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Abstract
In this paper, a bisingular pseudodifferential calculus, along the lines of the one
introduced by L. Rodino in his paper of 1975, is developed in the global setting
of a product of compact Lie groups. The approach follows that introduced by
M. Ruzhansky and V. Turunen in their book of 2010 (see also V. Fischer’s paper
of 2015), in that it exploits the harmonic analysis of the groups involved.
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1 INTRODUCTION

In this paper, we shall introduce a class of global pseudodifferential operators on the product of compact Lie groups and
develop the corresponding global symbolic calculus in the spirit of the one introduced by Ruzhansky and Turunen in [13]
and of that introduced subsequently by Fischer in [5].
On the product of twomanifolds, the class we consider here was first studied by Rodino in [12], where, in particular, the

author used the classical theory of pseudodifferential operators developed by Hörmander in [6] to construct an algebra of
pseudodifferential operators containing the so-called bisingular operators.
The interest of our approach lies in the fact that it is global and based on the group structure and on its related

representation theory.
As the classes 𝑆𝑚1,𝑚2(Ω1 × Ω2) in [12] are not in general contained in any of the Hörmander classes 𝑆𝑚(Ω1 × Ω2 ×
ℝ𝑛1+𝑛2), similarly in our case, the classes 𝑆𝑚1,𝑚2(𝐺1 × 𝐺2 × 𝐺1 × 𝐺2) are not in general contained in any class 𝑆𝑚(𝐺), with
𝐺 = 𝐺1 × 𝐺2, defined by Ruzhansky and Turunen in [13].
Natural examples of bisingular pseudodifferential operators in our setting, as in the general compact manifold setting,

are tensor products of the form 𝐴1 ⊗ 𝐴2, where 𝐴𝑖 for 𝑖 = 1, 2 is a pseudodifferential operator with symbol in the class
𝑆𝑚𝑖 (𝐺𝑖) introduced in [14], that is, 𝐴𝑖 ∈ 𝐿𝑚(𝐺𝑖) ∶= Op(𝑆𝑚𝑖 (𝐺𝑖)), with 𝐺𝑖 being a compact Lie group.
The study of these operators goes back to 1971, when Pilidi in [9] reduced the boundary value problem for functions

of two complex variables in bicylinders to the analysis of a bisingular equation on the two distinguished boundaries. In
[10] the same author also developed a product calculus to deal with these objects and considered the corresponding index
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problem. Afterward, a priori estimates and Fredholm properties for bisingular operators were studied by Rabinovič in
[11], while in 1975 Rodino in [12] introduced the so-called calculus of bisingular pseudodifferential operators. Other
related questions, such as residues and index problems, have been recently considered by Nicola and Rodino in [8], while
microlocal properties have been studied by Borsero and Schulz in [2].
Let us also recall that a global version (i.e. in the Shubin setting of ℝ𝑛1 × ℝ𝑛2) of the calculus in [12] was developed by

Battisti et al. in [1], and that other calculi of product type were developed by Dudučava in [4] and [3], and more recently
by Melrose and Rochon in [7].
Note that a natural and immediate generalization of bisingular operators are the multisingular ones, whose prototype

are tensor products of the form
⨂𝑁
𝑖=1
𝐴𝑖 , with𝐴𝑖 ∈ 𝐿𝑚𝑖 (𝐺𝑖). We will not pursue this topic here, but with suitable arrange-

ments in the arguments used below one can define a multisingular pseudodifferential calculus on the direct product of
finitely many compact Lie groups and define the corresponding multisingular pseudodifferential operators.
We want to remark that due to the intrinsic product structure of the bisingular calculus, the suitable version of the

celebrated Gårding inequality for elliptic operators is not available for bielliptic operators (see for instance [11], where such
inequality is attained only under very specific assumptions). Hence, it seems that for the class of bisingular operators, that
serves as a model for degenerate elliptic operators, a more natural inequality to consider is the sharp Gårding inequality.
We will analyze the problem of the validity of this inequality in a future paper that will be part II of the present work.
We finally conclude this introduction by giving the plan of the paper.
In Section 2, we shall recall some basic definitions on compact Lie groups, such as the notions of Fourier transform,

difference operators and Taylor expansion, as well as the standard quantization formula.
In Section 3, we introduce the class of bisingular symbols and define the corresponding pseudodifferential operators.
Section 4 will be devoted to the derivation of some fundamental kernel estimates needed to prove some asymptotic

properties that are the object of Section 5.
Finally, in Section 5, we develop the calculus, that is, we prove asymptotic formulas for the composition and for

the adjoint of bisingular operators, and prove, after introducing ellipticity in the bisingular setting, the existence of
parametrices for bielliptic operators.

2 PRELIMINARIES

In the sequel, 𝐺 will be a compact Lie group, 𝐺 its unitary dual, that is the set of all equivalence classes of unitary rep-
resentations of 𝐺, and Rep(𝐺) the set of all the irreducible unitary representations of 𝐺. Since 𝐺 is compact, any given
𝜉 ∈ Rep(𝐺) is finite dimensional, and we shall denote, by 𝜉 , the associated representation space, and by  (𝜉), the
corresponding space of unitary operators on𝜉 .
The Fourier and inverse Fourier transforms on 𝐺 are given in terms of the representations of the group as follows.
Given a function 𝑓 ∈ 𝐶∞(𝐺) and 𝜉 ∈ Rep(𝐺), the (matrix-valued) global Fourier transform of 𝑓 at 𝜉 is defined by

𝑓(𝜉) = ∫𝐺 𝑓(𝑥)𝜉
∗(𝑥)𝑑𝑥,

where 𝜉∗(𝑥) ∶= 𝑡𝜉(𝑥) stands for the adjoint representation of 𝜉, while 𝑑𝑥 denotes the Haar measure on the group. Notice
that, given 𝜉 ∶ 𝜉 →  (𝜉) and 𝑑𝜉 ∶= dim(𝜉) ∶= dim(𝜉), then 𝑓(𝜉) ∈ ℂ𝑑𝜉×𝑑𝜉 . Correspondingly, the inverse Fourier
transform is given by

𝑓(𝑥) =
∑
[𝜉]∈𝐺

𝑑𝜉Tr(𝜉(𝑥)𝑓(𝜉)),

where Tr(𝐴) denotes the trace of the matrix 𝐴.
Related to the previous formulas one has the following Parseval identity

‖𝑓‖2
𝐿2(𝐺)
=

∑
[𝜉]∈𝐺

𝑑𝜉‖𝑓(𝜉)‖2𝐻𝑆 =∶ ‖𝑓‖2𝓁2(𝐺),
where ‖𝑓(𝜉)‖𝐻𝑆 ∶= (Tr(𝑓(𝜉)𝑓(𝜉)∗))1∕2 is the Hilbert–Schmidt norm.

 15222616, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202100400 by A
rea Sistem

i D
ipart &

 D
ocum

ent, W
iley O

nline L
ibrary on [08/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FEDERICO and PARMEGGIANI 219

In order to deal with (matrix-valued) functions on 𝐺,we will need to make use of the so called difference operators that
we next define following [14].

Definition 2.1. We say that 𝑄𝜉 is a difference operator of order 𝑘 on (′(𝐺)) (the image of the group Fourier transform
of distributions on 𝐺) if

𝑄𝜉𝑓(𝜉) = 𝑞𝑄𝑓(𝜉),

for a function 𝑞𝑄 ∈ 𝐶∞(𝐺) vanishing of order 𝑘 at the identity element 𝑒 of 𝐺, that is, 𝑞𝑄 is such that 𝑞𝑄(𝑒) = 𝑃𝑥𝑞𝑄(𝑒) = 0
for all left-invariant differential operators 𝑃𝑥 ∈ Dif f k−1(G) of order 𝑘 − 1.

We shall denote by dif f 𝑘(𝐺) the set of all difference operators of order 𝑘 on 𝐺.

Definition 2.2. A collection of 𝑛△ ≥ 𝑛 = dim(𝐺) difference operators △1,… ,△𝑛△ in dif f 1(𝐺) is called admissi-
ble if the corresponding functions 𝑞1, … , 𝑞𝑛△ ∈ 𝐶

∞(𝐺) are such that 𝑞1(𝑒) = ⋯ = 𝑞𝑛△(𝑒) = 0, and 𝑑𝑞𝑗(𝑒) ≠ 0 for all
𝑗 = 1,… , 𝑛△, with rank(𝑑𝑞1(𝑒), … , 𝑑𝑞𝑛△(𝑒)) = 𝑛. Finally, a collection of difference operators is called strongly admissible
if
⋂
𝑗{𝑥 ∈ 𝐺; 𝑞𝑗(𝑥) = 0} = {𝑒}.

Given a fixed family of functions 𝑄 = {𝑞𝑗}𝑗=1,…,𝑛△ , we shall denote by

∙ △𝑄 the associated admissible collection of difference operators;
∙ 𝑞𝛼 ∶= 𝑞

𝛼1
1 … 𝑞

𝛼𝑛△
𝑛△

;

∙ △𝑄,𝑗 = △𝑞𝑗 and△
𝛼
𝑄 ∶= △

𝛼1
𝑄,1 ⋯△

𝛼𝑛△
𝑄,𝑛△

the corresponding element in dif f |𝛼|(𝐺).
Additionally, once the collection of difference operators is fixed, namely the corresponding family of functions 𝑄 is fixed,
one can find a family of differential operators in Dif f |𝛼|(𝐺), denoted by 𝜕(𝛼)𝑥 , such that the following Taylor’s formula
holds

𝑓(𝑥) =
∑

|𝛼|<𝑁
1
𝛼!
𝑞(𝑥)𝛼𝜕(𝛼)𝑥 𝑓(𝑒) + (ℎ(𝑥)𝑁), ℎ(𝑥) → 0,

for all 𝑓 ∈ 𝐶∞(𝐺), where ℎ(𝑥) is the geodesic distance from 𝑥 to 𝑒𝐺 . The differential operators 𝜕
(𝛼)
𝑥 can be replaced by

𝜕𝛼𝑥 ∶= 𝜕
𝛼1
𝑥1
… 𝜕
𝛼𝑛
𝑥𝑛
, with 𝜕𝑥𝑗 , 𝑗 = 1,… , 𝑛, being a collection of left-invariant first order differential operators corresponding

to some linearly independent left-invariant vector fields on 𝐺 (𝜕𝑥𝑗 are not the Euclidean directional derivatives here).

Remark 2.3. Note that we are assuming the Lie algebra 𝔤 to be the space of left-invariant vector fields. In particular, we
shall use the notation 𝜕𝑥𝑗 and 𝜕̃𝑥𝑗 for the left and right invariant vector fields, respectively. Once we fix an orthonormal
basis of left-invariant vector fields for 𝔤, then any element of Dif f 𝑘(𝐺) (the space of left-invariant differential operators
of order 𝑘) can be written as a linear combination in terms of the elements of the basis. Note also that a similar property
holds for right-invariant vector fields.

By Lemma 4.4 in [14], the family of functions {𝑞𝑖𝑗 = 𝜉𝑖𝑗 − 𝛿𝑖𝑗}[𝜉]∈𝐺,1≤𝑖,𝑗≤𝑑𝜉 always induces a strongly admissible
collection of difference operators, therefore we choose the latter as the fixed admissible collection for the rest of the paper.
In the context of the difference operators defined above, the following notion of Leibniz formula is adopted (see [5]).

Definition 2.4. A collection △=△𝑄 of difference operators satisfies the Leibniz-like property if, for any Fourier
transforms 𝑓1 and 𝑓2 (with 𝑓1, 𝑓2 ∈ ′(𝐺)),

△𝑄,𝑗(𝑓1𝑓2) = △𝑄,𝑗(𝑓1)𝑓2 + 𝑓1 △𝑄,𝑗 (𝑓2) +
∑
1≤𝑙,𝑘≤𝑛△

𝑐
(𝑗)
𝑙,𝑘
△𝑄,𝑙 (𝑓1)△𝑄,𝑘 (𝑓2),

for some coefficients 𝑐(𝑗)
𝑙,𝑘
∈ ℂ depending only on 𝑙, 𝑘, 𝑗, and△.
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220 FEDERICO and PARMEGGIANI

If△ is a collection satisfying the Leibniz-like formula, then, recursively, for any given 𝛼 ∈ ℕ
𝑛△
0 , one has

△𝛼𝑄(𝑓1𝑓2) =
∑

|𝛼|≤|𝛼1|+|𝛼2|≤2|𝛼| 𝑐
𝛼
𝛼1,𝛼2

(
△
𝛼1
𝑄 𝑓1

)(
△
𝛼2
𝑄 𝑓2

)
, (2.1)

for some coefficients 𝑐𝛼𝛼1,𝛼2 ∈ ℂ depending on 𝛼1, 𝛼2, 𝛼, and△, with 𝑐𝛼𝛼,0 = 𝑐
𝛼
0,𝛼, = 1.

Remark 2.5. We remark that there always exists a strongly admissible collection of difference operators as in Definition 2.2
for which the Leibniz property above holds (see Corollary 5.13 in [5]). In particular, this is always the case for the strongly
admissible collection△𝑄 with 𝑄 = {𝑞𝑖𝑗 = 𝜉𝑖𝑗 − 𝛿𝑖𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑑𝜉, 𝜉 ∈ 𝐺}.
In order to introduce the precise difference operators, we are going to exploit in our settings, it is more convenient for us

to use the definition of difference operators given in [5], which, in turn, gives rise to the same difference operators defined
above by means of the admissible collection {𝑞𝑖𝑗 = 𝜉𝑖𝑗 − 𝛿𝑖𝑗}[𝜉]∈𝐺,1≤𝑖,𝑗≤𝑑𝜉 .

Definition 2.6. For each 𝜏, 𝜉 ∈ Rep(𝐺) we define the linear mapping△𝜏𝑓(𝜉) on𝜏 ⊗𝜉 by
△𝜏𝑓(𝜉) = 𝑓(𝜏 ⊗ 𝜉) − 𝑓(𝐼𝑑𝜏 ⊗ 𝜉). (2.2)

The restriction of△𝜏𝑓(𝜉) to any occurrence of 𝜌 ∈ 𝐺 in the decomposition into irreducibles of 𝜏 ⊗ 𝜉 defines the same
mapping on 𝜌, while the restriction to any 𝜌 ∈ 𝐺 not appearing in the decomposition of 𝜏 ⊗ 𝜉 is fixed to be zero. With
these conventions the operation△𝜏 is called difference operator associated with 𝜏 ∈ Rep(𝐺).

Definition 2.7. Let 𝐺 = 𝐺1 × 𝐺2 be a compact Lie group such that 𝐺𝑖 is compact for all 𝑖 = 1, 2, and 𝑛𝑖 ∶= dim(𝐺𝑖). Let
𝑒 = (𝑒1, 𝑒2) be the neutral element of 𝐺. A collection of 𝑛𝑃 ∶= 𝑛△𝑃 ≥ 𝑛1 difference operators△𝑝1,… ,△𝑝𝑛𝑃 ∈ dif f 1(𝐺) is
called admissible relative to 𝐺1 if the corresponding functions 𝑝1, … , 𝑝𝑛𝑃 ∈ 𝐶

∞(𝐺) are such that 𝑝1(𝑒) = ⋯ = 𝑝𝑛𝑃(𝑒) = 0,
and 𝑑𝑝𝑗(𝑒) ≠ 0 for all 𝑗 = 1,… , 𝑛𝑃, with rank(𝑑𝑝1(𝑒), … , 𝑑𝑝𝑛𝑃 (𝑒)) = 𝑛1.
The collection is called strongly admissible relative to𝐺1 if

⋂𝑛△𝑃
𝑗=1 {𝑥 ∈ 𝐺; 𝑝𝑗(𝑥) = 0} = {𝑒1} × 𝐺2. Admissible and strongly

admissible collections relative to 𝐺2 are defined similarly by reversing the role of 𝐺1 and 𝐺2.

We then consider the family of functions

𝑅 =
{
𝑟(𝜏)𝑖𝑗 ; 1 ≤ 𝑖, 𝑗 ≤ 𝑑𝜏, 𝜏 ∈ 𝐺

}
=
{(
𝐼𝑑𝜏1
⊗ 𝜏2 − 𝐼𝑑𝜏

)
𝑖𝑗
; 1 ≤ 𝑖, 𝑗 ≤ 𝑑𝜏, 𝜏 ∈ 𝐺

}
(2.3)

and

𝑃 =
{
𝑝(𝜏)𝑖𝑗 ; 1 ≤ 𝑖, 𝑗 ≤ 𝑑𝜏, 𝜏 ∈ 𝐺

}
=
{(
𝜏1 ⊗ 𝐼𝑑𝜏2

− 𝐼𝑑𝜏

)
𝑖𝑗
; 1 ≤ 𝑖, 𝑗 ≤ 𝑑𝜏, 𝜏 ∈ 𝐺

}
, (2.4)

so that both △𝑅 and △𝑃 are strongly admissible collections relative to 𝐺1 ≃ 𝐺1 × {𝑒2} ⊂ 𝐺 and 𝐺2 ≃ {𝑒1} × 𝐺2 ⊂ 𝐺,
respectively (see Definition 2.7). After ordering the (huge but finite) families 𝑃 and 𝑅 above, that is, writing

𝑃 = {𝑝𝑘, 𝑘 = 1,… , 𝑛𝑃}, 𝑅 = {𝑟𝑘, 𝑘 = 1,… , 𝑛𝑅},

where each𝑝𝑘, 𝑟𝑘 are functions of the form𝑝
(𝜏)
𝑖𝑗 , 𝑟
(𝜏)
𝑖𝑗 , respectively, for some 𝜏 ∈ 𝐺 and some 𝑖, 𝑗 ∈ {0, … , 𝑑𝜏}, wemay define

△𝛼,𝛽 ∶= △𝛼𝑃△
𝛽
𝑅 = △

𝛼1
𝑝1
⋯△

𝛼𝑛𝑃
𝑝𝑛𝑃
△
𝛽1
𝑟1
⋯△

𝛽𝑛𝑅
𝑟𝑛𝑅
. (2.5)

Note that the function 𝑝𝑗 , for all 𝑗 = 1,… , 𝑛𝑃, is independent of 𝑥2 ∈ 𝐺2, and, similarly, the function 𝑟𝑗 , for all 𝑗 = 1,… , 𝑛𝑅,
is independent of 𝑥1.
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These difference operators, namely of the form (2.5), will be the ones used for the rest of the paper. Note that△𝛼𝑃 and
△
𝛽
𝑄 may be thought of as “partial difference operators” in the “directions” of 𝐺1 and 𝐺2, respectively.
By Remark 2.5 and formula (2.1) applied iteratively, we have the following Leibniz-like formula for the difference

operators we are considering.

Proposition 2.8. Let 𝐺 = 𝐺1 × 𝐺2, with 𝐺1 and 𝐺2 compact Lie groups. Then, for any 𝛼 ∈ ℕ
𝑛△𝑃
0 , 𝛽 ∈ ℕ

𝑛△𝑅
0 , and for all

Fourier transforms 𝑓1, 𝑓2 (with 𝑓1, 𝑓2 ∈ ′(𝐺)), we have
△𝛼,𝛽(𝑓1𝑓2) =

∑
|𝛼|≤|𝛼1|+|𝛼2|≤2|𝛼|

∑
|𝛽|≤|𝛽1|+|𝛽2|≤2|𝛽| 𝑐

𝛼
𝛼1,𝛼2
𝑐
𝛽
𝛽1,𝛽2
(△𝛼1,𝛽1𝑓1)(△

𝛼2,𝛽2𝑓2), (2.6)

for some coefficients 𝑐𝛼𝛼1,𝛼2 , 𝑐
𝛽
𝛽1,𝛽2
∈ ℂ such that 𝑐𝛽

𝛽,0
= 𝑐
𝛽
0,𝛽
= 𝑐𝛼𝛼,0 = 𝑐

𝛼
0,𝛼 = 1.

Proof. The proof immediately follows by application of formula (2.1) twice, that is, for△𝛼𝑃 and△
𝛽
𝑄, respectively. □

Observe now that, since the families of functions in (2.3) and (2.4) defining admissible collections of difference operators
on 𝐺 relative to 𝐺1 and 𝐺2 are fixed, on denoting by 𝑥 = (𝑥1, 𝑥2) an element of 𝐺 = 𝐺1 × 𝐺2, with dim(𝐺1) = 𝑛1 and
dim(𝐺2) = 𝑛2, we can find a family of differential operators

𝜕
𝛼,𝛽
𝑥 ∶= 𝜕

𝛼
𝑥1
𝜕
𝛽
𝑥2

such that the following form of Taylor’s formula holds (see, for instance, [5])

𝑓(𝑥) =
∑

|𝛼|<𝑁
∑

|𝛽|<𝑁
1

𝛼!𝛽!
𝑞𝛼,𝛽(𝑥−1)𝜕

𝛼,𝛽
𝑥 𝑓(𝑒) +

∑
|𝛼+𝛽|=2𝑁,|𝛼|≥𝑁∨|𝛽|≥𝑁

1

𝛼!𝛽!
𝑞𝛼,𝛽(𝑥−1)𝑓𝛼,𝛽(𝑥),

where

𝑞𝛼,𝛽(𝑥) ∶= 𝑟(𝑥)𝛼𝑝(𝑥)𝛽 = 𝑟1(𝑥)
𝛼1 … 𝑟𝑛𝑅 (𝑥)

𝛼𝑛𝑅 𝑝1(𝑥)
𝛽1 …𝑝𝑛𝑃(𝑥)

𝛽𝑛𝑃 .

Recall that, in particular, we will have△𝑅,𝑗𝑓(𝜉) ∶= 𝑟𝑗𝑓(𝜉) and△𝑃,𝑘 = 𝑝𝑘𝑓(𝜉). Moreover, the differential operators 𝜕
𝛼,𝛽
𝑥

are chosen so as to satisfy 𝜕𝛼𝑥1(𝑝(𝑥)
𝛼) = 𝜕

𝛽
𝑥2
(𝑟(𝑥)𝛽) = 1 for all 𝛼, 𝛽 such that |𝛼| = |𝛽| = 1. In particular, since 𝑃 and 𝑅

are strongly admissible collections relative to 𝐺1 and 𝐺2, respectively, we have that there are 𝑛1 and 𝑛2 elements in
𝑃 and 𝑅, respectively, say (𝑝1, … , 𝑝𝑛1) and (𝑟1, … , 𝑟𝑛2), such that (𝜕𝑥1,1 , … , 𝜕𝑥1,𝑛1 , 𝜕𝑥2,1 , … , 𝜕𝑥2,𝑛2 ) can be identified with
(𝑑𝑝1(𝑒), … , 𝑑𝑝𝑛1(𝑒), 𝑑𝑟1(𝑒), … , 𝑑𝑟𝑛2(𝑒)) (where 𝑑𝑓(𝑒) denotes the differential computed at 𝑒) by duality, and we fix the
former as the basis of the Lie algebra 𝔤. We stress that the choice of 𝑞𝛼,𝛽(𝑥−1) instead of 𝑞𝛼,𝛽(𝑥) is technical (see [13]).
Note finally that the formula above can be derived by application of Taylor’s formula twice, that is, first with respect
to the variable 𝑥1 by using the functions 𝑞𝛼,0(𝑥) = 𝑞𝛼,0(𝑥1), and then by expanding again with respect to 𝑥2 and using
𝑞0,𝛽(𝑥) = 𝑞0,𝛽(𝑥2).

3 BISINGULAR SYMBOLS ON 𝑮 = 𝑮𝟏 × 𝑮𝟐

In this section, we define what we shall call class of bisingular symbols, since, as pointed out by Rodino in [12], it contains
symbols of operators of bisingular type (see [9],[10], and [15]).

Notation. In what follows, we call 𝑥 = (𝑥1, 𝑥2) an element of 𝐺 = 𝐺1 × 𝐺2 and 𝜉 ∶= 𝜉1 ⊗ 𝜉2 an element of 𝐺, where
𝜉𝑗 ∈ 𝐺𝑗 . By using the definitions above and fixing the families 𝑅 and 𝑃, we define △𝛼1 ∶= △

𝛼
𝑃, △

𝛽
2 ∶= △

𝛽
𝑄, and

𝜕𝛼1 ∶= 𝜕
𝛼
𝑥1
= 𝜕
𝛼1
𝑥11
… 𝜕
𝛼𝑛1
𝑥1𝑛1

, 𝜕𝛽2 ∶= 𝜕
𝛽
𝑥2
= 𝜕
𝛽1
𝑥21
… 𝜕
𝛽𝑛2
𝑥2𝑛2

as above (where, as previously mentioned, 𝜕𝑥𝑗 are not the Euclidean

directional derivatives). We shall finally put 𝜕𝛼,𝛽 ∶= 𝜕𝛼𝑥1𝜕
𝛽
𝑥2
and analogously for the difference operators△𝛼,𝛽 .
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222 FEDERICO and PARMEGGIANI

We recall that, given a continuous linear operator 𝐴 from 𝐶∞(𝐺) to′(𝐺), its matrix-valued symbol 𝜎𝐴(𝑥, 𝜉) ∈ ℂ𝑑𝜉×𝑑𝜉
(as introduced in [13]) is given by

𝜎𝐴(𝑥, 𝜉) = 𝜉
∗(𝑥)(𝐴𝜉)(𝑥), (3.1)

and that

𝐴𝑓(𝑥) =
∑
[𝜉]∈𝐺

𝑑𝜉Tr(𝜉(𝑥)𝜎𝐴(𝑥, 𝜉)𝑓(𝜉)), 𝑓 ∈ 𝐶
∞(𝐺),

holds in the sense of distributions and the sum is independent of the choice of the representative 𝜉 of the class [𝜉].

Definition 3.1. Let 𝐺 = 𝐺1 × 𝐺2 be a compact Lie group and define 𝑛𝑖 ∶= dim(𝐺𝑖). We call class of bisingular symbols of
order (𝑚1,𝑚2) ∈ ℝ2 the set 𝑆𝑚1,𝑚2(𝐺 × 𝐺) of all 𝑎 ∶ 𝐺 × 𝐺⟶

⋃
[𝜉]∈𝐺 ℂ

𝑑𝜉×𝑑𝜉 that are smooth in 𝑥 ∈ 𝐺 and such that, for

all multi-indices 𝛼1 ∈ ℕ
𝑛1
0 , 𝛼2 ∈ ℕ

𝑛2
0 , 𝛽1 ∈ ℕ

△𝑃
0 , 𝛽2 ∈ ℕ

△𝑅
0 ,

‖‖𝜕𝛼1𝑥1 𝜕𝛼2𝑥2 △𝛽11 △𝛽22 𝑎(𝑥1, 𝑥2, 𝜉1, 𝜉2)‖‖𝑜𝑝 ≤ 𝐶𝛼1,𝛼2,𝛽1,𝛽2⟨𝜉1⟩𝑚1−|𝛽1|⟨𝜉2⟩𝑚2−|𝛽2|,
where

‖𝑎‖𝑜𝑝 ∶= sup{|𝑎(𝑥, 𝜉)𝑣|𝓁2 ; 𝑣 ∈ ℂ𝑑𝜉 , |𝑣|𝓁2 ≤ 1}.
Additionally, we shall denote by 𝑆−∞,−∞(𝐺 × 𝐺) ∶=

⋂
(𝑚1,𝑚2)∈ℤ2

𝑆𝑚1,𝑚2(𝐺 × 𝐺) the class of smoothing elements.

It is important to bear in mind that 𝐺 = 𝐺1 × 𝐺2.
Due to the equivalence of ‖𝑎‖ℒ(𝜉) and ‖𝑎‖𝑜𝑝, we will freely use both notations below.
Let us remark that, as in the standard case, the space 𝑆𝑚1,𝑚2(𝐺 × 𝐺) is a Fréchet space equipped with the seminorms

‖𝜎‖𝑆𝑚1,𝑚2
(𝑎1,𝑎2),(𝑏1,𝑏2)

∶= max|𝛼1|≤𝑎1,|𝛼2|≤𝑎2|𝛽1|≤𝑏1,|𝛽2|≤𝑏2
sup
(𝑥,𝜉)∈𝐺×𝐺

⟨𝜉1⟩−𝑚1+|𝛼1|⟨𝜉2⟩−𝑚2+|𝛼2|‖‖△𝛼1,𝛼2 𝜕𝛽1,𝛽2𝑥1 𝜎(𝑥, 𝜉)‖‖ℒ(𝜉),
with 𝑎1, 𝑎2, 𝑏1, 𝑏2 ∈ ℕ0.
To eachmatrix-valued symbol 𝑎 ∈ 𝑆𝑚1,𝑚2(𝐺 × 𝐺1 × 𝐺2), one can associate an operatorOp(𝑎) bymeans of the following

quantization formula:

Op(𝑎)𝜑(𝑥) ∶=
∑
[𝜉]∈𝐺

𝑑𝜉Tr(𝜉(𝑥)𝑎(𝑥, 𝜉)𝜑(𝜉))

=
∑
[𝜉1]∈𝐺1

∑
[𝜉2]∈𝐺2

𝑑𝜉1𝑑𝜉2Tr((𝜉1 ⊗ 𝜉2)(𝑥)𝑎(𝑥, 𝜉1, 𝜉2)𝜑(𝜉1 ⊗ 𝜉2)), (3.2)

and we shall denote by 𝐿𝑚1,𝑚2(𝐺) the class of operators of the previous form, that is, those obtained by quantizing symbols
in 𝑆𝑚1,𝑚2(𝐺 × 𝐺) as in (3.2). These operators will be called binsingular operators of order (𝑚1,𝑚2) on 𝐺 = 𝐺1 × 𝐺2.
Moreover, with any 𝑎 ∈ 𝑆𝑚1,𝑚2(𝐺 × 𝐺), we associate the maps

𝐺1 × 𝐺1 ∋ (𝑥1, 𝜉1) ⟼ 𝑎(𝑥1, 𝑥2, 𝜉1, 𝐷2) ∈ 𝐿
𝑚2(𝐺2),

𝐺2 × 𝐺2 ∋ (𝑥2, 𝜉2) ⟼ 𝑎(𝑥1, 𝑥2, 𝐷1, 𝜉2) ∈ 𝐿
𝑚1(𝐺1),

where 𝐿𝑚1(𝐺1) and 𝐿𝑚2(𝐺) are classes of operators on 𝐺1 and 𝐺2, respectively obtained by means of the quantization
formulas

𝑎(𝑥1, 𝑥2, 𝜉1, 𝐷2)𝜑(𝑥2) =
∑
[𝜉2]∈𝐺2

𝑑𝜉2Tr
(
(𝐼𝑑𝜉1
⊗ 𝜉2(𝑥2))𝑎(𝑥1, 𝑥2, 𝜉1, 𝜉2) × (𝐼𝑑𝜉1

⊗ 𝜑(𝜉2))
)
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FEDERICO and PARMEGGIANI 223

and

𝑎(𝑥1, 𝑥2, 𝐷1, 𝜉2)𝜑(𝑥1) =
∑
[𝜉1]∈𝐺1

𝑑𝜉1Tr
(
(𝜉1(𝑥1) ⊗ 𝐼𝑑𝜉2

)𝑎(𝑥1, 𝑥2, 𝜉1, 𝜉2) × (𝜑(𝜉1) ⊗ 𝐼𝑑𝜉2
)
)
.

It is important to stress that the symbol 𝑎 ∈ 𝑆𝑚1,𝑚2(𝐺 × 𝐺) is uniquely determined by one of these maps.
Throughout the paper, we will often write 𝑎(𝑥, 𝜉) in place of 𝑎(𝑥1, 𝑥2, 𝜉1, 𝜉2), where 𝜉 = 𝜉1 ⊗ 𝜉2 ∈ 𝐺 and
𝑆𝑚1,𝑚2(𝐺 × 𝐺1 × 𝐺2) in place of 𝑆𝑚1,𝑚2(𝐺 × 𝐺).

Remark 3.2. Notice that, in general, there is no 𝑚 ∈ ℝ such that 𝑆𝑚1,𝑚2(𝐺 × 𝐺) ⊂ 𝑆𝑚(𝐺 × 𝐺). However, we always have
that 𝑆𝑚1,𝑚2(𝐺 × 𝐺) ⊂ 𝑆𝑚0,0(𝐺 × 𝐺) for some𝑚 ∈ ℝ.

Given a continuous linear operator 𝐴 ∶ (𝐺) → ′(𝐺), (where (𝐺) ∶= 𝐶∞(𝐺)), its right-convolution kernel
𝑅𝐴 ∈ ′(𝐺 × 𝐺) is defined by

𝐴𝜑(𝑥) = ∫𝐺 𝜑(𝑦)𝑅𝐴(𝑥, 𝑦
−1𝑥)𝑑𝑦 = (𝑅𝐴(𝑥, ⋅) ∗ 𝜑)(𝑥). (3.3)

Therefore, given 𝐴 ∈ 𝐿𝑚1,𝑚2(𝐺) with symbol 𝜎𝐴 ∈ 𝑆𝑚1,𝑚2(𝐺 × 𝐺), one has

𝜎𝐴(𝑥, 𝜉) ∶= (𝑦→𝜉 𝑅𝐴)(𝑥, 𝜉),
where

𝑅𝐴(𝑥, 𝑦) ∶=
∑
[𝜉]∈𝐺

𝑑𝜉Tr(𝜉(𝑦)𝑎(𝑥, 𝜉)),

with 𝑦 = (𝑦1, 𝑦2) ∈ 𝐺 = 𝐺1 × 𝐺2 and 𝜉 ∈ 𝐺 of the form 𝜉 = 𝜉1 ⊗ 𝜉2, with (𝜉1, 𝜉2) ∈ 𝐺1 × 𝐺2.
For any fixed (𝑥1, 𝜉1) ∈ 𝐺1 × 𝐺1 and (𝑥2, 𝜉2) ∈ 𝐺2 × 𝐺2, we can write, respectively, the operators 𝑎(𝑥1, 𝑥2, 𝜉1, 𝐷2) and
𝑎(𝑥1, 𝑥2, 𝐷1, 𝜉2) defined above in terms of their (right-)convolution kernels, that is,

𝑎(𝑥1, 𝑥2, 𝜉1, 𝐷2)𝜑(𝑥2) = (𝑅
2
𝑎(𝑥1, 𝑥2, 𝜉1, ⋅) ∗𝐺2 𝜑)(𝑥2)

𝑎(𝑥1, 𝑥2, 𝐷1, 𝜉2)𝜑(𝑥1) = (𝑅
1
𝑎(𝑥1, 𝑥2, ⋅, 𝜉2) ∗𝐺1 𝜑)(𝑥1)

where

𝑅2𝑎(𝑥1, 𝑥2, 𝜉1, 𝑦2) ∶=
∑
[𝜉2]∈𝐺2

𝑑𝜉2Tr
(
(𝐼𝜉1 ⊗ 𝜉2(𝑦2))𝑎(𝑥1, 𝑥2, 𝜉1, 𝜉2)

)
(3.4)

and

𝑅1𝑎(𝑥1, 𝑥2, 𝑦1, 𝜉2) ∶=
∑
[𝜉1]∈𝐺1

𝑑𝜉1Tr
(
(𝜉1(𝑥1) ⊗ 𝐼𝜉2)𝑎(𝑥1, 𝑥2, 𝜉1, 𝜉2)

)
. (3.5)

Due to the orthogonality property of irreducible representations, we have that

𝑎(𝑥1, 𝑥2, 𝜉1, 𝜉2) = ∫𝐺1
𝑅1𝑎(𝑥1, 𝑥2, 𝑦1, 𝜉2)(𝜉1(𝑦1)

∗ ⊗ 𝐼𝜉2)𝑑𝑦1

and

𝑎(𝑥1, 𝑥2, 𝜉1, 𝜉2) = ∫𝐺2
𝑅2𝑎(𝑥1, 𝑥2, 𝜉1, 𝑦2)(𝐼𝜉1 ⊗ 𝜉2(𝑦2)

∗)𝑑𝑦2.
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224 FEDERICO and PARMEGGIANI

Definition 3.3. Given 𝑎 ∈ 𝑆𝑚1,𝑚2(𝐺 × 𝐺) and 𝑏 ∈ 𝑆𝑚
′
1,𝑚
′
2 (𝐺 × 𝐺), we shall denote by (𝑎◦𝜉1𝑏)(𝑥1, 𝑥2, 𝜉1, 𝜉2) and

(𝑎◦𝜉2𝑏)(𝑥1, 𝑥2, 𝜉1, 𝜉2) the symbols in 𝑆
𝑚1+𝑚

′
1,𝑚2+𝑚

′
2(𝐺 × 𝐺) corresponding to the operators

(𝑎◦𝜉1𝑏)(𝑥1, 𝑥2, 𝐷1, 𝜉2)𝜑(𝑥1) = 𝑎(𝑥1, 𝑥2, 𝐷1, 𝜉2)𝑏(𝑥1, 𝑥2, 𝐷1, 𝜉2)𝜑(𝑥1), ∀𝜑 ∈ 𝐶
∞(𝐺1),

and

(𝑎◦𝜉2𝑏)(𝑥1, 𝑥2, 𝜉1, 𝐷2)𝜓(𝑥2) = 𝑎(𝑥1, 𝑥2, 𝜉1, 𝐷2)𝑏(𝑥1, 𝑥2, 𝜉1, 𝐷2)𝜓(𝑥2), ∀𝜓 ∈ 𝐶
∞(𝐺2).

By considering the right-convolution kernels, it is not difficult to show that

(𝑎◦𝜉1𝑏)(𝑥1, 𝑥2, 𝜉1, 𝜉2) ∼
∑

|𝛼1|≥0(△
𝛼1,0𝑎(𝑥, 𝜉)) 𝜕𝛼1,0𝑏(𝑥, 𝜉)

and

(𝑎◦𝜉2𝑏)(𝑥1, 𝑥2, 𝜉1, 𝜉2) ∼
∑

|𝛼2|≥0(△
0,𝛼2𝑎(𝑥, 𝜉)) 𝜕0,𝛼2𝑏(𝑥, 𝜉),

where for all 𝑁 > 0, we have

𝑟1𝑁(𝑥, 𝜉) ∶= (𝑎◦𝜉1𝑏)(𝑥1, 𝑥2, 𝜉1, 𝜉2) −
∑

|𝛼1|<𝑁(△
𝛼1,0𝑎(𝑥, 𝜉)) 𝜕𝛼1,0𝑏(𝑥, 𝜉) =

∑
|𝛼1|=𝑁(△

𝛼1,0𝑎(𝑥, 𝜉))𝑏𝛼1(𝑥, 𝜉)

𝑟2𝑁(𝑥, 𝜉) ∶= (𝑎◦𝜉2𝑏)(𝑥1, 𝑥2, 𝜉1, 𝜉2) −
∑

|𝛼2|<𝑁(△
0,𝛼2𝑎(𝑥, 𝜉)) 𝜕0,𝛼2𝑏(𝑥, 𝜉) =

∑
|𝛼2|=𝑁(△

0,𝛼2𝑎(𝑥, 𝜉))𝑏𝛼2(𝑥, 𝜉),

for suitable 𝑏𝛼1 , 𝑏𝛼2 having the same properties as 𝑏, that is, 𝑏𝛼1 , 𝑏𝛼2 ∈ 𝑆
𝑚′1,𝑚

′
2 (𝐺 × 𝐺).

Let 𝑎 ∈ 𝑆𝑚1,𝑚2(𝐺 × 𝐺) and denote byOp(𝑎(𝑥2,𝜉2))(𝑥1, 𝐷1) ∶= 𝑎(𝑥1, 𝑥2, 𝐷1, 𝜉2) the operator defined above and belonging
to 𝐿𝑚1(𝐺1) for all (𝑥2, 𝜉2) ∈ 𝐺2 × 𝐺2. Then, it is possible to define the adjoint ofOp(𝑎(𝑥2,𝜉2)) (as an operator on𝐺1), denoted
by Op(𝑎(𝑥2,𝜉2))(𝑥1, 𝐷1)

∗1 ∶= 𝑎(𝑥1, 𝑥2, 𝐷1, 𝜉2)
∗1 , as the operator satisfying

(Op(𝑎(𝑥2,𝜉2))𝑢, 𝑣)𝐿2(𝐺1) = (𝑢,Op(𝑎(𝑥2,𝜉2))
∗1𝑣)𝐿2(𝐺1), 𝑢, 𝑣 ∈ (𝐺1), (3.6)

where (⋅, ⋅)𝐿2(𝐺1) stands for the scalar product on 𝐿
2(𝐺1).

In a similar way, on denoting by

Op(𝑎(𝑥1,𝜉1))(𝑥2, 𝐷2) ∶= 𝑎(𝑥1, 𝑥2, 𝜉1, 𝐷2),

the operator belonging to 𝐿𝑚2(𝐺2) for all (𝑥1, 𝜉1) ∈ 𝐺1 × 𝐺1, one can define the adjoint operator Op(𝑎(𝑥1,𝜉1))(𝑥2, 𝐷2)
∗2 ∶=

𝑎(𝑥1, 𝑥2, 𝜉1, 𝐷2)
∗2 as the one satisfying

(Op(𝑎(𝑥1,𝜉1))𝑢, 𝑣)𝐿2(𝐺2) = (𝑢,Op(𝑎(𝑥1,𝜉1))
∗2𝑣)𝐿2(𝐺2), 𝑢, 𝑣 ∈ (𝐺2), (3.7)

with (⋅, ⋅)𝐿2(𝐺2) denoting the scalar product on 𝐿
2(𝐺2).

Sobolev spaces𝐻𝑠1,𝑠2 (𝐺)
We shall now define what we shall call bisingular Sobolev spaces that are the ones to be naturally used in this setting.
Let us consider the operator 𝐿 on 𝐺 = 𝐺1 × 𝐺2, defined as

𝐿 ∶= (𝐼1 + 𝐿𝐺1) ⊗ (𝐼2 + 𝐿𝐺2),

where 𝐿𝐺𝑖 and 𝐼𝑖 denote the positive Laplace operator and the identity operator on 𝐺𝑖 , respectively.
The operator 𝐿 will be called bilaplacian, since, as expected, it will play the role of the Laplacian in this setting.
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FEDERICO and PARMEGGIANI 225

By formula (3.1), we have that the symbol of the bilaplacian is given by

𝜎𝐿(𝜉) = 𝜎𝐿(𝜉1 ⊗ 𝜉2) = ⟨𝜉1⟩2⟨𝜉2⟩2𝐼𝑑𝜉 ,
where ⟨𝜉𝑖⟩ ∶= (1 + 𝜆2𝜉1)1∕2, with 𝜆2𝜉𝑖 > 0 being the eigenvalue of 𝐿𝐺𝑖 relative to the representation 𝜉𝑖 ∈ 𝐺𝑖 , and 𝐼𝑑𝜉𝑖 ∈
ℂ𝑑𝜉𝑖 ×𝑑𝜉𝑖 is the identity matrix.

Definition 3.4 (Bisingular Sobolev space of order (𝑠1, 𝑠2)).We shall call bisingular Sobolev space of order (𝑠1, 𝑠2) the space

𝐻𝑠1,𝑠2 (𝐺) ∶= {𝑓 ∈ ′(𝐺); ⟨𝜉1⟩𝑠1⟨𝜉2⟩𝑠2𝑓(𝜉) ∈ 𝓁2(𝐺)},
equipped with the norm

‖𝑓‖𝑠1,𝑠2 ∶= ⎛⎜⎜⎝
∑
[𝜉]∈𝐺

𝑑𝜉⟨𝜉1⟩2𝑠1⟨𝜉2⟩2𝑠2Tr(𝑓(𝜉)∗𝑓(𝜉))⎞⎟⎟⎠
1∕2

= ‖⟨𝜉1⟩𝑠1⟨𝜉2⟩𝑠2𝑓‖𝓁2(𝐺) =∶ ‖𝑓‖ℎ𝑠1,𝑠2 (𝐺),
where

ℎ𝑠1,𝑠2 (𝐺) ∶= {𝑓 ∈ (′(𝐺)); ⟨𝜉1⟩𝑠1⟨𝜉2⟩𝑠2𝑓 ∈ 𝓁2(𝐺)},
where 𝐹 ∈ 𝓁2(𝐺) if and only if

∑
[𝜉]∈𝐺 𝑑𝜉‖𝐹(𝜉)‖2𝐻𝑆 < ∞.

One may check that the spaces ℎ𝑠1,𝑠2 (𝐺) are indeed complete with respect to the scalar product

(𝑓, 𝑔)𝑠1,𝑠2 ∶=
∑
[𝜉]∈𝐺

𝑑𝜉⟨𝜉1⟩2𝑠1⟨𝜉2⟩2𝑠2Tr(𝑔(𝜉)∗𝑓(𝜉)).
Therefore, the Sobolev spaces𝐻𝑠1,𝑠2 (𝐺) are also complete.

4 KERNEL ESTIMATES

This section is devoted to the proof of some estimates for the (right-convolution) kernels of bisingular pseudodifferential
operators on compact Lie groups. These estimates will be employed in the next section to develop the global calculus of
bisingular operators.
Before proving the estimates, we will first give some properties representing the suitable bisingular generalization of

certain results holding in the standard (global) compact case.

Notation. Recall that ⟨𝜉𝑗⟩𝑠 ∶= (1 + 𝜆𝜉𝑗 )𝑠∕2, 𝑗 = 1, 2. Additionally, we assume△1,△2 to be the the admissible collections
of difference operators previously defined. Note that we shall often use the notation 𝑆𝑚1,𝑚2(𝐺) for 𝑆𝑚1,𝑚2(𝐺 × 𝐺).

Proposition 4.1. Let△𝛼,𝛽 ∶= △𝛼1△
𝛽
2 , then, for any𝑚1,𝑚2 ∈ ℝ and multi-indices 𝛼 ∈ ℕ

𝑛𝑃 , 𝛽 ∈ ℕ𝑛𝑅 , there exists 𝑑 ∈ ℕ0
and 𝐶 > 0 such that, for all 𝑓1, 𝑓2 ∈ 𝐶𝑑([0, +∞)), 𝜉 = 𝜉1 ⊗ 𝜉2 ∈ 𝐺, and 𝑡1, 𝑡2 ∈ (0, 1), we have

‖△𝛼,𝛽 𝑓1(𝑡1𝜆𝜉1)𝑓2(𝑡2𝜆𝜉2)‖ℒ(𝜉) ≤ 𝐶𝑡𝑚1∕21 ⟨𝜉1⟩𝑚1−|𝛼| sup
𝜆𝜉1≥0
𝓁1=0,…,𝑑

|||𝜕𝓁1𝜆𝜉1 𝑓1(𝜆𝜉1)||| × 𝑡𝑚2∕22 ⟨𝜉2⟩𝑚2−|𝛽| sup
𝜆𝜉2≥0
𝓁2=0,…,𝑑

|||𝜕𝓁2𝜆𝜉2 𝑓2(𝜆𝜉2)|||,
in the sense that if the supremum on the right-hand side is finite, then the left-hand side is also finite and the inequality
holds.
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226 FEDERICO and PARMEGGIANI

Sketch of proof. Due to the form of△𝛼,𝛽 , we have

‖△𝛼,𝛽 𝑓1(𝑡1𝜆𝜉1)𝑓2(𝑡2𝜆𝜉2)‖ℒ(𝜉) = ‖△𝛼1 𝑓1(𝑡1𝜆𝜉1)‖ℒ(𝜉1 )‖△𝛽2 𝑓2(𝑡2𝜆𝜉2)‖ℒ(𝜉2 ).
Therefore, by Proposition 6.1 in [5] applied separately to each term on the right-hand side of the previous identity, the
result follows. □

Lemma 4.2. Let 𝑘 ∈ ′(𝐺) with 𝐺 = 𝐺1 × 𝐺2 and 𝑛𝑖 = dim(𝐺𝑖). Then, if 𝑠1 > 𝑛1∕2 and 𝑠2 > 𝑛2∕2,
‖𝑘‖𝐿2(𝐺) ≲ sup

𝜉∈𝐺

⟨𝜉1⟩𝑠1∕2⟨𝜉2⟩𝑠2∕2 ‖𝑘‖ℒ(𝜉).
Hence, 𝑘 ∈ 𝐿2(𝐺) when there exist 𝑠1 > 𝑛1∕2 and 𝑠2 > 𝑛2∕2 such that the right-hand side is finite.

Proof. Let 𝐵𝑠1,𝑠2 (𝑥, 𝑦) = 𝐵𝑠1(𝑥1, 𝑦1) ⊗ 𝐵𝑠2(𝑥2, 𝑦2) = 𝐵𝑠1(𝑦1) ⊗ 𝐵𝑠2(𝑦2) as in Lemma A.3 (𝐵𝑠1,𝑠2 (𝑥, 𝑦) is independent of 𝑥).
Then, for 𝑠1, 𝑠2 > 0, we can write

𝑘(𝑦) = ((𝐼1 + 𝐿𝐺1)
𝑠1∕2 ⊗ (𝐼2 + 𝐿𝐺2)

𝑠2∕2)(𝑘 ∗ (𝐵𝑠1 ⊗ 𝐵𝑠2))(𝑦),

which gives, in particular, that

𝑘(𝜉) = ⟨𝜉1⟩𝑠1∕2⟨𝜉2⟩𝑠2∕2 ˆ𝐵𝑠1 ⊗ 𝐵𝑠2(𝜉) 𝑘(𝜉).
Therefore, for 𝑠1 > 𝑛1∕2 and 𝑠2 > 𝑛2∕2, we get

‖𝑘‖2
𝐿2(𝐺)

=
Plancherel

∑
[𝜉]∈𝐺

𝑑𝜉‖𝑘(𝜉)‖2𝐻𝑆
≤ ∑

[𝜉]∈𝐺

𝑑𝜉‖ ˆ𝐵𝑠1 ⊗ 𝐵𝑠2(𝜉)‖2𝐻𝑆‖⟨𝜉1⟩𝑠1∕2⟨𝜉2⟩𝑠2∕2𝑘(𝜉)‖2ℒ(𝜉)
≤ ‖𝐵𝑠1 ⊗ 𝐵𝑠2‖2𝐿2(𝐺) sup

[𝜉]∈𝐺

⟨𝜉1⟩𝑠1⟨𝜉2⟩𝑠2‖𝑘(𝜉)‖2ℒ(𝜉)
≲

Lemma A.3
sup
[𝜉]∈𝐺

⟨𝜉1⟩𝑠1⟨𝜉2⟩𝑠2‖𝑘(𝜉)‖2ℒ(𝜉),
which concludes the proof. □

Lemma 4.3. Let 𝜎 ∈ 𝑆𝑚1,𝑚2(𝐺) with (right-convolution) kernel 𝑘𝑥(⋅) ∶= 𝑘(𝑥, ⋅). Then, the following properties hold:

1. The kernel associated with 𝜕𝛾1,𝛾2 △𝛼1,𝛼2 𝜎 ∈ 𝑆𝑚1−|𝛼1|,𝑚2−|𝛼2|(𝐺), for any 𝛼𝑖 ∈ ℕ𝑛△𝑖0 , and 𝛾1 ∈ ℕ
𝑛1
0 , 𝛾2 ∈ ℕ

𝑛2
0 , is given by

𝑞𝛼1,𝛼2𝜕
𝛾1,𝛾2
𝑥1,𝑥2
𝑘𝑥;

2. If 𝜎1, 𝜎2 are two bisingular symbols with kernels 𝑘1𝑥 and 𝑘2𝑥 , respectively, then the kernel of the product 𝜎1𝜎2 is given by
𝑘1𝑥 ∗ 𝑘

2
𝑥 .

Proof. The proof of Lemma 4.3 follows immediately by the form and the properties of bisingular symbols. □

As a consequence of Lemma 4.3, we get Corollary 4.4 below giving a first key estimate for the kernels of bisingular
pseudodifferential operators.

Corollary 4.4. If 𝜎 ∈ 𝑆𝑚1,𝑚2(𝐺), then, for any 𝛼 ∶= (𝛼1, 𝛼2), 𝛾 ∶= (𝛾1, 𝛾2) ∈ ℕ
𝑛1
0 × ℕ

𝑛2
0 and 𝜃 = (𝜃1, 𝜃2) ∈ ℕ

𝑛1
0 × ℕ

𝑛2
0 such

that, for all 𝑖 = 1, 2, 𝛾𝑖 + 𝑚𝑖 + 𝑛𝑖 < |𝛼𝑖|, the function 𝜕𝛾𝑥𝜕𝜃𝑧 (𝑞𝛼1,𝛼2(𝑧)𝑘𝑥(𝑧)) is continuous on 𝐺 and bounded as follows:
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FEDERICO and PARMEGGIANI 227

|𝜕𝛾𝑥𝜕𝜃𝑧 (𝑞𝛼1,𝛼2(𝑧)𝑘𝑥(𝑧))| ≤ 𝐶 sup
[𝜉]∈𝐺

‖𝜎(𝑥, 𝜉)‖𝑆𝑚1,𝑚2 ,|𝛼1|,|𝛼2|,𝛾,
where ‖ ⋅ ‖𝑆𝑚1,𝑚2 ,|𝛼1|,|𝛼2|,𝛾 is the suitable seminorm. The constant 𝐶 above depends on the parameters 𝑚𝑖,△, 𝛾𝑖, 𝜗𝑖 for all
𝑖 = 1, 2.

Proof. The proof follows from the proof of Corollary 6.5 in [5] together with Lemma 4.3 and Lemma A.3. □

Corollary 4.4 immediately gives the proposition below.

Proposition 4.5. If 𝜎 ∈ 𝑆𝑚1,𝑚2(𝐺) then the associated kernel (𝑥, 𝑦) ↦ 𝑘𝑥(𝑦) is smooth on 𝐺 × (𝐺 ⧵ 𝑆), with
𝑆 = {𝑥 ∈ 𝐺; 𝑥1 = 𝑒1} ∪ {𝑥 ∈ 𝐺; 𝑥2 = 𝑒2}. If 𝜎 ∈ 𝑆−∞,−∞(𝐺) is smoothing then the associated kernel (𝑥, 𝑦) ↦ 𝑘𝑥(𝑦) is smooth
on 𝐺 × 𝐺. The converse is also true, namely, if (𝑥, 𝑦) ↦ 𝑘𝑥(𝑦) is smooth on 𝐺 × 𝐺 then the associated symbol is smoothing,
that is, it belongs to 𝑆−∞,−∞(𝐺).

In order to show some estimates for the kernels, we will need to work inside dyadic pieces where the eigenvalues (i.e.
the frequencies in this setting) of 𝐿𝐺1 and 𝐿𝐺2 are localized. In that perspective, the following lemma will be crucial to
understand how the localized symbol and the corresponding kernel behave.

Lemma 4.6. Let 𝜒 ∈ 𝐶∞0 (ℝ) be a given function with values in [0, 1] and 𝜒 ≡ 1 in a neighborhood of 0. Let 𝜎 ∈ 𝑆𝑚1,𝑚2(𝐺)
and let 𝑘𝑥 be the associated kernel. For each 𝓁1, 𝓁2 ∈ ℕ we define

𝜎𝓁1,𝓁2(𝑥, 𝜉) ∶= 𝜎(𝑥, 𝜉)𝜒(𝓁
−1
1 𝜆𝜉1)𝜒(𝓁

−1
2 𝜆𝜉2).

Then, 𝜎𝓁1,𝓁2 ∈ 𝑆
−∞,−∞(𝐺) and for any 𝛾 = (𝛾1, 𝛾2) ∈ ℕ

𝑛1
0 × ℕ

𝑛2
0 ,

‖𝜎𝓁1,𝓁2‖𝑆𝑚1,𝑚2 ,𝛾 ≤ 𝐶(𝐺,𝑚1,𝑚2, 𝛾)‖𝜎‖𝑆𝑚1,𝑚2 ,𝛾.
Additionally, the kernel 𝑘𝑥,𝓁1,𝓁2(𝑦) associated with 𝜎𝓁1,𝓁2 is smooth on 𝐺 × 𝐺, and, for all 𝛽 ∈ ℕ

𝑛1+𝑛2
0 , 𝜕𝛽𝑘𝑥,𝓁1,𝓁2 → 𝜕

𝛽𝑘𝑥 in′(𝐺) uniformly in 𝑥 ∈ 𝐺 as 𝓁1, 𝓁2 → ∞.
Proof. The proof follows the proof of Lemma 6.6 in [5] with suitable modifications, namely by using the
function 𝜒(𝓁−11 𝜆𝜉1)𝜒(𝓁

−1
2 𝜆𝜉2) as a cutoff function in the proof (note that (1 − 𝜒(𝓁−1𝜆𝜋)) in [5] is replaced by

(1 − 𝜒(𝓁−11 𝜆𝜉1)𝜒(𝓁
−1
2 𝜆𝜉2)) here), and by replacing the standard Sobolev spaces 𝐻𝑠(𝐺) by the Sobolev spaces

𝐻𝑠1,𝑠2 (𝐺1 × 𝐺2). For the sake of completeness, we shall give the proof of the second part of the lemma, that is the
convergence of the kernels, where a few arrangements are needed.
Let 𝑠1 = ⌈𝑛12 ⌉ and 𝑠2 = ⌈𝑛22 ⌉, where ⌈⋅⌉ stands for the upper integer part. By using the bisingular Sobolev spaces,

we get

‖𝜕𝛽(𝑘𝑥,𝓁1,𝓁2 − 𝑘𝑥)‖𝐻−𝑠1−𝑚1−1,−𝑠2−𝑚2−1 = ‖𝜕𝛽(𝜎𝓁1,𝓁2 − 𝜎)‖ℎ−𝑠1−𝑚1−1,−𝑠2−𝑚2−1
= ‖(1 − 𝜒(𝓁−11 𝜆𝜉1)𝜒(𝓁−12 𝜆𝜉2))𝜕𝛽𝜎‖ℎ−𝑠1−𝑚1−1,−𝑠2−𝑚2−1
≲ ‖⟨𝜉1⟩−𝑚1−1⟨𝜉2⟩−𝑚2−1(1 − 𝜒(𝓁−11 𝜆𝜉1)𝜒(𝓁−12 𝜆𝜉2))𝜕𝛽𝜎‖ℎ−𝑠1,−𝑠2
≲ ‖⟨𝜉1⟩−𝑚1−1⟨𝜉2⟩−𝑚2−1(1 − 𝜒(𝓁−11 𝜆𝜉1)𝜒(𝓁−12 𝜆𝜉2))𝜕𝛽𝜎‖𝐿∞(𝐺).

Due to the hypothesis on 𝜒, for some 𝜀1, 𝜀2 > 0, with 0 < 𝜀1 < 𝜀2, we have that 𝜒 ≡ 1 on [0, 𝜀1] and 𝜒 ≡ 0 on [𝜀2, +∞).
Therefore, we get that (1 − 𝜒(𝓁−11 𝜆𝜉1)𝜒(𝓁

−1
2 𝜆𝜉2)) ≢ 0 in the following three cases

1. 𝜆𝜉1 > 𝜀1𝓁1, 𝜆𝜉2 > 𝜀1𝓁2,
2. 𝜆𝜉1 > 𝜀1𝓁1, 𝜆𝜉2 ≤ 𝜀1𝓁2,
3. 𝜆𝜉1 ≤ 𝜀1𝓁1, 𝜆𝜉2 > 𝜀1𝓁2.
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228 FEDERICO and PARMEGGIANI

Let us start with the proof of the convergence in case (1). The inequalities above lead to

‖𝜕𝛽(𝑘𝑥,𝓁1,𝓁2 − 𝑘𝑥)‖𝐻−𝑠1−𝑚1−1,−𝑠2−𝑚2−1 ≤ max𝜆𝜉1>𝜀𝜒𝓁1
𝜆𝜉2>𝜀𝜒𝓁2

‖(1 − 𝜒(𝓁−11 𝜆𝜉1)𝜒(𝓁−12 𝜆𝜉2))𝜕𝛽𝜎‖ℎ−𝑠1−𝑚1−1,−𝑠2−𝑚2−1
≤ (1 + 𝜀1𝓁1)−1(1 + 𝜀1𝓁2)−1‖⟨𝜉1⟩−𝑚1⟨𝜉2⟩−𝑚2𝜕𝛽𝜎‖𝐿∞(𝐺)
≲ (1 + 𝜀1𝓁1)

−1(1 + 𝜀1𝓁2)
−1‖𝜎‖𝑆𝑚1,𝑚2 ,𝛽,

which gives, in particular, that

max
𝑥∈𝐺

‖𝜕𝛽(𝑘𝑥,𝓁1,𝓁2 − 𝑘𝑥)‖𝐻−𝑠1−𝑚1−1,−𝑠2−𝑚2−1 ≲ (1 + 𝜀1𝓁1)−1(1 + 𝜀1𝓁2)−1‖𝜎‖𝑆𝑚1,𝑚2 ,𝛽.
This finally yields the convergence 𝜕𝛽𝑘𝑥,𝓁1,𝓁2

𝒟′

→ 𝜕𝛽𝑘𝑥 uniformly in 𝑥 ∈ 𝐺 as 𝓁1, 𝓁2 → ∞.
For cases (2) and (3), the proof is the same (by reversing the roles of the parameters) and it is similar to the one in the

case (1). For completeness, we show the steps in case (2), that is, when 𝜆𝜉1 > 𝜀1𝓁1 and 𝜆𝜉2 ≤ 𝜀1𝓁2. Under these hypotheses,
we have

‖𝜕𝛽(𝑘𝑥,𝓁1,𝓁2 − 𝑘𝑥)‖𝐻−𝑠1−𝑚1−1,−𝑠2−𝑚2−1 ≤ max𝜆𝜉1>𝜀1𝓁1
𝜆𝜉2≤𝜀1𝓁2

‖(1 − 𝜒(𝓁−11 𝜆𝜉1)𝜒(𝓁−12 𝜆𝜉2))𝜕𝛽𝜎‖ℎ−𝑠1−𝑚1−1,−𝑠2−𝑚2−1
≤ max
𝜆𝜉1>𝜀1𝓁1
𝜆𝜉2≤𝜀1𝓁2

‖⟨𝜉1⟩−𝑚1−1⟨𝜉2⟩−𝑚2−1(1 − 𝜒(𝓁−11 𝜆𝜉1))𝜕𝛽𝜎‖ℎ−𝑠1,−𝑠2
≤ (1 + 𝜀1𝓁1)−1‖⟨𝜉1⟩−𝑚1⟨𝜉2⟩−𝑚2𝜕𝛽𝜎‖𝐿∞(𝐺)
≲ (1 + 𝜀1𝓁1)

−1‖𝜎‖𝑆𝑚1,𝑚2 ,𝛽,
yielding, as before, the convergence in′ uniformly in 𝑥, which completes the proof. □

Lemma 4.7. Let 𝜎 ∈ 𝑆𝑚1,𝑚2(𝐺), and 𝜂 ∈ 𝐶∞0 (ℝ). For any 𝑡1, 𝑡2 ∈ (0, 1), we define 𝜎𝑡1,𝑡2 (𝑥, 𝜉) ∶= 𝜎(𝑥, 𝜉)𝜂(𝑡1𝜆𝜉1)𝜂(𝑡2𝜆𝜉2).
Then, for any𝑚′1,𝑚

′
2 ∈ ℝ, we have

‖𝜎𝑡1,𝑡2‖𝑆𝑚′1,𝑚′2 ,𝛾 ≤ 𝐶𝑡
𝑚1−𝑚
′
1
2
1 𝑡

𝑚2−𝑚
′
2
2
2 ‖𝜎‖𝑆𝑚1,𝑚2 ,𝛾,

where 𝐶 = 𝐶(𝑚1,𝑚2,𝑚′1,𝑚
′
2, 𝛾, 𝜂) is independent of 𝜎, 𝑡1 and 𝑡2.

For the proof of Lemma 4.7, see [5] (Lemma 6.8).
We are now ready to prove the main result of this section concerning some estimates for the (right-convolution) kernel

of bisingular pseudodifferential operators. Let us remark that these estimates are the suitable generalization to our setting
of those holding in the standard (non-bisingular) case (see [5]). Note that, below we shall denote by |𝑦| ∶= 𝑑𝐺(𝑦, 𝑒𝐺),
where 𝑑𝐺(⋅, ⋅) is the geodesic distance (and analogously for |𝑦𝑗|, 𝑗 = 1, 2). Additionally, for any given 𝑥 = (𝑥1, 𝑥2) ∈ 𝐺, for
a neighborhood of 𝑥 we shall mean a Cartesian products of the form 𝑈1 × 𝑈2, with 𝑈𝑖 being a geodesic neighborhood of
𝑥𝑖 for 𝑖 = 1, 2.

Theorem 4.8. Let 𝜎 ∈ 𝑆𝑚1,𝑚2(𝐺) and (𝑥, 𝑦) ↦ 𝑘𝑥(𝑦) ∈ 𝐶∞(𝐺 × (𝐺 ⧵ 𝑆)) be its associated kernel. Then, for 𝑛𝑖 =
dim(𝐺𝑖), 𝑖 = 1, 2, the following estimates hold

∙ If 𝑛𝑖 + 𝑚𝑖 > 0 for 𝑖 = 1, 2, then there exists 𝐶 > 0 and 𝑎, 𝑏 ∈ ℕ (independent of 𝜎) such that for all 𝑦 ∉ 𝑆

|𝑘𝑥(𝑦)| ≤ 𝐶 sup
𝜉∈𝐺

‖𝜎(𝑥, 𝜉)‖𝑆𝑚1,𝑚2
𝑎,𝑏

|𝑦1|−𝑛1−𝑚1 |𝑦2|−𝑛2−𝑚2 .
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FEDERICO and PARMEGGIANI 229

∙ If 𝑛𝑖 + 𝑚𝑖 = 0 for 𝑖 = 1, 2, then there exists 𝐶 > 0 and 𝑎, 𝑏 ∈ ℕ (independent of 𝜎) such that for all 𝑦 ∉ 𝑆

|𝑘𝑥(𝑦)| ≤ 𝐶 sup
𝜉∈𝐺

‖𝜎(𝑥, 𝜉)‖𝑆𝑚1,𝑚2
𝑎,𝑏

| ln |𝑦1||| ln |𝑦2||.
∙ If 𝑛𝑖 + 𝑚𝑖 < 0 for 𝑖 = 1, 2, then 𝑘𝑥 is continuous on 𝐺 and for all 𝑦 ∉ 𝑆

|𝑘𝑥(𝑦)| ≤ 𝐶 sup
𝜉∈𝐺

‖𝜎(𝑥, 𝜉)‖𝑆𝑚1,𝑚20,0
.

∙ If 𝑛𝑖 + 𝑚𝑖 > 0 and 𝑛𝑗 + 𝑚𝑗 = 0 for 𝑖, 𝑗 ∈ {1, 2}, 𝑖 ≠ 𝑗, then 𝐶 > 0 and 𝑎, 𝑏 ∈ ℕ (independent of 𝜎) such that for all 𝑦 ∉ 𝑆
|𝑘𝑥(𝑦)| ≤ 𝐶 sup

𝜉∈𝐺

‖𝜎(𝑥, 𝜉)‖𝑆𝑚1,𝑚2
𝑎,𝑏

|𝑦𝑖|−𝑛𝑖−𝑚𝑖 | ln |𝑦𝑗||.
∙ If 𝑛𝑖 + 𝑚𝑖 < 0 and 𝑛𝑗 + 𝑚𝑗 = 0 for 𝑖, 𝑗 ∈ {1, 2}, 𝑖 ≠ 𝑗, then 𝐶 > 0 and 𝛾𝑗 ∈ ℕ2 (independent of 𝜎) being either of the form
𝛾𝑗 = (𝑎𝑗, 0) or of the form 𝛾𝑗 = (0, 𝑎𝑗), such that for all 𝑦 ∉ 𝑆

|𝑘𝑥(𝑦)| ≤ 𝐶 sup
𝜉∈𝐺

‖𝜎(𝑥, 𝜉)‖𝑆𝑚1,𝑚2𝛾𝑗 ,0
| ln |𝑦𝑗||.

∙ If 𝑛𝑖 + 𝑚𝑖 > 0 and 𝑛𝑗 + 𝑚𝑗 < 0 for 𝑖, 𝑗 ∈ {1, 2}, 𝑖 ≠ 𝑗, then𝐶 > 0 and 𝛾𝑖 ∈ ℕ2 (independent of 𝜎, of the same form as above)
such that for all 𝑦 ∉ 𝑆

|𝑘𝑥(𝑦)| ≤ 𝐶 sup
𝜉∈𝐺

‖𝜎(𝑥, 𝜉)‖𝑆𝑚1,𝑚2𝛾𝑖 ,0
|𝑦𝑖|−𝑛𝑖−𝑚𝑖 .

Proof. We shall separately analyze the above cases. Let us remark that throughout the proof we shall use the notation
1 ∶= 𝐼1 + 𝐿𝐺1 and 2 ∶= 𝐼2 + 𝐿𝐺2 , where 1 and 2 are thought of as operators on 𝐺1 and 𝐺2 , respectively, while 𝐿 ∶=1 ⊗ 2 is defined on 𝐺 = 𝐺1 × 𝐺2.
Case 𝑛𝑖 + 𝑚𝑖 > 0. The estimate in this case trivially follows from Corollary 4.4.

Toolkit. Let 𝜂0, 𝜂1 ∈ 𝐶∞0 (ℝ) be supported in [−1, 1] and [1∕2, 2], respectively, taking values in [0, 1], and such that

∀𝜆 > 0
∞∑
𝓁=0

𝜂𝓁(𝜆) = 1, where 𝜂𝓁(𝜆) ∶= 𝜂1(2−(𝓁−1)𝜆), 𝓁 ≥ 1.

Now, for each 𝓁1, 𝓁2 ∈ ℕ0, we define 𝜎𝓁1,𝓁2(𝑥, 𝜉) ∶= 𝜎(𝑥, 𝜉)𝜂𝓁1(𝜆𝜉1)𝜂𝓁2(𝜆𝜉2) (with 𝜆𝜉1 ,𝜆𝜉2 , recall, being the eigenvalues of1 and2, respectively), and denote by 𝑘𝑥,𝓁1,𝓁2 the corresponding kernel. Notice that, since 𝜂𝓁1(𝜆𝜉1)𝜂𝓁2(𝜆𝜉2) is smoothing,
then 𝜎𝓁1,𝓁2 is smoothing too. Moreover, also the mapping (𝑥, 𝑦) ↦ 𝑘𝑥,𝓁1,𝓁2(𝑦) = 𝑘𝑥 ∗ 𝜂𝓁1(1)𝜂𝓁2(2)𝛿𝑒1 ⊗ 𝛿𝑒2 is smooth,
as (𝑥, 𝑦) ↦ 𝑘𝑥(𝑦) is smooth on 𝐺 × (𝐺 ⧵ 𝑆) and 𝜂𝓁1(1)𝜂𝓁2(2)𝛿𝑒1 ⊗ 𝛿𝑒2 is smooth on 𝐺.
Observe now that one has the following convergence in 𝐶∞(𝐺 × (𝐺 ⧵ 𝑆))

𝑘𝑥(𝑦) = lim
𝑁1,𝑁2→∞

𝑁1∑
𝓁1=0

𝑁2∑
𝓁2=0

𝑘𝑥,𝓁1,𝓁2(𝑦) =

(
𝑘𝑥 ∗

𝑁1∑
𝓁1=0

𝑁2∑
𝓁2=0

𝜂𝓁1(1)𝜂𝓁2(2)𝛿𝑒1 ⊗ 𝛿𝑒2
)
(𝑦),

and that the following bound holds for 𝑦 ∉ 𝑆

|𝑘𝑥(𝑦)| ≤ ∑
𝓁1,𝓁2

|𝑘𝑥,𝓁1,𝓁2(𝑦)|.
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230 FEDERICO and PARMEGGIANI

With this in mind we have, by Corollary 4.4 and Lemma 4.6, that for any given 𝛼𝑖 ∈ 𝑁
𝑛△𝑖
0 , with 𝑖 = 1, 2, and for any

given𝑚′𝑖 ∈ ℝ, 𝑖 = 1, 2, such that𝑚
′
𝑖 + 𝑛𝑖 < |𝛼𝑖|,
sup
𝑥∈𝐺

|𝑞𝛼1,𝛼2(𝑧)𝑘𝑥,𝓁1,𝓁2 | ≲ sup
[𝜉]∈𝐺

‖𝜎𝓁1,𝓁2(𝑥, 𝜉)‖
𝑆
𝑚′
1
,𝑚′
2

(|𝛼1|,|𝛼2|),0
(by Lemma 4.7)

≲ ‖𝜎‖𝑆𝑚1,𝑚2
(|𝛼1|,|𝛼2|),02

−(𝓁1−1)
𝑚′
1
−𝑚1

2 2
−(𝓁2−1)

𝑚′
2
−𝑚2

2 . (4.1)

Note that, for all 𝑧 ∈ 𝐺 and for all 𝑎1, 𝑎2 ∈ 2ℕ0, we have

|𝑧1|𝑎1 |𝑧2|𝑎2 ≲ ∑
|𝛼1|=𝑎1,|𝛼2|=𝑎2 |𝑞𝛼1,𝛼2(𝑧)|.

The previous estimate is of course meaningful in a neighborhood 𝑈 = 𝑈1 × 𝑈2 where 𝑈1 and 𝑈2 are geodesic neighbor-
hoods of 𝑒1 and 𝑒2, respectively, in which, in the following, we will be working. Note that, outside that neighborhood the
estimates in the statement are straightforward, because of the smoothness of the kernel. Therefore, for all 𝑎1, 𝑎2 ∈ 2ℕ0
and𝑚′1,𝑚

′
2 such that𝑚

′
𝑖 + 𝑛𝑖 < 𝑎𝑖 , 𝑖 = 1, 2, (4.1) implies

|𝑧1|𝑎1 |𝑧2|𝑎2 |𝑘𝑥,𝓁1,𝓁2(𝑧)| ≲ ‖𝜎‖𝑆𝑚1,𝑚2
(𝑎1,𝑎2),0
2
𝓁1
𝑚1−𝑚
′
1
2 2
𝓁2
𝑚2−𝑚
′
2
2 . (4.2)

Since we want to study the behavior of 𝑘𝑥(𝑦) close to the set 𝑆, we will be considering each of the following situations

1. |𝑧1| < 1 and |𝑧2| < 1;
2. |𝑧1| < 1 and |𝑧2| ≥ 1 (resp. |𝑧1| ≥ 1 and |𝑧2| < 1).
Case 𝑛𝑖 + 𝑚𝑖 > 0 for all 𝑖 = 1, 2. When |𝑧1| < 1 and |𝑧2| < 1, we can chose 𝓁0𝑖 ∈ ℕ0 such that

2−𝓁0𝑖 ≤ |𝑧𝑖| ≤ 2−𝓁0𝑖+1, 𝑖 = 1, 2.
In order to derive the desired estimate, we write

𝑁1∑
𝓁1=0

𝑁2∑
𝓁2=0

=
∑
𝓁1≤𝓁01
𝓁2≤𝓁02

+
∑
𝓁1≤𝓁01
𝑁2≥𝓁2>𝓁02

+
∑

𝑁1≥𝓁1>𝓁01
𝓁2≤𝓁02

+
∑

𝑁1≥𝓁1>𝓁01
𝑁2≥𝓁2>𝓁02

,

and study the behavior of 𝑘𝑥,𝓁1,𝓁2 in the cases

1. 𝓁𝑖 ≤ 𝓁0𝑖 for 𝑖 = 1, 2,
2. 𝓁𝑖 > 𝓁0𝑖 for 𝑖 = 1, 2,
3. 𝓁1 ≤ 𝓁01 and 𝓁2 > 𝓁02 (resp. 𝓁2 ≤ 𝓁02 and 𝓁1 > 𝓁01),
separately.
For 𝓁𝑖 ≤ 𝓁0𝑖 , for 𝑖 = 1, 2, from (4.2) we get∑

𝓁1≤𝓁01
𝓁2≤𝓁02

|𝑘𝑥,𝓁1,𝓁2(𝑧)| ≲ ‖𝜎‖𝑆𝑚1,𝑚2
(𝑎1,𝑎2),0

|𝑧1|−𝑎12𝓁01 𝑚1−𝑚′12 |𝑧2|−𝑎22𝓁02 𝑚2−𝑚′22 .
We then choose 𝑎𝑖 ∈ 2ℕ0 and𝑚′𝑖 ∈ ℝ, for 𝑖 = 1, 2, such that

𝑚𝑖 + 𝑛𝑖 > 𝑎𝑖 ≥ 𝑚𝑖 + 𝑛𝑖 − 2 and
𝑚𝑖 − 𝑚

′
𝑖

2
= 𝑚𝑖 + 𝑛𝑖 − 𝑎𝑖 > 0, (4.3)
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FEDERICO and PARMEGGIANI 231

which yields ∑
𝓁1≤𝓁01
𝓁2≤𝓁02

|𝑘𝑥,𝓁1,𝓁2(𝑧)| ≲ ‖𝜎‖𝑆𝑚1,𝑚2
(𝑎1,𝑎2),0

|𝑧1|−𝑎1−𝑚1−𝑚′12 |𝑧2|−𝑎2−𝑚2−𝑚′22
≲ ‖𝜎‖𝑆𝑚1,𝑚2

(𝑎1,𝑎2),0
|𝑧1|−𝑚1−𝑛1 |𝑧2|−𝑚2−𝑛2 .

For 𝓁𝑖 > 𝓁0𝑖 (𝓁𝑖 ≤ 𝑁𝑖), we make a different choice for 𝑎𝑖 and𝑚′𝑖 in (4.3) that we call 𝑎′𝑖 , 𝑚′′𝑖 in order to keep the notation
𝑎𝑖,𝑚
′
𝑖 for the choices we made in the previous case 𝓁𝑖 ≤ 𝓁0𝑖 . We now choose 𝑎′𝑖 = 𝑎𝑖 + 2 and𝑚

′′
𝑖 satisfying

𝑚𝑖 − 𝑚
′′
𝑖

2
= 𝑚𝑖 + 𝑛𝑖 − 𝑎

′
𝑖 , 𝑖 = 1, 2.

Since𝑚𝑖 < 𝑚′′𝑖 now, we have that

∑
𝑁1≥𝓁1>𝓁01
𝑁2≥𝓁2>𝓁02

|𝑘𝑥,𝓁1,𝓁2(𝑧)| ≲ ‖𝜎‖𝑆𝑚1,𝑚2
(𝑎1,𝑎2),0

|𝑧1|−𝑎′12𝓁01 𝑚1−𝑚′′12 |𝑧2|−𝑎′22𝓁02 𝑚2−𝑚′′22
≲ ‖𝜎‖𝑆𝑚1,𝑚2

(𝑎1,𝑎2),0
|𝑧1|−𝑚1−𝑛1 |𝑧2|−𝑚2−𝑛2 .

For 𝓁1 ≤ 𝓁01 and 𝓁2 > 𝓁02 (resp. 𝓁2 ≤ 𝓁02 and 𝓁1 > 𝓁01), we make a different choice of 𝑎𝑖 and 𝑚′𝑖 that we call 𝑎′′𝑖 , 𝑚′′′𝑖
in order to keep the previous notation for the other cases. By choosing 𝑎′′1 = 𝑎1,𝑚

′′′
1 = 𝑚

′
1, 𝑎
′′
2 = 𝑎

′
2 and 𝑚

′′′
2 = 𝑚

′′
2 , we

get, once again from (4.2), that

∑
𝓁1≤𝓁01
𝑁2≥𝓁2>𝓁02

|𝑘𝑥,𝓁1,𝓁2(𝑧)| ≲ ‖𝜎‖𝑆𝑚1,𝑚2
(𝑎1,𝑎2),0

|𝑧1|−𝑎′′1 2𝓁01 𝑚1−𝑚′′′12 |𝑧2|−𝑎′′2 2𝓁02 𝑚2−𝑚′′′22
≲ ‖𝜎‖𝑆𝑚1,𝑚2

(𝑎1,𝑎2),0
|𝑧1|−𝑚1−𝑛1 |𝑧2|−𝑚2−𝑛2 .

The estimate in the case when 𝓁2 ≤ 𝓁02 and 𝓁1 > 𝓁01 follows similarly by exchanging the role of 𝓁1 an 𝓁2. Collecting the
(four) estimates together, we get the desired result (keeping the biggest seminorm) in the case when |𝑧1| < 1 and |𝑧2| < 1.
In the case when |𝑧1| < 1 and |𝑧2| ≥ 1, we can choose 𝓁01 as before, and once again, split the analysis into the cases
𝓁1 ≤ 𝓁01 and 𝓁1 > 𝓁01 . Note that we do not split the sum in 𝓁2 in this case, so we will make a single choice for 𝑎2 and𝑚′2.
By choosing 𝑎1,𝑚′1, 𝑎

′
1,𝑚
′′
1 as before, and 𝑎2 = 𝑛2 + 𝑚2 + 3,𝑚

′
2 = 𝑚2 + 2 (so that𝑚

′
2 + 𝑛2 < 𝑎2), we will get the result in

this case (again the result is given in terms of the biggest seminorm).
Finally, the case |𝑧1| ≥ 1 and |𝑧2| < 1 is proved as the last one by reversing the role of 𝑧1 and 𝑧2.
Collecting all the estimates above, we obtain the result in terms of the biggest seminorm.

Case: 𝑚𝑖 + 𝑛𝑖 = 0 for 𝑖 = 1, 2. We consider again all the cases |𝑧𝑖| < 1, |𝑧𝑗| ≥ 1, 𝑖, 𝑗 = 1, 2 (𝑖 ≠ 𝑗). When |𝑧1| < 1 and|𝑧2| < 1, we fix 𝓁0𝑖 as before and consider the cases 1, 2, and 3 (and the respective case of the last one) as above. Then, for
𝓁𝑖 ≤ 𝓁0𝑖 , for 𝑖 = 1, 2, from (4.2) with 𝑎𝑖 = 0,𝑚′𝑖 = 𝑚𝑖 , for all 𝑖 = 1, 2, we get∑

𝓁1≤𝓁01
𝓁2≤𝓁02

|𝑘𝑥,𝓁1,𝓁2(𝑧)| ≲ ‖𝜎‖𝑆𝑚1,𝑚2𝑎1,𝑎2,0
𝓁01𝓁02 ≲ ‖𝜎‖𝑆𝑚1,𝑚2

(𝑎1,𝑎2),0
| ln |𝑧1|| | ln |𝑧2||.

When 𝓁𝑖 > 𝓁0𝑖 for 𝑖 = 1, 2, we choose 𝑎
′
𝑖 = 2 and𝑚

′′
𝑖 = 𝑚𝑖 − 4 for all 𝑖 = 1, 2, and get (from (4.2) with 𝑎′𝑖 , 𝑚

′′
𝑖 )∑

𝑁1≥𝓁1>𝓁01
𝑁2≥𝓁2>𝓁02

|𝑘𝑥,𝓁1,𝓁2(𝑧)| ≲ ‖𝜎‖𝑆𝑚1,𝑚2
(𝑎1,𝑎2),0
.
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232 FEDERICO and PARMEGGIANI

When𝓁1 ≤ 𝓁01 and𝓁2 > 𝓁02 (𝓁2 ≤ 𝓁02 and𝓁1 > 𝓁01), by choosing 𝑎′′1 = 𝑎1,𝑚′′′1 = 𝑚′1 and 𝑎′′2 = 𝑎′2,𝑚′′′2 = 𝑚′′2 , we obtain∑
𝓁1≤𝓁01
𝑁2≥𝓁2>𝓁02

|𝑘𝑥,𝓁1,𝓁2(𝑧)| ≲ ‖𝜎‖𝑆𝑚1,𝑚2
(𝑎1,𝑎2),0

| ln |𝑧1||.
Collecting the estimates together, the result when |𝑧1| < 1 and |𝑧2| < 1 follows.
When |𝑧1| < 1 and |𝑧2| ≥ 1, we fix again 𝓁01 as before. Recall that now we do not split the sum in 𝓁2 and that we will

make a single choice for 𝑎2 and 𝑚′2 in (4.2). Then, using estimate (4.2) with 𝑎1 and 𝑚
′
1 (when 𝓁1 ≤ 𝓁01), and 𝑎′1 and 𝑚′′1

(when 𝓁1 > 𝓁01) as in the previous case, the result follows by choosing 𝑎2 = 𝑛2 + 𝑚2 + 3 = 3 and 𝑚
′
2 = 𝑚2 + 2 (where

𝑚2 + 𝑛2 < 𝑎2 is still satisfied).
The case |𝑧1| ≥ 1 and |𝑧2| < 1 is treated as the previous one reversing the roles of 𝑧1 and 𝑧2.
Finally, collecting all the cases above, we get the result in terms of the biggest seminorm.

Case 𝑛𝑖 + 𝑚𝑖 > 0, 𝑛𝑗 + 𝑚𝑗 = 0 for 𝑖, 𝑗 ∈ {1, 2}, 𝑖 ≠ 𝑗. To fix ideas suppose 𝑛1 + 𝑚1 > 0 and 𝑛2 + 𝑚2 = 0 since the other
case is treated analogously. We then combine the strategies used in the cases 𝑛𝑖 + 𝑚𝑖 > 0 for all 𝑖 = 1, 2 and 𝑛𝑖 + 𝑚𝑖 = 0
for all 𝑖 = 1, 2.
When |𝑧1| < 1 and |𝑧2| < 1, we fix again 𝓁0𝑖 such that |𝑧𝑖| ∼ 2−𝓁0𝑖 , 𝑖 = 1, 2. Then, for 𝓁𝑖 ≤ 𝓁0𝑖 , we choose 𝑎𝑖 ∈ 2ℕ0 and
𝑚𝑖 ∈ ℝ, for all 𝑖 = 1, 2, such that

𝑚1 + 𝑛1 > 𝑎1 ≥ 𝑚1 + 𝑛1 − 2 and
𝑚1 −𝑚

′
1

2
= 𝑚1 + 𝑛1 − 𝑎1 > 0,

𝑎2 = 0, 𝑚
′
2 = 𝑚2

so that, from (4.2), we obtain ∑
𝓁1≤𝓁01
𝓁2≤𝓁02

|𝑘𝑥,𝓁1,𝓁2(𝑧)| ≲ ‖𝜎‖𝑆𝑚1,𝑚2
(𝑎1,𝑎2),0

|𝑧1|−𝑚1−𝑛1 | ln |𝑧2||.
For 𝓁𝑖 > 𝓁0𝑖 , for all 𝑖 = 1, 2, we apply (4.2) with 𝑎

′
1 = 𝑎1 + 2, 𝑚

′′
1 satisfying the same conditions as 𝑚

′
1 with 𝑎

′
1 in place

of 𝑎1 (where, recall, 𝑎1,𝑚′1 are the parameters used for 𝓁𝑖 ≤ 𝓁0𝑖 ), 𝑎′2 = 2 and𝑚′′2 = 𝑚2 − 4. We then have∑
𝑁1≥𝓁1>𝓁01
𝑁2≥𝓁2>𝓁02

|𝑘𝑥,𝓁1,𝓁2(𝑧)| ≲ ‖𝜎‖𝑆𝑚1,𝑚2
(𝑎1,𝑎2),0

|𝑧1|−𝑛1−𝑚1.
For 𝓁1 ≤ 𝓁01 and 𝓁2 > 𝓁02 (𝓁2 ≤ 𝓁02 and 𝓁1 > 𝓁01), we repeat the strategy used before, that is, we choose 𝑎′′1 = 𝑎1,
𝑚′′′1 = 𝑚

′
1, 𝑎
′′
2 = 𝑎

′
2, and𝑚

′′′
2 = 𝑚

′′
2 in (4.2) and get∑
𝓁1≤𝓁01
𝑁2≥𝓁2>𝓁02

|𝑘𝑥,𝓁1,𝓁2(𝑧)| ≲ ‖𝜎‖𝑆𝑚1,𝑚2
(𝑎1,𝑎2),0

|𝑧1|−𝑛1−𝑚1.
Hence, collecting all the estimates, we get the result when |𝑧1| < 1 and |𝑧2| < 1.
When |𝑧1| < 1 and |𝑧2| ≥ 1, the proof follows by considering again only the two cases 𝓁1 ≤ 𝓁01 and 𝓁1 > 𝓁01 (here, we

do not split the sum in 𝓁2, so 0 ≤ 𝓁2 ≤ 𝑁2). Using the same choices as before for 𝑎1, 𝑎′1,𝑚′1,𝑚′′1 , and choosing 𝑎2 = 3 and
𝑚′2 = 𝑚2 + 2 (so that 𝑚

′
2 + 𝑛2 < 𝑎2) in (4.2), where, recall, 𝑎1,𝑚

′
1 are the parameters used when 𝓁1 ≤ 𝓁01 , while 𝑎′1,𝑚′′1

are those used for 𝓁1 > 𝓁01 (we make a single choice for 𝑎2 and𝑚
′
2 here), then, the desired estimates hold when |𝑧1| < 1

and |𝑧2| ≥ 1.
When |𝑧1| ≥ 1 and |𝑧2| < 1, the result is proved by reversing the roles of 𝑧1 and 𝑧2 in the last case.
Cases 𝑛𝑖 + 𝑚𝑖 < 0 and 𝑛𝑗 + 𝑚𝑗 = 0; 𝑛𝑖 + 𝑚𝑖 > 0 and 𝑛𝑗 + 𝑚𝑗 < 0 (𝑖 ≠ 𝑗).
These cases can be treated as the last one, that is, by combing the strategies used for the other cases in the different

regions |𝑧𝑖| < 1, |𝑧𝑗| ≥ 1, 𝑖, 𝑗 = 1, 2 (𝑖 ≠ 𝑗). The proof is left to the reader. □

 15222616, 2023, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202100400 by A
rea Sistem

i D
ipart &

 D
ocum

ent, W
iley O

nline L
ibrary on [08/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



FEDERICO and PARMEGGIANI 233

5 CALCULUS OF BISINGULAR PSEUDODIFFERENTIAL OPERATORS

In what follows, we will use the previous properties to prove a composition formula for bisingular operators.

Theorem 5.1 (Composition formula). Let 𝜎𝐴 ∈ 𝑆𝑚1,𝑚2(𝐺 × 𝐺) and 𝜎𝐵 ∈ 𝑆𝑚
′
1,𝑚
′
2 (𝐺 × 𝐺), and 𝐴 ∶= Op(𝑎) and 𝐵 = Op(𝑏)

the corresponding pseudodifferential operators. Then, the symbol 𝜎𝐴𝐵 of 𝐴𝐵 is, asymptotically,

𝑎#𝑏(𝑥, 𝜉) ∶= 𝜎𝐴𝐵(𝑥, 𝜉) ∼
∑
𝑗≥0
𝑐𝑚1+𝑚′1−𝑗,𝑚2+𝑚

′
2−𝑗
(𝑥, 𝜉), (5.1)

where

𝑐𝑚1+𝑚′1−𝑗,𝑚2+𝑚
′
2−𝑗
∈ 𝑆𝑚1+𝑚

′
1−𝑗,𝑚2+𝑚

′
2−𝑗(𝐺 × 𝐺),

𝑐𝑚1+𝑚′1−𝑗,𝑚2+𝑚
′
2−𝑗
(𝑥, 𝜉) = 𝑑′

𝑚1+𝑚
′
1−𝑗,𝑚2+𝑚

′
2−𝑗
+ 𝑑′′
𝑚1+𝑚

′
1−𝑗−1,𝑚2+𝑚

′
2−𝑗
+ 𝑑′′′
𝑚1+𝑚

′
1−𝑗,𝑚2+𝑚

′
2−𝑗−1
, (5.2)

𝑑′
𝑚1+𝑚

′
1−𝑗,𝑚2+𝑚

′
2−𝑗
=

∑
|𝛼1|=|𝛼2|=𝑗

1
𝛼1!𝛼2!
(△𝛼1,𝛼2𝜎𝐴(𝑥, 𝜉))𝜕

𝛼1,𝛼2𝜎𝐵(𝑥, 𝜉),

𝑑′′
𝑚1+𝑚

′
1−𝑗−1,𝑚2+𝑚

′
2−𝑗
=

∑
|𝛼2|=𝑗
1
𝛼2!

(
△0,𝛼2𝜎𝐴◦𝜉1𝜕

0,𝛼2𝜎𝐵 −
∑

|𝛼1|≤𝑗
1
𝛼1!
(△𝛼1,𝛼2𝜎𝐴(𝑥, 𝜉))𝜕

𝛼1,𝛼2𝜎𝐵(𝑥, 𝜉)

)
,

and

𝑑′′′
𝑚1+𝑚

′
1−𝑗,𝑚2+𝑚

′
2−𝑗−1
=

∑
|𝛼1|=𝑗
1
𝛼1!

(
△𝛼1,0𝜎𝐴◦𝜉2𝜕

𝛼1,0𝜎𝐵 −
∑

|𝛼2|≤𝑗
1
𝛼2!
(△𝛼1,𝛼2𝜎𝐴(𝑥, 𝜉))𝜕

𝛼1,𝛼2𝜎𝐵(𝑥, 𝜉)

)

are such that they belong to 𝑆𝑚1+𝑚
′
1−𝑗,𝑚2+𝑚

′
2−𝑗(𝐺 × 𝐺). In particular, the asymptotic formula (5.1) means that, for any given

𝑁 > 0,

𝑟𝑁 = 𝜎𝐴𝐵 −
∑
𝑗<𝑁

𝑐𝑚1+𝑚′1−𝑗,𝑚2+𝑚
′
2−𝑗
∈ 𝑆𝑚1+𝑚

′
1−𝑁,𝑚2+𝑚

′
2−𝑁(𝐺 × 𝐺).

Proof. Let 𝐴 and 𝐵 be the operators above, then, by (3.3), we have

𝐴𝐵𝑓(𝑥) = ∫𝐺(𝐵𝑓)(𝑥𝑧)𝑅𝐴(𝑥, 𝑧
−1)𝑑𝑧

= ∫𝐺 𝑓(𝑥𝑦
−1)

(
∫𝐺 𝑅𝐵(𝑥𝑧, 𝑦𝑧)𝑅𝐴(𝑥, 𝑧

−1)𝑑𝑧

)
𝑑𝑦

=
𝑦→𝑦−1𝑥 ∫𝐺 𝑓(𝑦)

(
∫𝐺 𝑅𝐵(𝑥𝑧, 𝑦

−1𝑥𝑧)𝑅𝐴(𝑥, 𝑧
−1)𝑑𝑧

)
𝑑𝑦

= ∫𝐺 𝑓(𝑦)𝑅𝐴𝐵(𝑥, 𝑦
−1𝑥)𝑑𝑦,

where

𝑅𝐴𝐵(𝑥, 𝑦) ∶= ∫𝐺 𝑅𝐵(𝑥𝑧, 𝑦𝑧)𝑅𝐴(𝑥, 𝑧
−1)𝑑𝑧.
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234 FEDERICO and PARMEGGIANI

Since 𝜎𝐴𝐵(𝑥, 𝜉) = 𝑅𝐴,𝐵(𝑥, 𝜉), we have

𝜎𝐴𝐵(𝑥, 𝜉) = ∫𝐺 ∫𝐺 𝑅𝐴(𝑥, 𝑧
−1)𝑅𝐵(𝑥𝑧, 𝑦𝑧)𝜉

∗(𝑦)𝑑𝑧𝑑𝑦

= ∫𝐺 ∫𝐺 𝑅𝐴(𝑥, 𝑧
−1)𝜉∗(𝑧−1)𝑅𝐵(𝑥𝑧, 𝑦𝑧)𝜉

∗(𝑦𝑧)𝑑𝑧𝑑𝑦. (5.3)

Then,wewrite𝑅𝐵(𝑥𝑧, 𝑦𝑧) = 𝑅𝐵(𝑥1𝑧1, 𝑥2𝑧2, 𝑦1𝑧1, 𝑦2𝑧2) and take the Taylor expansion of𝑅𝐵 with respect to the first variable
at 𝑧1 = 𝑒1, that is,

𝑅𝐵(𝑥𝑧, 𝑦𝑧) =
∑

|𝛼1|<𝑁
1
𝛼1!
𝑞𝛼1,0(𝑧−11 , 𝑥2𝑧2)𝜕

𝛼1,0𝑅𝐵(𝑥1, 𝑥2𝑧2, 𝑦𝑧) +
∑

|𝛼1|=𝑁
1
𝛼1!
𝑞𝛼1,0(𝑧−11 , 𝑥2𝑧2)(𝑅𝐵)𝛼1(𝑥1𝑧1, 𝑥2𝑧2, 𝑦𝑧),

where 𝑞𝛼1,0(𝑥) = 𝑟𝛼1(𝑥1) is constant with respect to 𝑥2. Now, taking into account that 𝑞𝛼1,0(𝑥1, 𝑥2) does not depend on
the choice of the second variable and that 𝑞0,𝛼2(𝑥1, 𝑥2) does not depend on the choice of the first variable, we expand the
previous quantity with respect to the second variable at 𝑧2 = 𝑒2 and have

𝑅𝐵(𝑥𝑧, 𝑦𝑧) =
∑

|𝛼2|<𝑁
∑

|𝛼1|<𝑁
1
𝛼1!𝛼2!
𝑞𝛼1,𝛼2(𝑧−11 , 𝑧

−1
2 )𝜕
𝛼1,𝛼2𝑅𝐵(𝑥1, 𝑥2, 𝑦𝑧)

+
∑

|𝛼2|=𝑁
∑

|𝛼1|<𝑁
1
𝛼1!𝛼2!
𝑞𝛼1,𝛼2(𝑧−11 , 𝑧

−1
2 )(𝜕
𝛼1,0𝑅𝐵)𝛼2(𝑥1, 𝑥2, 𝑦𝑧),

+
∑

|𝛼2|<𝑁
∑

|𝛼1|=𝑁
1
𝛼1!𝛼2!
𝑞𝛼1,𝛼2(𝑧−11 , 𝑧

−1
2 )𝜕
0,𝛼2(𝑅𝐵)𝛼1(𝑥1, 𝑥2, 𝑦𝑧)

+
∑

|𝛼2|=𝑁
∑

|𝛼1|=𝑁
1
𝛼1!𝛼2!
𝑞𝛼1,𝛼2(𝑧−11 , 𝑧

−1
2 )(𝑅𝐵)𝛼1,𝛼2(𝑥1𝑧1, 𝑥2𝑧2, 𝑦𝑧).

Therefore, we have

𝜎𝐴𝐵(𝑥, 𝜉) =
∑

|𝛼1|<𝑁,|𝛼2|<𝑁
1
𝛼1!𝛼2! ∫𝐺×𝐺 𝜉

∗(𝑧−1)𝑞𝛼1,𝛼2(𝑧−1)𝑅𝐴(𝑥, 𝑧
−1)𝜉∗(𝑦𝑧)𝜕𝛼1,𝛼2𝑅𝐵(𝑥, 𝑦𝑧)𝑑𝑧𝑑𝑦

+
∑

|𝛼1|<𝑁
1
𝛼1! ∫𝐺×𝐺

(
𝑞𝛼1,0(𝑧−1)𝑅𝐴(𝑥, 𝑧

−1)𝜉∗(𝑧−1)𝜕𝛼1,0𝑅𝐵(𝑥, 𝑦𝑧)𝜉
∗(𝑦𝑧)

−
∑

|𝛼2|<𝑁
1
𝛼2!
𝑞𝛼1,𝛼2(𝑧−1)𝑅𝐴(𝑥, 𝑧

−1)𝜉∗(𝑧−1)𝜕𝛼1,𝛼2𝑅𝐵(𝑥, 𝑦𝑧)𝜉
∗(𝑦𝑧)

)
𝑑𝑧𝑑𝑦

+
∑

|𝛼2|<𝑁
1
𝛼2! ∫𝐺×𝐺

(
𝑞0,𝛼2(𝑧−1)𝑅𝐴(𝑥, 𝑧

−1)𝜉∗(𝑧−1)𝜕0,𝛼2𝑅𝐵(𝑥, 𝑦𝑧)𝜉
∗(𝑦𝑧)

−
∑

|𝛼1|<𝑁
1
𝛼1!
𝑞𝛼1,𝛼2(𝑧−1)𝑅𝐴(𝑥, 𝑧

−1)𝜉∗(𝑧−1)𝜕𝛼1,𝛼2𝑅𝐵(𝑥, 𝑦𝑧)𝜉
∗(𝑦𝑧)

)
𝑑𝑧𝑑𝑦

+
∑

|𝛼1|=𝑁,|𝛼2|=𝑁
1
𝛼1!𝛼2! ∫𝐺×𝐺 𝑞

𝛼1,𝛼2(𝑧−1)𝑅𝐴(𝑥, 𝑧
−1)𝜉∗(𝑧−1)(𝑅𝐵)𝛼1,𝛼2(𝑥𝑧, 𝑦𝑧)𝜉

∗(𝑦𝑧)𝑑𝑧𝑑𝑦,
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FEDERICO and PARMEGGIANI 235

and, by rearranging the terms, we get

𝜎𝐴𝐵 =
∑

|𝛼1|=|𝛼2|<𝑁
1
𝛼1!𝛼2!
(△𝛼1,𝛼2𝜎𝐴(𝑥, 𝜉))𝜕

𝛼1,𝛼2𝜎𝐵(𝑥, 𝜉)

+
∑

|𝛼1|<𝑁
1
𝛼1!

(
(△𝛼1,0𝜎𝐴◦𝜉2𝜕

𝛼1,0𝜎𝐵)(𝑥, 𝜉) −
∑

|𝛼2|≤|𝛼1|
1
𝛼2!
(△𝛼1,𝛼2𝜎𝐴(𝑥, 𝜉))𝜕

𝛼1,𝛼2𝜎𝐵(𝑥, 𝜉)

)

+
∑

|𝛼2|<𝑁
1
𝛼2!

(
(△0,𝛼2𝜎𝐴◦𝜉1𝜕

0,𝛼2𝜎𝐵)(𝑥, 𝜉) −
∑

|𝛼1|≤|𝛼2|
1
𝛼1!
(△𝛼1,𝛼2𝜎𝐴(𝑥, 𝜉))𝜕

𝛼1,𝛼2𝜎𝐵(𝑥, 𝜉)

)

+
∑

|𝛼1|=𝑁,|𝛼2|=𝑁
1
𝛼1!𝛼2! ∫𝐺×𝐺 𝑞

𝛼1,𝛼2(𝑧−1)𝑅𝐴(𝑥, 𝑧
−1)𝜉∗(𝑧−1)(𝑅𝐵)𝛼1,𝛼2(𝑥𝑧, 𝑦𝑧)𝜉

∗(𝑦𝑧)𝑑𝑧𝑑𝑦

=
∑
𝑗<𝑁

(
𝑑′
𝑚1+𝑚

′
1−𝑗,𝑚2+𝑚

′
2−𝑗
+ 𝑑′′′
𝑚1+𝑚

′
1−𝑗,𝑚2+𝑚

′
2−𝑗−1
+ 𝑑′′
𝑚1+𝑚

′
1−𝑗−1,𝑚2+𝑚

′
2−𝑗

)
+ 𝑟𝑁.

In order to complete the proof, we only need to show that 𝑟𝑁 ∈ 𝑆𝑚1+𝑚
′
1−𝑁,𝑚2+𝑚

′
2−𝑁(𝐺 × 𝐺) for all 𝑁 ∈ ℕ0, that is, we

have to check that

sup
𝑥∈𝐺

‖𝜕𝛾1,𝛾2Δ𝛽1,𝛽2𝑟𝑁(𝑥, 𝜉)‖ℒ(𝜉) ≲ ⟨𝜉2⟩𝑚1+𝑚′1−|𝛽1|−𝑁⟨𝜉2⟩𝑚2+𝑚′2−|𝛽2|−𝑁, (5.4)

for all 𝛾1, 𝛾2, 𝛽1, 𝛽2. For simplicity, we consider the case 𝛼1 = 𝛼2 = 𝛽1 = 𝛽2 = 0, since the general case follows similarly.
We then write 𝜉∗(𝑧) = ⟨𝜉1⟩−𝑠1⟨𝜉2⟩−𝑠2(𝐼1 + 𝐿𝐺1)𝑠1𝑧1 ⊗ (𝐼2 + 𝐿𝐺2)𝑠2𝑧2 𝜉∗(𝑧), with integers 𝑠1, 𝑠2 ≥ 1, and have, after integrating
by parts and using the fact that (𝑅𝐵)𝛼1,𝛼2(𝑥, 𝑦) is the kernel of a symbol in 𝑆

𝑚′1,𝑚
′
2 (𝐺 × 𝐺),

𝑟𝑁(𝑥, 𝜉) = ⟨𝜉1⟩−𝑠1⟨𝜉2⟩−𝑠2 ∑
|𝛼1|=𝑁,|𝛼2|=𝑁|𝛾1|+|𝛾2|=2𝑠1|𝜏1|+|𝜏2|=2𝑠2

𝑐𝛾1,𝛾2,𝜏1,𝜏2
1
𝛼1!𝛼2! ∫𝐺

(
𝜕
𝛾1,𝜏1
𝑧 (𝑞

𝛼1,𝛼2(𝑧−1)𝑅𝐴(𝑥, 𝑧
−1))

)
𝜉∗(𝑧−1) 𝜕

𝛾2,𝜏2
𝑧 (̂𝑅𝐵)𝛼1,𝛼2(𝑥𝑧, 𝜉)𝑑𝑧

= ⟨𝜉1⟩−𝑠1⟨𝜉2⟩−𝑠2 ∑
|𝛼1|=𝑁,|𝛼2|=𝑁|𝛾1|+|𝛾2|=2𝑠1|𝜏1|+|𝜏2|=2𝑠2

𝑐𝛾1,𝛾2,𝜏1,𝜏2
1
𝛼1!𝛼2! ∫𝐺

(
𝜕̃
𝛾1,𝜏1
𝑧−1
𝑞𝛼1,𝛼2(𝑧−1)𝑅𝐴(𝑥, 𝑧

−1)
)
𝜉∗(𝑧−1) 𝜕

𝛾2,𝜏2
𝑧1=𝑥𝑧
(𝑅𝐵)𝛼1,𝛼2(𝑧1, 𝜉)𝑑𝑧,

where in the second equality, we applied the relation between left-invariant and right-invariant vector fields given by
𝜕𝛼,𝛽{𝜙(⋅−1)}(𝑥) = (−1)|𝛼|+|𝛽|(𝜕̃𝛼,𝛽𝜙)(𝑥−1) (𝜕̃ denoting the right invariant vector field in our notation), and used the left
invariance of 𝜕𝛾2,𝜏2 .
The previous computations, in particular, give

‖𝑟𝑁(𝑥, 𝜉)‖ℒ(𝜉) ≤ 𝐶𝑠1,𝑠2 ∑
|𝛼1|=𝑁,|𝛼2|=𝑁|𝛾1|+|𝛾2|=2𝑠1|𝜏1|+|𝜏2|=2𝑠2

⟨𝜉1⟩−𝑠1⟨𝜉2⟩−𝑠2 1𝛼1!𝛼2! ∫𝐺 |||𝜕̃𝛾1,𝜏1𝑧−1 𝑞𝛼1,𝛼2(𝑧−1)𝑅𝐴(𝑥, 𝑧−1)|||𝑑𝑧
× sup
𝑧1∈𝐺

‖𝜕𝛾2,𝜏2𝑧1 (𝑅𝐵)𝛼1,𝛼2(𝑧1, 𝜉)‖ℒ(𝜉)
≤ 𝐶𝑠1,𝑠2

∑
|𝛼1|=𝑁,|𝛼2|=𝑁|𝛾1|+|𝛾2|=2𝑠1|𝜏1|+|𝜏2|=2𝑠2

⟨𝜉1⟩𝑚′1−𝑠1⟨𝜉2⟩𝑚′2−𝑠2 1𝛼1!𝛼2! ∫𝐺 |||𝜕̃𝛾1,𝜏1𝑧−1 𝑞𝛼1,𝛼2(𝑧−1)𝑅𝐴(𝑥, 𝑧−1)|||𝑑𝑧 ‖(𝑅𝐵)𝛼1,𝛼2‖𝑆𝑚′1,𝑚′2(2𝑠1,2𝑠2)

.
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236 FEDERICO and PARMEGGIANI

We now assume that𝑁 is sufficiently large, namely𝑁 > 𝑁0 ∶= max{𝑚1,𝑚2}, and choose 𝑠1 = 𝑁 −𝑚1 and 𝑠2 = 𝑁 −𝑚2.
In this case, by using Proposition 4.8, we obtain

∫𝐺 |𝜕̃𝛾1,𝜏1𝑧−1 𝑞𝛼1,𝛼2(𝑧−1)𝑅𝐴(𝑥, 𝑧−1)|𝑑𝑧 ≲ ‖𝜕̃𝛾1,𝜏1Δ𝛼1,𝛼2𝜎𝐴‖𝑆𝑚1−𝑁,𝑚2−𝑁 ≤ ‖𝜎𝐴‖𝑆𝑚1−𝑁,𝑚2−𝑁
(𝑁,𝑁),(2(𝑁−𝑚1),2(𝑁−𝑚2))

,

and, consequently,

‖𝑟𝑁(𝑥, 𝜉)‖ℒ(𝜉) ≲ ⟨𝜉1⟩𝑚1+𝑚′1−𝑁⟨𝜉2⟩𝑚2−𝑚′2−𝑁, ∀𝑁 > 𝑁0,
which proves (5.4) for every 𝑁 > 𝑁0 when 𝛾1 = 𝛾2 = 𝛽1 = 𝛽2 = 0. By using similar arguments together with the Leib-
niz formula, one proves (5.4) in the general form (possibly with a different 𝑁0), which, in particular, gives that 𝑟𝑁 ∈
𝑆𝑚1+𝑚

′
1−𝑁,𝑚2+𝑚

′
2−𝑁 for every 𝑁 > 𝑁0.

We are now left with proving that 𝑟𝑁 ∈ 𝑆𝑚1+𝑚
′
1−𝑁,𝑚2+𝑚

′
2−𝑁 for every 𝑁 ≤ 𝑁0. Observe that

𝑟𝑁(𝑥, 𝜉) = 𝜎𝐴𝐵(𝑥, 𝜉) −
∑
𝑗<𝑁

𝑐𝑚1+𝑚′1−𝑗,𝑚2+𝑚
′
2−𝑗
(𝑥, 𝜉)

= 𝜎𝐴𝐵(𝑥, 𝜉) −
∑
𝑗<𝑁0+1

𝑐𝑚1+𝑚′1−𝑗,𝑚2+𝑚
′
2−𝑗
(𝑥, 𝜉) +

∑
𝑁≤𝑗<𝑁0+1

𝑐𝑚1+𝑚′1−𝑗,𝑚2+𝑚
′
2−𝑗
(𝑥, 𝜉)

= 𝑟𝑁0+1(𝑥, 𝜉) +
∑

𝑁≤𝑗<𝑁0+1
𝑐𝑚1+𝑚′1−𝑗,𝑚2+𝑚

′
2−𝑗
(𝑥, 𝜉),

therefore, since

𝑟𝑁0+1 ∈ 𝑆
𝑚1+𝑚

′
1−𝑁0−1,𝑚2+𝑚

′
2−𝑁0−1,

∑
𝑁≤𝑗<𝑁0+1

𝑐𝑚1+𝑚′1−𝑗,𝑚2+𝑚
′
2−𝑗
∈ 𝑆𝑚1+𝑚

′
1−𝑁,𝑚2+𝑚

′
2−𝑁,

and

𝑆𝑚1+𝑚
′
1−𝑁0−1,𝑚2+𝑚

′
2−𝑁0−1 ⊂ 𝑆𝑚1+𝑚

′
1−𝑁,𝑚2+𝑚

′
2−𝑁,

we finally get that 𝑟𝑁 ∈ 𝑆𝑚1+𝑚
′
1−𝑁,𝑚2+𝑚

′
2−𝑁 for every 𝑁 ≤ 𝑁0. This concludes the proof. □

Theorem 5.2. Let 𝜎 ∈ 𝑆𝑚1,𝑚2(𝐺 × 𝐺), then the symbol of the operator Op(𝜎)∗, denoted by 𝜎∗, is asymptotically given by

𝜎∗(𝑥, 𝜉) ∼
∑
𝑗≥0
𝑐𝑚1−𝑗,𝑚2−𝑗(𝑥, 𝜉), (5.5)

where 𝑐𝑚1−𝑗,𝑚2−𝑗 ∈ 𝑆
𝑚1−𝑗,𝑚2−𝑗(𝐺 × 𝐺) and

𝑐𝑚1−𝑗,𝑚2−𝑗(𝑥, 𝜉) = 𝑑
′
𝑚1−𝑗,𝑚2−𝑗

+ 𝑑′′𝑚1−𝑗−1,𝑚2−𝑗
+ 𝑑′′′𝑚1−𝑗,𝑚2−𝑗−1

,

with, using the notations in (3.6) and (3.7) for 𝜎∗1(𝑥, 𝜉) and 𝜎∗2(𝑥, 𝜉),

𝑑′𝑚1−𝑗,𝑚2−𝑗
=

∑
|𝛼1|=|𝛼2|=𝑗

1
𝛼1!𝛼2!
Δ𝛼1,𝛼1𝜕𝛼1,𝛼2𝜎(𝑥, 𝜉)∗,

𝑑′′𝑚1−𝑗−1,𝑚2−𝑗
=

∑
|𝛼1|=𝑗
1
𝛼1!

(
Δ𝛼1,0𝜕0,𝛼1𝜎∗1(𝑥, 𝜉) −

∑
|𝛼2|≤|𝛼1|

1
𝛼2!
Δ𝛼1,𝛼2𝜕𝛼1,𝛼2𝜎(𝑥, 𝜉)∗

)
,

𝑑′′′𝑚1−𝑗,𝑚2−𝑗−1
=

∑
|𝛼2|<𝑗
1
𝛼2!

(
Δ0,𝛼2𝜕0,𝛼2𝜎∗2(𝑥, 𝜉) −

∑
|𝛼1|≤|𝛼2|

1
𝛼1!
Δ𝛼1,𝛼2𝜕𝛼1,𝛼2𝜎(𝑥, 𝜉)∗

)
, (5.6)
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FEDERICO and PARMEGGIANI 237

belonging to 𝑆𝑚1−𝑗,𝑛2−𝑗(𝐺 × 𝐺). In particular, the asymptotic formula (5.5) means that, for any𝑁 > 0,

𝑟𝑁 = 𝜎
∗ −

∑
𝑗<𝑁

𝑐𝑚1−𝑗,𝑚2−𝑗 ∈ 𝑆
𝑚1−𝑁,𝑚2−𝑁(𝐺 × 𝐺).

Proof. The strategy here is similar to the one used for the asymptotic composition formula. Notice that, since the kernel
of 𝜎∗(𝑥, 𝐷) satisfies 𝑘𝜎∗(𝑥, 𝑣) = 𝑘𝜎(𝑥𝑣−1, 𝑣−1), by taking the Fourier transform in the second variable, we have

𝜎∗(𝑥, 𝜉) = ∫𝐺 𝑘𝜎(𝑥𝑣
−1, 𝑣−1) 𝜉∗1 (𝑣1) ⊗ 𝜉

∗
2 (𝑣2)𝑑𝑣.

Wenow expand 𝑘𝜎(𝑥𝑣−1, 𝑣−1) = 𝑘𝜎(𝑥1𝑣−11 , 𝑥2𝑣
−1
2 , 𝑣
−1) in the first variable at 𝑣1 = 𝑒1 and afterward, in the second variable

at 𝑣2 = 𝑒2, and get

𝑘𝜎(𝑥𝑣−1, 𝑣−1) =
∑

|𝛼1|<𝑁,|𝛼2|<𝑁
1
𝛼1!𝛼2!
𝑞𝛼1,𝛼1(𝑣)𝜕𝛼1,𝛼2𝑘𝜎(𝑥, 𝑣−1)

+
∑

|𝛼1|<𝑁,|𝛼2|=𝑁
1
𝛼1!𝛼2!
𝑞𝛼1,𝛼2(𝑣)(𝜕𝛼1,0𝑘𝜎)𝛼2(𝑥1, 𝑥2𝑣

−1
2 , 𝑣
−1)

+
∑

|𝛼1|=𝑁,|𝛼2|<𝑁
1
𝛼1!𝛼2!
𝑞𝛼1,𝛼2(𝑣)(𝜕0,𝛼2(𝑘𝜎)𝛼1)(𝑥1𝑣

−1
1 , 𝑥2, 𝑣

−1)

+
∑

|𝛼1|=𝑁,|𝛼2|=𝑁
1
𝛼1!𝛼2!
𝑞𝛼1,𝛼2(𝑣)(𝑘𝜎)𝛼1,𝛼2(𝑥1𝑣

−1
1 , 𝑥2𝑣

−1
2 , 𝑣
−1).

= 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼 + 𝐼𝑉.

Now observe that for 𝐼𝐼, we have

𝐼𝐼 =
∑

|𝛼1|<𝑁,|𝛼2|=𝑁
1
𝛼1!𝛼2!
𝑞𝛼1,𝛼2(𝑣)(𝜕𝛼1,0𝑘𝜎)𝛼2(𝑥1, 𝑥2𝑣

−1
2 , 𝑣
−1)

=
∑

|𝛼1|<𝑁
1
𝛼1!

(
𝑞𝛼1(𝑣1)𝜕𝛼1,0𝑘𝜎(𝑥1, 𝑥2𝑣

−1
2 , 𝑣
−1) −

∑
|𝛼2|<𝑁

1
𝛼2!
𝑞𝛼1,𝛼2(𝑣)𝜕𝛼1,𝛼2𝑘𝜎(𝑥1, 𝑥2, 𝑣−1)

)
,

which shows that 𝐼𝐼 (by the calculus introduced in [13]) is the kernel of the pseudodifferential operator with symbol

∑
|𝛼1|<𝑁

1
𝛼1!

(
Δ𝛼1,0𝜕𝛼1,0𝜎∗2(𝑥, 𝜉) −

∑
|𝛼2|<𝑁

1
𝛼2!
Δ𝛼1,𝛼2𝜕𝛼1,𝛼2𝜎(𝑥, 𝜉)∗

)
.

For the term 𝐼𝐼𝐼 with similar arguments, one concludes that 𝐼𝐼𝐼 is the kernel of

∑
|𝛼2|<𝑁

1
𝛼2!

(
Δ0,𝛼2𝜕0,𝛼2𝜎∗1(𝑥, 𝜉) −

∑
|𝛼1|<𝑁

1
𝛼2!
Δ𝛼1,𝛼2𝜕𝛼1,𝛼2𝜎(𝑥, 𝜉)∗

)
.

For the term 𝐼, it is immediate to see that it is the kernel of the operator whose symbol is given by

∑
|𝛼1|<𝑁,|𝛼2|<𝑁

1
𝛼1!𝛼2!
Δ𝛼1,𝛼1𝜕𝛼1,𝛼2𝜎(𝑥, 𝜉)∗.
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238 FEDERICO and PARMEGGIANI

Therefore, putting together the properties above and rearranging the terms, one gets

𝜎∗(𝑥, 𝜉) ∼
∑

|𝛼1|=|𝛼2|<𝑁
1
𝛼1!𝛼2!
Δ𝛼1,𝛼1𝜕𝛼1,𝛼2𝜎(𝑥, 𝜉)∗

+
∑

|𝛼1|<𝑁
1
𝛼1!

(
Δ𝛼1,0𝜕𝛼1,0𝜎∗1(𝑥, 𝜉) −

∑
|𝛼2|≤|𝛼1|

1
𝛼2!
Δ𝛼1,𝛼2𝜕𝛼1,𝛼2𝜎(𝑥, 𝜉)∗

)
+

∑
|𝛼2|<𝑁

1
𝛼2!

(
Δ0,𝛼2𝜕0,𝛼2𝜎∗2(𝑥, 𝜉) −

∑
|𝛼1|≤|𝛼2|

1
𝛼1!
Δ𝛼1,𝛼2𝜕𝛼1,𝛼2𝜎(𝑥, 𝜉)∗

)
+

∑
|𝛼1|=𝑁,|𝛼2|=𝑁

1
𝛼1!𝛼2! ∫ 𝑞𝛼1,𝛼2(𝑣)(𝑘𝜎)𝛼1,𝛼2(𝑥1𝑣

−1
1 , 𝑥2𝑣

−1
2 , 𝑣
−1)(𝜉∗1 (𝑣1) ⊗ 𝜉

∗
2 (𝑣2))𝑑𝑣

=
∑
𝑗<𝑁

(
𝑑′𝑚1−𝑗,𝑚2−𝑗

+ 𝑑′′𝑚1−𝑗−1,𝑚2−𝑗
+ 𝑑′′′𝑚1−𝑗,𝑚2−𝑗−1

)
+ 𝑟𝑁.

In order to complete the proof, it remains to show that 𝑟𝑁 ∈ 𝑆𝑚1−𝑁,𝑚2−𝑁(𝐺 × 𝐺) that follows by arguments similar to
those used in Theorem 5.1. This concludes the proof. □

Theorem 5.3 (Asymptotic expansion). Let 𝜎𝑗 be a sequence of symbols in 𝑆
𝑚′𝑗,𝑚
′′
𝑗 (𝐺 × 𝐺) with 𝑚′𝑗,𝑚

′′
𝑗 decreasing to −∞.

Then, there exists 𝜎 ∈ 𝑆𝑚
′
0,𝑚
′′
0 (𝐺 × 𝐺), unique modulo 𝑆−∞,−∞, such that

𝜎 −
𝑀∑
𝑗=0

𝜎𝑗 ∈ 𝑆
𝑚′𝑀+1,𝑚

′′
𝑀+1(𝐺 × 𝐺), ∀𝑀 ∈ ℕ. (5.7)

Proof. Let 𝜓 ∈ 𝐶∞(ℝ; [0, 1]) be such that 𝜓 ≡ 0 on (−∞, 1∕2) and 𝜓 ≡ 1 on (1,∞). Then, by Propositions 2.8 and 4.1, we
have that, for any given 𝑚̃1, 𝑚̃2 ∈ ℝ,

‖Δ𝛼,𝛽𝜕𝛾1,𝛾2𝜎𝑗(𝑥, 𝜉)𝜓(𝑡1𝜆𝜉1)𝜓(𝑡2𝜆𝜉2)‖ℒ(𝜉)
≲

∑
|𝛼|≤|𝛼1|+|𝛼2|≤2|𝛼||𝛽|≤|𝛽1|+|𝛽2|≤2|𝛽|

‖Δ𝛼1,𝛽1𝜕𝛾1,𝛾2𝜎𝑗(𝑥, 𝜉)Δ𝛼2,𝛽2𝜓(𝑡1𝜆𝜉1)𝜓(𝑡2𝜆𝜉2)‖ℒ(𝜉)
≲ ‖𝜎𝑗‖

𝑆
𝑚′
𝑗
,𝑚′′
𝑗

(2𝛼,2𝛽),𝛾

∑
|𝛼|≤|𝛼1|+|𝛼2|≤2|𝛼||𝛽|≤|𝛽1|+|𝛽2|≤2|𝛽|

⟨𝜉1⟩𝑚′𝑗−|𝛼1|⟨𝜉2⟩𝑚′′𝑗 −|𝛼2|𝑡𝑚̃1∕21 ⟨𝜉1⟩𝑚̃1−|𝛼2|𝑡𝑚̃2∕22 ⟨𝜉2⟩𝑚̃2−|𝛽2|.
We then choose 𝑚̃1 = 𝑚′0 − 𝑚

′
𝑗 and 𝑚̃2 = 𝑚

′′
0 − 𝑚

′′
𝑗 and get

‖Δ𝛼,𝛽𝜕𝛾1,𝛾2𝜎𝑗(𝑥, 𝜉)𝜓(𝑡1𝜆𝜉1)𝜓(𝑡2𝜆𝜉2)‖ℒ(𝜉) ≲ ‖𝜎𝑗‖
𝑆
𝑚′
𝑗
,𝑚′′
𝑗

(|2𝛼|,|2𝛽|),(|𝛾1|,|𝛾2|)
𝑡

𝑚′
0
−𝑚′
𝑗

2
1 𝑡

𝑚′′
0
−𝑚′′
𝑗

2
2 ⟨𝜉1⟩𝑚′0−|𝛼|⟨𝜉2⟩𝑚′′0 −|𝛽|,

which, in particular, gives that for any given 𝑎 = (𝑎1, 𝑎2) ∈ ℕ0 × ℕ0 and 𝑏 = (𝑏1, 𝑏2) ∈ ℕ0 × ℕ0,

‖𝜎𝑗(𝑥, 𝜉)𝜓(𝑡1𝜆𝜉1)𝜓(𝑡2𝜆𝜉2)‖
𝑆
𝑚′
0
,𝑚′′
0

𝑎,𝑏

≤ 𝐶𝑎,𝑏,𝑚′0,𝑚′′0 ,𝜎𝑗 𝑡
𝑚′
0
−𝑚′
𝑗

2
1 𝑡

𝑚′′
0
−𝑚′′
𝑗

2
2 .

We now choose a decreasing sequence 𝑡𝑗 , such that

𝑡𝑗 ∈ (0, 2
−𝑗) and 𝐶(𝑗,𝑗),(𝑗,𝑗),𝑚′0,𝑚′′0 ,𝜎𝑗 𝑡

𝑚′
0
−𝑚′
𝑗

2
𝑗 𝑡

𝑚′′
0
−𝑚′′
𝑗

2
𝑗 ≤ 2−𝑗,
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FEDERICO and PARMEGGIANI 239

and define 𝜎̃𝑗(𝑥, 𝜉) ∶= 𝜎𝑗(𝑥, 𝜉)𝜓(𝑡𝑗𝜆𝜉1)𝜓(𝑡𝑗𝜆𝜉2). By using the properties above, we get, for all 𝓁 ∈ ℕ0,

∞∑
𝑗=0

‖𝜎̃𝑗‖
𝑆
𝑚′
0
,𝑚′′
0

(𝓁,𝓁),(𝓁,𝓁)

≤
𝓁∑
𝑗=0

‖𝜎̃𝑗‖
𝑆
𝑚′
0
,𝑚′′
0

(𝓁,𝓁),(𝓁,𝓁)

+
∞∑
𝑗=𝓁+1

2−𝑗 < ∞,

which implies that 𝜎 =
∑∞
𝑗=0 𝜎𝑗(𝑥, 𝜉)𝜓(𝑡𝑗𝜆𝜉1)𝜓(𝑡𝑗𝜆𝜉2) ∈ 𝑆

𝑚′0,𝑚
′′
0 (𝐺 × 𝐺), and consequently, by taking the sum for 𝑗 ≥ 𝑀,

also that
∑∞
𝑗=𝑀 𝜎𝑗(𝑥, 𝜉)𝜓(𝑡𝑗𝜆𝜉1)𝜓(𝑡𝑗𝜆𝜉2) ∈ 𝑆

𝑚′𝑀,𝑚
′′
𝑀 (𝐺 × 𝐺) for all𝑀 ∈ ℕ. We then have that

𝜎 −
𝑀−1∑
𝑗=0

𝜎𝑗 =
∞∑
𝑗=0

𝜎𝑗(𝑥, 𝜉)𝜓(𝑡𝑗𝜆𝜉1)𝜓(𝑡𝑗𝜆𝜉2) −
𝑀−1∑
𝑗=0

(
1 − 𝜓(𝑡𝑗𝜆𝜉1)𝜓(𝑡𝑗𝜆𝜉2) + 𝜓(𝑡𝑗𝜆𝜉1)𝜓(𝑡𝑗𝜆𝜉2)

)
𝜎𝑗

= −
𝑀−1∑
𝑗=0

(
1 − 𝜓(𝑡𝑗𝜆𝜉1)𝜓(𝑡𝑗𝜆𝜉2)

)
𝜎𝑗 +

∞∑
𝑗=𝑀

𝜎̃𝑗 (5.8)

belongs to 𝑆𝑚
′
𝑀,𝑚
′′
𝑀 (𝐺 × 𝐺), since, by Proposition 4.1, 1 − 𝜓(𝑡𝑗𝜆𝜉1)𝜓(𝑡𝑗𝜆𝜉2) is smoothing. In order to conclude the proof, we

just have to show that 𝜎 is unique up to smoothing operators. This last property easily follows by observing that, if 𝜏 is
another symbol with the same asymptotic expansion as 𝜎, then, for any given𝑀 ∈ ℕ,

𝜎 − 𝜏 =

(
𝜎 −
𝑀−1∑
𝑗=1

𝜎𝑗

)
−

(
𝜏 −
𝑀−1∑
𝑗=1

𝜎𝑗

)
∈ 𝑆𝑚

′
𝑀,𝑚
′′
𝑀 (𝐺 × 𝐺),

which, finally, shows that 𝜎 = 𝜏 modulo 𝑆−∞,−∞(𝐺 × 𝐺) and proves the result. □

Wewill now introduce the definition of bielliptic operators and derive, for these objects, the existence of biparametrices.

Definition 5.4. Let 𝑎 ∈ 𝑆𝑚1,𝑚2(𝐺 × 𝐺) and 𝐴 = Op(𝑎) ∈ 𝐿𝑚1,𝑚2(𝐺). We say that 𝐴 is bielliptic if

(1) 𝑎(𝑥, 𝜉) is invertible for all but finitely many [𝜉] ∈ 𝐺 and, for such 𝜉, its inverse 𝑎(𝑥, 𝜉)−1 satisfies

‖𝑎(𝑥, 𝜉)−1‖ℒ(𝐻𝜉) ≤ ⟨𝜉1⟩−𝑚1⟨𝜉2⟩−𝑚2;
(2) 𝑎(𝑥1, 𝑥2, 𝐷1, 𝜉2) is exactly invertible as an operator in 𝐿𝑚1(𝐺1) for all (𝑥2, 𝜉2) ∈ 𝐺2 × 𝐺2 with inverse in 𝐿−𝑚1(𝐺1), and,

in particular,

(𝑎◦1𝑎
−1)(𝑥1, 𝑥2, 𝐷1, 𝜉2) = Id𝒟′(𝐺1);

(3) 𝑎(𝑥1, 𝑥2, 𝜉1, 𝐷2) is exactly invertible as an operator in 𝐿𝑚2(𝐺2) for all (𝑥2, 𝜉2) ∈ 𝐺2 × 𝐺2 with inverse in 𝐿−𝑚2(𝐺2), and,
in particular,

(𝑎◦2𝑎
−1)(𝑥1, 𝑥2, 𝜉1, 𝐷2) = Id𝒟′(𝐺2).

Theorem 5.5. Let 𝐴 ∈ 𝐿𝑚1,𝑚2(𝐺) be bielliptic. Then, there exists 𝐵 ∈ 𝐿−𝑚1,−𝑚2(𝐺) such that

𝐴𝐵 = 𝐼 + 𝐾1,

𝐵𝐴 = 𝐼 + 𝐾2,

where 𝐼 ∶= Id′(𝐺) is the identity map and 𝐾1, 𝐾2 are smoothing bisingular operators.

Proof. We start with the proof of the first assertion, namely, the existence of 𝐵 such that𝐴𝐵 = 𝐼 + 𝐾1, with 𝐾1 smoothing.
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240 FEDERICO and PARMEGGIANI

First observe that, by definition of biellipticity, one has that𝑎−1 ∈ 𝑆−𝑚1,−𝑚2(𝐺 × 𝐺). Then, by taking 𝑏0(𝑥, 𝜉) = 𝑎(𝑥, 𝜉)−1
and by using the asymptotic composition formula together with (2) and (3) of Definition 5.4, we have that 𝑎#𝑏0 = 𝟏 − 𝑟1,
with 𝑟1 ∈ 𝑆−1,−1(𝐺 × 𝐺) and 𝟏(𝜉) = 𝐼ℂ𝑑𝜉 . We now define 𝑏𝑗 ∶= 𝑏0#𝑟𝑗 , with 𝑟𝑗 ∶= 𝑟1#𝑟𝑗−1 ∈ 𝑆−𝑗,−𝑗(𝐺 × 𝐺) for 𝑗 ≥ 2, and
have 𝑎#𝑏𝑗 = (𝟏 − 𝑟1)#𝑟𝑗 . Then, for 𝑏 ∼

∑
𝑗≥0 𝑏𝑗 , we obtain, for any 𝑘 ∈ ℕ,

𝑎#
∑
𝑗<𝑘

𝑏𝑗 = (𝟏 − 𝑟1)#

(
𝟏 +

∑
0<𝑗<𝑘

𝑟𝑗

)

= 𝟏 +
∑
0<𝑗<𝑘

𝑟𝑗 − 𝑟1 − 𝑟1 + 𝑟1#
∑
0<𝑗<𝑘

𝑟𝑗 = 𝟏 − 𝑟𝑘,

where, recall, 𝑟𝑘 ∈ 𝑆−𝑘,−𝑘(𝐺 × 𝐺). This finally gives that

𝑎#𝑏 − 𝟏 ∈ 𝑆−∞,∞(𝐺 × 𝐺),

which proves the first assertion.
In order to prove the existence of a left parametrix 𝐵, that is such that 𝐵𝐴 = 𝐼 + 𝐾2, with 𝐾2 smoothing, one proceeds

as before, namely, one takes 𝑏0 = 𝑎−1 and defines 𝑏0#𝑎 − 𝟏 = −𝑠1 ∈ 𝑆−1,−1(𝐺 × 𝐺) and 𝑠𝑗 ∶= 𝑠𝑗−1#𝑠1 for all 𝑗 ≥ 2. Then,
taking 𝑏𝑗 ∶= 𝑠𝑗#𝑏0, the result follows for 𝑏 ∼

∑
𝑗≥0 𝑏𝑗 . This concludes the proof. □
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APPENDIX: AUXILIARY LEMMAS

Lemma A.1. Let 𝐺 = 𝐺1 × 𝐺2 be a compact Lie group, with 𝐺𝑖 , 𝑖 = 1, 2, being a compact Lie group of dimension 𝑛𝑖 =
dim(𝐺𝑖), and let also 𝑞 ∈ (𝐺) and 𝑎1, 𝑎2 ∈ ℕ. Then, the following properties are equivalent
1. For all (𝛼1, 𝛼2) ∈ ℕ𝑛1 × ℕ𝑛2 , with |𝛼𝑖| < 𝑎𝑖 , then 𝜕𝛼1,𝛼2𝑞(𝑒𝐺) = 0, that is, 𝑞 vanishes of order (𝑎1 − 1, 𝑎2 − 1) at 𝑒𝐺 .
2. For any given differential operator 𝐷𝑘1,𝑘2 ∶= 𝐷𝑘11 𝐷

𝑘2
2 ∈ Dif f

𝑘1+𝑘2(𝐺), 𝐷
𝑘𝑗
𝑗 ∈ Dif f

𝑘𝑗 (𝐺𝑗), such that 𝑘𝑖 < 𝑎𝑖 , we have
𝐷𝑘1,𝑘2𝑞(𝑒𝐺) = 0.

3. There exists a constant 𝐶𝑞 such that, for all 𝑥 ∈ 𝐺, we have 𝑞(𝑥) ≤ 𝐶𝑞|𝑥1|𝑎1 |𝑥2|𝑎2 .
Lemma A.1, whose proof is left to the reader, gives a notion of vanishing order of a function suitable in our setting,

where, in particular, the vanishing order with respect to each variable is considered. For the standard (non adapted to the
bisingular case) notion of vanishing orderer of a function, see Lemma A.1 in [5].

Proposition A.2. Let 𝑚1,𝑚2 ∈ ℝ and 𝑎1, 𝑎2 ∈ ℕ. For any given function 𝑞 ∈ (𝐺) vanishing of order (𝑎1 − 1, 𝑎2 − 1) at
𝑒𝐺 , there exists 𝑑1, 𝑑2 ∈ ℕ0 such that, for all 𝑓 ∈ 𝐶𝑑1([0, +∞); 𝐶𝑑2[0, +∞)) satisfying

‖𝑓‖𝑚1,𝑚2,𝑑1,𝑑2 ∶= sup
𝜆1,𝜆2≥0,𝓁1=0,…,𝑑1,𝓁2=0,…,𝑑2

(1 + 𝜆1)
−𝑚1+𝓁1(1 + 𝜆2)

−𝑚2+𝓁2 |||𝜕𝓁1𝜆1 𝜕𝓁2𝜆2 𝑓(𝜆1, 𝜆2)||| < ∞,
we have

‖△𝑞 𝑓(𝑡1𝜆𝜉1 , 𝑡2𝜆𝜉2)‖(𝜉) ≤ 𝐶𝑡𝑚1∕21 𝑡𝑚2∕22 (1 + 𝜆𝜉1)𝑚1−𝑎12 (1 + 𝜆𝜉2)𝑚2−𝑎22 , ∀𝜉 ∈ 𝐺, 𝑡1, 𝑡2 ∈ (0, 1).
The constant 𝐶 may be chosen as 𝐶′‖𝑓‖𝑚1,𝑚2,𝑑1,𝑑2 , with 𝐶′ = 𝐶′(𝑚1,𝑚2, 𝑞, 𝑎1, 𝑎2) also depending on the group 𝐺 but not
on 𝑓, 𝑡1, 𝑡2 and 𝜉 = 𝜉1 ⊗ 𝜉2.

The proof of the proposition is done following that of [5] and is also left to the reader.

Lemma A.3. Let 𝐺 = 𝐺1 × 𝐺2 be such that dim(𝐺1) = 𝑛1. If 𝑠1 > 𝑛1∕2, 𝑠2 > 𝑛2∕2, then, the kernel 𝑠1,𝑠2 of the operator
(𝐼1 + 𝐿𝐺1)

−𝑠1∕2 ⊗ (𝐼2 + 𝐿𝐺2)
−𝑠2∕2 is square integrable and the continuous inclusion𝐻𝑠1,𝑠2 (𝐺) ⊂ 𝐶(𝐺) holds.

Sketch of the proof of Lemma A.3. Notice that

𝐵𝑠2,𝑠2 (𝑥, 𝑦) = 𝐵𝑠1(𝑥1, 𝑦1) ⊗ 𝐵𝑠2(𝑥2, 𝑦2)

where 𝐵𝑠𝑗 (𝑥𝑗, 𝑦𝑗), defined on 𝐺𝑗 × 𝐺𝑗 , is the kernel of the operator (𝐼𝑗 + 𝐿𝐺𝑗 )
−𝑠𝑗 , 𝑗 = 1, 2. Then (see Lemma A.5 in [5]), we

have

𝐵𝑠𝑗 =
1

Γ(𝑠𝑗∕2) ∫
∞

𝑡𝑗=0

𝑡
𝑠𝑗∕2−1

𝑗 𝑒−𝑡𝑗𝑝
(𝑗)
𝑡𝑗
𝑑𝑡𝑗,

where

𝑝
(𝑗)
𝑡𝑗
∶= 𝑒−𝑡𝑗Δ𝑗𝛿𝑒𝐺𝑗

, 𝑡𝑗 > 0,

and Γ is the gamma function. Since (see Lemma A.5 in [5]) for 𝑠𝑗 > 𝑛𝑗∕2

‖𝐵𝑠𝑗‖𝐿2(𝐺𝑗) < ∞, 𝑗 = 1, 2,
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we have

‖𝐵𝑠‖𝐿2(𝐺) = ‖𝐵𝑠1‖𝐿2(𝐺1)‖𝐵𝑠2‖𝐿2(𝐺2) < ∞.
Finally, the Sobolev embedding will follow from the fact that one can write 𝑓 as

𝑓 = {
(
(𝐼1 + 𝐿𝐺1)

−𝑠1∕2 ⊗ (𝐼2 + 𝐿𝐺2)
−𝑠2∕2

)
𝑓} ∗ 𝐵𝑠,

for all 𝑓 ∈ 𝐻𝑠1,𝑠2 (𝐺) with 𝑠1 > 𝑛1∕2 and 𝑠2 > 𝑛2∕2. □
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