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Single‑cell‑led drug repurposing 
for Alzheimer’s disease
Silvia Parolo  1*, Federica Mariotti 1, Pranami Bora 1, Lucia Carboni 2 & Enrico Domenici 1,3

Alzheimer’s disease is the most common form of dementia. Notwithstanding the huge investments 
in drug development, only one disease-modifying treatment has been recently approved. Here we 
present a single-cell-led systems biology pipeline for the identification of drug repurposing candidates. 
Using single-cell RNA sequencing data of brain tissues from patients with Alzheimer’s disease, 
genome-wide association study results, and multiple gene annotation resources, we built a multi-
cellular Alzheimer’s disease molecular network that we leveraged for gaining cell-specific insights into 
Alzheimer’s disease pathophysiology and for the identification of drug repurposing candidates. Our 
computational approach pointed out 54 candidate drugs, mainly targeting MAPK and IGF1R signaling 
pathways, which could be further evaluated for their potential as Alzheimer’s disease therapy.

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder that slowly destroys memory and think-
ing skills. It is characterized by long preclinical and prodromal phases and an average clinical duration of 8–10 
years1. According to estimates by the US Alzheimer’s Association, 6.5 million Americans aged 65 and older are 
living with AD in 2022 (https://​www.​alz.​org/).

Genetically, two forms of AD can be distinguished: a familial early-onset AD caused by rare mutations with 
high effect size and a late-onset sporadic AD caused by a combination of many genetic risk variants with small 
effect size and environmental factors2. The strongest genetic risk factor for late-onset AD is the apolipoprotein 
E ε4 allele (APOE4), which explains a large fraction of the estimated disease heritability3. In addition, genome-
wide association studies (GWASs) have identified numerous risk loci associated with late-onset AD2,4. Despite 
this progress in understanding the genetic architecture of AD, the functional contribution of the risk loci to the 
disease pathophysiology is still mostly unknown5 and this hampers the identification of new drug targets and 
the development of new treatments.

Pathologically, the hallmarks of AD are the accumulation of extracellular amyloid-β plaques and intracel-
lular neurofibrillary tangles composed of aggregated protein tau6,7. These toxic aggregates co-occur with other 
pathological processes such as neuroinflammation, cerebrovascular deregulation, ion channel dysfunction, mito-
chondrial dysfunction, and oxidative stress that, in turn, lead to synapse and neuronal loss8.

In the past twenty years, huge efforts have been devoted to the development of treatments that could modify 
the disease mechanisms, mainly focusing on amyloid and tau accumulation9. Only recently Aduhelm (aduca-
numab) reached the market as the first disease-modifying treatment for AD, approved by the US Food and Drug 
Administration (FDA) using the accelerated approval pathway in June 2021. Aducanumab is a monoclonal anti-
body that was shown to reduce the amyloid plaque burden in the brain in a dose- and time-dependent fashion in 
two phase 3 clinical trials. Despite this evidence, the primary clinical endpoint, a reduction in cognitive decline, 
was reached only by one of the two clinical studies and a post-approval clinical trial will be needed to further 
evaluate the clinical benefits of the drug10. Given the multifactorial nature of the disease, it is also reasonable to 
think that combination therapy would be needed to counteract the disease processes11,12. For these reasons, new 
efforts for the development of AD treatments are urgent.

An effective strategy to reduce time, safety concerns, and cost of drug development is drug repurposing 
(or repositioning), which involves the investigation of existing drugs for new therapeutic purposes. Numerous 
computational methods for drug repurposing have been developed13. Among them, network-based approaches 
emerged as an efficient way to integrate heterogeneous layers of information14,15 and predict repurposing 
candidates16. We previously developed a network-based drug-disease proximity score to identify drug repur-
posing candidates17. The score was originally applied to tissue-specific networks for the identification of drugs 
that could be repurposed for metabolic syndrome. Here we aim at extending the applicability of the score to cell-
specific networks. Thanks to single-cell RNA sequencing technology, it is now possible to study at the single-cell 
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level the different cell populations constituting a tissue and infer their cell-to-cell communication18,19. This ena-
bles to gain a cell-specific mechanistic understanding of the biological systems and identify new drug targets20.

To characterize the molecular basis of AD and identify drugs that could be repurposed for AD, we developed 
a cell-specific systems biology workflow. By integrating several layers of information, we built a multi-cellular AD 
network that we leveraged for the identification of actional targets and drugs that could be further investigated 
as potential therapeutic opportunities for AD.

Results
Overview of the computational pipeline.  The computational pipeline we developed aims to gain func-
tional insights into AD and identify drug repurposing candidates by leveraging publicly available single-nucleus 
RNA-seq (snRNA-seq) data obtained from the prefrontal cortex of post-mortem AD subjects21 that we re-ana-
lyzed using a network-based approach. The analysis included six cell types: excitatory neurons (EX), inhibitory 
neurons (IN), microglia (MIC), astrocytes (AST), oligodendrocytes (OLI), and oligodendrocyte progenitor cells 
(OPC). The pipeline we followed is composed of three main steps: (1) identification of genes associated with 
AD, (2) construction of a disease-specific multi-cellular network, and (3) network-based identification of drug 
repurposing candidates (Fig. 1). In the first step, the disease genes have been identified using a multi-pronged 
approach that includes cell-specific information such as the gene expression levels in the brain cells and the 
cell-level differential gene expression between AD subjects and controls. This cell-type-aware disease charac-
terization was used in the second step as a basis to define cell-specific disease subnetworks (AD modules), i.e., 
portions of each cell network enriched in disease genes. We then build a multi-cellular AD network connecting 
AD modules by leveraging the cell-to-cell signaling that we inferred through ligand-receptor analysis. In step 
3, approved drugs with a known protein target have been tested for being AD repurposing candidates using the 
network-based drug-disease proximity score we previously developed17.

Identification of AD genes.  To define a set of AD-associated genes (AD genes), we considered three 
sources of evidence: genetics, gene expression, and literature. To obtain genetic and gene expression evidence, we 
focused on the results of AD GWAS and single nucleus RNA-seq (snRNA-seq) of AD brains and controls. These 
two approaches have been chosen because they give unbiased, high-throughput insight into disease mechanisms 
that in the case of snRNA-seq reaches single-cell resolution. These sources were complemented with literature 
data that may capture the results of targeted approaches focused on candidate disease pathways.

The genetic evidence was derived from the summary statistics of the two largest GWAS of AD22,23 at the time 
of the analysis. This data was analyzed to identify AD genes using both genomic proximity and brain expres-
sion quantitative trait loci (eQTL) information and combined with publicly available cell-specific functional 
genomic annotations. To convert the SNP-level associations to gene-level associations using SNP-gene genomic 

Figure 1.   Outline of the computational pipeline. Each dashed line box corresponds to a main step of the 
pipeline. Step 1 takes as input different data sources and merge them to define six lists of cell-specific disease 
genes; step 2 builds the AD multicellular network starting from TF-gene interaction and protein–protein 
interactions; step 3 takes as input the results of step 1 and 2 to identify drug repurposing candidates by means of 
network analysis.
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proximity we applied MAGMA24, instead to map the SNPs to genes based on tissue-specific eQTL information 
we applied E-MAGMA25 (see details in Methods section). Functional genomics information were obtained 
from the results of the study on noncoding regulatory regions in brain cells published by Nott et al.26. From this 
study, we identified 57 genes whose expression in neurons (both excitatory and inhibitory) is affected by AD risk 
variants located in promoters and enhancers. From the same study we also retrieved 41 genes with evidence of 
modulated expression in microglia due to AD-associated regulatory SNPs and 25 genes for oligodendrocytes. 
Additional functional annotations from publicly available databases were exploited to annotate the disease genes 
identified by genomic proximity, as described below. Moreover, since the GWAS loci typically include several 
genes not all involved in the disease pathophysiology, the GWAS-derived gene-level associations without any 
functional evidence were not considered as AD genes.

For the gene expression evidence, cell-specific differentially expressed genes were obtained from Mathys 
et al.21 that compared gene expression levels of six brain cell types obtained from AD and control subjects using 
the same snRNA-seq data we leveraged to build the networks.

Literature evidence was derived from four different sources: Harmonizome27, Agorà (https://​agora.​ampad​
portal.​org/), Kegg28, and the Alzheimer’s Gene Ontology annotation Aruk (https://​www.​ebi.​ac.​uk/​GOA/​ARUK). 
We selected these resources because they are recent and already provide an integration on numerous datasets, 
providing a comprehensive picture of known AD genes. Since the dataset of differentially expressed genes and 
the functional genomics annotations are cell-specific, the list of disease genes differs across the considered cells 
and thus we obtained six lists of AD genes, one for each cell type.

Overall, we identified 2653 AD genes, expressed in at least one of the considered brain cells (Supplementary 
Fig. 1 and Supplementary Table 1). The identified disease genes have been ranked by defining a score that sums 
the sources of evidence and adds a diversification term according to the number of sources supporting the asso-
ciation (see Methods). Three genes from the EX network (BIN1, CISD1, and IL34) and two genes from the MIC 
network (APOE and APOC1) were found in all the three evidence source categories.

To benchmark the list of AD genes described above, we compared our dataset with two external datasets 
providing disease gene annotation not used to define our list of AD genes. First, we evaluated the overlap with 
Alzpedia, a database curated by Alzforum which includes genes and proteins implicated in AD pathophysiology 
(https://​www.​alzfo​rum.​org/​alzpe​dia). All the AD-related genes included in Alzpedia and expressed in at least one 
cell type are all present in our list of AD genes. CD33 and TDP-43 (TARDBP), despite having disease evidence, 
are not present in the final AD gene list because in the snRNA-seq dataset that we re-analyzed they are below the 
expression threshold we considered in all cell types (Supplementary Fig. 2). Second, we assessed the enrichment 
of the AD genes in disease ontology (DO) terms and Human Phenotype Ontology (HPO) gene sets. Overall, the 
identified DO and HPO enriched terms are consistent with the expected ones. The most enriched DO term is 
“Alzheimer’s disease” (Fig. 2a) while the most enriched HPO term is “mental deterioration” (Fig. 2b). It is worth 
noting that this analysis was carried out with the aim of assessing the agreement between our list of AD genes 
and established resources for disease gene annotation, but all the genes in the “AD gene” list were included in 
the subsequent analyses.

Figure 2.   Functional enrichment of the AD genes in Disease Ontology and Human Phenotype Ontology terms. 
For each cell-specific list of disease genes, the 10 most enriched DO (a) and HPO (b) terms are shown. On 
the y-axis the terms are sorted from the top to the bottom according to the number of cells in which they are 
enriched. The color code indicates the significance of the enrichment, ranging from blue (more significant) to 
yellow (less significant).

https://agora.ampadportal.org/
https://agora.ampadportal.org/
https://www.ebi.ac.uk/GOA/ARUK
https://www.alzforum.org/alzpedia
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AD multi‑cellular network.  We next sought to investigate the AD genes in their cellular context. To build 
the AD-specific multi-cellular network, we used single-nucleus gene expression data (snRNA-seq) of the human 
prefrontal cortex from AD patients21and publicly available protein–protein and ligand-receptor interaction 
databases. First, we built a cell-type-specific molecular network for each cell type by combining protein–pro-
tein interactions and transcription factor-gene interactions (gene regulatory network—GRN). The GRNs were 
reconstructed from the AD snRNA-seq data using pySCENIC29,30, a tool for reconstructing GRNs from single-
cell sequencing data that integrates gene co-expression data with external information on transcription factor 
binding sites. Each cell-specific GRN was then merged with the protein–protein interaction network keeping 
only interactions between genes with evidence of expression in the corresponding network. Then, we modular-
ized the obtained network and identified the modules enriched in disease genes (AD modules). Overall, we 
identified 61 significant AD modules: 9 for the EX network, 4 for the MIC network, 17 for the IN network, 8 for 
the AST network, 12 for the OLI network, and 11 for the OPC network. The full list of significant AD modules 
is reported in Supplementary Table 2.

To identify the interactions among the AD modules, we analyzed the AD snRNA-seq data using 
CellPhoneDB31, a tool for inferring cell–cell communication networks from single-cell transcriptome data. In 
total, we identified 57 interacting pairs in which at least one partner is part of a disease module and 41 interacting 
pairs including at least a disease gene (Supplementary Table 3). A diagram of the workflow followed to build the 
multicellular AD network is reported in Supplementary Fig. 3. The resulting AD signaling network includes 17 
interconnected disease modules, as shown in Fig. 3a. In the network, the nodes labelled with a number indicate 
AD modules while the nodes labelled as “other”, represent interactions with genes not included in any AD module 
but present in their corresponding network.

Eleven of the interactions present in the multi-cellular network directly connect AD modules. The most 
interconnected AD module is m_1 from the OLI network. This module is made of 317 genes, 87 of which iden-
tified as disease genes and is connected to five AD module genes: OPC m_6, IN m_5_39, AST m_10, IN m_87, 
MIC m_21 as well as to other non-AD-module genes of all the networks. To assess the influence of each AD 
module on the entire multi-cellular network, we computed the closeness centrality (CC), a network centrality 
index that for each node measures the number of steps required to access all the other nodes in the network. By 
analyzing the relation between the CC and the adjusted p-value of the enrichment in disease genes, we identified 
five modules with a high CC index and highly enriched in disease genes: OLI m_1, AST m_10, OPC m_6, IN m 
5_7, and MIC m_21, hereafter indicated as “core AD modules” (Fig. 3b). As expected by their connectivity, the 
genes belonging to the core AD modules share many biological functions. According to the Reactome pathway 
enrichment analysis these modules are mainly involved in signal transduction and in immune system functions 
(Fig. 4 and Supplementary Table 4).

Since it has been repeatedly reported that therapeutic targets with disease-associated alleles are more likely 
to be approved32–35, we further investigated the disease genes with a supporting genetic evidence belonging to 
these modules. Overall, we identified 13 genes satisfying this criterion. According to Pharos database36, one of 
them (PTK2B) encodes a target with a Tclin target development level (TDL), meaning it exists at least one drug 
acting by targeting this gene. Out of the other 12 genes, four encode proteins with a Tchem TDL level (they are 
known to bind small molecules with high potency) and 8 proteins with a Tbio TDL (there is knowledge about 
their functional role, but they do not have known drug or small molecule activities) (Table 1).

To complement Pharos information, we also retrieved the AD OpenTargets37 scores (Supplementary Fig. 4a). 
The target with the highest AD overall association score is CD2 Associated Protein, a scaffolding protein that 

Figure 3.   AD multi-cellular network. (a) Visualization of the multi-cellular network. Each node corresponds 
to a cell-specific AD module except for the nodes labeled as “other” which indicate genes not included in any 
significant AD module but interacting with them thanks to ligand receptor interactions. The edges between the 
nodes indicate ligand-receptor interactions. The color of the nodes indicates the cell type. (b) The significance 
of the disease gene enrichment for each AD module (x-axis) is plotted versus the network centrality of 
the corresponding node (y-axis). In the upper right corner are reported the AD modules with the highest 
significance and a high level of centrality in the network.
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regulates the actin cytoskeleton (encoded by CD2AP gene). PICALM is instead the gene with the highest text-
mining Open Target score. By leveraging the text-mining data used by Open Targets to derive the text-mining 
score, we identified the genetic targets already evaluated in preclinical studies. The effect of CASS4 and PTK2B 
on Tau toxicity has been evaluated using fruit fly knockdown models and both proteins emerged as Tau toxic-
ity modulators. PTK2B, specifically, was identified as a strong Tau toxicity suppressor38. CD2AP and PICALM 
have been studied by many studies and those reported in Open targets describing animal models with highest 
score were performed using knockout mice39,40. Cecarini et al., instead, investigated the neuroprotective effects 
of SQSTM1 using a SQSTM1-engineered Lactobacillus lactis orally administered to an AD mouse model41. By 
investigating the brain cell-type specificity of these candidate targets, we observed that the high affinity IgE 
receptor (gene FCER1G) is highly specific for microglia, followed by Inositol Polyphosphate-5-Phosphatase D 
(gene INPP5D) and (Phospholipase C Gamma 2) PLCG2 (Supplementary Fig. 4b), all showing high specificity 
for microglia.

To further investigate the interaction among the AD modules that are present in the multi-cellular network, 
we investigated the cell-type specificity of the significant interacting molecules identified by CellPhoneDB (Sup-
plementary Table 3). The most specific ligand-receptor pairs (average specificity > 0.5) with the two partners 
expressed by different cells (paracrine signaling) included mainly genes of the microglia AD network modules 
m_21 and m_28 and astrocyte m_10 (Fig. 5). Interestingly, some of these signaling axes have been previously 
investigated for the identification of new AD treatments in preclinical studies. For example, recent studies inves-
tigated the potential of targeting the CSF1R/IL34 axis to reduce the microglial activation and neuroinflammation 
present in AD42–44. The ligand-receptor pair CX3CL1/CX3CR1 in AD was also investigated for its role in AD45–47.

Identification of drug repurposing candidates for AD.  To further investigate the therapeutic oppor-
tunities for AD, we exploited the network-based drug-disease proximity score we previously defined17. This 
score considers the physical proximity between disease and drug genes in the network as well as their functional 
similarity. It is computed as the sum of the average closest distance and the gene ontology biological process 
similarity between the genes in the drug module and genes in the disease module. To identify drug repurposing 
candidates, we focused on approved drugs with a drug module proximal to one of the core AD modules of the 

Figure 4.   Functional analysis of the core AD modules. Network visualization of the Reactome pathway 
enrichment analysis results. In each network, the nodes are the pathways and the connections between them 
reflect the ontology structure of Reactome database with parent–child relationships. Each color corresponds 
to one ancestor pathway, as shown in the network in the upper left corner where the names of the ancestor 
pathways are shown. In the other networks the size of the nodes is proportional to the significance of the 
pathway enrichment test. The complete results are reported in Supplementary Table 3.
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Table 1.   Genes in the AD core modules with a supporting genetics evidence.

Gene AD network modules Disease evidence sources Pharos tdl Pharos novelty Open targets articles

AP2A2 AST m_10
GWAS gene, MAGMA pathway (REAC-
TOME INNATE IMMUNE SYSTEM), 
ARUK

Tbio 0.089 –

CASS4 MIC m_21 GWAS gene, ARUK, functional genomics 
microglia Tbio 0.01 PMID: 27113998 (drosophila knockdown)

CD2AP MIC m_21, AST m_10, OLI m_1, OPC 
m_6

GWAS gene, ARUK, functional genomics 
microglia and oligodendrocytes Tbio 0.006 PMID: 26358779 (mouse knockout)

FCER1G MIC m_21 GWAS gene, AGORA, functional genomics 
microglia Tbio 0.008 –

HBEGF IN m_5_7 GWAS gene, MAGMA pathway (KEGG 
GNRH SIGNALING PATHWAY) Tbio 0.001 –

INPP5D MIC m_21 AGORA, functional genomics microglia Tbio 0.006 –

MAP3K3 IN_m_5_7 chromatin neurons Tchem 0.016 –

MARK4 IN_m_5_7 GWAS gene, AGORA, ARUK, functional 
genomics neurons Tchem 0.019 –

PFKFB2 IN_m_5_7 GWAS gene, functional genomics neurons Tchem 0.016 –

PICALM AST m_10, OLI m_1
GWAS gene, MAGMA GO (numerous gene 
sets), ARUK, harmonizome, functional 
genomics oligodendrocytes

Tbio 0.008 PMID: 26005850 (mouse knockout)

PLCG2 MIC m_21, AST m_10, OLI m_1 GWAS gene, AGORA Tchem 0.003 –

PTK2B MIC m_21, AST m_10, OLI m_1, OPC 
m_6

GWAS gene, MAGMA pathway (KEGG 
GNRH SIGNALING PATHWAY), 
MAGMA GO (GO GLIAL CELL PROLIF-
ERATION), ARUK, functional genomics 
microglia

Tclin 0.002 PMID: 27113998 (drosophila knockdown)

SQSTM1 IN m_5_7 GWAS gene, ARUK, harmonizome Tbio 0.001 PMID: 32855357 (mouse AD model + Lac-
tobacillus lactis)

Figure 5.   Selected ligand/receptor pairs connecting the modules of the AD multi-cellular network. The genes 
indicated in light blue encode ligands, those in dark blue encode receptors and the blue line connecting them 
indicates a significant-ligand receptor interaction inferred from the single cell transcriptomics data. The red 
lines indicate the cells producing ligands and receptors and its thickness is proportional to the cell specificity of 
the gene encoding the ligand/receptor.
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multi-cellular network (Fig. 3a). This choice was guided by the fact that these drugs, thanks to the ligand-recep-
tor connectivity, can influence the entire AD multi-cellular network. To further filter the results, the drugs with 
a target that has a high level of specificity (Human Protein Atlas tissue/group enriched/enhanced) for a tissue 
other than those relevant for the disease have been excluded. In total, we identified 54 candidate drugs targeting 
37 proteins (Table 2). For each of them we retrieved the current disease indications from ChEMBL database. 
This analysis indicated that six of them, namely Acitretin, Bromocriptine, Caffeine, Dasatinib, Doconexent, and 
Nilotinib, have already been investigated in clinical trials of AD. Acitretin was tested in a small clinical trial for 
its ability to enhance neuronal a-secretase ADAM10 activity and thus APP levels in CSF (NCT0107816848). 
Bromocriptine was recently tested in phase I/IIa study of familial AD (NCT0441334449) and an ongoing clini-
cal trial (NCT04570085) is currently evaluating the caffeine efficacy on cognitive decline in Alzheimer’s disease 
dementia. Dasatinib is under investigation for its ability, in combination with quercetin, to selectively remove 
senescent cells from the Aβ plaque (NCT0406312450). Doconexent is an omega 3 fatty acid used as nutritional 
supplement that has been tested in a randomized clinical trial for its ability to slow the rate of cognitive and 
functional decline in the general population of AD patients (NCT0044005051) and in APOE4 allele carriers 
(NCT0361384452). Finally, a phase 2 clinical trial testing the impact of Nilotinib in mild AD is also reported in 
clinicaltrials.gov database. A more detailed description of AD clinical and preclinical studies of the identified 
drugs is reported in Supplementary Note 1 and the Open Targets association score with AD is reported in Sup-
plementary Table 5.

Table 2.   Drug repurposing results.

Drug target Drugs Modules

ABL1 Bosutinib, Dasatinib, Nilotinib, Ponatinib AST m_10, MIC m_21, OLI m_1, OPC m_6

ADORA1 Caffeine OLI m_1

ADRB2 Isoprenaline, Salbutamol MIC m_21

ALK Crizotinib IN m_5_7, OLI m_1, OPC m_6

BCR Bosutinib, Imatinib, Ponatinib AST m_10, IN m_5_7, OLI m_1, OPC m_6

DHFR Methotrexate, Proguanil IN m_5_7

DRD3 Bromocriptine IN m_5_7

ERBB2 Afatinib, Lapatinib AST m_10

FGF2 Sirolimus AST m_10, OLI m_1

FGFR1 Nintedanib, Sorafenib IN m_5_7, MIC m_21, OLI m_1, OPC m_6

FGFR2 Nintedanib OLI m_1

FLT3 Midostaurin OLI m_1

GABRA1 Acamprosate, Flumazenil, Nitrazepam, Pentobarbital, Primi-
done, Propofol IN m_5_7

HDAC1 Belinostat IN m_5_7, OLI m_1

HTR2A Asenapine, Dosulepin IN m_5_7

IKBKB Auranofin AST m_10, IN m_5_7

JAK1 Ruxolitinib, Tofacitinib AST m_10, MIC m_21, OLI m_1, OPC m_6

JAK2 Ruxolitinib, Tofacitinib AST m_10, IN m_5_7, MIC m_21, OLI m_1, OPC m_6

JUN Adapalene AST m_10

KDR Midostaurin, Pazopanib OLI m_1

MAP2K1 Selumetinib AST m_10, MIC m_21

MAP2K2 Selumetinib, Trametinib AST m_10, OLI m_1, OPC m_6

MAPT Paclitaxel IN m_5_7

MTOR Everolimus IN m_5_7

NR3C1 Budesonide, Clocortolone, Fluorometholone, Hydrocortisone AST m_10, IN m_5_7, MIC m_21

NR3C2 Eplerenone, Spironolactone AST m_10, IN m_5_7

OPRD1 Loperamide, Naloxone IN m_5_7

OPRK1 Loperamide IN m_5_7

PDE4A Dipyridamole, Dyphylline, Theophylline IN m_5_7, OPC m_6

PDE5A Dipyridamole, Tadalafil, Theophylline AST m_10, IN m_5_7, OPC m_6

PDGFRB Pazopanib, Sorafenib, Sunitinib AST m_10, IN m_5_7, OPC m_6

PPARA​ Bezafibrate, Doconexent IN m_5_7, OLI m_1, OPC m_6

RAF1 Dabrafenib AST m_10

RARA​ Acitretin IN m_5_7

RRM2B Cladribine IN m_5_7

RXRG Adapalene IN m_5_7

SRC Dasatinib AST m_10, IN m_5_7
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Pathway analysis of the 37 drug targets showed that mitogen-activated protein kinase (MAPK) and, to a lesser 
extent, Insulin Like Growth Factor 1 Receptor (IGF1R) signaling were the most enriched (Fig. 6a and Supple-
mentary Table 6). Specifically, the identified targets mapped to the signaling cascade leading to the activation of 
RAS, RAF, and the MAPK kinase proteins (Fig. 6b).

Since the identified targets are present in more than one cell networks, we evaluated the target cell specificity 
in AD cells using the score provided by the Expression Weighted Cell type Enrichment (EWCE) package. Even 
if some of the targets and their corresponding drug module were identified as significantly associated to more 
than one disease module, the cell specificity analysis suggests a preferential expression of the gene in one cell 
type. For example, PDGFRG was identified as significantly associated with disease modules of AST, IN, and 
OPC, however the gene resulted AST-specific in AD cells. Similarly, FGF2 and ERBB2 are AST-specific, despite 
being expressed by other cell types (Fig. 6d,e).

Discussion
To date, only a few drugs for AD, mainly targeting the disease symptoms, are available, and thus identifying new 
treatment options is crucial. In recent years, numerous clinical trials of disease-modifying therapeutics for AD 
have been conducted but they mostly led to negative results9,10. In this contest, drug repurposing can be exploited 
for the identification of new AD drug candidates.

Here we described a systems biology workflow based on single-cell gene expression to identify drug repurpos-
ing candidates for AD. First, we identified the AD genes using several evidence sources which include genetics, 
gene expression, and literature. This allowed us to cover the different approaches that can lead to the identifi-
cation of the genes involved in AD, such as data-driven high-throughput studies (e.g., GWAS and differential 
gene expression analysis of single-cell RNA-seq data) as well as hypothesis-driven functional studies reported 
in the literature.

Cell-specific networks were built to contextualize the identified genes in their biological pathways and identify 
drug repurposing candidates. The network approach we adopted allowed us to move the focus from the individual 
genes to the disease modules and point out molecular mechanisms involving more than one AD-associated 
gene, reflecting the propensity of disease genes to cluster in network modules53,54. The molecular networks were 
built by combining cell-specific TF-gene interactions derived from the GRN inferred from the transcriptomics 
data with protein–protein interactions retrieved from the literature. This allowed us to obtain a comprehensive 
description of the functional context in which the gene products are involved. Moreover, by adopting a cell-
specific approach, the identified pathways are linked to a specific brain cell, and, thanks to the analysis of the 
ligand-receptor interactions, cell–cell communication can also be investigated. The AD multi-cellular network 
we built is an interconnected set of disease modules that communicate through ligand-receptor interactions 
that we predicted from the gene expression data. Thus, by perturbing one of the disease modules, especially the 
most central ones, it is possible to affect other cells that are involved in the disease. This is of particular interest 
in pathological conditions affecting multiple cell types, such as AD.

Our repurposing results suggest that perturbing the MAPK pathway may be an effective strategy for the 
treatment of AD. Recent studies underlined the importance of this pathway in the disease pathophysiology, 
in particular concerning neuroinflammation, and highlighted the potential benefit of MAPK inhibitor for its 
treatment55–57. Among the identified drugs targeting the MAPK pathway and other related pathways, afatinib 
and lapatinib are cancer drugs that inhibit tyrosine kinase receptors belonging to the EGFR family, reported by 
the Reactome pathway database as being involved in MAPK upstream signaling. A potential indication for their 
efficacy in AD derives from evidence for a putative role of the EGFR pathway in suppressing autophagy and the 
demonstration that its inhibition decreased amyloid-β secretion in vitro and in vivo and improved cognitive 
functions in AD models58,59. In line with these findings, lapatinib reversed memory deficits in a mouse model of 
cognitive impairment60 whereas afatinib efficacy in contrasting neuroinflammation suggested a potential efficacy 
in neurodegenerative diseases61. Nintedanib and sorafenib are antitumoral agents acting on multiple tyrosine 
kinase targets which exert their action also by modulating tumor-mediated angiogenesis. In our study, they were 
identified as AD repurposing candidates thanks to the proximity of FGFR1 and FGFR2 drug modules to disease 
modules of oligodendrocytes, oligodendrocyte progenitor cells, microglia, and inhibitory neurons. Indications 
supporting repurposing for AD therapy derive from demonstrated efficacy in diminishing neuroinflammatory 
responses and restoring cognitive abilities in AD mice models62,63. Since Raf inhibition has been suggested as a 
relevant mechanistic target for these responses64, the Raf inhibitor dabrafenib may also represent a promising 
drug. Similarly, JAKs inhibitors ruxolitinib and tofacitinib potential efficacy is related to efficacy in dampening 
excessive inflammatory responses and have therefore already been suggested as objects of repurposing efforts65,66. 
MEK inhibitors selumetinib and trametinib could also possibly act on AD-associated neuroinflammation. Since 
TREM2 loss of function is one of the strongest known genetic AD risk factors, the discovery that MEK inhibition 
was able to raise TREM2 cell surface expression and function indicates opportunities for therapeutic intervention 
with these agents67. Sunitinib, which inhibits several tyrosine kinase receptors, has been previously associated to 
AD therapy with different mechanisms. Indeed, Lee et al. identified sunitinib in screenings aimed at identifying 
molecules able to dissociate Aβ oligomers and plaques to monomers in 5XFAD transgenic mice68. However, 
sunitinib has also been reported to act as an anticholinesterase inhibitor and to attenuate scopolamine-induced 
impairments of learning and memory in mice similarly to donepezil69. Moreover, reversal of AD-associated vas-
cular activation was suggested as a mechanism supporting sunitinib-induced improvement in cognitive functions 
observed in AD mice models70. It is noteworthy that the list of genes from the AD core modules with supporting 
genetic evidence (Table 1) includes a gene of the MAPK pathway, MAP3K3. This gene encodes MEKK3, a kinase 
acting upstream of ERK5 described as a positive regulator of mitophagy71. Interestingly, the dysfunction of the 
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Figure 6.   Characterization of the drug targets identified by the drug repurposing pipeline. (a) Results of 
Reactome pathway enrichment analysis. Each node corresponds to one pathway and its size is proportional 
to the significance of the enrichment. The connections between pathways reflect the ontology structure of 
Reactome database with parent–child relationships. The small light green circles correspond to pathways not 
significantly enriched but needed to keep the network connected. The two ancestor pathways of the significantly 
enriched pathways are Signal Transduction (on the left) and Disease (on the right). (b) Detailed visualization 
of the genes belonging to MAPK-related Reactome pathways. (c) Chart showing the cell networks in which 
the targets belonging to the MAPK pathways were identified as significantly proximal to AD modules. The 
corresponding AD module is indicated in parenthesis next to the cell name. (d) Cell specificity of the targets 
belonging to the MAPK pathways. (e) Average expression in each cell of the targets belonging to the MAPK 
pathways.
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autophagy-lysosomal system and in particular the mitophagy impairment has been observed in AD patients and 
AD animal models72, and the dysregulation of the MAPK signaling pathway could be involved in this process.

Of note, among the repurposing candidates we identified also drugs targeting pathways outside the MAPK 
and IGF1R signaling. For example, the protein with the highest Open Targets AD overall association score 
identified by the repurposing pipeline is the serotonin receptor HTR2A, target of Asenapine and Dosulepin. 
Serotonin alterations have been implicated in AD development, however the potential therapeutic effect of drugs 
targeting this pathway needs to be further investigated73. In addition to the repurposing candidates, our approach 
allowed us to identify genes linked to AD based on different lines of evidence and map them to their molecular 
and cellular context. In particular, the genes reported in Table 1, identified as AD genes with genetic evidence 
in the AD multicellular network, are those we consider more promising, and they could be further investigated 
using in vitro and in vivo models.

In conclusion, the approach described in this study allowed us to gain cell-specific insights into AD molecular 
mechanisms that were translated into drug repurposing hypotheses that could be further evaluated. A limitation 
of this investigation is the relatively small cohort of AD subjects in the single-cell RNA-seq that may not consider 
the great heterogeneity among subjects at different disease stages. In the future, the inclusion of new AD datasets 
that will be available in the public domain could broaden the results presented here and lead to the identifica-
tion of additional drug targets and repurposing candidates. Like other computational approaches, the results 
of this study would need to be tested in experimental settings to evaluate their relevance. In the current version 
of the pipeline, the drugs with a significant repurposing score indicate both possible disease indication or drug 
side effect and we identified the most promising candidates based on literature evidence. Future improvements 
of the pipeline could focus on the inclusion of information about the directionality in the repurposing score. 
Moreover, the framework we developed can be easily adapted to other diseases for which is possible to define a 
list of disease-associated genes.

Methods
Analysis of the snRNA‑seq data of prefrontal cortex.  The brain snRNA-seq dataset analyzed in this 
study was obtained from Mathys et al.21 (downloaded on 13/02/2020 from https://​www.​synap​se.​org/#​!Synap​se:​
syn18​485175). The use of this dataset for the project has been approved by Synapse on 06/12/2019. This dataset 
is provided by the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago. Data collec-
tion was supported through funding by NIA grants P30AG10161, R01AG15819, R01AG17917, R01AG30146, 
R01AG36836, U01AG32984, U01AG46152, the Illinois Department of Public Health, and the Translational 
Genomics Research Institute. It comprises snRNA-seq data from post-mortem human brain samples from 48 
participants in the Religious Order Study (ROS) or the Rush Memory and Aging Project (MAP), two longitudi-
nal cohort studies of ageing and dementia. The Brodmann area 10 prefrontal cortex tissue from 24 individuals 
with high levels of β-amyloid and other pathological hallmarks of AD (‘AD-pathology’), and 24 individuals with 
no or very low β-amyloid burden or other pathologies (‘no-pathology’) were selected for snRNA-seq. We based 
our analyses on the already pre-processed, filtered data present in the Synapse repository. 17,926 genes profiled 
in 75,060 nuclei. The dataset includes eight main cell types: excitatory neurons, inhibitory neurons, astrocytes, 
oligodendrocytes, microglia, oligodendrocyte progenitor cells, pericytes and endocytes. Pericytes and endo-
cytes data were excluded from the analysis because of the lower cell counts, in agreement with the original 
publication21. This dataset was analyzed using the Seurat R package (v. 4.0). The cell type specificity of the genes 
was assessed using the EWCE R package74. To identify the genes to include in the cell-specific networks, an addi-
tional filtering was performed. Cells from AD subjects and controls were analyzed separately and we considered 
a gene as expressed if at least two cells for each cell type had more than one count. The ligand-receptor analysis 
was performed using the python package CellPhoneDB31.

Identification of AD genes from GWAS summary statistics (genetic evidence).  The AD GWAS 
summary statistics included in this study were published in 2019 by Kunkle et  al.23 and Jansen et  al.22. The 
datasets were downloaded from https://​ctg.​cncr.​nl/​softw​are/​summa​ry_​stati​stics and https://​www.​niaga​ds.​org/​
datas​ets/​ng000​75 on 4th February 2020. To aggregate the SNP association signals into gene and pathway asso-
ciation signals, we run MAGMA v1.07b, a tool for gene and gene-set analysis of GWAS results24. The file with 
the chromosome position of the SNPs (GENELOC_FILE) (hg 19) and the linkage disequilibrium file (1,000 
Genomes European panel) were downloaded from MAGMA website on 10th February 2020. The gene-set files 
(curated gene sets and gene ontology GO biological processes) were downloaded from MSigDB (https://​www.​
gsea-​msigdb.​org/​gsea/​msigdb/) on 10th February 2020. We corrected the p-values of the genes and the path-
ways using the Benjamini & Hochberg (BH) multiple-test correction method. To identify significant genes and 
pathways, we set a threshold of 0.05 for the BH adjusted p-value. The GWAS summary statistics were also trans-
lated into gene-level statistics by assigning risk variants to their putative genes based on tissue-specific eQTL 
information using E-MAGMA25. We run E-MAGMA using the brain cortex GTEx (v7) genes expression data, 
downloaded from E-MAGMA repository (https://​github.​com/​esked​erks/​eMAGMA-​tutor​ial). We corrected the 
p-value for multiple testing using the BH correction and selected as significant the genes with a corrected p-value 
below the threshold of 0.05. We also retrieve AD genes with genetics evidence from a published functional 
genomics study26. In this work, AD genes were identified according to whether they had active promoters/
enhancers that overlapped with AD risk variants from. The dataset is cell-specific and it included AD genes 
related to neurons (both excitatory and inhibitory), microglia and oligodendrocytes26.

Identification of AD genes from differential expression analysis of snRNA‑seq data (gene 
expression evidence).  The cell-specific lists of differentially expressed genes (DEGs) were obtained from 

https://www.synapse.org/#!Synapse:syn18485175
https://www.synapse.org/#!Synapse:syn18485175
https://ctg.cncr.nl/software/summary_statistics
https://www.niagads.org/datasets/ng00075
https://www.niagads.org/datasets/ng00075
https://www.gsea-msigdb.org/gsea/msigdb/
https://www.gsea-msigdb.org/gsea/msigdb/
https://github.com/eskederks/eMAGMA-tutorial
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the supplementary materials of Mathys et al.21. In agreement with the original publication, we considered DEGs 
genes that passed both a cell-level analysis test (performed using the Wilcoxon ranksum test and FDR multiple-
testing correction) and a Poisson mixed model test model (accounting for the individual of origin for nuclei and 
for unwanted sources of variability).

Identification of AD genes from the literature (literature evidence).  We obtained AD genes from 
(1) Harmonizome (https://​amp.​pharm.​mssm.​edu/​Harmo​nizome), (2) KEGG AD pathway (hsa05010), (3) 
Agorà, a list of over 500 candidate drug targets for AD that were nominated by different groups of AD research-
ers (https://​agora.​ampad​portal.​org/), (4) AD Gene Ontology terms from Alzheimer’s Disease Gene Ontology 
Annotation Initiative of Alzheimer’s Research UK (https://​www.​ebi.​ac.​uk/​GOA/​ARUK).

Scoring of the disease genes.  A scoring system was used to rank the AD genes based on the number 
of different sources of evidence supporting the association. A 0/1 score was assigned to each gene based on the 
absence/presence of the gene in each main source of evidence (genetics, gene expression, literature). Genes hav-
ing only genetic evidence derived from MAGMA annotation (genomic proximity) and no functional evidence 
were not considered as disease genes because, due to linkage disequilibrium, the genes in a genomic risk locus 
corresponding to GWAS hit are not all necessarily involved in the disease. In addition, we computed a diversi-
fication score by assigning a higher impact to an AD gene if we found different sources of evidence supporting 
the association. The diversification score was computed as 1—Gini index using the Gini function from the Desc-
Tools R package. The final disease score was obtained by summing the subcomponents.

Evaluation of the AD gene dataset using other annotations.  The relevance of the genes we 
included in the dataset of AD genes was assessed using three established resources providing gene annotations: 
(1) AlzPedia, an AD-specific resource containing genes and proteins implicated in the pathophysiology of AD 
(https://​www.​alzfo​rum.​org/​alzpe​dia), (2) Human Phenotype Ontology (HPO), an ontology of human disease 
phenotypes75, (3) Disease Ontology (DO), an ontology of human disease terms76. The enrichment of the AD 
genes in HPO and DO terms was evaluated using the R package clusterProfiler (v. 3.16.1). While for DO we used 
the version present in clusterProfiler, the HPO ontology (v. 7.4) was downloaded from the Molecular Signatures 
Database (MSigDB) (https://​www.​gsea-​msigdb.​org/​gsea/​msigdb/) on 12th May 2021.

Construction of the AD multi‑cellular network.  For each cell type present in the snRNA-seq data-
set, we built a molecular network including protein–protein and transcription factor (TF)-gene interactions. 
We retrieved the protein–protein interactions (PPI) from the following resources: HENA77 (https://​figsh​are.​
com/​search?​q=​hena) and Hippie78 (http://​cbdm-​01.​zdv.​uni-​mainz.​de/​~mscha​efer/​hippie/). From HENA we 
downloaded four datasets: PPI of brain ageing (PBA), PPI from IntAct in humans, Alzheimer’s disease PPI 
from IntAct and synaptic PPI from IntAct (downloaded on 20th February 2020). We filtered each dataset to 
keep only the most specific interactions: PBA interactions with PBS score < 1, IntAct interactions with MI score 
between > 0.45. For excitatory and inhibitory neurons, we merged the four sources while for the other cells we 
did not include the synaptic PPI networks. From Hippie (data downloaded on 27th February 2020), we selected 
only the high-confidence PPIs (score > = 0.73). To generate cell-specific networks, the resulting network was 
filtered to keep only the genes which are expressed in the AD dataset (see methods section Analysis of the 
single-nucleus RNA-seq data of prefrontal cortex for the filtering criteria) or in the control dataset if the gene 
is differentially expressed genes and downregulated in AD cells (i.e. DEGs that are expressed in controls but 
not in AD-derived cells). Following this approach, we obtained six cell-specific PPI networks that were merged 
with the TF-gene interactions (gene regulatory network GRN) inferred from the snRNA-seq data. The GRN was 
inferred using the pySCENIC pipeline v. 0.9.1830, run using the default parameters. To perform the analysis the 
following databases were used: cisTarget database hg38__refseq-r80__500bp_up_and_100bp_down_tss.mc9nr.
feather, transcription factor motif annotation database: motifs-v9-nr.hgnc-m0.001-o0.0.tbl, list of human TF: 
allTFs_hg38.txt. The files were downloaded on 2nd March 2020.

Network modules were detected using the walktrap algorithm, as implemented in the R package igraph. To 
avoid oversized modules, the algorithm was run iteratively on modules with more than 500 genes. The enrich-
ment in AD genes was tested using one-sided Fisher’s exact test, followed BH correction for multiple test (cor-
rected p-value < 0.05).

The multi-cellular AD network was built by connecting the AD modules based on the number of shared 
LR pairs. Closeness centrality of the nodes in the multi-cellular AD network was computed using the closeness 
function from igraph R package.

Functional enrichment analysis of the genes in the disease modules and the candidate drug 
targets.  We performed the Reacome enrichment analysis using the function enrichPathway from R package 
ReactomePA. For the modules analysis, all the genes in the corresponding network were used as the universe. 
For the analysis of the drug targets, instead, all the genes encoding drug targets that we tested in the repurpos-
ing pipeline and for which we could build a drug module were used as universe. Pathways with a BH-adjusted 
p-value < 0.05 were considered significantly enriched.

Annotation of the disease genes with supporting genetic evidence.  Pharos database36 was que-
ried via the GraphQL API (accessed on 3rd June 2021). Open Targets database37 was accessed via the web inter-
face (https://​www.​opent​argets.​org/) on 4th May 2021.

https://amp.pharm.mssm.edu/Harmonizome
https://agora.ampadportal.org/
https://www.ebi.ac.uk/GOA/ARUK
https://www.alzforum.org/alzpedia
https://www.gsea-msigdb.org/gsea/msigdb/
https://figshare.com/search?q=hena
https://figshare.com/search?q=hena
http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/
https://www.opentargets.org/
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Retrieval of drug information.  Information about drugs, their stage of development and their targets was 
obtained from DrugBank (database downloaded on 9th February 2021). Data was parsed using the dbparser R 
package. Drugs were retained if they were annotated to have a polypeptide target with a known action and if 
they had an approved status for humans. The expression profiles of the drugs were obtained from the Library of 
Integrated Network-Based Cellular Signatures (LINCS). We accessed the data using the RESTful API (https://​
clue.​io/) on 16th February 2021 and for each drug the 100 most up- and down- regulated genes were retrieved 
relying on high quality signatures (is_gold = 1). If for a certain drug more than one signature was available, we 
selected the one with the highest signature strength (distil_ss parameter).

Identification of drug repurposing candidates.  To identify drug repurposing candidates, we followed 
the approach described in in Misselbeck et al.17. Briefly, for each drug target-drug pair we built a drug module 
which includes the drug target, drug modulated genes and connecting genes. Drug modules with less than ten 
genes were not considered for the identification of repurposing candidates. The repurposing candidates were 
identified by computing the proximity score between disease and drug modules.

Tissue specificity was evaluated using the gene expression information from Human Protein Atlas (accessed 
on 15th April 2021). Drug repurposing candidates significantly associated with a disease module of EX, IN, OLI, 
OPC, or AST network and having a target that is specific (Tissue enriched, Tissue enhanced, Group enriched, 
Group enhanced) of non-brain tissues were excluded. For MIC network, drug targets specific for non-brain 
tissues and non-immune-related tissues (lymphoid tissue, blood, bone marrow, gallbladder), were excluded. 
Cell specificity was calculated using the generate_celltype_data function of the EWCE package using as input 
the snRNA-seq data from cells of AD subjects. ChEMBL annotation of the disease indications was retrieved 
using ChEMBL API service. The ChEMBL ids of the drugs were identified from UniChem database using the 
DrugBank id for the search. The analysis was performed on 12th May 2022.

Data availability
All the data used in this study are publicly available. The brain snRNA-seq dataset analyzed in this study is avail-
able from https://​www.​synap​se.​org/#​!Synap​se:​syn18​485175. The GWAS summary statistics are available from 
https://​ctg.​cncr.​nl/​softw​are/​summa​ry_​stati​stics and https://​www.​niaga​ds.​org/​datas​ets/​ng000​75.

Code availability
The code to build the AD multicellular network is available from https://​www.​cosbi.​eu/​fx/​20934​89320/. The 
code to run the repurposing pipeline is available from our previous publication (https://​doi.​org/​10.​1038/​
s41467-​019-​13208-z).
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