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Abstract: Intermolecular interactions modulate the electro-optical properties of molecular materi-
als and the nature of low-lying exciton states. Molecular materials composed by oligoacenes are
extensively investigated for their semiconducting and optoelectronic properties. Here, we analyze
the exciton states derived from time-dependent density functional theory (TDDFT) calculations
for two oligoacene model aggregates: naphthalene and anthracene dimers. To unravel the role of
inter-molecular interactions, a set of diabatic states is selected, chosen to coincide with local (LE)
and charge-transfer (CT) excitations within a restricted orbital space including two occupied and
two unoccupied orbitals for each molecular monomer. We study energy profiles and disentangle
inter-state couplings to disclose the (CT) character of singlet and triplet exciton states and assess
the influence of inter-molecular orientation by displacing one molecule with respect to the other
along the longitudinal translation coordinate. The analysis shows that (CT) contributions are relevant,
although comparably less effective for triplet excitons, and induce a non-negligible mixed character
to the low-lying exciton states for eclipsed monomers and for small translational displacements. Such
(CT) contributions govern the La/Lb state inversion occurring for the low-lying singlet exciton states of
naphthalene dimer and contribute to the switch from H- to J-aggregate type of the strongly allowed
Bb transition of both oligoacene aggregates.

Keywords: oligoacenes; exciton states; singlet states; triplet states; TDDFT; diabatization; adiabatic
states; diabatic states; frenkel excitons; charge resonance states; charge transfer states

1. Introduction

Electronic and electro-optical materials based on organic molecules have been the
subject of numerous investigations ranging from basic materials science to possible techno-
logical applications [1–3]. Oligoacenes have attracted great interest for energy and charge
transport and have emerged as model organic systems for low cost, flexible, large-scale
optoelectronic devices [4,5]. The properties of such devices strongly depend on the pho-
tophysical behavior of the organic molecular material, ultimately governed by the nature
of their low-lying exciton states [6–22]. Thus, to exploit the electro-optical properties of
organic semiconductors and to tune device performances, it is desirable to fully understand
the character of their electronic excitations.

Although the assessment of the nature of singlet exciton states in crystals and aggre-
gates of organic chromophores has been the subject of several studies [23–34], the low-lying
triplet exciton states have been addressed in comparably fewer investigations [35–43], even
though triplet excitons play a fundamental role in several photoinduced processes. For
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instance, they are often responsible for detrimental non-radiative charge recombination in
organic photovoltaic devices [44] or can be relevant for application in photocatalysis and
photodynamic therapy [45–47].

The exciton states of molecular materials are superpositions of local (intra-molecular)
excitations (LEs) and charge transfer (CT) (i.e., inter-molecular) excitations. Such intra-
and inter-molecular excitations can be considered as a suitable basis of diabatic states
describing electron promotions between occupied molecular orbitals to unoccupied molec-
ular orbitals of the same (neutral) or neighboring (ionic) molecules (or sites), respec-
tively [26,34,36,48–59].

Numerous investigations have underscored the relevance of CT states in several
photoinduced processes: for example, they favor intersystem crossing through spin orbit
coupling [60] or mediate singlet fission [61–67]. CT states have also a crucial role in the
formation of excimers [37,39,42] and in exciton-dissociation and charge-separation in hetero-
and homo-junctions [68–70].

To analyze the character of excitonic states predicted by quantum-chemical (QC)
calculations, a diabatization procedure can be used to determine the superposition of LE
and CT diabatic states in each adiabatic exciton state [26,29,36,55,57]. Recently, a simple
diabatization approach has been developed and applied to disentangle the nature of
exciton states of perylene di-imide (PDI) aggregates computed with time dependent density
functional theory (TDDFT) [30,38].

In the present work, we seek to provide a better understanding of the photophysical
properties of two oligoacene aggregates, naphthalene and anthracene, and employ the
same diabatization procedure to characterize singlet and triplet exciton states in terms of LE
and CT contributions. The approach is however extended to include a larger orbital space,
required to correctly describe the orbital nature of the low-lying oligoacene excited states.
Oligoacene dimers in their triplet and singlet exciton states are perfect model systems
for the investigation and understanding of triplet-triplet and singlet-singlet interactions
between π-conjugated molecules, and how these interactions are modulated by different
intermolecular organizations. Specifically, here we focus on the longitudinal translation
coordinate (Figure 1).

Molecules 2022, 27, x FOR PEER REVIEW 2 of 19 
 

 

lying triplet exciton states have been addressed in comparably fewer investigations [35–

43], even though triplet excitons play a fundamental role in several photoinduced pro-

cesses. For instance, they are often responsible for detrimental non-radiative charge re-

combination in organic photovoltaic devices [44] or can be relevant for application in pho-

tocatalysis and photodynamic therapy [45–47].  

The exciton states of molecular materials are superpositions of local (intra-molecular) 

excitations (LEs) and charge transfer (CT) (i.e., inter-molecular) excitations. Such intra- 

and inter-molecular excitations can be considered as a suitable basis of diabatic states de-

scribing electron promotions between occupied molecular orbitals to unoccupied molec-

ular orbitals of the same (neutral) or neighboring (ionic) molecules (or sites), respectively 

[26,34,36,48–59].  

Numerous investigations have underscored the relevance of CT states in several pho-

toinduced processes: for example, they favor intersystem crossing through spin orbit cou-

pling [60] or mediate singlet fission [61–67]. CT states have also a crucial role in the for-

mation of excimers [37,39,42] and in exciton-dissociation and charge-separation in hetero- 

and homo-junctions [68–70].  

To analyze the character of excitonic states predicted by quantum-chemical (QC) cal-

culations, a diabatization procedure can be used to determine the superposition of 𝐿𝐸 

and CT diabatic states in each adiabatic exciton state [26,29,36,55,57]. Recently, a simple 

diabatization approach has been developed and applied to disentangle the nature of exci-

ton states of perylene di-imide (PDI) aggregates computed with time dependent density 

functional theory (TDDFT) [30,38]. 

In the present work, we seek to provide a better understanding of the photophysical 

properties of two oligoacene aggregates, naphthalene and anthracene, and employ the 

same diabatization procedure to characterize singlet and triplet exciton states in terms of 

LE and CT contributions. The approach is however extended to include a larger orbital 

space, required to correctly describe the orbital nature of the low-lying oligoacene excited 

states. Oligoacene dimers in their triplet and singlet exciton states are perfect model sys-

tems for the investigation and understanding of triplet-triplet and singlet-singlet interac-

tions between π-conjugated molecules, and how these interactions are modulated by dif-

ferent intermolecular organizations. Specifically, here we focus on the longitudinal trans-

lation coordinate (Figure 1). 

 

Figure 1. The oligoacene dimers considered in this work. Singlet and triplet exciton states have been 

determined at the eclipsed configuration and along the interchromophore longitudinal (x axis) 

translation coordinate.  

The paper is organized as follows: first we discuss the selection of the orbital space, 
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oligoacene aggregates. Within the chosen orbital space, we perform a diabatization of 

Figure 1. The oligoacene dimers considered in this work. Singlet and triplet exciton states have
been determined at the eclipsed configuration and along the interchromophore longitudinal (x axis)
translation coordinate.

The paper is organized as follows: first we discuss the selection of the orbital space,
mandatory to correctly define the diabatic basis for the lowest energy exciton states of
oligoacene aggregates. Within the chosen orbital space, we perform a diabatization of
singlet and triplet exciton states and discuss their nature, with specific attention to the
magnitude of CT contributions and, for the LE components, to the parentage with isolated



Molecules 2023, 28, 119 3 of 17

molecule low-lying excited states. The results of our protocol are compared with those ob-
tained through the decomposition of the one-electron transition density matrix performed
with the TheoDORE package [71]. Finally, the modulation of the absorption spectrum of
oligoacene aggregates along the longitudinal translation coordinate is discussed.

2. Results and Discussion
2.1. Orbital Space and Diabatic States for the Analysis of Exciton States

The most relevant frontier molecular orbitals (MOs) of naphthalene and anthracene are
collected in Figure 2, while the lowest excited states of triplet and singlet spin multiplicity
(computed with TDDFT calculations in the Tamm-Dancoff approximation (TDA) [72]) for
the isolated monomers, are collected in Tables S1 and S2. As it is well known according
to the perimeter model [73], the lowest lying excited states of oligoacenes [73–75] are
determined by excitations within an orbital space that includes at least two occupied
(HOMO and HOMO-1) and two unoccupied (LUMO and LUMO+1) MOs leading to four
excited states known as the La, Lb, Ba, Bb in Platt’s notation [73]. Tables S1 and S2 show that
the chosen functional (ωB97X-D, see Section 3) correctly predicts the S1 state of naphthalene
to be the Lb state (B2u symmetry, dominated by a combination of the HOMO-1→LUMO
and HOMO→LUMO+1 excitations), while in the case of anthracene the lowest state is
La (B1u symmetry, dominated by the HOMO→LUMO excitation). Computed excitation
energies are generally overestimated, as is typical of the long-range corrected functional
employed and of the TDA [76,77].
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Figure 2. Frontier molecular orbital levels and shapes of (left) naphthalene and (right) anthracene,
fromωB97X-D/6-31G* calculations (HOMO and LUMO abbreviated as H and L).

Notably, in between the four La, Lb, Ba, Bb excited states, there are states originated
by excitations also involving the HOMO-2 and the LUMO+2 orbitals. However, these states
are relatively high in energy and their omission in the following discussion of exciton states
will not affect the analysis of intermolecular interactions leading to the lowest exciton states
of the two oligoacenes. Accordingly, the orbital space selected in the following analysis
of exciton states includes two unoccupied and two occupied MOs for each monomer and,
consequently, four occupied and four unoccupied orbitals for their dimers. Due to inter-
molecular interactions, the energy levels associated to these dimer orbitals show distinctive
oscillations along the longitudinal translation coordinate (Figures S1 and S2). The number
of spin-adapted singly excited configurations (and states) originated by an orbital space of
n doubly occupied and n unoccupied orbitals is n2, such that sixteen exciton states have
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been considered for each spin multiplicity and their wavefunctions expressed in terms of
diabatic states, with the diabatization procedure outlined in Section 3.

The protocol employed to analyze the intermolecular interactions leading ultimately
to the character of exciton states, transforms the amplitudes of TDDFT calculations carried
out on the aggregate, from the basis of single excitations between aggregate’s orbitals
(the delocalized excitation (DE) basis) to the basis of single excitations between molecular
(monomers A and B) site orbitals. Localized orbitals on monomers A and B allow to define
diabatic states of four different types as follows:

LE(1)
A = |1A〉 = (H − 1)A → (L + 1)A

LE(1)
B = |1B〉 = (H − 1)B → (L + 1)B

CT(1)
AB = |1AB〉 = (H − 1)A → (L + 1)B

CT(1)
BA = |1BA〉 = (H − 1)B → (L + 1)A

LE(2)
A = |2A〉 = (H − 1)A → (L)A

LE(2)
B = |2B〉 = (H − 1)B → (L)B

CT(2)
AB = |2AB〉 = (H − 1)A → (L)B

CT(2)
BA = |2BA〉 = (H − 1)B → (L)A

LE(3)
A = |3A〉 = (H)A → (L)A

LE(3)
B = |3B〉 = (H)B → (L)B

CT(3)
AB = |3AB〉 = (H)A → (L)B

CT(3)
BA = |3BA〉 = (H)B → (L)A

LE(4)
A = |4A〉 = (H)A → (L + 1)A

LE(4)
B = |4B〉 = (H)B → (L + 1)B

CT(4)
AB = |4AB〉 = (H)A → (L + 1)B

CT(4)
BA = |4BA〉 = (H)B → (L + 1)A

(1)

where HOMO and LUMO are abbreviated as H and L, subscripts A and B indicate different
monomers, and each type of excitation is differentiated by a superscript.

The diabatization procedure discussed in Section 3 provides the Hamiltonian matrix in
the diabatic basis representation, Hdia. In this work, compared to previous investigations in
which only the HOMO and LUMO orbitals were included for each monomer, [29,30,36,38]
the Hdia matrix (dimension 16 × 16) includes not only interactions between diabatic states
of the same type (LE(n)

A , LE(n)
B , CT(n)

AB , CT(n)
BA ), such as excitonic interactions V(n)

e and super-

exchange interactions [78] D(n)
e/h (Table S3), but also interactions between diabatic states of

different type (LE/CT(n), LE/CT(p)), hereafter labeled with two superscript numbers, e.g.,
V(n,p)

e (Table S4). In addition, intramolecular interactions between diabatic states localized
on the same monomer (LE(n)

A , LE(p)
A ) are also uncovered by the diabatization procedure

(H(n,p) in Table S4).
For aggregates characterized by a symmetric arrangement of chromophores, as is the

case for those investigated here, when the molecules approach each other, intermolecular
interactions mix the LE states to form a symmetry adapted (SA) superposition of (neutral)
LE states, that is, Frenkel excitons (FE). Similarly, CT states form delocalized charge
resonance (CR) states [48,79,80] of appropriate symmetry. The symmetry point group
of an oligoacene aggregate, when intermolecular displacements along the longitudinal
translation coordinate are considered, (Figure 1) is C2h. As a result, the most relevant
ππ∗ exciton states along with FE and CR diabatic states, all belong to Ag, Au, Bg and Bu
symmetry representations. In the following Figures, each symmetry will be distinguished
by a specific color code used throughout this work: yellow for Ag, orange for Au, blue for
Bg and green for Bu.
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The SA diabatic states are then obtained as linear combinations of LE and CT states as
shown in Figure 3 and the corresponding diabatic matrices HSA

dia are collected in
Tables S5 and S6. The energy profiles of the diabatic states and the most relevant interac-
tions extracted from the diabatization procedure are collected in Figures S3–S9.
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Figure 3. Definition of SA diabatic states (FE, CR, each symmetry with a specific color code used
throughout this work: yellow for Ag, orange for Au, blue for Bg and green for Bu) defined as linear
combinations of diabatic states (black, LE, CT) and employed to analyze the nature and the effect of
interactions on the adiabatic exciton states of oligoacene dimers.

In the following sections we analyze the TDA computed singlet and triplet exciton
states of oligoacene dimers to determine their character (CT/LE) and disentangle the role
of interactions between diabatic states along the longitudinal translation coordinate.

2.2. Singlet Exciton States of Naphthalene and Anthracene Dimers

The TDA computed excitation energy profiles of the singlet exciton states of naphtha-
lene and anthracene dimers are collected in Figure 4 and Figure S10. We note that B1u (La)
excited states of the isolated molecules originate two LE states in the dimer, belonging to Au
and Bg symmetries of the C2h point group, while B2u (Lb) monomer excited states originate
two LE states in the dimer belonging to Ag and Bu symmetries. Because the lowest excited
states of naphthalene and anthracene are, respectively, Lb and La, one might expect the
lowest exciton state with different nature and symmetry for the two aggregates. In contrast,
both naphthalene and anthracene dimers show that, for small displacements from the
eclipsed geometry, the lowest energy exciton state belongs to Bg symmetry, which therefore
originates from the La (B1u) monomer state for both dimers. This result is expected for
anthracene while it implies an inversion of the Lb/La states for naphthalene, when moving
from the monomer to the aggregate. Such an inversion has been documented in previous
studies at the equilibrium intermolecular distance of the singlet state excimer [81,82], which
is considerably shorter than the intermolecular distance of 3.4 Å considered here. Interest-
ingly, the stabilization of the lowest Bg state leading to the formation of the naphthalene
excimer is predicted by our TDA-ωB97X-D calculations even at such large intermolecular
distances.

Although the 1Bg exciton state of the oligoacene dimers derives from the La state and
therefore owns a considerable LE contribution, its character is indeed mixed, showing
more that 40% CT contribution (Figure 4c,d) at the eclipsed geometry. This is true not
only for the 1Bg state, but also for other low-lying exciton states, with the CT contribution
slightly increasing from naphthalene to anthracene dimers. Such a mixed character can be
appreciated by graphically representing the wavefunction of the two lowest exciton states
(1Bg and 1Ag) in terms of their SA diabatic states. The contributions of CR states (red and
brown lines in Figure 5) emerge clearly not only for the eclipsed dimer configuration, but
up to about 4 Å longitudinal displacements, even though the weight of FE states (green
and blue lines) is dominant.
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Figure 4. Lowest energy singlet exciton states of (left) naphthalene and (right) anthracene: (a,b) adia-
batic excitation energy profiles of the low-lying exciton states depicted with different color codes for
different symmetries: yellow for Ag, orange for Au, blue for Bg and green for Bu. The lowest energy
exciton states not included in the diabatization procedure are also shown (dark blue, Bg symmetry,
dark red, Au symmetry), (c,d) CT character of the lowest four exciton states.
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Figure 5. Wavefunction composition of the adiabatic lowest exciton states of (left) naphthalene and
(right) anthracene in terms of the SA diabatic states defined in Figure 3. (a,b) 1Ag state and (c,d) 1Bg

state. Red and brown lines represent the contributions to the total wavefunction of CT states, while
green and blue lines represent the weight of LE states.

As shown in previous investigations [29,30,36,38], the modulation of adiabatic en-
ergy profiles along the longitudinal translation coordinate can be rationalized in terms of
inter-state interactions between SA diabatic states. The different effects of inter-state and
intermolecular interactions can be appreciated by comparing SA diabatic and resulting
adiabatic energy profiles of Ag (Figure 6) and Bg (Figure 7) symmetry. In both cases, the
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adiabatic exciton energy profiles result from the combination of i) the interaction between
FE and CR SA diabatic states (grey lines in panels (c,d)), which is maximum at the eclipsed
geometry and oscillates along the translation, with ii) the interaction between the two FE
SA diabatic states (dark-turquoise lines in panels (c,d)), less dramatically changing along
the translational coordinate. Such an interaction is larger for Ag symmetry states and more
effective, given the quasi degeneracy of FE(2)− and FE(4)− energy profiles, while it is far
less effective for Bg states due to the large energy difference between FE(1)− and FE(3)−

states. This explains the remarkable energy lowering of the 1Ag adiabatic exciton state (yel-
low squares in Figure 6a,b) compared to the SA diabatic states (green) for all translational
displacements, which is not observed for Bg states except for specific displacement ranges
corresponding to large FE/CR interactions. Similar considerations justify the excitation
energy profiles of adiabatic exciton states belonging to the remaining two symmetries
(Figures S11 and S12).
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Figure 6. Analysis of the excitation energy profiles of singlet exciton states (Ag symmetry) for
(left) naphthalene and (right) anthracene dimer (TDA-ωB97X-D/6-31G*) in terms of SA diabatic
states (green for FE states, red for CR states) and their interactions. (a,b) Computed adiabatic and SA
diabatic excitation energy profiles. (c,d) Magnitude and modulation along the longitudinal translation

coordinate of the (grey) D(2)
e − D(2)

h , D(4)
e − D(4)

h interactions, coupling FE and CR states, and of the

(dark-turquoise) H(2,4) −V(2,4)
e interactions mixing FE(2) and FE(4) states.

2.3. Triplet Exciton States of Naphthalene and Anthracene Dimers

Figure 8 and Figure S10 collect the excitation energy profiles of triplet excitons of
oligoacene aggregates. In contrast with singlet excitons, we note that the lowest two triplet
exciton states belong to Bg and Au symmetries, while the lowest Ag exciton state is found
at much higher energy. Similar to singlet excitons, a few low-lying states (dark-blue/dark-
red in Figure 8) were not included in the diabatization procedure, since their influence
is negligible due to their different orbital nature and energy separation from the lowest
exciton states. The CT character analysis (Figure 8c,d) demonstrates that both the 1Bg and
1Ag states have a mixed CT/LE character with the CT contribution slightly increasing for
the longer acene dimer.



Molecules 2023, 28, 119 8 of 17

Molecules 2022, 27, x FOR PEER REVIEW 8 of 19 
 

 

 

Figure 6. Analysis of the excitation energy profiles of singlet exciton states (𝐴𝑔 symmetry) for (left) 

naphthalene and (right) anthracene dimer (TDA-ωB97X-D/6-31G*) in terms of SA diabatic states 

(green for 𝐹𝐸 states, red for 𝐶𝑅 states) and their interactions. (a, b) Computed adiabatic and SA 

diabatic excitation energy profiles. (c, d) Magnitude and modulation along the longitudinal transla-

tion coordinate of the (grey) 𝐷𝑒
(2)

− 𝐷ℎ
(2)

, 𝐷𝑒
(4)

− 𝐷ℎ
(4)

 interactions, coupling 𝐹𝐸 and 𝐶𝑅 states, and 

of the (dark-turquoise) 𝐻(2,4) − 𝑉𝑒
(2,4)

 interactions mixing 𝐹𝐸(2) and 𝐹𝐸(4) states.  

 

Figure 7. Analysis of the excitation energy profiles of singlet exciton states (𝐵𝑔 symmetry) for (left) 

naphthalene and (right) anthracene dimer (TDA-ωB97X-D/6-31G*) in terms of SA diabatic states 

(green for 𝐹𝐸 states, red for 𝐶𝑅 states) and their interactions. (top) Computed adiabatic and SA 

diabatic excitation energy profiles. (bottom) Magnitude and modulation along the longitudinal 

translation coordinate of the (grey) 𝐷𝑒
(1)

− 𝐷ℎ
(1)

, 𝐷𝑒
(3)

− 𝐷ℎ
(3)

 interactions, coupling 𝐹𝐸 and 𝐶𝑅 

states, and of the (dark-turquoise) 𝐻(1,3) − 𝑉𝑒
(1,3)

 interactions mixing 𝐹𝐸(1) and 𝐹𝐸(3) states  

Figure 7. Analysis of the excitation energy profiles of singlet exciton states (Bg symmetry) for
(left) naphthalene and (right) anthracene dimer (TDA-ωB97X-D/6-31G*) in terms of SA diabatic
states (green for FE states, red for CR states) and their interactions. (a,b) Computed adiabatic and SA
diabatic excitation energy profiles. (c,d) Magnitude and modulation along the longitudinal translation

coordinate of the (grey) D(1)
e − D(1)

h , D(3)
e − D(3)

h interactions, coupling FE and CR states, and of the

(dark-turquoise) H(1,3) −V(1,3)
e interactions mixing FE(1) and FE(3) states.
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Figure 8. Lowest energy triplet exciton states of (left) naphthalene and (right) anthracene: (a,b) adia-
batic excitation energy profiles of the low-lying exciton states depicted with different color codes for
different symmetries: yellow for Ag, orange for Au, blue for Bg and green for Bu. The lowest energy
exciton states not included in the diabatization procedure are also shown (dark blue, Bg symmetry,
dark red, Au symmetry); (c,d) CT character of the lowest four exciton states.
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The significant CT contribution to 1Bg and 1Ag states, contrasts with the almost
negligible contribution to 1Bu and 1Au states. Such differences can be rationalized by
comparing, for instance, the SA diabatic energy profiles (Bg and Au symmetry) with FE and
CR character (green and red curves, respectively, in Figures 9 and 10) and their inter-state
interactions, depicted in the bottom part of the above figures. Similar considerations hold
for the other symmetry species (Figures S13 and S14). The FE/CR energy differences are
very similar for the two sets of SA diabatic states, but their couplings (grey lines) are much
larger for the Bg symmetry states. Specifically, the largest interaction amounts to more
than 0.8 eV for Bg and it does not exceed 0.3 eV for Au states. As a result, 1Bg adiabatic
states display a non-negligible CT character for small longitudinal displacements, while
1Au states do not.
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Figure 9. Analysis of the excitation energy profiles of triplet exciton states (Bg symmetry) for (left)
naphthalene and (right) anthracene dimer (TDA-ωB97X-D/6-31G*) in terms of SA diabatic states
(green for FE states, red for CR states) and their interactions. (a,b) Computed adiabatic and SA
diabatic excitation energy profiles. (c,d) Magnitude and modulation along the longitudinal translation

coordinate of the (grey) D(1)
e − D(1)

h , D(3)
e − D(3)

h interactions, coupling FE and CR states, and of the

(dark-turquoise) H(1,3) −V(1,3)
e interactions mixing FE(1) and FE(3) states.

The analysis of interactions between SA diabatic states uncovers also specific differ-
ences between singlet and triplet excitons. One well-known distinctive element, previously
documented for PDI aggregates [36,38], is the larger energy separation between CR and
FE triplet diabatic states compared to singlet states, accounting for the reduced effect of
super-exchange interactions, ultimately leading to a less marked CT character of lowest-
lying triplet exciton states. An additional distinction can be appreciated in the case of
oligoacenes and concerns the couplings (Tables S5 and S6) between SA diabatic states of
FE type (dark-turquoise lines in Figures 6 and 7 for singlet and Figures 9 and 10 for triplet
excitons). These are larger than 0.8 eV for singlet SA states of Ag/Bu symmetry while they
do not exceed 0.35 eV for the triplet SA states of any symmetry. As a result, the adiabatic
triplet exciton states of all symmetry species almost overlap with the SA diabatic states
for large portions of the energy profiles, in contrast with those of singlet spin multiplicity
discussed in the previous section. These interactions result from the combination of an
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intra-molecular contribution (top part of Figures S8 and S9) with the inter-molecular exciton
coupling (bottom part of Figures S8 and S9) both of which are much larger for singlet states.
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Figure 10. Analysis of the excitation energy profiles of triplet exciton states (Au symmetry) for
(left) naphthalene and (right) anthracene dimer (TDA-ωB97X-D/6-31G*) in terms of SA diabatic
states (green for FE states, red for CR states) and their interactions. (a,b) Computed adiabatic and SA
diabatic excitation energy profiles. (c,d) Magnitude and modulation along the longitudinal translation

coordinate of the (grey) D(1)
e + D(1)

h , D(3)
e + D(3)

h interactions, coupling FE and CR states, and of the

(dark-turquoise) H(1,3) + V(1,3)
e interactions mixing FE(1) and FE(3) states.

2.4. CT Character of Singlet and Triplet Excitons of Oligoacenes

The CT character analysis obtained from the above discussed diabatization procedure
(Figure 4c,d and Figure 8c,d) can be compared with the results of other analysis tools.
To visualize the nature of the lowest singlet and triplet exciton states, for the eclipsed
dimer configurations of the two oligoacene dimers, we carried out a fragment-based
analysis via electron–hole correlation plots, using TheoDORE [71] (Figure 11). The two
selected fragments correspond to the two molecules forming the dimer. Exciton states
are identified by the non-vanishing elements of the 2 × 2 matrix (the Ω-matrix [71])
represented by different levels of grey. Locally excited contributions appear in Figure 11
off-diagonally (going from lower left to upper right), while CT contributions appear on
the main diagonal. In agreement with the character analysis shown in Figure 4c,d and
Figure 8c,d, also Figure 11 shows that for the eclipsed configuration, the character of
the lowest singlet and triplet exciton states is mixed LE/CT as indicated by the light-
grey squares in the electron-hole correlation plot. As discussed in previous sections, the
CT contribution is larger for singlet exciton states than for triplet exciton states (main
diagonal squares for the singlet excitons are dark grey while those of triplet exciton states
are light grey) as a result of the larger energy separation between CT and LE diabatic
triplet states (compare Figures S3 and S5 or Figures S4 and S6). Overall, both approaches
provide the same results for the lowest triplet and singlet exciton states as regard the CT
contributions, although our diabatization analysis also provides detailed information on
relevant intermolecular and interstate interactions.
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Figure 11. Lowest energy singlet and triplet exciton-state analysis via electron-hole correlation
plots [71] for naphthalene and anthracene dimers in their eclipsed configuration. The grey scale used
is shown on the right panel. From TDA-ωB97X-D/6-31G* calculations. The magnitude of the CT
contribution is shown on the bottom part of each panel.

2.5. Absorption Spectrum and H-/J- Character Switch along the Longitudinal
Translation Coordinate

In previous sections we focused the attention on low-lying exciton states of the
oligoacene dimers. Because the absorption spectrum of oligoacenes is dominated by
the transition to the higher energy B2u state (the Bb state in Platt’s notation), it is interesting
to discuss the evolution (along the displacement coordinate) of the dipole allowed exciton
state bearing the largest parentage with the Bb state and how its excitation energy modu-
lation influences the appearance of the absorption spectrum. The computed absorption
spectrum for increasingly large translational displacements (Figure 12) shows that the
intense absorption occurs at higher energies than the isolated molecule, suggesting an H-
type aggregate behavior for small displacements from the eclipsed configurations. For
larger displacements, the most intense absorption band moves abruptly to lower excitation
energies (J- type) after a narrow intermediate region in which two bands of similar intensity
appear. The evolution of the excitation energy of such strongly allowed exciton state is
shown in black in Figure S15. This state corresponds to the 4Bu state for both naphthalene
and anthracene at the eclipsed geometry and for displacements up to 4 or 5 Å, then it
switches to the 2Bu state. Such a switch is associated with a sudden change in the exciton
state character, acquiring a dominant CT contribution for larger displacements (Figure S16),
suggesting that the H- to J- type transition along the longitudinal displacement is assisted
not only by the sign change of the exciton interaction (Figure S7) but also by the interaction
between FE and CR states.

Finally, for large displacements (8 Å) the strongest absorption peak has moved back
almost toward the isolated molecule value, although not completely owing to some still non-
negligible exciton interactions. Indeed the V(2)

e and V(4)
e couplings are still not vanishing at

such distance (Figure S7), in contrast with the V(1)
e and V(3)

e interactions that have already
become negligible.
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3. Computational Models

The ground state monomer structure of naphthalene and anthracene was optimized
at the ωB97X-D/6-31G* level of theory. The distance between the planes of different
monomers was set to 3.4 Å, as used in previous investigations on dimers of other polycyclic
aromatic hydrocarbons [29,30]. Exciton states were computed for the eclipsed aggregates
and for displacements of 0.5 Å up to 8.0 Å, along the longitudinal translation coordinate (x)
(Figure 1). Excitation energies were determined with TDDFT calculations with the TDA [72],
using theωB97X-D functional [83], previously shown to provide a reliable description of
CT character in singlet excitons of PDI dimers [30,34,38], and the 6-31G* basis set. All QC
calculations were carried out with the Gaussian16 suite of programs [84].

To analyze the exciton character, we followed the approach described in previous
works [30,38] and we expressed each relevant exciton state in terms of LEs. To this end, we
selected the orbital subspace corresponding to relevant ππ∗ exciton states. As discussed in
Section 2, for oligoacene aggregates this must include at least the HOMO/HOMO-1 and
LUMO/LUMO+1 of each monomer [27,75] and represents the minimal orbital space (MIOS)
sufficient to reliably describe low-lying excited states of each monomer. Each aggregate’s
orbital obtained from QC calculations is then expressed as linear combination of monomer
orbitals. These linear combination coefficients CAGGR_MOB

i,j form the CAGGR_MOB matrix
describing each aggregate’s orbital in the monomer orbital basis (MOB) and are obtained
as [25,30,85]:

CAGGR_MOB = Ct
MON_AOB·SMON_AOB·CAGGR_AOB (2)

where the CMON_AOB matrix is a block diagonal matrix containing the MOs coefficients in
the atomic orbital basis (AOB) of each monomer, with off-diagonal blocks set to zero and
SMON_AOB is the overlap matrix of the monomers in the AOB.

Since monomer orbitals belonging to two different molecules are non-orthogonal to
each other, aggregate’s orbitals CL

AGGR_MOB expressed in terms of orthogonalized monomer
orbitals are obtained as:

CL
AGGR_MOB = S−

1
2

AGGR__MOB·CAGGR_MOB (3)

where superscript L indicates Löwdin’s orthogonalization [86], and the overlap matrix
SAGGR_MOB = Ct

MON_AOB·SAGGR_AOB·CMON_AOB is obtained from the coefficients of
monomer’s orbitals CMON_AOB and the overlap of the atomic orbitals in the aggregate
configuration SAGGR_AOB.

From the results of TDDFT calculations on the aggregate, the subset of n2 exciton
states originated from the MIOS of the aggregate (including n occupied and n unoccupied
orbitals) are then selected out of the full set of computed eigenstates. TDDFT amplitudes
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are expressed on the basis of delocalized excitations (DEs), namely excitations between
aggregate’s orbitals, and form the columns of the Badia

DE matrix. Thus, each DE must be
expanded in terms of excitations between monomer orbitals (diabatic LE and CT states).
With aggregate’s orbitals expressed in terms of monomer orbitals via the CL

AGGR_MOB
matrix, each DE( i→ j ) from an occupied i to an empty j aggregate’s orbital can be expressed
as a linear combination of diabatic (LE and CT) excitations (k→ l) from an occupied k to
an empty l monomer orbital, with expansion coefficients given by

UDE→dia
k→l,i→j = CAGGR_MOB, L

k,i ·CAGGR_MOB,L
l,j (4)

these coefficients form the columns of the unitary matrix UDE →dia.
Exciton states are then readily expressed in the diabatic basis as

Badia
dia = UDE→dia·Badia

DE (5)

and the character of each exciton state is obtained by summing up the contributions from
CT and LE states.

The corresponding n2 eigenvalues (excitation energies of the selected adiabatic exci-
tons) form the diagonal Hadia matrix, from which the Hamiltonian in the diabatic LE/CT
basis, Hdia, can be obtained as [26,54,57,87]

Hdia = Badia
dia ·Hadia·Badia

dia
t (6)

Finally, the Hdia is rotated in the SA diabatic basis formed by FE and CR states, to
obtain a block diagonal matrix with four sub-matrices HSA

dia (for Bu, Ag, Bg and Au states,
(Tables S5 and S6)) whose off-diagonal elements are the interactions between CR and FE
states that ultimately govern the modulation of adiabatic exciton state energies along the
longitudinal translation coordinate.

4. Conclusions

Intermolecular interactions determine the nature of exciton states which ultimately
govern the optoelectronic properties and the outcome of photoinduced processes in molec-
ular materials. In this work we have analyzed the character and modulation of singlet
and triplet exciton states of two oligoacene homo-dimers formed by naphthalene and
anthracene, along the intermolecular longitudinal translation coordinate.

The character of exciton states computed with TDDFT and the relevant inter-molecular
and inter-state interactions were determined with a diabatization procedure successfully
employed in previous investigations of PDI and here extended to include a larger orbital
space, mandatory to correctly describe the low-lying excited states of oligoacenes.

The analysis in terms of localized excitations shows that CT contributions are relevant,
although comparably less effective for triplet excitons, and induce a non-negligible mixed
character to the low-lying exciton states for eclipsed monomers and for small translational
displacements compatible with the formation of excimers not only for singlet but also for
triplet excitons.

Concerning the singlet spin manifold, the study shows that such CT contributions
drive the La/Lb state inversion of the lowest-lying exciton state of naphthalene dimer and
assist the switch from H- to J-aggregate type of the strongly allowed Bb transition of both
oligoacene aggregates.

We believe that this study provides useful insights on the magnitude of inter-molecular
interactions occurring in molecular materials and determining the nature of exciton states
of both singlet and triplet spin multiplicity, paving the way to future investigations on
more complex aggregates and inter-molecular organizations.
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