a weaker ERD in both visual
and verbal presentation of hand-related actions and verbs as
compared to foot-related actions and verbs.

Materials and methods

Participants

Fifteen volunteers (eight females, age = 26.8 ± 5.1 years)
were recruited for the experiment. All participants were
adult (>18 years), right-handed, according to the Edinburgh
Handedness Inventory (Oldfield, 1971), had a normal or
corrected-to-normal vision, and were native Italian speakers.
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Exclusion criteria were formal education in linguistics, the
presence of neurological or psychiatric disorders, and the
current use of drugs affecting the central nervous system. The
experiment was carried out in accordance with the ethical
standards laid down in the 1964 Declaration of Helsinki and its
later amendments. The experiment was approved by the local
Ethical Committee (approval number: 47/2012; date of approval:
November 2012). Participants gave their written informed
consent before being included in the study.

Task

Participants in the experiment were required to perform
a go/no-go task in which they had to respond to words and
pictures that represented actions involving either hands or feet,
and to refrain from responding when presented stimuli were
pseudowords (i.e., built by substituting one consonant and one
vowel in two distinct syllables of each verb) or scrambled images
(see also, Garofalo et al., 2022), during MEG signals acquisition.
Participants had to respond with a flexion of the hand and
reaction times (RTs) were collected. Each trial started with a
black fixation cross displayed at the center of a gray background.
After a random delay ranging from 1,000 to 1,500 ms (in order
to avoid response habituation), the fixation cross was replaced by
a stimulus item, either a hand or foot verb, or pseudoverbs, or a
hand or foot image, or a scrambled image. Stimuli were centrally
displayed and surrounded by a red frame. The red frame
changed to green 150 ms after the stimulus onset. The “go” signal
for the response was the change in the frame color. Participants
were instructed to give the motor response (hand flexion). After
the go signal, stimuli remained visible for 1,350 ms or until
participants’ responses (see Figure 1). The experimental task
was divided into two sessions, and each part included 48 go
trials (12 hand action images, 12 foot action images, 12 hand
action verbs, 12 foot action verbs) and 48 no-go trials (12 hand
and 12 foot action pseudo-verbs, 12 hand and 12 foot action
scrambled images). The stimuli selection procedure as well as
their description are illustrated in previous articles of our group
(Garofalo et al., 2022; Visani et al., 2022). Stimuli were randomly
presented. No feedback was given to participants. Stimuli were
delivered using the software package Stim2. Before starting the
acquisition, participants underwent a short training session.

MEG acquisition and pre-processing

A 306-channel whole head MEG system (Triux, MEGIN,
Helsinki, Finland) was used to collect the MEG signals. Pairs
of electrodes positioned bilaterally 2–3 cm apart over the belly
of the right and left flexor and extensor of the wrist were
used to simultaneously record surface EMG signals. Signals
were sampled at 1 kHz. Moreover, bipolar electro-oculographic

(EOG) and electrocardiographic signals (ECG) were acquired.
Five head position identification (HPI) coils on the participant’s
scalp continuously monitored the participant’s head position
inside the MEG helmet. A 3D digitizer (FASTRAK, Polhemus,
Colchester, VT, USA) was used to digitally capture the locations
of these coils, three anatomical landmarks (the nasion, right
and left preauriculars), and additional scalp points before the
recording.

In order to remove external interference and correct for head
motions, the raw MEG data were first pre-processed off-line
using the spatio-temporal signal-space separation approach
(Taulu and Simola, 2006) implemented in the Maxfilter 2.2
(MEGIN, Helsinki, Finland). The data were then band-pass
filtered at 0.1–100 Hz. Cardiac and ocular movement artifacts
were removed using ICA algorithm based on EEGLAB toolbox
(Delorme and Makeig, 2004) implemented in a custom-made
MATLAB code (R2021a, Mathworks Inc., Natick, MA, USA),
using ECG and EOG as reference. MEG data were divided
into epochs ranging from 1 s before to 3 s after the stimulus
onset. Epochs with continuous muscular contraction identified
on EMG signal and/or sensor jumps were excluded from
further analysis. Finally, data epochs were grouped according to
the experimental conditions: hand-related images, hand-related
verbs, foot-related images, foot-related verbs. Movement onset
was determined by manually tagging the onset of the EMG burst
identified as the time point in which the EMG signal exceeded
30% of the maximal voluntary contraction.

MEG data analysis

Cortical source activations and time-series were estimated
using Brainstorm software (Hari et al., 1998). A template
brain MRI (MNI/ICBM152, 56), co-registered on MEG data
by means of digitized scalp points, was used to generate a
realistically shaped single-shell model as volume conductor
(BEM model as implemented in OpenMEEG, 57) and ∼15,000
dipoles distributed on the brain cortex were defined as source
model. The dynamic statistical parametric mapping (dSPM)
method (Nishitani, 2000) was employed for the estimation
of brain activity at the source level. The noise covariance
matrix was calculated using pre-stimulus baseline period data
(−1,000–0 ms).

As the inferences were made at the group level, individual
source maps were spatially smoothed with a Gaussian kernel
with a Full-Width Half Maximum of 3 mm and were averaged
for all conditions. Brain sources were grouped according to
Destrieux’s atlas (Strafella, 2000) for further analysis.

To explore the language-motor interference effect, we chose
the post-stimulus range of 150–350 ms as the period of interest.
We selected this period since it has been proposed that concrete
linguistic materials are semantically processed in the motor
and premotor cortices within 150–170 ms after the stimulus
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onset (Pulvermüller et al., 2001; Pulvermüller and Shtyrov,
2005; Pulvermüller et al., 2005). Following the experimental
hypothesis that understanding semantic of actions recruit brain
regions also involved in the execution of those same actions,
we selected as the region of interest (ROI) the precentral gyrus
(preCG), within the period of interest for all conditions.

The source time series corresponding to each epoch
(−2–2.5 s) was extracted from all vertices belonging to the
ROI and PCA was used to obtain a single time series for
each condition for all the successive comparisons (virtual
channel). We used PCA to find the most representative signal
in the activated areas since the selected ROI was quite large.
Time–frequency representations of virtual channel epochs were
computed across frequencies from 1 to 30 Hz (in 1 Hz steps)
and time from −2 to 2.5 s (in 0.1 s steps) with a fixed frequency
smoothing of 4 Hz by means of multitapers approach. The
relative power change course band as compared to the mean
of the baseline period was calculated for each epoch and each
frequency in the β band (13–30 Hz) by applying the formula
[(Epoch(t) − Baseline)/Baseline], where t indicates the time
point, then averaged across frequencies and finally averaged for
each condition separately. Finally, the Area under Curve (AuC)
in the period of interest (150–350 ms) was calculated. Analyses
were performed by means of custom Matlab (MATLAB 2021a,
MathWorks, Inc., Natick, MA, USA) using functions from the
Fieldtrip toolbox (Glenberg and Kaschak, 2002).

Statistical analysis

RTs and AuC of Beta rhythm were first checked for normality
using the Shapiro-Wilk test. Both RTs and AuC of Beta rhythm
were compared using repeated measures ANOVA (rmANOVA)
with Effector (hand, foot) and Stimulus type (images, verbs) as
within participants factors. Post-hoc test for stimulus type was
performed by means of paired t-tests. The significance level
was set to 0.05, and values are expressed as mean ± standard
deviation.

Results

Reaction times

Two participants were excluded from the analysis due to
technical problems with MEG signals (presence of sensors’
jumps or epochs with artifacts). The remaining participants
performed well, and the overall mean error rate was 2.4%. In
particular, the errors of commission (response to a scrambled
image or pseudo-verb) were 1.8%, while the errors of omission
(non-response to words and pictures depicting hand- or
foot-related action) were only 0.5%. Given that the maximum
error of omission was one for six subjects (one foot picture, two

foot verbs, one hand picture and two hand verbs), all correct
answers were analyzed. Shapiro-Wilk test indicates that data
were normally distributed (see Table 1). rmANOVA showed
main effects of Effector (F(1,12) = 24.52, p < 0.001) and Stimulus
type (F(1,12) = 8.89, p = 0.011). Inspection of RTs revealed that
participants gave slower responses to hand-related actions as
compared to foot-related actions, regardless of the presentation
modality (images or words). Furthermore, responses to visually
presented actions were faster than responses to verbs (see
Table 1).

MEG data

We extracted and analyzed ROI from the pre CG, including
the premotor and motor cortex (see Figure 2A). In Figure 2B the
time frequency representation of the virtual channel obtained
from the ROI for each condition is shown. Shapiro-Wilk
test indicates that all AuC values were normally distributed.
rmANOVA showed main effect of Effector (F(1, 12) = 9.169,
p = 0.011). In general, the AuC was greater for the foot-related
action stimuli as compared to hand-related action ones (Foot-
related verbs: −0.57 ± 0.51; Hand-related verbs: −0.10 ± 0.77;
Foot-related images: −0.45 ± 0.53; Hand-related images
−0.10 ± 0.64). The paired t-tests confirmed the greater AuC
for Foot-related stimuli in comparison to Hand-related stimuli,
regardless of the presentation modalities [Verbs: t(12) = −2.31,
p = 0.039); Images (t(12) = −2.47, p = 0.030) in pre CG (see
Figure 2C)]. For the activation of areas different from pre CG
see Supplementary Materials.

Discussion

The results of the present study showed a slowing down of
hand responses to pictures showing hand-related actions, and to
hand-related verbs, as compared to pictures and verbs describing
foot-related actions, thus confirming the results of a previous
behavioral study of our group (Garofalo et al., 2022). In addition,
the analysis of the MEG signals provided the neurophysiological
correlates of this effect by showing a modulation of Beta rhythm
within the pre-central gyrus, coherent with the behavioral
results.

Beta rhythm, as revealed by MEG, had a weaker decrease
during the processing of hand-related actions, whatever the
modality of presentation, as compared to foot-related actions.
The so-called ERD, elicited by suppression of Beta rhythm,
recorded in pre CG, occurs when motor areas are involved in
the actual execution of an action or, to a less degree, when
people watch or imagine performing an action (Hari et al.,
1998). Our results are in keeping with pivotal studies, showing
that this ERD also occurs, although to a less degree, not
only during the observation of hand actions but also during
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the processing of hand-related verbs (Klepp et al., 2015). The
presence of ERD for both visually and verbally presented stimuli
supports the notion that the same mechanisms and neural
structures are working when participants had to give meaning
to actions (i.e., semantic processing), whatever the modality of
presentation. These findings imply that the brain areas involved
in the execution of actions are also recruited during the semantic
processing of those actions. Hence, they support further the
embodied approach to language processing, showing that the
re-enactment of motor structures where actions are represented
are crucial to attribute meanings to action words.

One could argue that these findings go counter to some
important research that showed facilitation of motor activity
during action observation (Fadiga et al., 1995; Cochin, 1999;
Nishitani, 2000; Strafella, 2000). When actions are expressed
by verbal labels (i.e., verbs), it has been forwarded that a
double-stage processing occurs. The first stage occurs very
early after stimulus presentation, and it seems to be crucial for
understanding. This early processing results from a behavioral
point of view in the slowing down of motor responses (Buccino
et al., 2005; Boulenger et al., 2006; Sato et al., 2008; Dalla Volta
et al., 2009; de Vega et al., 2013; Marino et al., 2014) and from
a neurophysiological point of view in a reduction of MEPs
amplitude (as revealed by TMS), and a weaker decrease of ERD
as showed by MEG (Buccino et al., 2005; Klepp et al., 2015). The
second stage is late and occurs when semantic processing has
already been completed. In this situation, participants give faster
responses (for example action-sentence compatibility effect,
ACE; see Del Maschio et al., 2021) or show facilitation of
different neurophysiological parameters elicited with different
neurophysiological techniques (Watkins and Strafella, 2003;
Chersi et al., 2010; de Vega et al., 2013; Klepp et al., 2017,
2019). Considering that, as revealed also by the present results,
a substantial motor equivalence exists between observed actions
and verbally described actions (Buccino et al., 2016; Hardwick
et al., 2018; Garofalo et al., 2022), one may argue that the time
course of motor activity during action observation overlaps the
one found during the processing of verbally described actions.
In detail, when participants engage in a hand motor response,
as in our task, during the processing of a seen hand movement,
there may be a cost at an early stage. However, when the
motor task is completed after the observed action has been
fully comprehended, there may be action facilitation. Note that
for abstract actions, there may still be a substantial equivalence
between sensorimotor experience and verbal description of
actions, if it is assumed that they are different from concrete ones
because they are anchored in more sophisticated sensory, motor,
and emotional experiences than concrete actions (Buccino et al.,
2019; Del Maschio et al., 2021) rather than because they
are disentangled from experiences or learned through social
interactions (Borghi et al., 2013). The complexity of abstract
concepts can be defined by the number of biological effectors
that can be involved in an abstract action; in the recruitment
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FIGURE 1

Experimental procedure. Participants were asked to fixate on the center of the screen placed in front of them. Each trial started with the
presentation of the stimulus surrounded by a red frame. The stimulus could be either a hand or foot verb, a hand or foot action image, and
a pseudoverb or a scrambled image. After 150 ms the frame turned green, and the participants were allowed to respond. Participants were
instructed to respond only to words and pictures depicting hand- or foot-related actions. The trial ended when participants provided their
responses or after 1,350 ms if no response was given. Stimuli examples: hand action verb (A), hand action image (B), pseudoverb (C), scrambled
image (D).

of different systems (sensory, motor, and emotional); and in the
dynamic changes that an abstract action can undergo over time
and across cultures, and hence in the different neural substrates
subserving those dynamic changes (Buccino et al., 2019).

It is worth stressing that similar recruitment of the motor
system may also occur during the processing of visually
presented graspable objects and their corresponding nouns
(Shinkareva et al., 2011; Gough et al., 2012; Devereux et al., 2013;
Marino et al., 2013, 2014; Visani et al., 2022). Also for graspable
objects, the neural structures where their motor properties
are represented are also re-enacted during the processing of
corresponding verbal labels, further supporting the notion of
shared semantics.

Despite the fact that there are no single neuron studies
supporting the presence of mirror neurons in the humans’
pre-motor and parietal cortices, it is most likely that attributing
meaning to verbs has its neuronal counterpart in these neurons
(Kemmerer and Gonzalez-Castillo, 2010; Buccino et al., 2016).

In a similar vein, one may argue that nouns may have their
neuronal counterpart in canonical neurons (Marino et al.,
2014; Horoufchin et al., 2018). These neurons, in the monkey,
discharge during the grasping of objects and also during
the mere observation of those objects (Murata et al., 2000).
Accordingly, evidence in humans indicate that during action
observation the intrinsic characteristics of the to-be-grasped
objects modulate corticospinal excitability and responses to the
time-to-contact (Craighero et al., 2014).

It is interesting to observe that when combining verbs
and nouns to construct sentences, people choose one precise
approach to perform an action from a list of possible ones. For
instance, when we say “I hold,” I express all possible ways to
hold an object in my hands. However, if a word is added to the
sentence, as in “I hold a cup,” then only one particular manner
of grasping is re-enacted (Marino et al., 2012). By doing this,
we restrict the potential actions and re-enact the action using
the best suitable motor representation. In other words, the way
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FIGURE 2

(A) Grand average maps of responses to different categories of stimuli in the 150–350 ms period. The highlighted area represents the ROI used
for the analysis. The color scale is the same for each map (0–0.3); for illustrative purposes, maps were thresholded at 50% of the maximum
amplitude. (B) Time-frequency representation of the virtual channel obtained from the ROI for each condition. The highlighted area represents
the time and frequency interval selected for the analysis. The color scale is the same for each image (−0.3–0.4). (C) Beta band modulation with
respect to baseline (−1–0 s) for verbs (upper graph) and images (lower graph) stimuli. Shaded areas indicate the standard error of the mean.
Dotted lines indicate the period for AuC calculation, gray dotted line refers to the go signal.

a biological effector (such as a hand or foot) interacts with an
object in the environment is reflected in the way we construct
concrete sentences to depict what occurs in a particular context.
Further evidence suggests that adverbs of place (far vs. near) are
also rooted in the sensorimotor system since they are implicitly
associated with functionally congruent actions (look at vs. grasp,
Craighero and Marini, 2021), as well as adjectives denoting
manipulative qualities are associated with the characteristics of
the objects expressed by nouns (Gough et al., 2013; Garofalo
et al., 2021).

Overall, these findings imply that rather than being based on
a priori determined syntactic categories (Vigliocco et al., 2011;
Buccino et al., 2016), the distinction between word categories
may be anchored in the sensorimotor experience. This proposal
offers a perspective for an embodied approach also to the
way we combine linguistic words (i.e., syntax). In this respect,
some authors have proposed that the syntactic representation
of words can be rooted in the activation and interaction of
specific neuronal populations (Feldman and Narayanan, 2004;
Pulvermüller, 2010). We forward that at least for verbs and
nouns this speculation most likely refers to mirror and canonical
neurons.

Despite the increasing number of empirical evidence
suggesting the common neural substrates for semantic

processing, including the present findings, it is worth stressing
that in the present study some methodological limitations need
to be underlined. First, our sample size was rather small, so
future studies including a greater number of participants are
needed. Second, our analysis focused on the motor/premotor
cortex. Since these areas are strictly connected with the parietal
cortex, it could be interesting to study the modulation of brain
rhythms also within the parietal lobe during the processing of
observed and verbally described actions. This in order to assess
whether the fronto-parietal network, known to be involved
in action observation and understanding, is also involved in
language processing.
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