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1 | INTRODUCTION

In this paper, we shall introduce a class of global pseudodifferential operators on the product of compact Lie groups and
develop the corresponding global symbolic calculus in the spirit of the one introduced by Ruzhansky and Turunen in [13]
and of that introduced subsequently by Fischer in [5].

On the product of two manifolds, the class we consider here was first studied by Rodino in [12], where, in particular, the
author used the classical theory of pseudodifferential operators developed by Hérmander in [6] to construct an algebra of
pseudodifferential operators containing the so-called bisingular operators.

The interest of our approach lies in the fact that it is global and based on the group structure and on its related
representation theory.

As the classes S"1""2(Q, X Q,) in [12] are not in general contained in any of the Hormander classes S"(Q; X Q, X
R™+12) similarly in our case, the classes S"™1"2(G; X G, x G; x G,) are not in general contained in any class S"(G), with
G = G; X G,, defined by Ruzhansky and Turunen in [13].

Natural examples of bisingular pseudodifferential operators in our setting, as in the general compact manifold setting,
are tensor products of the form A; ® A,, where A; for i = 1,2 is a pseudodifferential operator with symbol in the class
S™i(G;) introduced in [14], that is, A; € L"™(G;) := Op(S™i(G;)), with G; being a compact Lie group.

The study of these operators goes back to 1971, when Pilidi in [9] reduced the boundary value problem for functions
of two complex variables in bicylinders to the analysis of a bisingular equation on the two distinguished boundaries. In
[10] the same author also developed a product calculus to deal with these objects and considered the corresponding index
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problem. Afterward, a priori estimates and Fredholm properties for bisingular operators were studied by Rabinovi¢ in
[11], while in 1975 Rodino in [12] introduced the so-called calculus of bisingular pseudodifferential operators. Other
related questions, such as residues and index problems, have been recently considered by Nicola and Rodino in [8], while
microlocal properties have been studied by Borsero and Schulz in [2].

Let us also recall that a global version (i.e. in the Shubin setting of R™ x R"2) of the calculus in [12] was developed by
Battisti et al. in [1], and that other calculi of product type were developed by Duducava in [4] and [3], and more recently
by Melrose and Rochon in [7].

Note that a natural and immediate generalization of bisingular operators are the multisingular ones, whose prototype
are tensor products of the form ®ii1 A;, with A; € L™i(G;). We will not pursue this topic here, but with suitable arrange-
ments in the arguments used below one can define a multisingular pseudodifferential calculus on the direct product of
finitely many compact Lie groups and define the corresponding multisingular pseudodifferential operators.

We want to remark that due to the intrinsic product structure of the bisingular calculus, the suitable version of the
celebrated Garding inequality for elliptic operators is not available for bielliptic operators (see for instance [11], where such
inequality is attained only under very specific assumptions). Hence, it seems that for the class of bisingular operators, that
serves as a model for degenerate elliptic operators, a more natural inequality to consider is the sharp Gdrding inequality.
We will analyze the problem of the validity of this inequality in a future paper that will be part II of the present work.

We finally conclude this introduction by giving the plan of the paper.

In Section 2, we shall recall some basic definitions on compact Lie groups, such as the notions of Fourier transform,
difference operators and Taylor expansion, as well as the standard quantization formula.

In Section 3, we introduce the class of bisingular symbols and define the corresponding pseudodifferential operators.

Section 4 will be devoted to the derivation of some fundamental kernel estimates needed to prove some asymptotic
properties that are the object of Section 5.

Finally, in Section 5, we develop the calculus, that is, we prove asymptotic formulas for the composition and for
the adjoint of bisingular operators, and prove, after introducing ellipticity in the bisingular setting, the existence of
parametrices for bielliptic operators.

2 | PRELIMINARIES

In the sequel, G will be a compact Lie group, G its unitary dual, that is the set of all equivalence classes of unitary rep-
resentations of G, and Rep(G) the set of all the irreducible unitary representations of G. Since G is compact, any given
§ € Rep(G) is finite dimensional, and we shall denote, by H; , the associated representation space, and by U'(H;), the
corresponding space of unitary operators on H.
The Fourier and inverse Fourier transforms on G are given in terms of the representations of the group as follows.
Given a function f € C*(G) and ¢ € Rep(G), the (matrix-valued) global Fourier transform of f at £ is defined by

F& = /G FOEX)dx,

where £*(x) := &€(x) stands for the adjoint representation of &, while dx denotes the Haar measure on the group. Notice
that, given § : H; — U'(H;) and d; := dim(§) := dim(H;), then f(§) € C%*d  Correspondingly, the inverse Fourier
transform is given by

f@) =) deTr(E(x)F ),

3EE

where Tr(A) denotes the trace of the matrix A.
Related to the previous formulas one has the following Parseval identity

2 _ D2 . 12

1f176y = 25 deNFOllFs =2 111,
[£]eG

1/2

) " is the Hilbert-Schmidt norm.

where [|f(llus := (Tr(FEFE))
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In order to deal with (matrix-valued) functions on G, we will need to make use of the so called difference operators that
we next define following [14].

Definition 2.1. We say that Q; is a difference operator of order k on F(D'(G)) (the image of the group Fourier transform
of distributions on G) if

Qe f(&) = qof (&),

for a function gy € C*(G) vanishing of order k at the identity element e of G, that is, g is such that go(e) = P,gp(e) = 0
for all left-invariant differential operators P, € Diff*~1(G) of order k — 1.

We shall denote by diff k(@) the set of all difference operators of order k on G.

Definition 2.2. A collection of na >n = dim(G) difference operators /A1, ..., /\, , in diff'(G) is called admissi-
ble if the corresponding functions q, ..., g, A€ C*(G) are such that g,(e) = --- =q, A(e) =0, and dg;(e) # 0 for all
Jj=1,..,n,withrank(dq,(e),...,dq, A (e)) = n. Finally, a collection of difference operators is called strongly admissible

if ﬂj{x € G;q;(x) = 0} = {e}.

. AQ the associated admissible collection of difference operators;
a
. M "A
q* :=q, N

ay, A
. AQ,] = qu and Ag = Agll AQ "AA the corresponding element in diff'“'(G).

Additionally, once the collection of difference operators is fixed, namely the corresponding family of functions Q is fixed,

one can find a family of differential operators in Diff |‘xl(G), denoted by 5560‘)

holds

, such that the following Taylor’s formula

fe= Y, —a0ra 1) + Ohe)Y), () =0,

la|<N

for all f € C*(G), where h(x) is the geodesic distance from x to eg. The differential operators 6;“) can be replaced by
0% = 6;(11 6?:, with ., j = 1,..., n, being a collection of left-invariant first order differential operators corresponding
to some linearly independent left-invariant vector fields on G (6xj are not the Euclidean directional derivatives here).

Remark 2.3. Note that we are assuming the Lie algebra g to be the space of left-invariant vector fields. In particular, we
shall use the notation axj and 5xj for the left and right invariant vector fields, respectively. Once we fix an orthonormal

basis of left-invariant vector fields for g, then any element of Diff k(G) (the space of left-invariant differential operators
of order k) can be written as a linear combination in terms of the elements of the basis. Note also that a similar property
holds for right-invariant vector fields.

By Lemma 4.4 in [14], the family of functions {g;; = §;; —; j}[ £1eB1<i,j<d; always induces a strongly admissible
collection of difference operators, therefore we choose the latter as the fixed admissible collection for the rest of the paper.
In the context of the difference operators defined above, the following notion of Leibniz formula is adopted (see [5]).

Definition 2.4. A collection A\ = /\ of difference operators satisfies the Leibniz-like property if, for any Fourier
transforms f; and f, (with f1, f, € D'(G)),

Do jTifD) = Do+ Fi Doy T+ Y ) Doa (D) Do (F),

lsl,kSnA

o)

Lk € C depending only on L, k, j, and /\.

for some coefficients ¢
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If /\ is a collection satisfying the Leibniz-like formula, then, recursively, for any given o € N;A, one has

AFifd= Y En (AT ) (AT ), @D
la|<lai|+]|on]<2]a]
for some coefficients cgfl,az € C depending on «;, a5, @, and /\, with 02‘,0 = cg‘,a, =1.

Remark 2.5. We remark that there always exists a strongly admissible collection of difference operators as in Definition 2.2
for which the Leibniz property above holds (see Corollary 5.13 in [5]). In particular, this is always the case for the strongly
admissible collection A\ with Q ={g;; = §;; —8;;,1 <i,j <d, £ € G}

In order to introduce the precise difference operators, we are going to exploit in our settings, it is more convenient for us
to use the definition of difference operators given in [5], which, in turn, gives rise to the same difference operators defined
above by means of the admissible collection {g;; = §;; — 5ij}[§]e@,1si,jsd§'

Definition 2.6. For each 7, £ € Rep(G) we define the linear mapping Aff(é' )on H. ® H; by

AJE =@ - s ®6). 2.2)

The restriction of Aff(f ) to any occurrence of p € G in the decomposition into irreducibles of 7 ® & defines the same
mapping on H,,, while the restriction to any p € G not appearing in the decomposition of 7 ® £ is fixed to be zero. With
these conventions the operation /\; is called difference operator associated with T € Rep(G).

Definition 2.7. Let G = G; X G, be a compact Lie group such that G; is compact for all i = 1,2, and n; := dim(G;). Let
e = (e}, e;) be the neutral element of G. A collection of np :=na, > n, difference operators A Pro s A pnp € diff 1(@) is
called admissible relative to G, if the corresponding functions p, ..., p,, € C*(G) are such that p,(e) = --- = p,,(e) =0,
anddpj(e) # 0 forall j = 1,...,np, with rank(dp,(e), ..., dp,,(e)) = n;.

The collection is called strongly admissible relative to G, if ﬂjﬁlp {x € G; pj(x) = 0} = {e;} X G,. Admissible and strongly
admissible collections relative to G, are defined similarly by reversing the role of G; and G,.

We then consider the family of functions

R={i1<ij<d.reb)={(1,, ®n 1) ;1<ij<d.c€C} (23)
ij

and

p= {PS)?l <ijj<d,.te é} - {<11 ® 1, —Idf> 1<ij<d,t eé}, (2.4)
J

i

so that both A\ and /\p are strongly admissible collections relative to G; ~ G, X {e;} C G and G, ~ {e;} X G, C G,
respectively (see Definition 2.7). After ordering the (huge but finite) families P and R above, that is, writing

P={p,k=1,..,np}, R={r,k=1,..,np},

where each py, 1\ are functions of the form pi(;), rl.(;), respectively, forsome t € G and some i,j €{0,...,d,},we may define
B o — B _ a ap B Bn
Aaﬁ L AgAR - Api te Apnllz Arll te Arn;: . (2'5)

Note that the function p s forall j = 1,..., np,isindependent of x, € G,, and, similarly, the function r s forallj =1,...,ng,
is independent of x;.
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These difference operators, namely of the form (2.5), will be the ones used for the rest of the paper. Note that Ag and
Ag may be thought of as “partial difference operators” in the “directions” of G, and G,, respectively.

By Remark 2.5 and formula (2.1) applied iteratively, we have the following Leibniz-like formula for the difference
operators we are considering.

Proposition 2.8. Let G = G; X G,, with G; and G, compact Lie groups. Then, for any a € NZAP , B € NZAR, and for all
Fourier transforms ﬁ,ﬁ (with f1, f, € D'(G)), we have

A Fiy= Y Y s o (ATPTAET), 2.6)

lal<lay [+]az]<2lal |BI<|B1]+]621<2]8]

for some coefficients cg;, ., ¢ eCsuchthar? =c° =c*

ﬁl?:@Z ﬁ’o - Osﬁ
Proof. The proof immediately follows by application of formula (2.1) twice, that is, for Ag and Aﬁ , respectively. O

Observe now that, since the families of functions in (2.3) and (2.4) defining admissible collections of difference operators
on G relative to G; and G, are fixed, on denoting by x = (x;,x;) an element of G = G; X G,, with dim(G;) = n; and
dim(G,) = n,, we can find a family of differential operators

03 1= a3 9%

such that the following form of Taylor’s formula holds (see, for instance, [5])

f= Y Y gt o+ Y g R o),
la|<N |]<N alf! la+B|=2N, alf!
[x|>NV|BI=N

where

q=P(x) 1= r(0)*p(x)f = ry ()% ...ty (X)*R py(X)P1 ... pp, (X)Prr.

Recall that, in particular, we will have /\g. jf(é' )= ;'/]7 (&§)and A\py = Dif(£). Moreover, the differential operators 6;"5

are chosen so as to satisfy a;';l (p(x)*) = afz(r(x)ﬁ) =1 for all «, 8 such that |a| = |§| = 1. In particular, since P and R
are strongly admissible collections relative to G; and G,, respectively, we have that there are n; and n, elements in
P and R, respectively, say (py, .., pnl) and (rq, ...,rnz), such that (axm, '"’ax1,n1’aXz,1’ ...,axlnz) can be identified with
(dpi(e), ..., dpy, (), dry(e), ...,dr,,(e)) (where df(e) denotes the differential computed at e) by duality, and we fix the
former as the basis of the Lie algebra g. We stress that the choice of g®#(x~1) instead of g™#(x) is technical (see [13]).
Note finally that the formula above can be derived by application of Taylor’s formula twice, that is, first with respect
to the variable x; by using the functions g*°(x) = g*°(x;), and then by expanding again with respect to x, and using

q*F(x) = ¢ (x).

3 | BISINGULARSYMBOLS ON G = G, X G,

In this section, we define what we shall call class of bisingular symbols, since, as pointed out by Rodino in [12], it contains
symbols of operators of bisingular type (see [9],[10], and [15]).

Notation. In what follows, we call x = (x;, x,) an element of G = G; X G, and £ := & ® £, an element of G, where

e éj. By using the definitions above and fixing the families R and P, we define Ai‘ = A5, Ag 1= Aﬁ , and
of :=0% = a;‘c‘;l 62‘;1, af 1= asz = 65; af;;z as above (where, as previously mentioned, d; are not the Euclidean

directional derivatives). We shall finally put 6%f := o5, af , and analogously for the difference operators JANGS
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We recall that, given a continuous linear operator A from C*®(G) to D’(G), its matrix-valued symbol o 4(x, ) € Clexds
(as introduced in [13]) is given by

oa(x, §) = £ ()(ADX), 3.1)
and that
Af() = ) deTr(E(X)oa(x, HF ), [ €C®G),

[£1eG

holds in the sense of distributions and the sum is independent of the choice of the representative £ of the class [£].

Definition 3.1. Let G = G; X G, be a compact Lie group and define »; := dim(G;). We call class of bisingular symbols of
order (my, m,) € R? the set S™-"™2(G x G)ofalla : GXxG — U[g] 6 C9%*% that are smooth in x € G and such that, for

all multi-indices a; € Ngl, a, € Ngz,ﬁl € NOAP,,BZ € NOAR,

”a;{lla;‘; Allgl A{Zgza('x"l"x"Z’ gl’ §2)||op < C0C170(2,ﬂ1,ﬁ2<§1>n11_|ﬁ1|<§2>m2_|62|’
where

lallyp := supfla(x, &)vls2;v € C%, [v],2 < 1}
Additionally, we shall denote by S™*~®°(G x G) := ﬂ(ml my)ez? Smma (G x G) the class of smoothing elements.

It is important to bear in mind that G = G, x G,.
Due to the equivalence of ||a|| L) and ||all,p, we will freely use both notations below.

Let us remark that, as in the standard case, the space S™-™2(G X G) is a Fréchet space equipped with the seminorms

lollgmm = max _ sup (&) "mHll(g )yl Ame o P oy, £))
@by lalSenlal<e ( negua !
[B11<b1,|B2I<by 7

L(He)’

with ap,ap, bl’ b2 (S No.
To each matrix-valued symbol a € S"1"2(G X G; X G,), one can associate an operator Op(a) by means of the following
quantization formula:

Op(@)p(x) 1= Y d:Tr(§(x)a(x, §)P(E))

[£1eG

= Y Y dede, TH(E ® E)(Xalx, €1, E)8E ® £), 32)

[51]661 [§2]€§2

and we shall denote by L"1"™2(G) the class of operators of the previous form, that is, those obtained by quantizing symbols
in $"™"2(G x G) as in (3.2). These operators will be called binsingular operators of order (m, m,) on G = G X G,.
Moreover, with any a € S™"2(G X @), we associate the maps

G; X 61 S (x1,&1) — a(xy, x,, &1, D,) € L"™(G),

G, % G, 3 (xy, &) — a(x1,x,, Dy, &) € L™(Gy),

where L"(G;) and L"2(G) are classes of operators on G; and G,, respectively obtained by means of the quantization
formulas

a(xy, x2,§1, Dy)p(x,) = Z dngf<(Id§1 ® §2(x2))ax1, X2, 61, €) X (g, ® ﬂfz)))
[§2]€§2
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a(x1, X2, Dy, §)e(x1) = Z dngr<(§1(x1) ® Iq, Jalxi, x2, 61, 6) X (@(61) @ 1d§2)>-
(116,

It is important to stress that the symbol a € S™"2(G x G)is uniquely determined by one of these maps.
Throughout the paper, we will often write a(x,&) in place of a(xj,x,,&;,&,), where é =& ® &, €G and
SMM (G x @1 X @2) in place of ™" (G X @).

Remark 3.2. Notice that, in general, there is no m € R such that S™-™2(G X G) c S™(G x G). However, we always have
that S™2(G x G) C S50(G X G) for some m € R.

Given a continuous linear operator A : D(G) —» D'(G), (where D(G) := C*®(G)), its right-convolution kernel
R4 € D'(G x G) is defined by

Ap(x) = / PORAGG Y1)y = (Ra(x, ) % 9)(X). (3.3)
G

Therefore, given A € L"™"2(G) with symbol 04 € S™"™2(G X G), one has

GA(x’ g) = (Fy—>§ RA)(x9 5)’

where

Ra(x,y) = ) d:Tr(¢(y)alx, £)),

[£1eC

Wlthy = (Y1’Y2) e€G = Gl X Gz and§ (S G\Ofthe formf = §1 ® §2,Wlth (51,52) (S é\l X é\2.
For any fixed (x;, &;) € G; X G and (x,, ;) € G, x G,, we can write, respectively, the operators a(x;, x,, &, D,) and
a(xy, x,, Dy, &,) defined above in terms of their (right-)convolution kernels, that is,

a(xy,%,, €1, D)p(x;) = (R3(x1, X2, €1, ) #6, ©)(x,)

a(x1, %, D1, £)p(x1) = (Ry(x1, X2, -, &2) 6, 9)(x1)

where
RG(x1,%,€1,2) i = Z de, Tr((Iz, ® &(2)alxr, X, 1, 6)) (3.4)
[6:1€6,
and
Ry, %0, y1,60) i= ) dy Tr((€1(x1) ® I )a(xy, Xa, €1, 62)). (3.5)
[£11€6,

Due to the orthogonality property of irreducible representations, we have that

a(xy, x5, §1,82) =/ Ry (x1, %2, 1, £2)(61(01)* ® I,)dy,
Gy

and

a(xy, x3,81,8) = / R3(x1, %2, €1, )Tz, ® £5(y2)")dy.
G
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Definition 3.3. Given a € $™"(GxG) and b e S’"i’m;(Gx@), we shall denote by (aog b)(xy,x,,§:,8,) and

sm +m) ma+m)

(aog,b)(x1, x5, &1, §5) the symbols in 2(Gx6) corresponding to the operators

(@og, b)(x1, X2, Dy, §)@(x1) = a(xy, X2, D1, £2)b(x1, X5, D1, £)9(x1), YV € C¥(Gy),

and

(aog,b)(x1, x5, §1, Dy)pp(x,) = a(xy, X3, §1, D2)b(x1, X2, §1, D2)P(xz),  Vip € C%(Gy).

By considering the right-convolution kernels, it is not difficult to show that

(@og, b)(x1, x5, £1,62) ~ D (AM0a(x, §))9%0b(x, £)

ety [20

and

(@og,b)(x1, x5, £1,62) ~ D (A%a(x, §))3%4b(x, £),

[az]|20

where for all N > 0, we have

(6 8) 1= (aog b)(xy, X2, £1,6) — ), (A™a(x,£)39%(x, &) = D (A“0a(x, §)bg, (x,§)

[ |<N |y |=N
26, 8) 1= (a0, b)(xy, X2, £1,62) — Y (A*%a(x,§)3%b(x, &) = Y (A%“a(x, §)bg, (%, §),
lez| <N |ty |=N

for suitable b, , by, having the same properties as b, that is, by, , by, € S’"{’m;(G x G).

Leta € S™"2(G x G) and denote by Op(a(x,,£,))(x1,D1) = a(xy, X, D1, &) the operator defined above and belonging
to L™ (G,) for all (x5, §,) € G, X G,. Then, itis possible to define the adjoint of Op(a(., ¢,)) (as an operator on G, ), denoted
by Op(aqy, £,))(x1,D1)™ = a(xy, X, D1, £,)™, as the operator satisfying

(0Op(ax,,£,))u: V126, = (U, Op(a(y, £,)) V)2,), U, U € D(Gy), (3.6)

where (-, -)12(g,) stands for the scalar product on L*(Gy).
In a similar way, on denoting by

Op(a(xl,gl))(XZ’ DZ) = a(-xla X2, gla DZ)’

the operator belonging to L™2(G,) for all (x;,&;) € G; X G, one can define the adjoint operator Op(a(y, ¢,))(X2, D2)*? 1=
a(x;,x,,&;,D,)* as the one satisfying

(Op(a(y, ) V)12, = (W, Opay, &) V)i2@G,), U,V € D(Gy), (3.7
with (-, -)12(g,) denoting the scalar product on L*(G,).
Sobolev spaces H**2(G)

We shall now define what we shall call bisingular Sobolev spaces that are the ones to be naturally used in this setting.
Let us consider the operator L on G = G, X G,, defined as

L := (Il +LG1) X (12 +LG2)’

where Lg, and I; denote the positive Laplace operator and the identity operator on G;, respectively.
The operator L will be called bilaplacian, since, as expected, it will play the role of the Laplacian in this setting.
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By formula (3.1), we have that the symbol of the bilaplacian is given by

o.(§) = 0161 ® &) = (§1)(&2) I,

where (&) :=(1 +/1§1)1/2, with A2

C% % is the identity matrix.

> 0 being the eigenvalue of L, relative to the representation §; € @i, and Idg_ €

i

Definition 3.4 (Bisingular Sobolev space of order (s, 5,)). We shall call bisingular Sobolev space of order (s;, s,) the space

H2(G) 1= {f € D'(G);(£1)"1(&,)2f(€) € €*(G)},
equipped with the norm

1/2

1 llsys, s= | D, de(E0)®H(E)* 2 Tr(f(€) F1£)

[£1eG

= K" (6 fll 2y =1 I lpsisa iy

where

n2(G) 1= {f € F(D'(G)); (&) (&) € €26},

where F € ¢2(G) if and only if Yizjec A IF@IFs < oo

One may check that the spaces h*2(G) are indeed complete with respect to the scalar product

(f+ s, 1= D, de(E1)¥1(E)* 2 Tr(GLE)" F(£)).

HEE

Therefore, the Sobolev spaces H*1%2(G) are also complete.

4 | KERNEL ESTIMATES

This section is devoted to the proof of some estimates for the (right-convolution) kernels of bisingular pseudodifferential
operators on compact Lie groups. These estimates will be employed in the next section to develop the global calculus of
bisingular operators.

Before proving the estimates, we will first give some properties representing the suitable bisingular generalization of
certain results holding in the standard (global) compact case.

Notation. Recall that (¢ j)s =0+ /151, )S/ 2, j = 1, 2. Additionally, we assume /\ 1, /\, to be the the admissible collections

of difference operators previously defined. Note that we shall often use the notation S™1"2(G) for S™"2(G X 6).

Proposition 4.1. Let AP : = VAN Aﬁ , then, for any m;, m, € R and multi-indices a € N, 8 € N™&, there existsd € N,
and C > O such that, forall f1, f, € Cc4([0, +0)), E=§6R®¢& € G, and t1,t, € (0,1), we have

’

LA™ fi(6e)f 22w < CHMED™ T sup |81 f1(Re)| x 15/ (&)™ # sup |82 fo(Ae,)
Ag 20 o 1g,20 ©

in the sense that if the supremum on the right-hand side is finite, then the left-hand side is also finite and the inequality
holds.
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Sketch of proof. Due to the form of /\%#, we have

I A% f1(t2e) A6 = I AS Fitide)llz o)l A Ft2e )20,

Therefore, by Proposition 6.1 in [5] applied separately to each term on the right-hand side of the previous identity, the
result follows. O

Lemma4.2. Letk € D'(G) with G = G; X G, and n; = dim(G,). Then, if s; > n,/2 and s, > n, /2,

lkllz2ey S sup (€1 2(E2)%2 kNl -
teG

Hence, k € L>(G) when there exist s; > n, /2 and s, > n, /2 such that the right-hand side is finite.

Proof. Let By, ,(x,y) = By (x1,1) ® By, (x2,¥,) = By, (1) ® By, (y,) as in Lemma A.3 (By , (x,y) is independent of x).
Then, for s;, s, > 0, we can write

k(y) = (I + L, )"/* ® (I, + L)/ *)(k * (Bs, ® B,)))(¥),
which gives, in particular, that
k() = (£1)1/2(6,)%/*B; ® By (§) k(&)

Therefore, for s; > n,/2 and s, > n,/2, we get

2 — 7 2
(L3 . SO I (3] %
[£]eG

< X dlB @By Gllll6) (€ PRI,
[€1eG
< 1By, ® By, 17,6, sup (1) (E) KO,
[£1e6 :
S

su SEN2 RN .,
Lemma A3 [g]epé\<§l> <§2> ” (§)||°£(H§)

which concludes the proof. |

Lemma 4.3. Let 0 € S™"2(G) with (right-convolution) kernel k,(-) := k(x, -). Then, the following properties hold:

nA.
1. The kernel associated with 87172 A\%% g € S™m~lalm-lal(G), forany a; € NOA‘, andy, € Ngl,yz S Ngz, is given by
qal,az a}’l,)’z k.:
X1,%p x0
2. If 01,0, are two bisingular symbols with kernels k. and k2, respectively, then the kernel of the product o,0, is given by

kLo k2.
Proof. The proof of Lemma 4.3 follows immediately by the form and the properties of bisingular symbols. O

As a consequence of Lemma 4.3, we get Corollary 4.4 below giving a first key estimate for the kernels of bisingular
pseudodifferential operators.

Corollary 4.4. If o € S™"™2(G), then, forany a := (a;,%,), 7 := (y1,72) € Ngl X Ngz and 0 = (6,,6,) € Ngl X Ngz such
that, foralli = 1,2, y; + m; + n; < ||, the function tﬁitﬁf(q"‘l’o‘2 (2)k,(2)) is continuous on G and bounded as follows:
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10502(q**2 (2)k ()] < C sup 1100, E)llmim ja | eyl -
[§1eG
where || - ||gmims |q, | |a, ),y IS the suitable seminorm. The constant C above depends on the parameters m, /\,7i,9; for all
i=1,2.
Proof. The proof follows from the proof of Corollary 6.5 in [5] together with Lemma 4.3 and Lemma A.3. O

Corollary 4.4 immediately gives the proposition below.

Proposition 4.5. If o€ S"™"™(G) then the associated kernel (x,y)w— k.(y) is smooth on G X (G\S), with
S={x€G;x; =e;}U{x €G;x, = ey}. Ifoc € ST°(G) is smoothing then the associated kernel (x,y) — k,(y) is smooth
on G X G. The converse is also true, namely, if (x,y) — k,(y) is smooth on G X G then the associated symbol is smoothing,
that is, it belongs to S~ ~%°(G).

In order to show some estimates for the kernels, we will need to work inside dyadic pieces where the eigenvalues (i.e.
the frequencies in this setting) of Lg, and Lg, are localized. In that perspective, the following lemma will be crucial to
understand how the localized symbol and the corresponding kernel behave.

Lemma 4.6. Let y € C;°(R) be a given function with values in [0, 1] and x = 1 in a neighborhood of 0. Let o € S"™"™2(G)
and let k,. be the associated kernel. For each €1,€, € N we define

afl,fz(x7 g) ‘= G(x7 5))((1?1_1151 )X(fz_llgz)

n

Then, o, ¢, € S™*7®(G) and foranyy = (y1,72) € Nj' X Ngz,

lloe, e, llsmm , < C(G,my, my, y)||ol|gmims .

Additionally, the kernel k, ¢ ¢,(y) associated with o, ¢, is smooth on G X G, and, forall § € Ngl+n2, aﬁkxfl& — 0Pk, in
D'(G) uniformlyinx € Gast,,¢, — co.

Proof. The proof follows the proof of Lemma 6.6 in [5] with suitable modifications, namely by using the
function )((fl_lxlgl))((fglﬂgz) as a cutoff function in the proof (note that (1 — y(£7'4,)) in [5] is replaced by
1- )((fflxlgl))((fgllgz)) here), and by replacing the standard Sobolev spaces HS(G) by the Sobolev spaces
H*1"2(G, X G,). For the sake of completeness, we shall give the proof of the second part of the lemma, that is the
convergence of the kernels, where a few arrangements are needed.

Let 51 = [%1 and s, = [%], where [-] stands for the upper integer part. By using the bisingular Sobolev spaces,
we get

165 (k¢ 2, = k)l =s-m-t-s2-m1 = [188(¢, ¢, = Olpmsi-mi-tsg-mas
= 1101 = X(E7 A )A (€5 2B 0 oo mspmmp
< €)™ HE) T (L = (7 g (e g, )3P0 s
S IED ™™ HE) ™ (1 = (67 A )X (65260050l -

Due to the hypothesis on y, for some ¢;,¢, > 0, with 0 < ¢; < &,, we have that y =1 on [0,&;] and y = 0 on [e,, + ).
Therefore, we get that (1 — y(£7'¢,)x (€' A¢,)) # 0 in the following three cases

1. /1%’1 > Elfl’lgz > 5152,
2. /’Lgl > 5151’/152 < 5152,
3. }lgl < Elfl’/lfz > 816)2.

85U80|7 SUOWILIOD BAER.D 8|l (dde au Ag peusenob are Ssolle YO 8sn JO s3I0} Aeiqi8ul|uO /8|1 UO (SUONIPUOD-PUB-SWBIW0D A8 | 1M ATeIq 1 BUI|UO//SANY) SUORIPUOD Pue Swie 1 8y} 89S *[£202/80/80] UO AfeiqiTauluo A8|im ‘Wewnooq 3 Hediq WeISIS Baly Aq 00Y00TZ0Z BUeW/Z00T 0T/I0p/Wo0 A8 | 1m Aeiq Ul uo//Sdny woiy papeo|umoq ‘T ‘€202 ‘919222ST



28 %ﬁggﬁ%ﬁ%ﬁﬁHE FEDERICO AND PARMEGGIANI
[NACHRICHTEN |

Let us start with the proof of the convergence in case (1). The inequalities above lead to

||65(kx,€1’f2 - kx)”H—sl—ml—l,—sz—mz—l < N max ”(1 — X(fl_l/lgl )X(fz_llgz ))aﬁO'”h—sl—ml—l,—sz—mz—l

3 >eyt
/1§2>EX€2

<A+t A+ )7 IED)T™M(E) ™00l v e

SA+e6) A +e6) Hollgmm g,
which gives, in particular, that

I)?eaé( ||aﬁ(kx,€1,£2 — k)l g-si-m-1-s,-m-1 S (L +&€1) 7 (1 + 5152)_1”0'”57"11"2,5-

9)/
This finally yields the convergence 4# ke e, = 88k, uniformly in x € G as £, — co.

For cases (2) and (3), the proof is the same (by reversing the roles of the parameters) and it is similar to the one in the
case (1). For completeness, we show the steps in case (2), that is, when /151 > ¢, and /1,52 < g;¢,. Under these hypotheses,
we have

”aﬁ(kx,fl,t’z - kx)“H*SrmrL*Szfmrl < Hlas'xf 1 - ){(51_1/151 ))((52_1/152))5'60||h7s17m171,7527m271
g >at
/‘lg; SE]fz

< max (&) THE) TN = x(67 A )6 a s -
l§1>51l€1

lgzﬁglfz
<A+ €) E)™(E) 0Pl g

S A+t Hollgmm g,
yielding, as before, the convergence in D’ uniformly in x, which completes the proof. 1

Lemma 4.7. Let o € S™"™2(G), and n € C°(R). For any ty,t, € (0,1), we define o, ;,(x,§) 1= o(x,  )n(t1d¢, m(t2¢,)-
Then, for any m}, m, € R, we have

-
my—m;

smi-’"é,ySCtl ’ L 2 Nlollsmma

-
my—m,

”O'tl,rz I
where C = C(my, my, m}, m’,y,n) is independent of o, t, and t,.

For the proof of Lemma 4.7, see [5] (Lemma 6.8).

We are now ready to prove the main result of this section concerning some estimates for the (right-convolution) kernel
of bisingular pseudodifferential operators. Let us remark that these estimates are the suitable generalization to our setting
of those holding in the standard (non-bisingular) case (see [5]). Note that, below we shall denote by |y| := dg(y,es),
where dg(-, -) is the geodesic distance (and analogously for |y;|, j = 1,2). Additionally, for any given x = (x;, x,) € G, for
a neighborhood of x we shall mean a Cartesian products of the form U; X U,, with U; being a geodesic neighborhood of
x;fori=1,2.

Theorem 4.8. Let 0 € S"™"™(G) and (x,y) — k,(y) € C®°(G X (G \ S)) be its associated kernel. Then, for n; =
dim(G;),i = 1, 2, the following estimates hold

* Ifn; + m; > 0 fori = 1,2, then there exists C > 0 and a,b € N (independent of o) such that forall y & S

|kx(y)| < Csup [lo(x, f)”smémz |y |7 |y, | T2,

teG
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* Ifn; + m; =0 fori = 1,2, then there exists C > 0 and a,b € N (independent of o) such that forally ¢ S

lkx (I < Csup [lo(x, Hllgmma | 1|y 1101y, 1.

teG

e Ifn;+m; <O0fori=1,2, then k, is continuous on G and forally & S

lky )| < Csup [lo(x, §)||gmm.
tel 0.0

* Ifni+m;>0andn;+m; =0fori,j €{1,2},i # j, thenC > 0and a,b € N (independent of c) such that forall y & S

lkx ()] < Csup [lo(x, Hllgmma |y~ In]y;].

teG
* Ifni+m; <0andn;+m; =0fori,j€{l,2},i# j, thenC>0andy; € N? (independent of o) being either of the form
yj = (a;,0) or of the formy; = (0, a;), such that forally ¢ S

[k < Csup|lo(x, E)llgmm | In|y;]|.
teG 7j0

* Ifni+m;>0andnj+m; <O0fori,j €{1,2},i # j,thenC > 0andy; € N? (independent of o, of the same form as above)
such that forally ¢ S

lkx()| < Csup [lo(x, f)||s;y.”0,m2 |y; |~

~

teG

Proof. We shall separately analyze the above cases. Let us remark that throughout the proof we shall use the notation
Ly :=1I+Lg and £, :=1I, + Lg,, where £, and £, are thought of as operators on G, and G, , respectively, while L :=
L, ® L, isdefined on G = G; X G,.

Case n; + m; > 0. The estimate in this case trivially follows from Corollary 4.4.

Toolkit. Let ng, n; € C;°(R) be supported in [-1,1] and [1/2, 2], respectively, taking values in [0, 1], and such that

VA>0 Y () =1, wheren,A) =7 D), >1.
=0

Now, for each ¢4, ¢, € Ny, we define o, ¢, (x,§) 1= a(x, E)ne, (Ag, e, (Ae,) (With A ,A¢, , recall, being the eigenvalues of
L, and L,, respectively), and denote by k, ¢, ¢, the corresponding kernel. Notice that, since 7,, (4¢,)1¢,(4¢,) is smoothing,
then o, ¢, is smoothing too. Moreover, also the mapping (x,y) = ky ¢, ¢,(¥) = ky * 17, (£1)0¢,(L2)S,, ® J,, is smooth,
as (x,y) = ky(y) is smooth on G x (G \ S) and 9, (£1)1¢,(£;)8,, ® S, is smooth on G.

Observe now that one has the following convergence in C*(G X (G \ S))

N1 N N1 N
k@)= lim 3 Y ke, e, = (kx £ 2 2 e, (L, (£2)8, ®5ez> W),
LA™ 0 1=0 £,=0 £1=0¢€,=0

and that the following bound holds fory ¢ S

ke < Y Tk, e,

01,02
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nA.
With this in mind we have, by Corollary 4.4 and Lemma 4.6, that for any given o; € N, Al, with i = 1,2, and for any
given mi’ € R, i =1,2, such that mlf +n; < |al,

sup |qa1’a2(z)kx,fl,t’2| S/ Sup/\ ”Gfl,fz(x’ g)” mi,m;
x€G [£]eC Sty Liazho

(by Lemma 4.7)

,_
my —mj
2

,_
m,—ny

2. 4.1)

2—(f1—1) 2—(f2—1)

< llollgmma
(a1 Llaz 0

Note that, for all z € G and for all a;, a, € 2N, we have

EARIEA S YR

[y |=ay,|oz|=a;

The previous estimate is of course meaningful in a neighborhood U = U; X U, where U; and U, are geodesic neighbor-
hoods of e; and e,, respectively, in which, in the following, we will be working. Note that, outside that neighborhood the
estimates in the statement are straightforward, because of the smoothness of the kernel. Therefore, for all a;, a, € 2N,
and m}, m), such that m/ + n; < a;, i = 1,2, (4.1) implies

—m! —n!
my—my my—m

2

¢ fy——2
12119 22|21k 6, (2] Slldllsgnlvmz 272 2t (4.2)

a1,a),0

Since we want to study the behavior of k() close to the set S, we will be considering each of the following situations

1. |z1] <1and|z| < 1;
2. |z1] < 1and |zy| > 1 (resp. |z;| > 1and |z,| < 1).

Casen; + m; > O forall i = 1,2. When |z,| < 1 and |z,| < 1, we can chose ¢, € N, such that

270 <zl <270t p=1,2.

In order to derive the desired estimate, we write

N1 N

LX=2X+ X ot 2 oty
t1=0¢,=0 flﬁfol flﬁfol N12€1>€01 N12f1>€01
€2S€02 N22€2>€02 fzsfoz N22€2>€02

and study the behavior of k, ¢, ¢, in the cases

L ¢; <t fori=1,2,
2. ¢; > foi fori=1,2,
3. €1 <ty and €, > €, (resp. €, < €y, and €1 > €, ),

separately.
For¢; < ¢, fori = 1,2, from (4.2) we get

my—m! my—m!,

—aiAlo—L g Al —2
Y ke e,@N S Nlollgmoms |21]74270 72 |7y 7922"2 3
f1Sfol (@r.a2)0
€2Sf02
We then choose a; € 2N, and mlf e R, fori =1, 2, such that
!
m; — ml.
mi+ni>ai2mi+ni—2 and =mi+ni—ai>0, (43)
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which yields
! !
—ay— my—m —ay— my—m;
D ke, @I S lolgmm |z ™72 |z ™ 2
1<to, (a1,a2),0
t2<t0,

S llollgmom |zy| =™ zy| 7M.
(ay,a),0

For ¢; > t,, (¢; < N;), we make a different choice for a; and m] in (4.3) that we call a/, m" in order to keep the notation
a;, m; for the choices we made in the previous case ¢; < ¢,,. We now choose a/ = a; + 2 and m_ satisfying

"

m; — ml. ’ .
> =m;+n;—a, i=1,2.

Since m; < m;’ now, we have that

' e ml—m;’ ' e my—m!!

—a 04— 5 —a (.

2 Moo, @IS llolignm |207127 T3 |z 7027 T
Ni2t1>t0, (a1,a2),

N2262>L002

S lollgmma |zq |77 zy |77,
(a1,a2).0

For ¢4 < ¢y, and ¢, > ¢, (resp. ¢, < ¢, and ¢1 > ¢ ), we make a different choice of a; and m/ that we call a!’, m"’
in order to keep the previous notation for the other cases. By choosing a}’ = a;,m}” = m!, o/ = a/ and m})’ = m/] , we

get, once again from (4.2), that

" "

N mom "+t mTmy
Y ke, @ S llollgmm |20 200 T T |z 220
flﬁfol (a1.a2).0
N22€2>f02

S Nallgmma |zg| 7T | Zy| T,

(a1,a2),0

The estimate in the case when ¢, < ¢, and ¢, > ¢, follows similarly by exchanging the role of ¢; an ¢,. Collecting the
(four) estimates together, we get the desired result (keeping the biggest seminorm) in the case when |z;| < 1and |z,| < 1.

In the case when |z;| < 1 and |z,| > 1, we can choose ¢, as before, and once again, split the analysis into the cases
t1 <ty and ¢, > ¢, . Note that we do not split the sum in ¢, in this case, so we will make a single choice for a, and m;.
By choosing a;, m/, aj, m]' as before, and a, = n, + m, + 3, m} = m, + 2 (so that m} + n, < a,), we will get the result in
this case (again the result is given in terms of the biggest seminorm).

Finally, the case |z;| > 1 and |z,| < 1 is proved as the last one by reversing the role of z; and z,.

Collecting all the estimates above, we obtain the result in terms of the biggest seminorm.

Case: m; + n; = 0 for i = 1,2. We consider again all the cases |z;| <1, |z;| > 1,1,j = 1,2 (i # j). When |z;| <1 and
|z5] < 1, we fix ¢, as before and consider the cases 1, 2, and 3 (and the respective case of the last one) as above. Then, for
t; <€y, fori=1,2, from (4.2) with a; = 0, mlf =m;, foralli =1,2, we get

Z [kx,e,,0,(2)| S llollgmm €o Co, S lIollgmom [In|zq]| [In]zy]].
a1,az,0 (a1,a2),0
flﬁfol

When ¢; > ¢, fori = 1,2, we choose a] = 2and m" = m; —4forall i = 1,2, and get (from (4.2) with a/, m.")

B ks, @1 S lollgmm
N12€1>Co, (a1,a2),0
N22f2>6)02
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"

Whent; < ¢y and ¢, > €, (£, < €y, and €1 > ¢, ), by choosing a]’ = a;, m]

— !/ n _—_ n _ 124 :
=m and a, =a,,m, =m,,we obtain

Y ke, @] S lolignm In|z ).
flﬁfol (a1,a2),0
N22€2>€02

Collecting the estimates together, the result when |z;| < 1 and |z,| < 1 follows.

When |z;| < 1 and |z,| > 1, we fix again ¢, as before. Recall that now we do not split the sum in ¢, and that we will
make a single choice for a, and m), in (4.2). Then, using estimate (4.2) with a; and m/ (when ¢ < ¢, ), and a} and m
(when ¢ > ¢, ) as in the previous case, the result follows by choosing a, = n, + m, + 3 = 3 and m; = m, + 2 (where
m, + n, < a, is still satisfied).

The case |z;| > 1 and |z,| < 1 is treated as the previous one reversing the roles of z; and z,.

Finally, collecting all the cases above, we get the result in terms of the biggest seminorm.

Casen; +m; > 0,n; + m; =0fori,j € {1,2},i # j. To fix ideas suppose n; + m; > 0 and n, + m, = 0 since the other
case is treated analogously. We then combine the strategies used in the cases n; + m; > O foralli =1,2and n; + m; =0
foralli =1,2.

When |z;| < 1and |z,| < 1, we fix again ¢, such that |z;| ~ 27% i = 1,2. Then, for t; <€y, we choose a; € 2N, and
m; € R, foralli = 1,2, such that

m +n >a >2m+n —2 and

— I —
a, =0, m,=m

so that, from (4.2), we obtain

> ke e,@I S llollgmm 1z, 7™ 7 1n |z,
£1<t, (@1.62)0
t2<t,

For ¢; > ¢, for all i = 1,2, we apply (4.2) with a] = a; + 2, m/’ satisfying the same conditions as m] with a] in place
of a; (where, recall, a;, m/ are the parameters used for ¢; < ¢,,), a; = 2 and m) = m, — 4. We then have

3 ke, @] S lollgmms 2],
N12f1>fol (a1.a2).0
N22f2>6’02

For €1 < ¢, and ¢, > ¢, (€, <€y, and ¢, > ¢, ), we repeat the strategy used before, that is, we choose a;’ =ay,

n _ !/ " _ n __ s
m}’ =mj,a, =a,,andm,’ =m, in(4.2) and get

D ke, e, @ S llollgmm |zy|7m7m.
513501 (a1,a2),0
N22f2>€02

Hence, collecting all the estimates, we get the result when |z;| < 1 and |z,| < 1.

When |z;| < 1and |z,| > 1, the proof follows by considering again only the two cases ¢, < ¢ and ¢; > ¢, (here, we
do not split the sum in ¢,, 50 0 < £, < N,). Using the same choices as before for a;, a}, m], m}, and choosing a, = 3 and
m’, = m, + 2 (so that m, + n, < a,) in (4.2), where, recall, a;, m] are the parameters used when ¢; < ¢, , while a}, m}
are those used for ¢; > ¢, (we make a single choice for a, and m; here), then, the desired estimates hold when |z;| < 1
and |z,| > 1.

When |z;| > 1 and |z,| < 1, the result is proved by reversing the roles of z; and z, in the last case.

Casesn; +m; <0andnj+m; =0;n,+m; >0andn; + m; <0 # j).
These cases can be treated as the last one, that is, by combing the strategies used for the other cases in the different
regions |z;| < 1,|z;j| > 1,i,j = 1,2 (i # j). The proof is left to the reader. O
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5 | CALCULUS OF BISINGULAR PSEUDODIFFERENTIAL OPERATORS
In what follows, we will use the previous properties to prove a composition formula for bisingular operators.

Theorem 5.1 (Composition formula). Let 64, € S™"™2(G x G) and op € S’”i’m;(G xG), and A 1= Op(a) and B = Op(b)
the corresponding pseudodifferential operators. Then, the symbol ¢ 45 of AB is, asymptotically,

a#b(x,£) := oap(x, &) ~ ) Co-tm! = =% €, (5.1)
j=0
where
! s ! . A
Crny+m —jmy+m)—j € SMAMTIMAIL (G X G),
— 12 n
Cm1+m1—j,m2+m£—j(x’ H= dm1+m;—j,m2+m;—j + dm1+m;—j—1,m2+m£—j + dm1+m1—j,m2+m;—j—l’ G2)
/ = Y (AT, (x, )0 (. &)
my+m) — j,my+m)y—j 51 o la,! ’ S )
11=1421=
1 1
" — = 0,0, 0,a, _ Z _ ay,a; a1,a3
dm1+m;—j—1,m2+m;—j Z ! <A 0p0¢ 07" 0p _ ocll(A oa(x, §))d % 0p(x, §)>,
loz|=j oy [<j
and
1 1
m = J— ay,0 ay,0 — Z —_ ap,a oy,0p
Doy = Zl En (A a0y = 3, (A D)y 5))
ai=J s

are such that they belong to S = mymy = (G x G). In particular, the asymptotic formula (5.1) means that, for any given
N >0,

= my+m!, —N,my+m,,—N A
rN—O'AB—Zcmﬁm{_j,mﬁm;_jES 1 1 2+m, (GXG)
Jj<N

Proof. Let A and B be the operators above, then, by (3.3), we have

ABf(x) /(Bf)(xz)RA(x, z Ddz
G

/ f(xy-1>< / RB(xz,yz>RA(x,z-1>dz>dy
G G

— -1 -1
y_);_lx/Gf(Y)</GRB(XZ,y XZ)Ra(x,z )dz>dy

= [ ORusxy 50y,
G
where

Rap(x.y) i= / Ry(xz, y2)R(x, 2 V)dz.
G
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Since o 45(x, &) = Ry p(x, £), we have
Ra(x, 2 ")Rp(xz, y2)E* (y)dzdy

oap(x,§) =

Ru(x,z7NE*(z " )Rp(xz, y2)€*(yz)dzdy. (5.3)

I
o~ o
o~ o

Then, we write Rg(xz,yz) = Rg(x121, X225, Y121, V22,) and take the Taylor expansion of Rz with respect to the first variable
at z; = e;, thatis,

Rp(xz,yz) = Z l,qa1 027", %225)0% 1 Rp (X1, X525, 2) + Z al,qal 021", %225)(Rp)a, (X121, X225, 2),
lor | <N lor|=N

where g“19(x) = r*1(x,) is constant with respect to x,. Now, taking into account that g*°(x,, x,) does not depend on
the choice of the second variable and that g%%2(x,, x,) does not depend on the choice of the first variable, we expand the
previous quantity with respect to the second variable at z, = e, and have

RB(XZ,yZ) = 2 Z lo( |qal’az(zl_lrZz_l)aabazRB(xl’x2’yz)

|O{2|<N|(X1|<N

+ o 'OC 'qal “z(zl ) 2 )(aal ORB)O(Z(x17x27yZ)
lez|=N Jay |<N ~ 1772
1 o
+ e 2q (21, 251)0% 2 (Rp)g, (X1, X2, y2)
lez|<N |y |=N ~ 1772
+ g% (271, 2, D(Rp)g, o, (X121, X222, VZ).
| | 1 2 1,42
gl =N Jey J= F1°%2°
Therefore, we have
1 _ _ g
w8 = ¥ o [ e R 2D (20 Ry zdy
aian! GXG

[a1|<N,|az|<N

+ 2 L, /G . (qal’o(z_l)RA(x,Z_1)§*(z_1)6“1’0RB(x, y2)E*(yz)

a
|op |<N 1

= Y LaRE R 2E IR, (x, y2)E (yz))dzdy

|O(2|<N

+ ¥ [ (@R Ry ey 02)
GXG

|C(2|<N

- —q“1 “(z7DRACx, 27)E* (270" Ry (x, y2)§* (yZ))dzdy

|<711|<N

1
a1!a2!

+

/ g2 (z7HRA(x, 27 DE (27 (Rp) oy, (X2, y2)E* (y2)dzdy,
|ai|=N,|a|=N GXxG
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and, by rearranging the terms, we get

(A% %o ,(x, §))0%1*20p(x, §)

04B = o 'oc ,
oty |=loz |[<N

+ 2 L,((Nl’“oAnga“l’ooB)(x,§)— > %(A“l’“ZUA(X,§))5“1’“203(x,§)>

[ |<N laa|<|a]

+ ¥ 2 ((AO’aZUAoglaf’moB)(x,5)— > ail,(NhaZaA(x,§)>aab%3<x,§)>
laz|<N leg|<lan]
1

+
C(1!O(2!

|ai|=N,|az|=N

/ 1 (2R (x, 2 DE (2 )R, o, (520 y2)E* (y2)dzdly
GxG

— Z l " " +r
& my+m)—j,my+m,— j my+m —j,my+m,—j—1 my+m’ — j—1,my+m}—j N:

In order to complete the proof, we only need to show that ry € st =N.mytm; =N (G » G) for all N € Ny, that is, we
have to check that

sup [|67 720 By (6, ) Lo ) S (&ymmiIBI=N g ymatm Il =N, (5.4)
xXe

for all yq, ¥, B1, B,. For simplicity, we consider the case a; = oc2 = 1 = B, = 0, since the general case follows similarly.
We then write £*(z) = (&;)751(&,)~%(I; + LG1 ® (I, + LG2 ? £%(z), with 1ntegers 1,8, > 1, and have, after integrating

by parts and using the fact that (Rp)q, ,(x,y) is the kernel of a symbol in S (GxG),

1 —
) = EDTHE)™ Y Gupan g / (82 (@2 (2 DR, 2710))§7(27) O (Rp),, o, (32, §)dz
lo =N |az | =N 172 6
[y1l+172]=25
IT1]+I72]=25;

— - 1 AV1s — — k — ) 2
=EE™ Y Gunngig / (8771 g %2z IRACe 271 )£ (7) 252 Ry (21, )2,
loy |=N, ez |=N T IG

[y1l+ly21=25
[T1]+I72]=2s;

where in the second equality, we applied the relation between left-invariant and right-invariant vector fields given by
0%B{p(-~HH(x) = (=1)I«I*IBI(5Fp)(x~1) (8 denoting the right invariant vector field in our notation), and used the left
invariance of 9722,

The previous computations, in particular, give

q**2(z"HR4(x,z71)|dz

3 T
NG Ol < Csy s, Z )™ 2l ./ e
loty |=N, |z | =N ¢
[y11+1y21=251
[T1]+]72]=25,

X sup ||ay2 TZ(RB)al,az(le 5)”3(7{5)
z1€G

<Cos D (EYMTH(E)MS
|y [=N,|az | =N
[y1l+ly2l=2s1
[T1l+]72]=2s,

21,7 _ _ ~
azil 1qa1’a2(z 1)RA(x’ z 1) dz “(RB)Otl,az ” m1 m; .
(2s1,252)

lal
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We now assume that N is sufficiently large, namely N > N, := max{m,, m,}, and choose s; = N — m; and s, = N — m,.
In this case, by using Proposition 4.8, we obtain

<lloall

my—N,my—N
— S 1 2 k]

/ 13711 g1 (2R 4 (x, 2 D)z S 17157 AT 20 | gy s
G (N.N)L(N=m7).2(N—rm3))

and, consequently,

N Ce, Ollz ) S (E)™MFMN(E)Y™ TN, YN > Ny,

which proves (5.4) for every N > N, when y; =y, = §; = 5, = 0. By using similar arguments together with the Leib-
niz formula, one proves (5.4) in the general form (possibly with a different N,), which, in particular, gives that ry €
smtm=Nmy+m; =N for every N > Ny

We are now left with proving that ry € §™1 "1 ~N"2+m-N for every N < N. Observe that

VN(X, g) = O'AB(xa 5) - Z cm1+m£_j,m2+m;_j(x, g)
j<N
=0 = Y Cony ] —j.myem = (65 §) + > Cony ] —j.mym)— (X5 §)
j<N0+1 N§j<N0+1
= VN0+1(X, &+ 2 cm1+m1—j,m2+m;—j(x’ f),
N<j<Ng+1
therefore, since
r_ _ ! _ _
Ng+1 e gmitmy No—1,mp+m;—Ng 1’
my+m! —N,my+m!,—N
Z Crny+m) —jmy+mly—j € S ! 2
N<j<Ng+1
and
Sm1+mi—N0—1,m2+m;—N0—l c Sm1+m1—N,m2+m;—N’
r_ I _ .
we finally get that ryy € S™ ™~ N"4m~N for every N < N,. This concludes the proof. O

Theorem 5.2. Let o € S"™1"2(G x G), then the symbol of the operator Op(o)*, denoted by c*, is asymptotically given by

(%, 8) ~ Y Cony—jumy—i (6, £, (5.5)
j>0
where ¢, _j ,—j € S™™7I(G x G) and
o " "
le_j’mz_j(x’ g) - dml—j,mz—j + dml—j—l,mz—] + dml—jsmz—j—l’

with, using the notations in (3.6) and (3.7) for c*1(x, £) and o*2(x, &),

r = 1 AT %1% 5 (x %’)*
my—J.my—j X a1!a2! ’ ’
[y [=lea =)
" — 1 Aal,OaO,al s 1 A%1:%2 1,02 *
my—j—1,my—j — 1 o (x,§)— ] a(x,§) ’
1 U - ap! a:
laq|=j laz|<laq|
1 1
= %, a(w0m00monmp - ¥ Lanssanowey), 59)
lagl<j % laq<le] 1
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belonging to S™~/""2~I(G x G). In particular, the asymptotic formula (5.5) means that, for any N > 0,

rny = o¥ — Z le_j,mz_j S Sml_N’mz_N(G X G)
J<N

Proof. The strategy here is similar to the one used for the asymptotic composition formula. Notice that, since the kernel
of o*(x, D) satisfies k,«(x,v) = k;(xv~1,v~1), by taking the Fourier transform in the second variable, we have

o*(x, £) = / Koo 1,07 £7(uy) ® EX(v,)dv.
G

We now expand k,(xv—1,v71) = k (x; vl_l, X053 1 v=1)in the first variable at v; = e; and afterward, in the second variable
at v, = e,, and get

ko(xv=1,071) = ger(v)o 2 ky(x, v71)
|orp | <N, |tz |[<N

al!cle

+
la1|<N,|az|=N

aq,a ,0 -1 ,,-1
al!a2!q ! 2(U)(aal kc’)az(xlyx2vz , U )

1

+
051!0(2!

la1|=N,|aa|<N

g2 )% (ko )o, Yorv7 ! x5, 07)

+
la1|=N,|az|=N

=I+I+1IT+1V.

aq,a -1 -1 ,,—-1
al!az!ql Z(U)(ka)al,az(xlvl ’xZUz » U )

Now observe that for II, we have

II =
|y |<N,|ay|=N

a | 'qal’az(v)(aal’oko‘)az('xlaxzv_ly U_l)
110!

= Z %(qal(vl)aal’oka(xl,xzvz_l’U_l)— 2 %qal’az(v)aal’“zka(xl,xz,U_1)>,

lo|<N 1 loz| <N~ 2

which shows that IT (by the calculus introduced in [13]) is the kernel of the pseudodifferential operator with symbol

Z %(A%Oa“boo*z(x,g)_ 2 %Aal,azaal,azg(x,g)*),

oy [<N 1 lay|<N 2

For the term III with similar arguments, one concludes that 1] is the kernel of

Z %(AO’“zaoﬂzo*l(X,g)_ z %Aal,azamﬂzg(x,g)*).

a <N 2 a|<N 2
2 1

For the term I, it is immediate to see that it is the kernel of the operator whose symbol is given by

Ao (x, £,
loty |<NJap|<N 17727
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Therefore, putting together the properties above and rearranging the terms, one gets

1 .
o¥(x, &) ~ — A%9% %20 (x, §)*
oSl <N F1792
1 1
+ Z F(Aocl,ancl,Oo.*l(x’ f;:) _ Z ;A“l’“za“h‘ho(x, gyt)
lag |<N 71 lag|<leq| ~ 2

+ Z % (AO,cxzaO,cxzo.*z (x, f;:) _ Z %Acxl,az 9% g (x, gyt)

loz|<N 72 loy <oz |~

+ Z L / qal,az(v)(ka)al,az(xl vl_l’ xzvz_l, U_l)(gf(vl) ® g;(UZ))dU

oqloas!
loty |=N,Joz|]=N 12

— d/ ) ) dll . ) dl// ) ) > Far.
2( my—j,my—j + my—j—1lmy—j + my—j,my—j—1 tIN

In order to complete the proof, it remains to show that ry € $"™~N-"2-N(G x G) that follows by arguments similar to
those used in Theorem 5.1. This concludes the proof. O

’ o ~
Theorem 5.3 (Asymptotic expansion). Let ¢; be a sequence of symbols in S™™i (G x G) with m;., mj.’ decreasing to —oo.

! ! A
Then, there exists o € S™Momg (G x G), unique modulo S~°~%, such that

M
o= Y g; € S"un (G xE), VM eN, (5.7)
j=0

Proof. Lety) € C*(R;[0,1]) be such that = 0 on (—c0,1/2) and 3 =1 on (1, o0). Then, by Propositions 2.8 and 4.1, we
have that, for any given 11, 1, € R,

1a%E 371720 5Cx, (1 Ag Wp(t22e )2 14

S > lamhanag(x, APt Ag (oA o)
let|<ley [+|oz | <2]a

IBI<IB11+1821<216]

m' —|ay| m! —|ay| ity /2 P 1y /2 o —
SN it D (ETTERE) TR gyl R gy,
S(Zcx,zﬁ),y [l <oy [+]op | <2]ex]|

[BI<IB11+1B21<2IB]

,_
0

"_

We then choose 1, = m 0

m} and i, = m m;’ and get

! ! " "

O_m- m_O_mj !/ "

158971726, x, EXptrAe Yt A2l a4 S N R P (Y
(12al,128D,(y11:1v2D

m

which, in particular, gives that for any given a = (a1, a,) € Ny X Ny and b = (b, by) € Ny X N,

! ! " "
0 m. Wlo m.

||Uj(x’ g)l)b(tl/lgl )¢(t2/‘l§2)”sm6,mg < Ca,b,mé,m(’)’,o'j t] ? t2 ?
a,b

m

We now choose a decreasing sequence ¢}, such that

-~ "_, 1
0 m} I’Vl0 m]

—Jj 2 2 —j
t] (S (O, 2 J) and C(j,j),(j,j),m(’),m(’)',cj tj t] <2 J,

m
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and define & (x, &) = gj(x, E)zp(tj/lgl)zp(tj/lgz). By using the properties above, we get, for all £ € Ny,
o0 t 0
’ of ’ =J
Z 1651 gy < DN gy + D, 27 < oo,
Jj=0 .o j=0 €06 j=t+1

which implies that o = Z;io a;(x, E)P(tjds Nb(tjde,) € S"0™M (G x G), and consequently, by taking the sum for j > M,
also that ¥/ o;(x, EX(tAz Wp(t;Az,) € ™™ (G x G) for all M € N. We then have that

M-1 oo M-1
o= Y 0= > 006 (A Wt Ag) — Y (1 = 5 Ae,) + Pl g ),
j=0 Jj=0 j=0
M-
2 (1= (2592, ) o, + 2 5 (5.8)
: J =M

belongs to S (G x B), since, by Proposition 4.1, 1 — (¢ ¢, )§(¢A¢, ) is smoothing. In order to conclude the proof, we
just have to show that o is unique up to smoothing operators. This last property easily follows by observing that, if 7 is
another symbol with the same asymptotic expansion as o, then, for any given M € N,

M-1 M-1
o-T= (o— Z aj> - (T— Z aj> € S™"™(G x G),
Jj=1 j=1
which, finally, shows that ¢ = ¢ modulo S™*~%°(G x G) and proves the result. O
We will now introduce the definition of bielliptic operators and derive, for these objects, the existence of biparametrices.
Definition 5.4. Leta € S™"2(G x G) and A = Op(a) € L™-"™2(G). We say that A is bielliptic if

(1) a(x, £) is invertible for all but finitely many [£] € G and, for such &, its inverse a(x, £)~! satisfies

lla(x, &)™ ||§£(H§) < (§)TM(E) Ty

() a(x;,x,, Dy, &) is exactly invertible as an operator in L"1(G;) for all (x,, £,) € G, x G, with inverse in L~™1(G,), and,
in particular,

(aoia™1)(x1,x,,D1, &) = Idg(g,)s

(3) a(x;,x,,&;,D,) is exactly invertible as an operator in L"2(G,) for all (x,, £,) € G, x G, with inverse in L™"2(G,), and,
in particular,

(aoza_l)(xl,xz, §1,D;) = Id@)'(Gz)-

Theorem 5.5. Let A € L™""™2(G) be bielliptic. Then, there exists B € L™""""2(G) such that

AB=I+K1,

BA =1+K,,
where I := Idpy () is the identity map and K, K, are smoothing bisingular operators.

Proof. We start with the proof of the first assertion, namely, the existence of B such that AB = I + K;, with K; smoothing.
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First observe that, by definition of biellipticity, one has thata™! € S™™-~"2(G x G). Then, by taking by(x, £) = a(x, £)!
and by using the asymptotic composition formula together with (2) and (3) of Definition 5.4, we have that a#by, =1 — rq,
withry € 771G x G) and 1(§) = I_a, . We now define b; := bo#r;, with r; :=ri#r;_ € S77I(G x G) for j > 2,and
have a#bj =(1- rl)#rj. Then, for b ~ ijo bj, we obtain, for any k € N,

J<k 0<j<k

=1+ Z ri—ri—ri+n# Z ri=1-ry,
0<j<k 0<j<k

where, recall, r, € S™57K(G x G). This finally gives that
a#b —1€ S~°(G x §),

which proves the first assertion.

In order to prove the existence of a left parametrix B, that is such that BA = I + K,, with K, smoothing, one proceeds
as before, namely, one takes b, = a~! and defines by#a —1 = —s; € S™V71(G x G) and Sj 1= sj_1#s; forall j > 2. Then,
taking b; := s;#Db,, the result follows for b ~ ijo b;. This concludes the proof. O
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APPENDIX: AUXILIARY LEMMAS

Lemma A.1. Let G = G; X G, be a compact Lie group, with G;, i = 1,2, being a compact Lie group of dimension n; =
dim(G;), and let also g € D(G) and a,, a, € N. Then, the following properties are equivalent

L Forall (o, ;) € N x N2, with |a;| < a;, then d“1*2q(eg) = 0, that is, q vanishes of order (a; — 1,a, — 1) at eg.

2. For any given differential operator D¥1%2 := DleI;z € Diffk1+k2(G), D;{j € Diff" (Gj), such that k; < a;, we have
D*rag(eg) = 0.

3. There exists a constant Cq such that, for all x € G, we have q(x) < Cg|x1]|* |x,]|%.

Lemma A.1, whose proof is left to the reader, gives a notion of vanishing order of a function suitable in our setting,
where, in particular, the vanishing order with respect to each variable is considered. For the standard (non adapted to the
bisingular case) notion of vanishing orderer of a function, see Lemma A.1 in [5].

Proposition A.2. Let m;,m, € R and a;, a, € N. For any given function q € D(G) vanishing of order (a; — 1,a, — 1) at
e, there exists dy, d, € Ny such that, for all f € C%1([0, +00); C%[0, +0)) satisfying

. — — 2914
W Ay, 5= sup (L +4) (1 + 29) 7421611832 (A1, 4)| < oo,
A1,4220,61=0,...,d1,62=0,...,d,

we have

my my—a
2

m-a PN
1A (e AN ey < CEM PP A 4 2¢) 7 A +2g) 2 . ¥E€G, 1.5 €(0,1).

The constant C may be chosen as C’||f||Mml‘m2’d17d2, with C' = C'(m,, m,, q, a;, a,) also depending on the group G but not
on f,ti,t,and & =& ® &,

The proof of the proposition is done following that of [5] and is also left to the reader.

Lemma A.3. Let G = G, X G, be such that dim(G,) = ny. If sy > ny/2,s, > n, /2, then, the kernel By , of the operator
(I + Lg, )y 1/2 Q I, + LGZ)_S2/2 is square integrable and the continuous inclusion H1*2(G) C C(G) holds.

Sketch of the proof of Lemma A.3. Notice that
Bsz,sz(x’ y) = le(xl’yl) ® BSz(XZ’ ¥2)

where st (xj, yj), defined on G XGj, is the kernel of the operator (Ij + LGj )~%, j = 1,2. Then (see Lemma A.5 in [5]), we
have

B, = —L /00 2 et pDay,
Sj F(S]/Z) [j=0 Jj [j J°

where

) . _ —tiA;
p; i=e Jae(;j’ tj >0,

and T is the gamma function. Since (see Lemma A.5 in [5]) for s; > n; /2

”st ”LZ(GJ) < 0, .] = 15 2’

85U80|7 SUOWILIOD BAER.D 8|l (dde au Ag peusenob are Ssolle YO 8sn JO s3I0} Aeiqi8ul|uO /8|1 UO (SUONIPUOD-PUB-SWBIW0D A8 | 1M ATeIq 1 BUI|UO//SANY) SUORIPUOD Pue Swie 1 8y} 89S *[£202/80/80] UO AfeiqiTauluo A8|im ‘Wewnooq 3 Hediq WeISIS Baly Aq 00Y00TZ0Z BUeW/Z00T 0T/I0p/Wo0 A8 | 1m Aeiq Ul uo//Sdny woiy papeo|umoq ‘T ‘€202 ‘919222ST



242 MATHEMATISCHE
NACHRICHTEN

FEDERICO AND PARMEGGIANI

we have
1Bsllz2) = II1Bg, llz2(6))I1Bs, l22(6,) < 0.
Finally, the Sobolev embedding will follow from the fact that one can write f as
f=UI+Le) ™ @Iy + Lg,) /%) f} + By,

for all f € H52(G) with s; > n; /2 and s, > n,/2.
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