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The impressive progress in quantum hardware of the last years has raised the interest of the quantum
computing community in harvesting the computational power of such devices. However, in the absence
of error correction, these devices can only reliably implement very shallow circuits or comparatively
deeper circuits at the expense of a nontrivial density of errors. In this work, we obtain extremely tight
limitation bounds for standard noisy intermediate-scale quantum proposals in both the noisy and noise-
less regimes, with or without error-mitigation tools. The bounds limit the performance of both circuit
model algorithms, such as the quantum approximate optimization algorithm, and also continuous-time
algorithms, such as quantum annealing. In the noisy regime with local depolarizing noise p , we prove
that at depths L = O(p−1) it is exponentially unlikely that the outcome of a noisy quantum circuit out-
performs efficient classical algorithms for combinatorial optimization problems like max-cut. Although
previous results already showed that classical algorithms outperform noisy quantum circuits at constant
depth, these results only held for the expectation value of the output. Our results are based on newly
developed quantum entropic and concentration inequalities, which constitute a homogeneous toolkit of
theoretical methods from the quantum theory of optimal mass transport whose potential usefulness goes
beyond the study of variational quantum algorithms.
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I. INTRODUCTION

The last years have seen remarkable progress in both
the size and quality of available quantum devices, reach-
ing the point that even the best classical computers cannot
easily simulate them [1–4]. In spite of these achievements,
current devices lack error correction and, thus, are inher-
ently noisy. Considering the significant overheads required
to implement error correction [5,6], this has raised the
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quantum computing community’s interest in investigat-
ing whether such noisy quantum devices can neverthe-
less outperform classical computers in tasks of practical
interest [7].

One class of algorithms that is considered suited for
this task is variational quantum algorithms [8,9]. In most
cases, these hybrid quantum classical algorithms work by
optimizing the parameters of a shallow quantum circuit
to minimize a cost function [8,9]. Prominent examples of
such algorithms include the variational quantum eigen-
solver [10] and the quantum approximate optimization
algorithm (QAOA) [11]. As variational algorithms only
require the implementation of shallow circuits and simple
measurements, it was expected that they could unlock the
computational potential of near-term devices.

However, recent results have highlighted several obsta-
cles to achieving a practical quantum advantage through
variational quantum algorithms. For instance, some works
have shown that optimizing the parameters of the circuit
is computationally expensive in various settings [12–15].
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Other works have shown that constant depth quantum
circuits cannot outperform classical algorithms for certain
combinatorial optimization problems [16–19]. Further-
more, it has been observed [15,20,21] that such variational
quantum algorithms are less robust to noise than previously
expected: already a small density of errors is sufficient
to ensure that classical algorithms outperform the noisy
device.

In this article, we further investigate the limitations
of variational quantum algorithms. Our contributions are
twofold. First, we obtain extremely tight limitation bounds
for standard noisy intermediate-scale quantum (NISQ)
proposals in both the noisy and noiseless regimes, with
or without error-mitigation tools. Second, we provide a
new homogeneous toolkit of theoretical methods whose
potential usefulness goes beyond the present topic of vari-
ational quantum algorithms. Our methods originate from
the emerging field of quantum optimal transport [22–31].
As we will see, optimal transport techniques have the com-
bined advantages of simultaneously simplifying, unifying,
and qualitatively refining previously known statements
regarding fundamental properties of the output state of
shallow and noisy circuits.

A. Limitations of noisy variational quantum
algorithms

More precisely, we obtain two new complementary sets
of results providing a better understanding of the lim-
itations of variational quantum algorithms both at very
shallow depths, when the effect of noise is negligible, and
for a small density of errors. In Sec. III, we first derive
new properties for the output probability of (potentially
noisy) shallow quantum circuits initiated in state |0〉⊗n and
after measurement in the computational basis. These find-
ings directly improve upon celebrated recent results on
the limitation of certain variational quantum algorithms to
solve the max-cut problem for certain classes of bipartite
D-regular graphs. We prove that QAOA requires at least
logarithmic in system size depth L to outperform efficient
classical algorithms in some instances [16,18,19,32]:

L ≥ 1
2 log(D + 1)

log
n

576
. (1)

We note that our bound in Eq. (1) exponentially improves
upon the dependence on the degree D of the graph pre-
viously found in Ref. [16]. For instance, for D = 55 (the
minimum value for which Bravyi et al. [16] could prove
that shallow quantum circuits cannot outperform the clas-
sical algorithm by Goemans and Williamson), our bound
implies that the QAOA requires a depth larger than 1 as
soon as n � 106, whereas Bravyi et al. [16] found that
n � 1054.

Next, Sec. IV is concerned with the concentration pro-
file of the output measure of noisy circuits at any depth

L = �(1) for simple noise models, e.g., layers of cir-
cuits interspersed by layers of one-qubit depolarizing noise
of parameter p . For instance, with realistic depolarizing
probability p = 0.1 applied independently to each qubit,
we are able to prove that the number of vertices for the
graph has to be smaller than 109 in order for the noisy
algorithm to outperform the best known classical algorithm
(see Theorem VI.2). Moreover, we prove that at depths
L = O(p−1) it is exponentially unlikely that the outcome
of a noisy quantum circuit outperforms efficient classical
algorithms for combinatorial optimization problems like
max-cut. Although previous results already showed that
noisy quantum circuits are outperformed by classical algo-
rithms at constant depth [20], the results only held for the
expectation value of the output. In contrast, our methods
imply that the probability of observing a single string with
better energy than that outputted by an efficient classical
algorithm is exponentially small in the number of qubits.
This is a significantly stronger statement, although at the
cost of slightly worse constants [20].

In addition, in Sec. V, we show that certain error-
mitigation protocols cannot reverse our conclusions unless
we allow for an exponential number of samples in the
number of qubits. First, in Sec. V A we show that vir-
tual distillation or cooling protocols [33,34] only have an
exponentially small success probability at constant depth.
Furthermore, for mitigation procedures that have as their
goal to estimate expectation values of observables, we
show stringent limitations at O(log(n)) depth in Sec. V B.
At this depth, any error-mitigation procedure that takes as
input m = poly(n) copies of the output of a noisy quan-
tum circuit is exponentially unlikely to yield an estimate
that deviates significantly from the estimate we would
obtain by providing m copies of a trivial product state as
input. Thus, the copies of the noisy quantum circuit do
not provide significantly more insights than sampling from
trivial product states. Our results strengthen recent results
on limitations of error mitigation [35,36] both in terms
of the required depth for them to apply and by providing
concentration inequalities instead of results in expectation.

B. Quantum optimal transport toolkit

The second main contribution of the present article is
the development of a new set of simple methods from
quantum optimal transport whose potential use is likely
to exceed the problem of finding tighter limitations on
variational quantum algorithms. Our first main tool lead-
ing to the results of Sec. III is an optimal transport
inequality introduced by Milman [37] in his study of
the concentration and isoperimetric profile of probability
measures on Riemannian manifolds with positive cur-
vature (see also Refs. [38–40] for discussions on some
related optimal transport inequalities). Adapted to the
present setting of n-bit strings {0, 1}n endowed with the
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Hamming distance dH (x, y) := ∑n
i=1 |xi − yi|, Milman’s

so-called (2, ∞)-Poincaré inequality is a property of a
probability measure μ on the set {0, 1}n that asks for the
existence of a constant C > 0 such that, for any function
f : {0, 1}n → R,

Varμ(f ) ≤ Cn‖f ‖2
L, (2)

where ‖f ‖L := supx 	=y |f (x) − f (y)|/dH (x, y) denotes the
Lipschitz constant of f with respect to the Hamming
distance. Besides its natural application to bounding the
probability that the function f deviates from its mean by
means of Chebyshev’s inequality, namely,

Pμ(|f − Eμ[f ]| ≥ √
nr) ≤ C‖f ‖2

L

r2 , (3)

the (2, ∞)-Poincaré inequality further implies by duality
the following symmetric concentration inequality: for any
two sets S1, S2 ⊂ {0, 1}n such that μ(S1), μ(S2) ≥ μ0 > 0,

dH (S1, S2) ≤ 3

√
Cn
μ0

. (4)

For instance, we prove in Proposition III.2 below that in
the case of a noiseless circuit, the output measure μout sat-
isfies the (2, ∞)-Poincaré inequality with constant C = B2,
where B denotes the light cone of the circuit, i.e., the maxi-
mal amount of output qubits being influenced by the value
of an arbitrary input qubit through the application of the
circuit. In that case, the resulting symmetric concentration
inequality (4) quadratically improves over that previously
derived in Ref. [32, Corollary 43]:

dH (S1, S2) ≤ 4
√

nB1.5

μ0
.

Moreover, the (2, ∞)-Poincaré inequality turns out to be a
very simple and versatile tool compared to the nontrivial
proof of Corollary 43 of Ref. [32], which required the use
of Chebyshev polynomials and approximate projections.
Moreover, it can be very easily adapted to noisy shallow
quantum circuits and continuous-time local Hamiltonian
evolutions. In this latter setting, it unifies and refines the
main results of Ref. [19].

The tools described in the previous paragraph are
adapted to the study of quantum circuits of depth L =
O(log(n)) and related short-time continuous-time evolu-
tions. In contrast, our second set of fundamental results in
Sec. IV concerns the concentration profile of the output
measure of noisy circuits at any depth L = �(1) for sim-
ple noise models, e.g., layers of circuits interspersed by
layers of one-qubit depolarizing noise of parameter p . In
this case, we appeal to recently developed tools such as
contraction coefficients for sandwiched Rényi divergences

[41,42] to prove that the probability under the output mea-
sure μout of the circuit that an arbitrary n-bit function f :
{0, 1}n → R deviates from its mean by a constant fraction
an of the total number of qubits satisfies the sub-Gaussian
property

Pμout(|f − 〈f 〉μout | ≥ an) ≤ Ke−ca2n/‖f ‖2
L (5)

for some constants K , c > 0 and a ≥ a0 ≥ 0. Interest-
ingly, such strong concentration inequalities are known to
be equivalent to a strengthening of the (2, ∞)-Poincaré
inequality (2) known as the transportation-cost inequal-
ity [43,44]. The latter states that, for any measure ν that is
absolutely continuous with respect to μ,

W1(ν, μ)2 ≤ C′nD(ν‖μ), (6)

where D(ν‖μ) denotes the relative entropy of ν with
respect to μ, whereas

W1(ν, μ) := sup
‖f ‖L≤1

(Eν[f ] − Eμ[f ]) (7)

is the Wasserstein distance of order 1 between ν and μ, also
called the Monge-Kantorovich distance or earth mover’s
distance.

In summary, our results clearly illustrate the potential
of optimal transport methods such as the (2, ∞)-Poincaré
inequality and the stronger transportation-cost inequality
to study the performance of variational algorithms. We also
believe that the discussed methods can have broad appli-
cations beyond that of understanding the computational
power and limitations of near-term quantum devices.

Indeed, variations of inequalities like those in Eqs. (2)
and (6) have recently found applications in different areas
of quantum information theory. For instance, in Ref. [45]
they were used to obtain exponential improvements for
the sample complexity in quantum tomography. In Ref.
[26] they were used to derive concentration bounds for
commuting Gibbs states and show a strong version of
the eigenstate thermalization hypothesis, a topic of intense
research in physics. Thus, we believe that the new inequal-
ities and techniques developed here could pave the way to
extending such results to larger classes of states.

II. NOTATION AND DEFINITIONS

In this section, we introduce the main concepts dis-
cussed in the rest of the paper. We also refer the reader
to Appendix A for a complete list of notation.

A. Basic notions

Given a set V of |V| = n qudits, we denote by HV =⊗
v∈V C

d the Hilbert space of n qudits and by B(HV)

the algebra of linear operators on HV. We denote by OV
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the self-adjoint linear operators on HV, whereas OT
V ⊂ OV

is the subspace of traceless self-adjoint linear operators.
By O+

V we denote the subset of positive semidefinite lin-
ear operators on HV, and SV ⊂ O+

V denotes the set of
quantum states. Similarly, we denote by PV the set of
probability measures on [d]V. For any subset A ⊆ V, we
use the standard notation OA,SA, . . . for the corresponding
objects defined on subsystem A. Given a state ρ ∈ SV, we
denote by ρA its marginal on subsystem A. For any region
A ⊂ V, the identity on OA is denoted by IA, or more sim-
ply I. Given an observable O, we define 〈O〉σ = tr[σO].
We denote the probability of measuring an eigenvalue
of O greater than a ∈ R in state σ as Pσ (O ≥ a). Given
two probability measures μ, ν over a common measur-
able space, μ � ν means that μ is absolutely continuous
with respect to ν and dμ/dν denotes the corresponding
Radon-Nikodym derivative.

B. Wasserstein distance

We make extensive use of notions of quantum optimal
transport. The Lipschitz constant of the self-adjoint linear
operator H ∈ OV is defined as [29, Section V]

‖H‖L := 2 max
v∈V

min
Hvc

‖H − Hvc ⊗ Iv‖∞, (8)

where the infimum above is taken over operators Hvc ∈
OV\{v} that do not act on v. Lipschitz observables, that is,
those H ∈ OV such that ‖H‖L = O(1), capture extensive
properties of a quantum system. They include (i) few-
body and/or geometrically local observables; (ii) quasilo-
cal observables; and even (iii) observables of the form O =
∑ñ

i=1 Oi, where ‖Oi‖∞ ≤ 1 and supp(Oi) ∩ supp(Oj ) =
∅ for i 	= j . It is worth mentioning that the latter are
considered in the fundamental problem in quantum sta-
tistical mechanics regarding the equivalence between the
microcanonical and canonical ensembles [26,46–48].

The quantum W1 distance proposed in Ref. [29] admits
a dual formulation in terms of the above quantum general-
ization of the Lipschitz constant: the quantum W1 distance
between states ρ, ω ∈ SV is expressed as [29, Section V]

W1(ρ, ω) = max{tr[(ρ − ω)H ] : ‖H‖L ≤ 1}.

Whereas the trace distance measures the global distin-
guishability of states, the Wasserstein distance measures
distinguishability with respect to extensive, quasilocal
observables.

C. Local quantum channels

In this work, we consider evolutions provided with a
local description.
Definition II.1: A (noisy) quantum circuit NV on n qudits
of depth L is a product of L layers N1, . . . ,NL, where each

layer N� can be written as a tensor product of quantum
channels N�,e acting on a set e ⊂ V of vertices:

NV =
∏

�∈[L]

⊗

e∈E�

N�,e ≡
∏

�∈[L]

N� (9)

for some sets E� of disjoint subsets of vertices. The circuit
is called unitary (or noiseless) whenever each of the chan-
nels N�,e is unitary. We call set {El}l∈[L] the architecture of
circuit NV and write E = ⋃

� E�.
A key concept associated with the notion of a local evo-

lution is that of a light cone. In the case of a quantum
circuit, the light cone of a vertex v ∈ V is the smallest
set of vertices INV

v ≡ Iv ⊆ V such that, for any observ-
able O ∈ OV such that trvO = 0, we have trIv (NV(O)) = 0.
We then denote the light cone of the circuit by INV :=
maxv∈V |Iv|. In Sec. III B, we extend this notion to the case
of a continuous-time Hamiltonian evolution, where light
cones are defined thanks to Lieb-Robinson bounds [49].

III. CONCENTRATION AT THE OUTPUT OF
SHORT-TIME EVOLUTIONS

In this section, we obtain concentration inequalities for
the outputs of short-time evolutions. Our main tool is an
inequality between the variance and the Lipschitz constant
of an observable. For any O ∈ B(HV) and ω ∈ SV, the
variance of O in state ω is defined as

Varω(O) := tr[ω|O − tr[ωO]I|2] = 〈| O − 〈O〉ωI|2〉ω.

We denote the Kubo-Martin-Schwinger (KMS) inner prod-
uct associated with state σ as 〈A, B〉σ := tr[A†σ 1/2Bσ 1/2],
and its corresponding norm as ‖H‖σ . We have, for any
H ∈ OV [50, Eq. (20)],

‖H − tr[σH ]I‖2
σ ≤ Varσ (H). (10)

With a slight abuse of notation, we use the same terminol-
ogy for the analogous functionals for classical probability
distributions.

In analogy with the classical literature [37], we say that
a state σ satisfies a (2, ∞)-Poincaré inequality of constant
C > 0 if, for any O ∈ OV,

Varσ (O) ≤ C|V|‖O‖2
L. (11)

For instance, tensor product states ρ ≡ ⊗
v∈V ρv sat-

isfy the (2, ∞)-Poincaré inequality with constant C = 1
(see Appendix F). The main motivations for introducing
these inequalities are the following direct consequences of
the (2, ∞)-Poincaré inequality. We leave their proofs to
Appendix E.

Theorem III.1. Assume that state σ satisfies a (2, ∞)-
Poincaré inequality of constant C > 0. Then the following
statements hold.
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(1) Noncommutative transport-variance inequality: for
any two states ρ1, ρ2 ∈ SV with corresponding den-
sities Xj := σ−1/2ρj σ

−1/2,

W1(ρ1, ρ2) ≤
√

C|V|(‖X1 − I‖σ + ‖X2 − I‖σ ).

(2) Measured transport-variance inequality: denote by
μσ ∈ PV the probability measure induced by the
measurement of σ in the computational basis. Then,
for any probability measure ν � μσ ,

W1(ν, μσ ) ≤ √
C |V| Varμσ (dν/dμσ ).

Moreover, for any two sets A, B ⊂ [d]V, their Ham-
ming distance dH (A, B) satisfies the following sym-
metric concentration inequality:

dH (A, B) ≤
√

C|V|(μσ (A)−1/2 + μσ (B)−1/2).
(12)

(3) Concentration of observables: for any observable
O ∈ OV and r > 0,

Pσ (|O − 〈O〉σ I| ≥ r) ≤ C|V|‖O‖2
L

r2 . (13)

Note that the Wasserstein distance and the Lipschitz
constant are invariant under product unitaries. Thus, the
same results hold for measuring the state in any product
basis, not necessarily only the computational basis.

Although it might not be obvious from the outset, the
inequalities in item (2) are known to imply no-go results
for outputs of shallow quantum circuits [16,19,32]. Con-
sider, for example, the output distribution μ we obtain
when measuring the Greenberger-Horne-Zeilinger (GHZ)
state in the computational basis, i.e., the all-zeros or all-
ones string. If we take A to contain the all-zeros string and
B to contain the all-ones string, we clearly have μ(A) =
μ(B) = 0.5 and dH (A, B) = n. Thus, the GHZ state does
not satisfy a (2, ∞)-Poincaré inequality with C = O(1).

A. Poincaré inequalities at the output of noisy circuits

We now bound constant C in various settings. It turns
out that noisy shallow circuits satisfy a (2, ∞)-Poincaré
inequality.

Proposition III.1. For any tensor product input state ρ,
output NV(ρ) satisfies a (2, ∞)-Poincaré inequality with
constant

C ≤ 4
(

I 2
NV

+ max� |E�|
|V|

L∑

�=1

max
e∈E�

I(e, L − �)2
)

,

where, given a set e ∈ E� and m ∈ N, I(e, L − �) denotes
the set of all vertices in V in the light cone of set e for the
circuit constituted of the last L − � layers of NV.

The proof of this proposition is deferred to Appendix
F. When NV ≡ UV is noiseless, we get the following
tightening of Proposition III.1.

Proposition III.2. For any tensor product input state ρ,
output UV(ρ) satisfies a (2, ∞)-Poincaré inequality with
constant

C ≤ 4I 2
NV

. (14)

Note that, for any circuit, the light cone can grow at most
exponentially in L.

B. Poincaré inequality for continuous-time quantum
processes

We now consider the continuous-time setting, and
restrict ourselves to a system whose interactions are mod-
eled by a graph G = (V, E) whose vertices V corre-
spond to a system of |V| = n qudits, and denote by D :=
maxv∈V{v′|(v, v′) ∈ E} the maximum number of nearest
neighbors to a vertex. In the (noiseless) continuous-time
setting, one replaces the notion of a circuit by that of a
local time-dependent Hamiltonian evolution.
Definition III.1: A (noiseless) continuous-time local
quantum process is a unitary evolution {UV(t)}t≥0 gener-
ated by the time-dependent Hamiltonian

H(t) =
∑

e∈E

αe(t)He, (15)

where He is a time-independent self-adjoint operator that
acts nontrivially only on the edge e ∈ E with norm
‖He‖∞ ≤ 1/2. We also assume that b := supt,e |αe(t)| <

∞ independently of the size of the system. In what follows,
for any subregion A ⊂ V, we also denote the Hamilto-
nian restricted to A by HA(t) := ∑

e⊂A αe(t) He, and its
corresponding unitary evolution by {UA(t)}t≥0.

For continuous-time unitary evolutions, the concept
of the light cone is formalized by the existence of a
Lieb-Robinson bound [49]. Since their introduction, Lieb-
Robinson bounds have been extensively studied in various
levels of generality for unitary [51] as well as dissipative
Markovian evolutions [52]. In what follows, we define a
distance dist : E × E → R+ on the edge set E that, for any
two edges e = (v1, v2) and e′ = (v′

1, v′
2), takes the value

dist(e, e′) = 0 if and only if e = e′, and is otherwise equal
to the length of the shortest path connecting the sets of
vertices {v1, v2} and {v′

1, v′
2}. Next, we denote by Se(k) the

sphere around any edge e ∈ E of radius k, i.e.,

Se(k) := {e′ ∈ E : dist(e, e′) = k}. (16)

Then, set E is said to be of spatial dimension δ if there is a
constant M > 0 such that, for all e ∈ E, |Se(k)| ≤ M kδ−1.
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The following result is taken from Ref. [53, Theorem 2]
(see also Ref. [19, Theorem 1] for a similar result).

Theorem III.2 (Lieb-Robinson bound). Using the nota-
tion introduced above, for any subregions A ⊂ B ⊂ V with
k0 := dist(A, V\B) ≥ 2δ − 1, any state ρ, and 0 ≤ t,

‖trAc(UV(t)(ρ) − UB(t)(ρ))‖1 ≤ 2M
2D − 1

kδ−1
0 evt−k0 ,

where v := eb(2D − 1) is the Lieb-Robinson velocity.

Next, we order the vertices {1, . . . , n}, n = |V|, with
their graph distance to an arbitrarily chosen vertex v0 ≡ 1,
and denote the graph distance dist({1}, {i, . . . , n}) ≡ d(i).
Then, using the notation of Sec. II, we have, for any
H ∈ OV (see Appendix G),

‖UV(t)†(H)‖L

≤
(

2(i0 − 1) + 4M
2D − 1

|V|∑

i=i0

d(i)δ−1evt−d(i)
)

‖H‖L,

(17)

where i0 stands for the first vertex such that d(i0) ≥
2δ − 1. By a reasoning that is identical to that leading to
Proposition III.1, we have the following result.

Proposition III.3. Let ρ be a product input state. For any
t ≥ 0, the output state UV(t)(ρ) satisfies a (2, ∞)-Poincaré
inequality with constant

Ct ≤ 4
(

2(i0 − 1) + 4M
2D − 1

n∑

i=i0

d(i)δ−1 evt−d(i)
)2

.

For a simpler version of the bound found in Proposition
III.3, we refer the reader to Proposition VI.1 below. The
bounds obtained in Proposition III.1, Proposition III.2, and
Proposition III.3 can be combined with Theorem III.1(3) to
get Chebyshev-type concentration bounds. This improves,
for instance, over Theorem 2 of Ref. [19], where the con-
centration bound was obtained only in the continuous-time
Hamiltonian setting and for a specific one-local observ-
able measuring the Hamming weight. Moreover, the bound
obtained in Eq. (12) on the Hamming distance between two
sets in terms of their probabilities in state σ is an improve-
ment over the symmetric concentration inequality found in
Ref. [32, Corollary 43], namely,

dH (A, B) ≤ 4|V|1/2I 3/2
UV

max{μσ (A)−1, μσ (B)−1}, (18)

as well as its continuous-time analogue in Ref. [19,
Theorem 3]. In summary, the (2, ∞)-Poincaré inequal-
ity is a versatile tool that we use to derive the strongest
concentration-type bounds for general short-time quan-
tum evolutions currently available in a simple, basis-free
manner.

IV. LIMITATIONS AND CONCENTRATION
INEQUALITIES FROM NOISE

In Sec. III we discussed how to use optimal transport
methods to analyze the concentration profile of quantum
circuits at small depths, even in the absence of noise. We
now turn our attention to the case where the circuit is also
subject to local noise and prove concentration inequali-
ties for their outputs. As in the noiseless case, these can
then be used to estimate the potential of noisy quan-
tum circuits to outperform classical algorithms. However,
unlike in Theorem III.1, we here obtain stronger Gaussian
concentration inequalities.

For this, we make use of the sandwiched Rényi diver-
gences [41,42] of order α ∈ (1, +∞). For two states ρ, σ
such that the support of ρ is included in the support of σ ,
they are defined as

Dα(ρ‖σ) = 1
α − 1

log tr[(σ (1−α)/2αρσ (1−α)/2α)α].

We also consider the relative entropy we obtain by taking
the limit α → ∞,

D∞(ρ‖σ) = log(‖σ−1/2ρσ−1/2‖∞).

In case the support of ρ is not contained in that of σ , all
the divergences above are defined to be +∞.

We start from the assumption that the noise is driving the
system to a quantum state σ on HV that satisfies a Gaussian
concentration inequality of parameter c > 0. That is, there
is a constant K such that, for any a > 0 and observable O,

Pσ (|O − 〈O〉σ I| ≥ a|V|) ≤ Ke−ca2|V|/‖σ−1/2Oσ 1/2‖2
L , (19)

where the quantum Lipschitz constant of a non-self-adjoint
matrix Z is defined as ‖Z‖L := max{‖Re(Z)‖L, ‖Im(Z)‖L}.
Note that inequalities of the form (19) hold for prod-
uct states [29,31,54], commuting high-temperature Gibbs
states [26,55], and in slightly weaker form for all high-
temperature Gibbs states [56] and gapped ground states on
regular lattices [57]. Moreover, in the case where σ and O
commute, we clearly have ‖σ−1/2Oσ 1/2‖L = ‖O‖L.

We then have the following concentration result, proved
in Lemma B.1 in Appendix B.

Theorem IV.1. Let σ satisfy Eq. (19). Then, for any state
ρ and a > 0 and α > 0, we have

Pρ

(|O − 〈O〉σ I| ≥ a|V|)

≤ exp
(
α − 1

α

(

Dα(ρ‖σ)− ca2|V|
‖σ−1/2Oσ 1/2‖2

L
+ log(K)

))

.

(20)
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It immediately follows that if we have, for a noisy circuit
and a value of a,

Dα(NV(ρ)‖σ)

|V| <
ca2

‖σ−1/2Oσ 1/2‖2
L

− log(K)

|V| , (21)

then the probability of observing an outcome outside of the
interval 〈O〉σ ± a|V| when measuring NV(ρ) is exponen-
tially small in |V|. Thus, given a bound on Dα(NV(ρ)‖σ),
we can solve for a in Eq. (21) and establish a such that the
probability of observing outcomes outside of 〈O〉σ ± a|V|
is exponentially small. In Sec. VI we discuss this more
concretely to analyze the potential performance of QAOA
under noise.

For now, let us discuss how to obtain the bounds on
Dα(NV(ρ)‖σ) to effectively apply Theorem IV.1. One
straightforward way to derive such bounds is to resort
to so-called strong data-processing inequalities (SDPIs)
[54,55,58–64]. A quantum channel N with fixed point σ

is said to satisfy a SDPI with constant qα > 0 with respect
to a fixed point σ and Dα if, for all other states ρ, we have

Dα(N (ρ)‖σ) ≤ (1 − qα)Dα(ρ‖σ). (22)

Then, assuming that the noisy quantum circuit NV we wish
to implement is of the form (9) and each layer N� satisfies
Eq. (22) for some constant qα , we show in Lemma C.1 in
Appendix C that

Dα(NV(ρ)‖σ) ≤ (1 − qα)LDα(ρ‖σ)

+
L∑

�=0

(1 − qα)L−�D∞

( ⊗

e∈E�

N�,e(σ )‖σ
)

.

(23)

Thus, as long as the fixed point of the noise is left approx-
imately invariant by the channels at the end of the circuit,
Eq. (23) implies that the relative entropy will decay as the
depth increases. As we argue in Appendix C 2, this will be
the case for both QAOA and annealing circuits for most
one-qubit noise models. Furthermore, this will hold for
any circuit whenever the fixed point of the noise is the
maximally mixed state.

It is also possible to derive similar inequalities for
continuous-time evolutions with a time-dependent Hamil-
tonian Ht and the noise given by some Lindbladian L. In
that case, the assumption in Eq. (22) is replaced by

Dα(etL(ρ)‖σ) ≤ e−rα tDα(ρ‖σ) (24)

for some constant rα > 0. In Lemma C.2 in Appendix C
we show the continuous-time version of Eq. (23).

To illustrate the power of the bound in Eq. (21), let us
analyze the case where NV consists of a concatenation of
layers of unitary gates with layers of noise N = ⊗|V|

k=1 Dp ,

where Dp is a qubit depolarizing channel with depolarizing
probability p . One can then show that Eq. (22) holds for
α = 2 and q2 = 2p + p2 [63, Sec. 3.3] and, thus, for any
circuit of depth L in this noise model,

D2

(

NV(ρ)

∥
∥
∥
∥

I

2|V|

)

≤ (1 − p)2LD2

(

ρ

∥
∥
∥
∥

I

2|V|

)

≤ (1 − p)2L|V|. (25)

Moreover, the maximally mixed state satisfies Eq. (19)
with c = K = 1 [30]. By combining Eq. (25) with Eq. (21)
we arrive at the following result.

Proposition IV.1. Let H be a traceless |V|-qubit Hamil-
tonian, and let NV be a depth-L unitary circuit inter-
spersed by one-qubit depolarizing noise with depolarizing
probability p. Then, for any initial state ρ and ε > 0,

PNV(ρ)(|H | ≥ ((1 − p)2L + ε)1/2‖H‖L|V|)

≤ exp
(

− ε|V|
2

)

. (26)

Let us exemplify the power of Eq. (26). For an H of
practical interest, say H is an Ising Hamiltonian, efficient
classical algorithms are known to find solutions whose
energy is a constant fraction from the ground-state energy
[65]. That is, there exists an ac = �(1) such that effi-
cient classical algorithms can sample states ρ that satisfy
tr(ρH) ≤ −ac|V|‖H‖L.

It then follows from Eq. (21) that at a constant depth L >

log(a−1
c )/(2p), the probability of the noisy quantum cir-

cuit outperforming the classical algorithm is exponentially
small in system size.

Note that other results in the literature already showed
that quantum advantage is already lost at constant depth for
such problems [20]. However, these results only showed
bounds for the expectation value of the output of the cir-
cuit, whereas bounds like that in Proposition IV.1 provide
concentration inequalities, a significantly stronger result.
However, we do pay the price of having slightly worse
constants for the depth at which advantage is lost compared
to the results of Ref. [20]. We discuss concrete examples
for the bounds we obtain on the depth in Sec. VI.

Above we illustrated our concentration bounds for depo-
larizing noise only, as it corresponds to the simplest noise
model that we can analyze. But our result can be gen-
eralized to all noise models that contract the relative
entropy uniformly with respect to a fixed point of full
rank. However, this generalization comes at the expense of
the bounds not being circuit independent unless the noise
is unital. As before, the first step to obtain concentration
results is to control the decay of the relative entropy under
the noise for Rényi divergences.

010309-7



GIACOMO DE PALMA et al. PRX QUANTUM 4, 010309 (2023)

Lemma IV.1 (Lemma 1 of Ref. [20]). Let N : B(HV) →
B(HV) be a quantum channel with unique fixed point σ >

0 that satisfies a strong data-processing inequality with
constant pα > 0 for some α > 1. That is,

Dα(N (ρ)‖σ) ≤ (1 − pα)Dα(ρ‖σ) (27)

for all states ρ. Then, for any other quantum channels
�1, . . . , �m : B(HV) → B(HV), we have

Dα

( m∏

t=1

(�t ◦ N )(ρ)

∥
∥
∥
∥σ

)

≤ (1 − pα)mDα(ρ‖σ)

+
m∑

t=1

(1 − pα)m−tD∞(�t(σ )‖σ). (28)

We refer the reader to Appendix C for a more detailed
discussion of this result and Lemma C.1 for a proof. In
Appendix C 2 we evaluate the expression in Eq. (28) for
the special case of QAOA circuits converging to diago-
nal product states. Furthermore, in Appendix C 3 we dis-
cuss the performance of the resulting bounds for random
graphs.

In the same appendix we also prove the continuous-time
version of the lemma above that is relevant to quantum
annealers, which we now also state for completeness.

Proposition IV.2. Let L : B(HV) → B(HV) be a Lindbla-
dian with fixed point σq defined as before with q ≥ 1/2.
Suppose that, for some α > 1, we have, for all t > 0 and
initial states, an rα > 0 such that

Dα(etL(ρ)‖σ) ≤ e−rα tDα(ρ‖σ). (29)

Moreover, for functions f , g : [0, 1] → R and T >

0, let Ht : B(HV) → B(HV) be given by Ht(X ) =
i[X , f (t/T)HX + g(t/T)HI ]. Let Tt be the evolution of the
system under the Lindbladian St = L + Ht from time 0 to
t ≤ T. Then, for all states ρ,

Dα(TT(ρ)‖σ) ≤ e−rαTDα(ρ‖σ)

+ 2ne−rαT
(√

q
1 − q

−
√

1 − q
q

)

∫ T

0
erα t|f (t/T)| dt. (30)

Note that the expression in Eq. (28) will converge to
0 as long as �t(σ ) � σ for t close to T. As we argue in
more detail in Appendix C, this is expected to be satisfied
for good QAOA circuits. Furthermore, we explicitly eval-
uate the bound in Eq. (28) in terms of the parameters of

the QAOA circuit in Corollary C.1 in Appendix C or for a
given annealing schedule. These results can then be com-
bined with Theorem IV.1 to understand the concentration
properties of the output. The same holds in principle for
Eq. (30), where this can be visualized more easily: as long
as function f satisfies f (1) = 0, the second term in Eq.
(30) will converge to 0.

We illustrate this concretely in the case of noisy anneal-
ers with a linear schedule in Proposition VI.3.

V. LIMITATIONS OF ERROR-MITIGATED NOISY
VQAS: CONCENTRATION BOUNDS

A possible criticism of bounds like that of Proposition
IV.1 is that they do not take error-mitigation techniques
[66–69] into account. Although there does not seem to be a
widely accepted definition of what error-mitigation entails,
the overarching goal of such protocols is to extract infor-
mation about noiseless circuits by sampling from noisy
ones. Such proposals are expected to be useful before the
advent of fault tolerance to reduce the level of noise present
in the data outputted by NISQ devices.

The majority of existing mitigation protocols require a
significant overhead in the number of samples to extract
the noiseless signal from noisy ones, potentially making
error mitigation prohibitively expensive. Thus, one of the
main questions regarding the viability of error-mitigation
strategies is the scaling of the sampling overhead they
require in terms of the number of qubits, depth, and error
rate.

There already exist some results in the literature dis-
cussing limitations of error mitigation, such as Refs. [35,
36]. They showed that certain error-mitigation protocols
require a sampling overhead that is exponential in system
size at linear circuit depth. Our results in the next sec-
tions suggest that at significantly lower depths it is already
difficult to extract information about the noiseless out-
put state, while also providing concentration bounds for
error-mitigated circuits.

In what follows, we distinguish sampling and weak
error mitigation. To the best of our knowledge, this dis-
tinction has not been made before in the literature. But
in analogy with the terminology for the simulation of
quantum circuits, we call an error-mitigation strategy a
sampling protocol if it allows us to approximately sam-
ple from the output of a noiseless circuit. In contrast, weak
error-mitigation techniques only allow for approximating
expectation values of the outputs of noiseless circuits. Note
that the latter is a weaker condition.

A. Sampling error mitigation and the effect of error
mitigation on classical optimization problems

We start by discussing the effect of noise on known sam-
pling error-mitigation procedures. We believe that these
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are particularly relevant for classical combinatorial opti-
mization problems. This is because, for such problems, one
is often not necessarily interested in estimating the ground-
state energy, but rather in obtaining a string of low energy
that corresponds to a good solution. And for this, it would
be necessary to obtain a sample.

To the best of our knowledge, the only error-mitigation
technique that allows for sampling from the noiseless
state is virtual distillation or cooling [33,34]. Going into
the details of this procedure is beyond the scope of this
manuscript. It suffices to say that it takes as an input k
copies of the output of a noisy quantum circuit and aims
at preparing state ρk/tr[ρk]. Under some assumptions, one
can then show that this state has an exponentially in k
larger overlap with the output of the noiseless circuit.
However, as this is clearly not a linear transformation, it
can only be implemented stochastically. The success prob-
ability of the transformation is given tr[ρk] ≤ tr[ρ2]. As
before, for simplicity, we state our no-go results for the
case of local depolarizing noise and leave the proof and
the more general case to Appendix C 2. We then have the
following result.

Proposition V.1. LetNV be a depth-L unitary circuit inter-
spersed by one-qubit depolarizing noise with depolarizing
probability p. Then, for any initial state ρ and k ≥ 2, the
probability that virtual cooling or distillation succeeds is
bounded by

tr[NV(ρ)k] ≤ tr[NV(ρ)2]

≤ exp(− log(2)(1 − (1 − p)2L)n). (31)

The proof of Proposition V.1 can be found in Proposition
D.1 in Appendix D. Thus, we conclude from Eq. (31) that
unless the local noise rate is p = O(n−1), virtual distilla-
tion protocols will require an exponential in system size
number of samples to be successful even after one layer
of the circuit. We remark that our results essentially imply
the same conclusions for general local, unital noise. For
nonunital noise driving the system to a product state, we
obtain the following statement.

Lemma V.1. Let τq = q |0〉 〈0| + (1 − q) |1〉 〈1|, and
assume without loss of generality that q ≤ 1/2. Then, for
any state ρ ∈ SV with n = |V| such that

D2(ρ‖τ⊗n
q ) ≤ (1 − ε − log(2(1 − q)))n, (32)

the probability that virtual cooling or distillation succeeds
is bounded by 2−εn.

That is, for more general fixed points, the virtual cool-
ing or distillation will succeed with exponentially small
probability if the relative entropy has decayed by a fac-
tor of log(2q). As was the case with the concentration

FIG. 1. Schematic of an error-mitigation protocol.

bounds, we see that our bounds become weaker as the fixed
point becomes purer. Furthermore, it is also possible to
immediately apply the results derived in Appendix C to
estimate when the entropy has contracted enough such that
the success probability becomes exponentially small.

B. Weak error mitigation with regular estimators

We now see that the techniques of the last sections
also readily apply to weak error-mitigation techniques that
are regular in a sense that will be made precise later.
To the best of our knowledge, all weak error-mitigation
techniques have the following basic building blocks and
parts.

(1) Take the outcome of m (noisy) quantum circuits
E1, . . . , Em with initial states ρ1, . . . , ρm.

(2) Add auxiliary qubits and perform a collective noisy
circuit � on the output of the m circuits.

(3) Perform a measurement on the m systems.
(4) Postprocess the outcomes of the measurements and

output an estimate.

This is illustrated in Fig. 1. It is easy to see that points (2),
(3), and (4) can all be collectively modeled by applying
a global projective measurement M := {Ms}s∈S on state⊗m

i=1 Ei(ρi) ⊗ |0〉 〈0|⊗k, where we assume that we have
access to k auxiliary systems. Here the projection-valued
measure (PVM) is indexed from some classical sample
space S , followed by a classical procedure mapping each
measured output s ∈ S to a real value f (s) through a func-
tion f : S → R. The hope is then that f (s) provides a
good estimate for some property of the noiseless circuit.

Equivalently, we are interested in the probabilistic prop-
erties of the observable

X :=
∑

s∈S
f (s)trA(IS ⊗ |0〉 〈0|⊗k Ms) (33)
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in the output state ρout := ⊗m
i=1 Ei(ρi) of the original noisy

circuit, where we have traced out the auxiliary systems
used in the mitigation process.

In order to obtain concentration inequalities for error-
mitigation protocols, we impose a bit more structure on
the estimators. To make our motivation for our further
assumptions clear, we use as our guiding example the
most naive of all error-mitigation protocols for an opti-
mization task: sampling m times from the quantum device,
evaluating the energy of each outcome and outputting the
minimum; i.e., just repeating the experiment often enough.
First, we assume that the PVM is indexed by labels s ∈
Rm. In the case of the minimum strategy discussed before,
the individual entries of this vector would correspond to
the energy we observed on each one of the m copies. Fur-
thermore, we assume that f is Lf Lipschitz with respect to
the �∞ norm on Rm, i.e.,

sup
s,s′∈Rm

|f (s) − f (s′)|
‖s − s′‖�∞

≤ Lf .

In the case of the minimum strategy, f would correspond
to the minimum in Rm, for which we have Lf = 1. Let us
justify the assumption that f is Lipschitz by looking in a
bit more detail at the case of the POVM measuring copies
independently. In that case, f being Lipschitz with respect
to �∞ corresponds to requiring that the error-mitigated esti-
mate should not depend too strongly on any individual
sample, a robustness condition that is desirable in the pres-
ence of noise. Finally, we assume that the error-mitigation
procedure concentrates when given trivial, product states:

Pσ⊗m(‖s − E(s)‖�∞ ≥ rn) ≤ K(m)exp
(

− cr2n
�2

0

)

(34)

for some function K(m).
Let us discuss this assumption once again in the case

of taking the minimum of measuring the energy of a
Hamiltonian H m times. In that case, each measurement
satisfies Gaussian concentration for some c and �0 =
‖σ−1/2Hσ 1/2‖L. Thus, it follows from a union bound that,
for taking independent measurements, Eq. (34) holds with
K(m) = m.

Now that we have formulated the error-mitigation proto-
col in this way, we can immediately apply the same reason-
ing as in Proposition IV.1 to understand the concentration
properties of the error-mitigation procedure.

Theorem V.1. For an error-mitigation observable X as in
Eq. (33), assume that, for a given state σ , Eq.(34) holds for
some function K(m). Furthermore, assume that, for r, ε >

0, given that we have, for all 1 ≤ i ≤ m, D2(Ei(ρ)‖σ) ≤

c(r2 − ε)n/ml20, then

Pρout(|X − f (Eσ⊗m(s))I| > rLf n) ≤ exp
(

− cεn
�2

0

)

.

(35)

We leave the proof of Theorem V.1 to Appendix I. We
see that the amount by which the Rényi entropy has to
decrease to ensure that we are in the regime where we
obtain concentration from Eq. (35) is connected to the
Lipschitz constant of X and the number of copies m. For
instance, under local depolarizing noise with depolarizing
probability p , this happens at depth O(p−1 log(ml0)).

One way of interpreting the bound in Eq. (35) is that
the probability that the estimate we obtain from the output
of the error-mitigation algorithm with input given by the
noisy states to that with the fixed point of the noise as input
is exponentially small. Thus, the noisy outputs are useless:
we could have just sampled from the product state σ⊗m

instead and observed similar outcomes.
However, it might be hard to control the Lipschitz con-

stant Lf in general scenarios. Moreover, many mitigation
protocols in the literature [66–69] involve estimating the
mean of random variables that take exponentially large
values. Thus, their Lipschitz constant will typically also
be exponentially large, constraining the applicability of
Theorem V.1.

VI. EXAMPLE: FINDING THE GROUND STATE
OF ISING HAMILTONIANS IN THE NISQ ERA

Given a matrix A ∈ Rn×n and a vector b ∈ Rn, we
define the Hamiltonian

HI = −
n∑

i,j =1

Ai,j ZiZj −
n∑

i=1

biZi. (36)

It is well known how to formulate various NP-complete
combinatorial optimization problems as finding a string
that minimizes the energy of HI . This has motivated the
pursuit of NISQ algorithms for this task, including the
QAOA [11] or the closely related quantum annealing
algorithm.

Let us briefly describe the QAOA algorithm. Given a
P ∈ N and vectors of parameters γ , τ ∈ RP, the QAOA
unitary is given by

Vγ ,β =
P∏

k=1

eiβkHX eiγkHI , (37)

where HX = −∑n
i=1 Xi. The hope of QAOA is that, by

optimizing over parameters γ , β, measuring Vγ ,β |+〉⊗n

in the computational basis will yield low-energy strings
for Hamiltonian (36) even for moderate values of P. In
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what follows we distinguish the depth of the QAOA ansatz
(denoted by P) from the physical depth of the circuit being
implemented in the device (denoted by L).

In recent years, several works have identified limitations
on the performance of constant depth circuits in outper-
forming classical algorithms for this problem [16,18], even
in the absence of noise. These results were then later
extended to short-time quantum annealing [19].

Taking the noise into consideration, recent works have
shown that QAOA is outperformed by efficient classi-
cal algorithms at a depth that is proportional to the local
noise rate [20]. However, those works only considered the
expected value of the output string. Considering that the
goal of QAOA is to obtain one low-energy string, to com-
pletely discard exponential advantages of QAOA and other
related algorithms at a depth that depends only on local
noise rates, it is important to also obtain concentration
inequalities for the outputs.

As mentioned before, Proposition IV.1 already allows
us to conclude that quantum advantage will be lost against
classical algorithms at constant depth. With the techniques
presented in this work, it is also straightforward to obtain
concentration bounds for concrete instances. Indeed, given
that a classical algorithm found a string with given energy
−aCn, we can easily bound the depth at which the bound
in Proposition IV.1 kicks in and the quantum device is
exponentially unlikely to yield a better result.

A. Max-cut problem

In this subsection, we analyze the performances of quan-
tum circuits for the max-cut problem. Let G = (V, E) be a
graph. The cut of a bipartition of V is the number of edges
that connect the two parts. The max-cut problem consists
in finding the maximum cut of G, which we denote with
Cmax. The best classical algorithm for the max-cut problem
is due to Goemans and Williamson [70] and can obtain a
string whose cut is at least 0.878 Cmax. As in Ref. [16], we
consider circuits that commute with σ⊗n

x , which include the
QAOA circuit. We prove that the algorithm by Goemans
and Williamson cannot be outperformed by

(i) noiseless circuits with shallow depth (Theorem
VI.1);

(ii) noisy circuits with any depth (Theorem VI.2).

We assume that G is bipartite, i.e., Cmax = |E|, and is reg-
ular with degree D, i.e., each vertex belongs to exactly D
edges. Without loss of generality, we assume that V = [n].
We associate to each bipartition V = V0 ∪ V1, V0 ∩ V1 = ∅
the bit string x ∈ {0, 1}n such that xi = j if i ∈ Vj . We
denote with C(x) the cut of such bipartition. We also
assume that G satisfies

C(x) ≥ h min{|x|, n − |x|}, h = D
2

− √
D − 1, (38)

for any x ∈ {0, 1}n, where |x| denotes the Hamming weight
of x, i.e., the number of components of x that are equal to
1. For any D ≥ 3, Ramanujan expander graphs constitute
an example of graphs with such property [71–73]. More-
over, random D-regular bipartite graphs approach bound
(38) with high probability [74].

The max-cut problem for G is equivalent to maximizing
the n-qubit Hamiltonian

H =
∑

x∈{0,1}n

C(x) |x〉〈x| = 1
2

∑

(j ,k)∈E

(I − σ j
z σ k

z ), (39)

where, for any j ∈ [n], σ j
z is the Pauli-Z matrix acting on

qubit j .

Theorem VI.1 (Noiseless max-cut problem). Let G be
a regular bipartite graph with n vertices satisfying bound
(38), and let H be the associated max-cut Hamiltonian
(39). Let ρ be the output of a noiseless quantum circuit
as in Definition II.1 made by L layers, where each layer
consists of a set of unitary gates acting on mutually dis-
joint couples of qubits. We assume that the input state of
the circuit and each unitary gate commute with σ⊗n

x . Then,
if

tr[ρH ] ≥ Cmax

(
5
6

+
√

D − 1
3D

)

, (40)

we must have

L ≥ 1
2

log2
n

576
. (41)

Furthermore, if ρ is generated by the QAOA circuit (37)
with depth P, we must have

P ≥ 1
2 log(D + 1)

log
n

576
. (42)

Remark VI.1: For any D ≥ 55, we have

5
6

+
√

D − 1
3D

< 0.878; (43)

therefore, any quantum algorithm that outperforms the
algorithm by Goemans and Williamson must generate a
state satisfying Eq. (40).
Remark VI.2: Under the same hypotheses of Theorem
VI.1, Bravyi et al. [16, Corollary 1] proved that

P ≥ 1
3(D + 1)

log2
n

4096
. (44)

Our result (42) provides an exponential improvement over
Eq. (44) with respect to D. Already for D = 55, the right-
hand side of Eq. (44) is larger than 1 only for n = �(1054),
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while the right-hand side of Eq. (42) is larger than 1 already
for n = �(106).

Proof of Theorem VI.1. Circuit made of two-qubit gates.
From Proposition III.2, ρ satisfies a (2, ∞)-Poincaré
inequality with constant

C ≤ 22L+2. (45)

Let

A =
{

x ∈ {0, 1}n : dH (x, xopt) ≤ n
3

}

,

B =
{

x ∈ {0, 1}n : dH (x, x̄opt) ≤ n
3

}

,
(46)

and let X be the random outcome obtained measuring ρ

in the computational basis. Proposition H.1 in Appendix H
implies that

P(X ∈ A) = P(X ∈ B) ≥ 1
4 , (47)

and Eq. (12) of Theorem III.1 together with Eq. (45)
implies that

n
3

≤ dH (A, B) ≤ 2L+3√n. (48)

Claim (41) follows.
QAOA circuit. From Proposition III.2, ρ satisfies a

(2, ∞)-Poincaré inequality with constant

C ≤ 4(D + 1)2P. (49)

Proceeding as in the previous case, we get

n
3

≤ dH (A, B) ≤ 8(D + 1)P√
n, (50)

and claim (42) follows. �

Theorem VI.2 (Noisy max-cut problem). Under the
same hypotheses as Theorem VI.1, let each layer of the
circuit be followed by depolarizing noise with depolarizing
probability p applied to each qubit. Then,

n ≤ 3 · 22/p+8. (51)

For p = 0.1, bound (51) gives n ≤ 8 × 108.

Proof. If n ≤ 3072, bound (51) is empty. We can then
assume that n ≥ 3072. Proceeding as in the proof of

Theorem VI.1 and employing Proposition III.1 in place of
Proposition III.2, we get

n ≤ 3 · 22L+8. (52)

Let us consider the following operator associated with the
Hamming distance from xopt:

K =
∑

x∈{0,1}n

dH (x, xopt) |x〉〈x| − n
2

I. (53)

We have tr K = 0 and ‖K‖L = 1; therefore, Proposition
IV.1 implies that, for any ε > 0, upon measuring K on ρ

we have

P(|K | ≥ (ε + (1 − p)2L)n) ≤ 2e−εn/2. (54)

Proposition H.1 in Appendix H implies that

P

(∣
∣
∣
∣
1
n

dH (X , xopt) − 1
2

∣
∣
∣
∣ ≥ 1

6

)

≥ 1
2

, (55)

and choosing in Eq. (54)

ε = 1
6 − (1 − p)2L, (56)

we get

(1 − p)2L ≥ 1
6 − 4

n ln 2 ≥ e−2; (57)

hence,

L ≤ − 1
ln(1 − p)

≤ 1
p

. (58)

The claim follows by combining Eqs. (52) and (58). �

B. Short-time evolution of local Hamiltonians

Quantum annealing constitutes another family of heuris-
tic algorithms to solve optimization problems. Similar to
the variational algorithms discussed earlier, the goal in
quantum annealing is to find the lowest energy of a clas-
sical Hamiltonian that encodes the optimization problem.
To find the lowest energy of the optimization Hamilto-
nian, we can start from a local Hamiltonian whose ground
state is easy to prepare, for example −∑

i Xi, and contin-
uously change the Hamiltonian to the desired optimization
Hamiltonian HI :

H(t) = −a(t)
∑

i

Xi + b(t)HI (59)

with a(0) = b(T) = 1, a(T) = b(0) = 0, and T the final
evolution time. The adiabatic theorem [75] guarantees that
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if we start from the ground state of the initial Hamilto-
nian and evolve the system slowly enough, the final state
would be close to the ground state of the optimization
Hamiltonian, which can be found by measurement in the
computational basis at the final time. Since noise restricts
the total time that coherence in the system is preserved,
understanding the limitations of short-time evolution of
local Hamiltonians seems crucial. The presented (2, ∞)-
Poincaré inequality provides bounds on the performance
of short-time quantum annealers.

Proposition VI.1 (Short-time evolution of local Hamil-
tonians). Let σ be the quantum state generated by evolv-
ing a product state with a continuous-time local quantum
process as in Sec. III B for time t ≥ 0. Let μσ be the prob-
ability distribution of the outcome of the measurement in
the computational basis performed on σ . Then, for any
A, B ⊆ {0, 1}V, we have

dH (A, B) ≤
√

c0 + c1evt
√

|V|(μσ (A)−1/2 + μσ (B)−1/2),

where dH denotes the Hamming distance, v = eb(2D − 1),
D is the maximum degree of the interaction graph, b is the
maximum interaction strength and

c0 = 64Mδδ , c1 = 64M
2D − 1

Li−2(δ−1)(e−1), (60)

where Lis(z) is the polylogarithm function of order s and
argument z and δ is the spatial dimension of the interaction
graph.

Remark VI.3: Crucially, both c0 and c1 are independent
of the number of qubits.

Proof of Proposition VI.1. We start by deriving an upper
bound on Ct of Theorem III.1. We note that by the
definition of i0 we have 2δ − 1 ≤ d(i0) ≤ 2δ, and there-
fore, using |Se(k)| ≤ M kδ−1, we have i0 ≤ ∑2δ

k=0 |Se(k)| ≤
2δM δδ−1 + 1 = 2Mδδ + 1. Also, we have

n∑

i=i0

d(i)δ−1e−d(i) ≤
n∑

k=2δ−1

|Se(k)|kδ−1 e−k

≤ M
n∑

k=2δ−1

k2(δ−1)e−k

≤ MLi−2(δ−1)(e−1). (61)

Putting these two bounds together, we have

Ct ≤ (c0 + c1evt)2. (62)

The claim follows by applying Theorem III.1. �

Considering the example of generating a generalized
GHZ state, where dH (A, B) = n and μσ (A) = μσ (B) =
1/2, we have

1
v

log
(

n
8c1

− c0

c1

)

≤ t, (63)

and, therefore, at least O(log(n)) time is required to gener-
ate generalized GHZ states using local Hamiltonians. Note
that this bound also provides a minimum time required by
local Hamiltonians to simulate unitaries that are capable of
generating generalized GHZ states starting from product
states, such as n-qubit fan-out gates.

The short-time evolution of local Hamiltonians also
limits their performance to solve the max-cut problem dis-
cussed in Sec. VI A. Note that both the initial state and the
annealing Hamiltonian of Eq. (59) with the final Hamilto-
nian HI corresponding to the max-cut problem commute
with σ⊗n

x , and therefore the techniques of Theorem VI.1
directly lead to a proof for the limitation of short-time
evolution of the local Hamiltonian for the optimization
task.

Proposition VI.2. Consider the max-cut problem Hamil-
tonian HI as discussed in Theorem VI.1, and the corre-
sponding annealing Hamiltonian in the form (59). Let ρ be
evolved states after time T. Then, if

tr[ρH ] ≥ Cmax

(
5
6

+
√

D − 1
3D

)

, (64)

we must have

T ≥ 1
v

ln
( √

n
12c1

− c0

c1

)

. (65)

Proof. From Eqs. (48) and (12) of Theorem III.1, we have

n
3

≤ dH (A, B) ≤ 4
√

Ct
√

n, (66)

which can be combined with Eq. (62) to obtain
√

n
12

≤ c0 + c1evT. (67)

The claim follows. �

C. Noisy QAOA beyond unital noise

In this subsection we discuss the performance of our
bounds for QAOA beyond the case of unital noise. As
mentioned before, if the noise is not unital, our bounds on
the relative entropy decay are not independent of the cir-
cuit being implemented. Thus, we need to pick a promising
family of QAOA parameters to apply our results.
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FIG. 2. Relative entropy density of the output of a QAOA cir-
cuit of P = 17 layers for various fixed points τ⊗n

q as a function
of the contraction coefficient and D = 50. We use the optimal
parameters found in Ref. [76] for our circuit. The threshold we
use is that in Eq. (68) and we use Corollary C.1 to estimate the
relative entropy decay. Although we see that our bounds have
a worse performance as q → 1, the amount of noise we can
tolerate is still independent of the system’s size.

A natural candidate of instances to analyze is the max-
cut problem on random regular graphs of high girth. This is
because in Ref. [76] the authors derived the optimal param-
eters for QAOA for such graphs in the large-n limit for up
to 17 layers. Furthermore, they showed that these QAOA
circuits achieve an expected value for the cut that is higher
than what known provably efficient classical algorithms
achieve. Although these parameters are only optimal in the
absence of noise, we analyze their performance in the pres-
ence of nonunital noise driving the system to the classical
state τ⊗n

q with τq = q |0〉 〈0| + (1 − q) |1〉 〈1|.
As explained in Appendix C 3, we show that, as long as

output ρ of a noisy QAOA circuit satisfies

D2(ρ‖τ⊗n
q ) <

((1 − 2q)2D/2 + 2
√

D/π)2

2D2 n (68)

for a D-regular graph, the probability that the noisy circuit
outperforms classical methods is exponentially small. See
Fig. 2 for when this is achieved in terms of the contraction
coefficient.

Although Fig. 2 seems to suggest that advantage is only
lost at high noise levels as the fixed point becomes purer,
recall that, when implementing the QAOA circuit on the
actual device, the circuit depth will be significantly larger
than 17. Indeed, in the plot, we take D = 50, which means
that a circuit of depth at least 50 of two-qubit gates is
required to implement each layer of eiγiHI t. If we further
incorporate the compilation of gates and the fact that NISQ
devices are unlikely to have all-to-all connectivity, which
imposes extra layers of SWAP gates, the depth required to

implement each layer of QAOA with D = 50 will conser-
vatively be of order at least 102. Thus, it is also reasonable
to assume that the effective noise rate when implementing
a layer of the QAOA circuit will be 2 orders of magnitude
larger than the physical noise rate.

More generally, our bounds predict that quantum advan-
tage will be lost whenever the QAOA parameters satisfy
βk → 0 as k → ∞. This is the case for the optimal param-
eters found in Ref. [76]. This is because, for such parame-
ters, the relative entropy between the output of the circuit
and τ⊗n

q decays to 0. This is illustrated more clearly in
the continuous-time case of quantum annealing we discuss
now.

D. Noisy quantum annealing beyond unital noise

In this subsection, we illustrate the bound in Proposition
IV.2 for the case of noisy annealers with a linear schedule.
That is, function f in the statement is just given by f (t) =
(1 − t). Furthermore, we assume that the time-independent
Lindlbadian of spectral gap 1 is driving the system to the
product state τ

⊗q
q with τq = q |0〉 〈0| + (1 − q) |1〉 〈1| for

q < 1/2.

Proposition VI.3. For 0 < q ≤ 1/2 and T > 0, let

r2 = 2
1 − q

log(q−1)
(69)

and let

h(T) = e−r2T log
(

1 + 2(q − q2)1/2

4(q − q2)

)

+ (2q − 1)(1 − e−r2TrT − e−r2T)

(q(1 − q))1/2r2
2T

. (70)

Furthermore, let Tt be defined as in Proposition IV.2 and
f (t) = (1 − t). Then, for the initial state |+〉⊗n and ρT =
TT(|+〉 〈+|⊗n), we have

PρT(HI ≤ (tr([τ⊗n
q HI ] − 2−1/2(h(T) + ε)1/2‖HI‖Lipn)I)

≤ exp
(

− εn
2

)

. (71)

We refer the reader to Appendix C 4 for a discussion
of this result and Proposition C.3 in the same section for
a proof. But the take-away message from Proposition VI.3
is that we can still derive concentration inequalities beyond
unital noise. However, the bounds get looser as q → 0 (i.e.,
the fixed point becomes pure) and the decay of the relative
entropy is polynomial instead of exponential.

We can reach similar conclusions for the purity of the
output and, thus, for the probability that virtual cooling
succeeds.
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Proposition VI.4. For 0 < q ≤ 1/2 and T > 0, let

r2 = 2
1 − q

log(q−1)
, (72)

and let h(T) be as in Eq. (70). Furthermore, let Tt be
defined as in Proposition C.1 in Appendix C and f (t) =
(1 − t). For the initial state |+〉⊗n, let T be large enough
for h(T) ≤ 1 − log(2(1 − q)) − ε to hold for some ε > 0.
Then the probability that virtual cooling or distillation
succeeds is at most exp(−εn).

We refer the reader to Appendix C 4 for a proof.

VII. CONCLUSION AND OPEN PROBLEMS

In this work we have used techniques of quantum opti-
mal transport to derive various concentration inequalities
for quantum circuits. In particular, we showed quadratic
concentration for shallow circuits and Gaussian concentra-
tion for noisy circuits at large enough depth and Lipschitz
observables.

By applying such inequalities to variational quantum
algorithms such as QAOA or quantum annealing algo-
rithms, we showed that, for most instances, the probability
that these algorithms outperform classical algorithms is
exponentially small whenever the circuit has a nontrivial
density of errors. Furthermore, we obtained self-contained
and simplified proofs of previous results on the limitations
of QAOA.

Our work demonstrates the relevance of quantum opti-
mal transport methods to near-term quantum computing.
Furthermore, it closes a few important gaps in previous
results on limitations of variational quantum algorithms.

An important problem that is left by our work is whether
it is also possible to obtain Gaussian concentration inequal-
ities for the outputs of shallow circuits. After posting the
first version of the present work, Anshu and Metger [77]
found a different method based on polynomial approxi-
mations for showing that the output distributions in fact
satisfy a stronger Gaussian concentration bound, hence
answering this question.
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APPENDIX A: NOTATION

We consider a set V corresponding to a system of |V| =
n qudits, and denote by HV = ⊗

v∈V C
d the Hilbert space

of n qudits and by B(HV) the algebra of linear operators
on HV. We denote by OV the self-adjoint linear opera-
tors on HV, whereas OT

V ⊂ OV is the subspace of traceless
self-adjoint linear operators. By O+

V we denote the sub-
set of positive semidefinite linear operators on HV, and
SV ⊂ O+

V denotes the set of quantum states. Similarly,
we denote by PV the set of probability measures on [d]V.
Given an operator X ∈ B(HV), we denote by X † its adjoint
with respect to the inner product of HV. Similarly, the
adjoint of a linear map N : B(HV) → B(HV) with respect
to the trace inner product is denoted by N †. For any sub-
set A ⊆ V, we use the standard notation OA,SA, . . . for
the corresponding objects defined on subsystem A. Given
a state ρ ∈ SV, we denote by ρA its marginal on subsys-
tem A. For any X ∈ OV, we denote by ‖X ‖p its Schatten
p norm. For any region A ⊂ V, the identity on OA is
denoted by IA, or more simply I. Given an observable
O, we define 〈O〉σ = tr[σO]. Moreover, given a number
a ∈ R, we define {O ≥ a} to be the projector onto the sub-
space spanned by the eigenvectors of O corresponding to
eigenvalues greater than or equal to a. We denote the prob-
ability of measuring an eigenvalue of O greater than a ∈ R

in state σ as Pσ (O ≥ a) := tr[σ {O ≥ a}]. Given two prob-
ability measures μ, ν over a common measurable space,
μ � ν means that μ is absolutely continuous with respect
to ν. We make use of the sandwiched Rényi divergences
[41,42] of order α ∈ (1, +∞). For two states ρ, σ such that
the support of ρ is included in the support of σ , they are
defined as

Dα(ρ‖σ) = 1
α − 1

log tr[(σ (1−α)/2αρσ (1−α)/2α)α].

We also consider the relative entropy we obtain by taking
the limit α → ∞,

D∞(ρ‖σ) = log(‖σ−1/2ρσ−1/2‖∞),

and the usual Umegaki relative entropy between two quan-
tum states ρ, σ , defined as

D(ρ‖σ) := tr[ρ (log ρ − log σ)],
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which corresponds to the limit α → 1. In case the support
of ρ is not contained in that of σ , all the divergences above
are defined to be +∞.

APPENDIX B: RÉNYI DIVERGENCES AND
CONCENTRATION INEQUALITIES

In this section, we show how to use Rényi diver-
gences to transfer results about concentration from one
state to another. These divergences can be used to transfer
concentration inequalities between states as follows.

Lemma B.1 (Transferring concentration inequalities).
Let ρ and σ > 0 be two quantum states on HV. Then,
for any positive operator-valued measure (POVM) element
0 ≤ E ≤ I and α > 1, we have

tr[Eρ] ≤ exp
[
α − 1

α
(Dα(ρ‖σ) + log(tr[Eσ ]))

]

. (B1)

In particular, if σ satisfies the Gaussian concentration
inequality

Pσ

(|O − 〈O〉σ | ≥ a|V|) ≤ K exp
(

− ca2|V|
‖σ−1/2Oσ 1/2‖2

L

)

for some constants c, K > 0, then, for any α > 1,

Pρ(|O − 〈O〉σ | ≥ a|V|)

≤ exp
[
α − 1

α

(

Dα(ρ‖σ)− ca2|V|
‖σ−1/2Oσ 1/2‖2

L
+ log(K)

)]

.

(B2)

Proof. We have

tr[Eρ] = tr[σ−(1−α)/2αEσ−(1−α)/2ασ (1−α)/2αρσ (1−α)/2α]

≤ tr[(σ−(1−α)/2αEσ−(1−α)/2α)α
′
]1/α′

× tr[(σ (1−α)/2αρσ (1−α)/2α)α]1/α

by an application of Hölder’s inequality with α′ the Hölder
conjugate of α. Next, by the Araki-Lieb-Thirring inequal-
ity,

tr[(σ−(1−α)/2αEσ−(1−α)/2α)α
′
]

≤ tr[σ−(1−α)α′/2αEα′
σ−(1−α)α′/2α]

≤ tr[σ−(1−α)α′/2αEσ−(1−α)α′/2α], (B3)

where in the last inequality we have used the facts that α′ >

1 and E ≤ I. Furthermore, as α′ is the Hölder conjugate of

α, we have 1/α′ = (α − 1)/α and then

tr[σ−(1−α)α′/2αEσ−(1−α)α′/2α] = tr[σE].

The claim in Eq. (B1) then follows from a simple manipu-
lation and by noting that

tr[(σ (1−α)/2αρσ (1−α)/2α)α]1/α = exp
(

α − 1
α

Dα(ρ‖σ)

)

.

Equation (B2) also immediately follows from plugging in
the Gaussian concentration bound. �

APPENDIX C: ENTROPIC CONVERGENCE
RESULTS

In this section we collect some results that allow us to
estimate the sandwiched Rényi divergence between the
output of a noisy quantum circuit or annealer and the
fixed point of the noise affecting the device. In essence,
these results are a generalization of the results of Ref.
[20, Lemma 1 and Theorem 1]. In that work, the authors
showed precisely the same bounds as here, but only for
the Umegaki relative entropy. However, their proofs can
immediately be adapted to our setting with Rényi diver-
gences. Thus, we restrict ourselves to showing how to
obtain a convergence result for discrete-time circuits and
do not describe the same proof for continuous time in full
detail.

Lemma C.1 (Lemma 1 of Ref. [20]). Let N : B(HV) →
B(HV) be a quantum channel with unique fixed point σ >

0 that satisfies a strong data-processing inequality with
constant pα > 0 for some α > 1. That is,

Dα(N (ρ)‖σ) ≤ (1 − pα)Dα(ρ‖σ) (C1)

for all states ρ. Then, for any other quantum channels
�1, . . . , �m : B(HV) → B(HV), we have

Dα

( m∏

t=1

(�t ◦ N )(ρ)

∥
∥
∥
∥σ

)

≤ (1 − pα)mDα(ρ‖σ)

+
m∑

t=1

(1 − pα)m−tD∞(�t(σ )‖σ). (C2)

Proof. For m = 1, this follows from the data-processed
triangle inequality of Ref. [78, Theorem 3.1]. In their
notation, it states that, for any quantum channel P, states
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ρ, σ , σ ′, and α ≥ 1, we have

Dα(P(ρ)‖σ) ≤ D(ρ‖σ ′) + D∞(P(σ ′)‖σ).

Setting P = �1 and σ ′ = σ , in their notation it implies that

Dα((�1 ◦ N )(ρ)‖σ) ≤ Dα(N (ρ)‖σ) + D∞(�1(σ )‖σ)

≤ (1 − pα)Dα(ρ‖σ) + D∞(�1(σ )‖σ). (C3)

Let us now assume the claim to be true for some m = k.
Then, for m = k + 1, we have

Dα

( k+1∏

t=1

(�t ◦ N )(ρ)

∥
∥
∥
∥σ

)

≤ (1 − pα)kDα

((�k+1 ◦ N )(ρ)‖σ) +
k∑

t=1

(1 − pα)k−tD∞(�t(σ )‖σ)

(C4)

by our induction hypothesis. Applying Eq. (C3) to the first
term in Eq. (C4), the strong data-processing inequality, we
obtain the claim. �

Note that Lemma C.1 implies that the Rényi divergence
will converge to 0 whenever �t(σ ) � σ as t → ∞. This is
always the case for unitary circuits under unital noise, as
the fixed point is the maximally mixed state and is invari-
ant under unitaries, but is also expected to hold for QAOA
circuits. See Sec. VI for examples of such circuits.

We can also show similar statements for continuous-
time evolutions under noise to also study quantum simu-
lators or annealers.

Lemma C.2 (Theorem 1 of Ref. [20]). Let L : B(HV) →
B(HV) be a Lindbladian with fixed point σ . Suppose that,
for some α > 1, we have, for all t > 0 and initial states, an
rα > 0 such that

Dα(etL(ρ)‖σ) ≤ e−rα tDα(ρ‖σ). (C5)

Moreover, let Ht : B(HV) → B(HV) be given by Ht(X ) =
i[X , Ht] for some time-dependent Hamiltonian Ht. More-
over, let Tt be the evolution of the system under the
Lindbladian St = L + Ht from time 0 to t. Then, for all
states ρ and times t > 0,

Dα(Tt(ρ)‖σ) ≤ e−rα tDα(ρ‖σ)

+
∫ t

0
e−rα(t−τ)‖σ−1/2[σ , Hτ ]σ−1/2‖∞ dτ . (C6)

Thus, armed with contraction inequalities like those in
Eqs. (C1) and (C5), it is straightforward to obtain estimates
on Rényi entropies. For completeness, we collect some
known results and techniques to obtain such contraction
inequalities in the next section.

1. Contraction results for sandwiched Rényi
divergences

Let us now collect some known results to obtain inequal-
ities like those in Eqs. (C1) and (C5). We focus on the case
where the noise has a product form, i.e., N = ⊗n

i=1 Ni,
where Ni acts only on qubit i. Although it is straightfor-
ward to generalize the results to the case in which there is
a different channel acting on each qubit, we make the sim-
plifying assumption that all local channels are the same.
Furthermore, we focus on inequalities that tensorize. This
means that qα will not scale with the size of the system
n. To the best of our knowledge, strong data-processing
inequalities are not available for Rényi entropies beyond
product channels.

Let us start with the continuous-time setting, as more
is known there. For continuous time, the contraction of
Rényi entropies was systematically studied in Ref. [63]. In
particular, in Theorem 4.3 of Ref. [63] the authors related
bounds on the optimal decay rate rα to so-called logarith-
mic Sobolev inequalities [59,62,64,79]. It is beyond the
scope of this article to review logarithmic Sobolev inequal-
ities and we focus instead on the contraction rate these
tools give to the problem at hand.

If we have a Lindbladian of the form

L(n) = L ⊗ idn−1 + id1 ⊗ L ⊗ idn−2 + · · · + idn−1 ⊗ L

with unique fixed point
⊗n

i=1 σ , then

D2

(

etL(n)
(ρ)

∥
∥
∥
∥

n⊗

i=1

σ

)

≤ e−r2tD2

(

ρ

∥
∥
∥
∥

n⊗

i=1

σ

)

(C7)

holds with

r2 = 2λ(L)
1 − 1/‖σ−1‖
log(‖σ−1‖) , (C8)

where λ(L) is the spectral gap of the local Linbladian L.
For instance, for generalized depolarizing noise, we have
λ(L) = 1. The take-home message of Eq. (C8) is that, as
long as ‖σ−1‖ = O(1), the rate with which the sandwiched
Rényi-2 divergence contracts is constant as well. It is also
possible to use similar tools to derive the contraction for
other values of α > 1 and we refer the reader to Refs. [61,
63] for a more detailed discussion. However, to the best of
our knowledge, all known results exhibit a similar scaling
to that in Eq. (C8) and we do not discuss this further.

In discrete time, the best results available are, to the best
of our knowledge, those of Ref. [61, Corollary 5.5, 5.6]. To
parse their results, we first need to introduce some notation.
For a given σ , we denote by �α

σ : B(H) → B(H) the map
X �→ σα/2X σα/2 and by Dp ,σ the generalized depolarizing
channel converging to state σ [i.e., ρ �→ (1 − p)ρ + pσ ].
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It follows from Corollary 5.6 of Ref. [61] that if, for a
quantum channel Ni with fixed point σ , we have

‖�−1/2 ◦ Ni ◦ D−1
p ,σ ◦ �1/2‖2→2 ≤ 1, (C9)

then, for any state ρ on n qudits,

D2

( n⊗

i=1

Ni(ρ)

∥
∥
∥
∥

n⊗

i=1

σ

)

≤ (1 − p)‖σ
−1‖∞−1/‖σ−1‖∞ log(‖σ−1‖∞)D2

(

ρ

∥
∥
∥
∥

n⊗

i=1

σ

)

.

(C10)

The expressions in Eqs. (C9) and (C10) may seem daunt-
ing at first, so let us digest them a bit further and summarize
their message. First, note that Eq. (C9) only involves one
copy of the quantum channel, whereas the expression in
Eq. (C10) involves arbitrarily many. Thus, this is an exam-
ple of an inequality that tensorizes. Furthermore, note that
Eq. (C9) can be verified efficiently. This is because it just
corresponds to checking whether the operator norm of a
linear operator is smaller than or equal to one or not, which
can be computed in polynomial time. Thus, by performing
a binary search on the values of p for which the inequal-
ity holds, we can approximate the largest p for which it
holds. Then Eq. (C10) tells us that once we establish such
an inequality, the Rényi-2 divergence will contract by a
rate that is independent of the system size. The take-home
message of Eq. (C10) is essentially the same as that of
Eq. (C7). As long as ‖σ−1‖∞ = O(1), the Rényi-2 diver-
gence will contract with a constant rate. This corresponds
to the setting in which each local fixed point does not have
a purity scaling with system size.

2. Specializing Lemma C.1 to QAOA and quantum
annealing

In the main text we only considered quantum circuits
that are affected by unital noise. The reason for that is that
then one can use Lemma C.1 to obtain the exponential
decay of the relative entropy to the maximally mixed state
independently of the circuit that is being implemented.

However, it is still possible to obtain closed formulas for
the relative entropy decay for QAOA-like circuits, as we
show now. We are still going to depart from the assumption
that the noise affecting the device has a product state σq =⊗n

i=1 τq as its fixed point, with

τq = q |0〉 〈0| + (1 − q) |1〉 〈1| (C11)

for some q ∈ [0, 1].
Recall that, for HI , the Ising Hamiltonian whose energy

we wish to minimize, HX = −∑
i Xi, and γ , β ∈ RP, the

QAOA unitary is given by

Vγ ,β =
P∏

k=1

eiβkHX eiγkHI . (C12)

In order to obtain an estimate of the relative entropy decay
under a noisy version of this circuit, we need to analyze the
expressions

D∞(eiγkHI σqe−iγkHI ‖σq), D∞(eiβkHX σqe−iβkHX )‖σq).

We then have the following result.

Lemma C.3. Let β, γ ∈ RP be given and, for q ∈ [0, 1],
σq as in Eq. (C11). Moreover, for βk, q, define z(βk, q) as

z(βk, q) = 2 cos(2βk) + sin2(βk)

q(1 − q)
.

Then:

D∞(eiβkHX σqe−iβkHX ‖σq)

= n log
(

z(βk, q) +
√

z(βk, q)2 − 4
2

)

. (C13)

Proof. As both eiβkHX and σ are of tensor product form, we
obtain by the additivity of the max relative entropy

D∞(eiβkHX σe−iβkHX )‖σ) = nD∞(e−iβkX τqeiβkHX ‖τq).

A simple yet tedious computation shows that

‖τ−1/2
q e−iβkX τqeiβkHX τ−1/2

q ‖ = z(βk, q) +
√

z(βk, q)2 − 4
2

.

(C14)

Taking the logarithm yields the claim. �
Before we state the entropy decay we obtain for QAOA

circuits, let us briefly comment on the scaling of Eq. (C13).
First, note that either in the limit q → 1/2 or βk → 0, we
have the right-hand side of Eq. (C13). The first case corre-
sponds to the fixed point being the maximally mixed state,
but the second corresponds to mixer unitaries for which the
total time evolution is small.

On the other hand, if we let q → 0 or q → 1, then we
see that the right-hand side of Eq. (C13) goes to infinity.
We then have the following result.

Corollary C.1 (Relative entropy decay for QAOA). Let
β, γ ∈ RP be given, and let τq and z be defined as before.
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Moreover, let N be such that

Dα(N (ρ)‖σq) ≤ (1 − pα)Dα(ρ‖σq). (C15)

Then, for any initial state ρ, we have

Dα

( P∏

k=1

(eiβkHI ◦ N ◦ eiβkHX ◦ N )(ρ)

∥
∥
∥
∥σq

)

≤ (1 − pα)2PDα(ρ‖σq) +
P∑

k=1

(1 − pα)2(P−k)n log

×
(

z(βk, q) +
√

z(βk, q)2 − 4
2

)

. (C16)

Furthermore, for the case of ρ = |+〉 〈+|⊗n and α = 2, we
have

D2(|+〉 〈+|⊗n ‖σq) = n log
(

q−1 + (1 − q)−1 + 2(q(1 − q))−1/2

4

)

. (C17)

Proof. The first step is to observe that D∞(eiγkHI σq
e−iγkHI )‖σ) = 0. This follows from the fact that eiβkHI is
a diagonal unitary and, thus, commutes with σq. The claim
then follows from combining Lemma C.1 and the result of
Lemma C.3. To obtain the expression in Eq. (C17), note
that D2 tensorizes and the two underlying states are prod-
ucts. Thus, we only need to compute D2(|+〉 〈+| ‖τq), a
simple computation. �

From our previous discussion, it is straightforward to
identify the conditions under which Eq. (C16) converges
to 0 as P → ∞. First, the case q = 1/2, which corresponds
to unital noise and we already covered at length in the main
text. Second, whenever we have βk → 0 as k → ∞. This
is because the relative entropy terms in Eq. (C16) at depth
k are suppressed by (1 − pα)2(P−k). Thus, only at depths
k � P is the relative entropy not suppressed.

Interestingly, parameters β, γ for which QAOA is
expected to perform well fulfill this condition [80,81]. To
see this, it is fruitful to interpret QAOA as a trotterized
version of quantum annealing, where we start with Hamil-
tonian HX and adiabatically modify it to HI . It is then clear
that at late times of the computation, the Hamiltonian will
approximate HI and the fixed point of the noise will be
approximately preserved by the unitary evolution.

We can make this precise by deriving the analogous
version of Corollary C.1 for quantum annealing.

Proposition C.1. Let L : B(HV) → B(HV) be a Lindbla-
dian with fixed point σq defined as before with q ≥ 1/2.

Suppose that, for some α > 1, we have, for all t > 0 and
initial states, an rα > 0 such that

Dα(etL(ρ)‖σ) ≤ e−rα tDα(ρ‖σ). (C18)

Moreover, for functions f , g : [0, 1] → R and T >

0, let Ht : B(HV) → B(HV) be given by Ht(X ) =
i[X , f (t/t)HX + g(t/T)HI ]. Let Tt be the evolution of the
system under the Lindbladian St = L + Ht from time 0 to
t ≤ T. Then, for all states ρ,

Dα(TT(ρ)‖σ) ≤ e−rαTDα(ρ‖σ) + 2ne−rαT

(√
p

1 − p
−

√
1 − q

q

) ∫ T

0
erα t|f (t/T)| dt. (C19)

Proof. From Lemma C.2 we see that all we need to obtain
the claim is to estimate

∫ T

0
e−rα(T−t)‖σ−1/2

q [σq, Ht]σ−1/2
q ‖∞ dt.

As before, because [HI , σq] = 0, this simplifies to

∫ T

0
e−rα(T−t)‖σ−1/2

q [σq, Hτ ]σ−1/2
q ‖∞ dt

=
∫ T

0
e−rα(T−t)|f (t/T)|‖σ−1/2

q [σq, HX ]σ−1/2
q ‖∞ dt

≤ ne−rαT
∫ T

0
e−rα t|f (t/T)|‖τ−1/2

q [τq, X ]τ−1/2
q ‖∞ dt,

where in the last step we applied a triangle inequality using
HX = −∑

i Xi and the fact that σq = ⊗n
i=1 τq. The claim

follows after noting that

‖τ−1/2
q [τq, X ]τ−1/2

q ‖∞ =
(√

p
1 − p

−
√

1 − p
p

)

.

This completes the proof. �
As adiabatic theorems require that f (1) = 0 to make

sure that we observe a good overlap with the ground state
[75], it follows that the Rényi entropy will typically decay
to 0 even under nonunital noise for quantum annealers.
However, note once again that our bounds perform poorly
whenever the fixed point is close to pure and whenever
function f does not decay fast enough to 0 around 1.

3. QAOA and quantum annealing on random regular
graphs of high girth

In the previous section we established estimates on the
relative entropy decay of QAOA circuits (Corollary C.1)
and quantum annealers (Proposition C.1) under nonunital
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noise. Such estimates can then be combined with Theorem
IV.1 to obtain concentration inequalities for the outputs
of these circuits. One important caveat is that Corollary
C.1 and Proposition C.1 depend on the actual circuit being
implemented. Thus, we cannot give universal bounds on
the performance of such circuits that depend only on the
depth and the noise level as was the case for unital noise.

However, Corollary C.1 can still be readily applied for
a given choice of QAOA parameters and we exemplify the
performance of the bounds on QAOA on the max-cut of
random D-regular graphs under noise. The motivation to
study this particular class of instances is many. First, the
asymptotic value of both the ground-state energy and that
of the standard semidefinite program relaxation are known.
It is known [82,83] that, for the Ising model on a ran-
dom D-regular graph on n nodes, the ground-state energy
density scales like

−�∗
√

D + o(
√

D) (C20)

with �∗ = 0.763 166 . . . the Parisi constant. The value that
assumption-free efficient classical algorithms [84] achieve
is given by −2/π

√
D with 2/π � 0.6366. The fact that

these values are known makes it straightforward to analyze
at which energies the output of a noisy quantum algorithm
will be outperformed by efficient classical algorithms.

Furthermore, there is a natural choice for the value of
the QAOA parameters to pick for the circuit. Indeed, in
Ref. [76] the authors computed the optimal parameters for
QAOA on such graphs for depths up to P = 17. Note, how-
ever, that these are the optimal values as the system’s size
goes to infinity and in the absence of noise. Nevertheless,
they provide a good testing ground for our bounds.

To start our analysis, note that if we define the one-qubit
state τq = q |0〉 〈0| + (1 − q) |1〉 〈1| as before and let HI ,D
be the Ising Hamiltonian on a D-regular graph, then we
have

tr(HI ,Dτ⊗n
q ) = (1 − 2q)2 nD

2
. (C21)

To see this, note that the expectation value of each ZiZj
term will be (1 − 2q)2 and the graph is assumed to be
D regular. We then obtain Eq. (C21) by noting that there
are nD/2 edges in the graph. As the expected value of
the energy achieved by classical algorithms is −2n

√
D/π ,

quantum advantage is lost if we deviate by less than
(1 − 2q)2nD/2 + 2n

√
D/π from the mean under τ⊗n

q .
We then have the following result.

Proposition C.2. Let ρ be a quantum state on n qubits
and assume that, for some q ∈ (0, 1), ε > 0, and D > 0,

we have

D2(ρ‖τ⊗n
q ) ≤ ((1 − 2q)2D/2 + 2/π

√
D)2 − εD2

2D2 n.

(C22)

Then the probability that the outcome of measuring ρ in the
computational basis provides a lower energy than efficient
classical algorithms for max-cut on random D-regular
high girth algorithms is at most e−εn/2.

Proof. Note that we have ‖HI ,D‖Lip = D, as the graph is D
regular. By Theorem IV.1 we have

Pρ

(∣
∣
∣
∣HI ,D − (1 − 2q)2 D

2

∣
∣
∣
∣ ≥ an

)

≤ exp
(

1
2

(

D2(ρ‖τ⊗n
q ) − a2n

2D2

))

. (C23)

By our previous discussion, we know that we need to devi-
ate from the mean with respect to the state τ⊗n

q by at
least (1 − 2q)2nD/2 + 2n

√
D/π so the quantum algorithm

outperforms classical algorithms. Thus, we can pick a =
(1 − 2q)2D/2 + 2

√
D/π in Eq. (20) as our measure of

when advantage is lost. It is then easy to see that, for our
bound on D2 in Eq. (C22), we find that the right-hand side
of Eq. (C23) is e−εn/2, which shows the claim. �

Proposition C.2 allows us to conclude that if the output
ρ of a QAOA circuit satisfies

D2(ρ‖τ⊗n
q ) <

((1 − 2q)2D/2 + 2
√

D/π)2

2D2 n (C24)

then quantum advantage is lost. In Ref. [80, Table 4] the
authors gave optimal parameters that in the noiseless case
outperform known efficient classical algorithms. We can
then insert these parameters into the bound obtained in
Corollary C.1 to estimate at which noise levels advantage
is lost.

It is important to stress once again that these parameters
are only known to be optimal in the absence of noise and
in the limit of nodes and degree going to infinity. How-
ever, we believe that they still provide a natural choice of
parameters to analyze under noise. Importantly, note that
Eq. (C24) once again only requires the relative entropy to
contract by a constant factor before advantage is lost as
long as q 	= 1/2.

In Fig. 2 of the main text we plot the performance of
QAOA with the parameters for P = 17 as predicted by our
bounds. In the absence of noise these QAOA circuits out-
perform efficient classical algorithms, but we show that
this is not necessarily the case in the presence of noise.
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Note that the values of γi are irrelevant for the analysis.
The values of βi we use are

β = [0.6375, 0.5197, 0.4697, 0.4499, 0.4255, 0.4054,

0.3832, 0.3603, 0.3358, 0.3092, 0.2807, 0.2501,

0.2171, 0.1816, 0.1426, 0.1001, 0.0536]. (C25)

4. Computations required for Sec. VI D

In this subsection we collect some auxiliary computa-
tions required to arrive at the conclusion of the example
discussed in Sec. VI D. Our goal is to evaluate Eq. (C19)
for the case where the initial state is given by |+〉 =
(1/

√
2)(|0〉 + |1〉) and the annealing schedule is linear,

f (t) = (1 − t). Furthermore, for simplicity, we assume
that the local Lindbladians Li have as a fixed point the state
τq for q ≤ 1/2 and spectral gap λ = 1. The results can then
be easily rescaled to obtain the bounds for other values of
the spectral gap.

The first observation we make is that, under these
assumptions, Eq. (C8) implies that

r2 ≥ 2
1 − q

log(q−1)
. (C26)

Furthermore, a simple yet tedious calculation shows that

D2(|+〉 〈+|⊗n ‖τ⊗n
q ) = n log

(
1 + 2(q − q2)1/2

4(q − q2)

)

(C27)

and the integral in Eq. (C19) evaluates to

∫ T

0
er2t|f (t/T)| dt = erT − rT − 1

r2T
.

Putting all of these elements together we obtain the bound

n−1D2(TT(ρ)‖τ⊗n
q ) ≤ e−r2T log

(
1 + 2(q − q2)1/2

4(q − q2)

)

+ (2q − 1)(1 − e−r2TrT − e−r2T)

(q(1 − q))1/2r2
2T

, (C28)

where r2 is lower bounded in Eq. (C26). Furthermore, by
combining Theorem 2 of Ref. [29] and Theorem 7 of Ref.
[26] we conclude that, for τq and O satisfying [O, τ⊗n

q ] =
0,

Pτ⊗n
q

(|O − tr[Oτ⊗n
q ]I| ≥ r) ≤ 2exp

(

− 2r2

n‖O‖2
Lip

)

.

(C29)

The one-sided bound also holds without the prefactor 2.
Now that we have a contraction result for the Rényi diver-
gence and a concentration inequality for the fixed point of

the noise, it is straightforward to also obtain concentration
bounds for the output of the noisy quantum annealer with
Theorem IV.1.

Indeed, we conclude the following.

Proposition C.3. For 0 < q ≤ 1/2 and T > 0, let

r2 = 2
1 − q

log(q−1)
(C30)

and let

h(T) = e−r2T log
(

1 + 2(q − q2)1/2

4(q − q2)

)

+ (2q − 1)(1 − e−r2TrT − e−r2T)

(q(1 − q))1/2r2
2T

. (C31)

Furthermore, let Tt be defined as in Proposition C.1 and
f (t) = (1 − t). Then, for the initial state |+〉⊗n, we have

PTT(|+〉〈+|⊗n)(HI ≤ (tr([τ⊗n
q HI ] − 2−1/2(h(T) + ε)1/2

× ‖HI‖Lipn)I) ≤ exp
(

− εn
2

)

. (C32)

Proof. As proved in Eq. (C28), it follows that at time T we
have

n−1D2(TT(|+〉 〈+|⊗n)‖τ⊗n
q ) ≤ h(T), (C33)

and we have the concentration inequality in Eq. (C29) for
τ⊗n

q .
We now pick the parameter r = 2−1/2‖HI‖L(h(T) +

ε)1/2n for the concentration inequality. It then follows from
Theorem IV.1 that

PTT(|+〉〈+|⊗n)(HI ≤ (tr[τ⊗n
q HI ] − 2−1/2(h(T) + ε)1/2

× ‖HI‖Ln)I) ≤ exp
(

n
2
(h(T) − (h(T) − ε))

)

, (C34)

which yields the claim. �

APPENDIX D: BOUNDS ON PURITY AND
HIGHER MOMENTS

We now obtain upper bounds on tr[ρk] for ρ the out-
put of a noisy circuit and k ≥ 2. The motivation for such
bounds comes from understanding the success probability
of virtual distillation or cooling protocols [33,34]. Roughly
speaking, these protocols have as their goal to prepare the
quantum state ρk/tr[ρk] from k copies of ρ. As explained
before in Sec. V A, the success probability of these proto-
cols is tr[ρk]. We prove that at constant depth the success
probability becomes exponentially small in system size.
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The first observation we make is that k �→ tr[ρk] is mono-
tonically decreasing in k. Thus, it suffices to show that the
purity tr[ρ2] is exponentially small at constant depth under
noise. We start with the following lemma.

Lemma D.1. Let τq = q |0〉 〈0| + (1 − q) |1〉 〈1|, and
assume without loss of generality that q ≤ 1/2. Then, for
any state ρ ∈ SV with n = |V| such that

D2(ρ‖τ⊗n
q ) ≤ (1 − ε − log(2(1 − q))n, (D1)

we have

tr[ρ2] ≤ 2−εn. (D2)

Proof. First note that we have

tr[ρ2] = 2−n+D2(ρ‖I/2n). (D3)

Thus, the claim follows if we show that Eq. (D1) implies
that D2(ρ‖I/2n) ≤ (1 − ε)n. From the data-processed tri-
angle inequality [78, Theorem 3.1] we obtain

D2(ρ‖I/2n) ≤ D2(ρ‖τ⊗n
q ) + D∞(τ⊗n

q ‖I/2n)

= D2(ρ‖τ⊗n
q ) + log(2(1 − q))n, (D4)

and so it follows from Eq. (D1) that

D2(ρ‖I/2n) ≤ (1 − ε)n,

and we obtain the bound by inserting the equation above
into Eq. (D3). �

As before, in the case of unital noise (q = 1/2) we are
able to obtain statements that are independent from the
circuit being implemented. Moreover, the limitations are
even more striking than for our concentration bounds, as
summarized in the statement below.

Proposition D.1. Let NV be a depth-L unitary circuit
interspersed by a unital noise channel N such that

D2

(

NV(ρ)

∥
∥
∥
∥

I
2n

)

≤ (1 − r2)D
(

ρ

∥
∥
∥
∥

I
2n

)

.

Then, for any initial state ρ and k ≥ 2,

tr[NV(ρ)k]

≤ tr[NV(ρ)2] ≤ exp(− log(2)(1 − (1 − r2)
L)n).

Proof. The result immediately follows from combining
Lemma D.1 with the fact that the output satisfies

D2

(

NV(ρ)

∥
∥
∥
∥

I
2n

)

≤ (1 − r2)
Ln. �

Thus, we see from Eq. (D5) that, unless r2 = O(n−1),
the purity will already be exponentially small in system
size and will accept the resulting state. We conclude that in
the case of unital noise, they are only effective for circuits
that have a constant number of expected errors.

In the case of q < 1/2, the success probability will only
be exponential at depths after which the Rényi-2 diver-
gence has contracted by more than log(2q). We can use
results like Proposition C.1 and Corollary C.1 to estimate
when this happens. However, in these cases we expect that
the bounds we currently have only predict that the depth at
which the purity becomes exponential is of order O(p−1

α ).
Let us illustrate this more concretely with noisy anneal-

ers. For the case of a linear schedule, under the same
conditions as for Proposition C.3, we obtain the following
result.

Proposition D.2. For 0 < q ≤ 1/2 and T > 0, let

r2 = 2
1 − q

log(q−1)
(D5)

and let

h(T) = e−r2T log
(

1 + 2(q − q2)1/2

4(q − q2)

)

+ (2q − 1)(1 − e−r2TrT − e−r2T)

(q(1 − q))1/2r2
2T

. (D6)

Furthermore, let Tt be defined as in Proposition C.1 and
f (t) = (1 − t). For the initial state |+〉⊗n, let T be large
enough for h(T) ≤ 1 − log(2(1 − q)) − ε to hold for some
ε > 0. Then,

tr[TT(|+〉 〈+|⊗n)k] ≤ tr[TT(|+〉 〈+|⊗n)2] ≤ exp(−εn).

Proof. This statement immediately follows from Lemma
D.1 and the fact that n−1D2(TT(|+〉 〈+|⊗n)‖τ⊗n

q ) ≤ h(T),
as we showed in Eq. (C28). �

As explained in the main text, such bounds can be
applied to bound the probability that virtual distillation
protocols work.

APPENDIX E: PROOF OF THEOREM III.1

In this section, we prove the consequences of the (2, ∞)-
Poincaré inequality stated in Theorem III.1, which we
restate below for clarity of exposition.

Theorem E.1. Assume that state σ ∈ SV satisfies a
(2, ∞)-Poincaré inequality with constant C > 0. Then the
following statements hold.
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(i) Noncommutative transport-variance inequality: for
any two states ρ1, ρ2 ∈ SV with corresponding den-
sities Xj := σ−1/2ρj σ

−1/2,

W1(ρ1, ρ2) ≤
√

C|V|(‖X1 − I‖σ + ‖X2 − I‖σ ).
(E1)

(ii) Measured transport-variance inequality: denote by
μσ ∈ PV the probability measure induced by the
measurement of σ in the computational basis. Then,
for any ν � μσ ,

W1(ν, μσ ) ≤ √
C|V| Varμσ (dν/dμσ ).

Moreover, for any two sets A, B ⊂ [d]V, their Ham-
ming distance dH (A, B) satisfies the following sym-
metric concentration inequality:

dH (A, B) ≤
√

C |V|(μσ (A)−1/2 + μσ (B)−1/2).
(E2)

(iii) Concentration of observables: for any observable
O ∈ OV and r > 0,

Pσ

(|O − 〈O〉σ | ≥ r
) ≤ C|V| ‖O‖2

L

r2 . (E3)

Proof. (i) By the Cauchy-Schwarz inequality, we have, for
X = σ−1/2ρσ−1/2,

W1(ρ, σ) = sup
‖H‖L≤1

tr[(ρ − σ)H ]

= sup
‖H‖L≤1

〈X − I, H − I〉σ

≤ sup
‖H‖L≤1

‖X − I‖σ ‖H − I‖σ

≤ sup
‖H‖L≤1

‖X − I‖σ Varσ (H)
1
2

≤
√

C|V|‖X − I‖σ , (E4)

where Eq. (E4) follows from Eq. (10). Therefore, by the
triangle inequality, for any two states ρ1, ρ2 with corre-
sponding densities Xj = σ−1/2ρj σ

−1/2,

W1(ρ1, ρ2) ≤
√

C|V|(‖X1 − I‖σ + ‖X2 − I‖σ ).

(ii) Since the quantum variance Varσ (OF) and the classi-
cal variance Varμσ (F) coincide for a classical Lipschitz
function F with OF := ∑

ε∈[d]V F(ε)|ε〉〈ε|, we have

Varμσ (F) ≤ C|V|‖F‖2
L, (E5)

where we have further used the fact that classical and quan-
tum Lipschitz constants coincide, i.e., ‖F‖L = ‖OF‖L; see

Ref. [29, Proposition 7]. Next, by the Cauchy-Schwarz
inequality, we have, for all ν � μσ and g := dν/dμσ ,

W1(ν, μσ ) = sup
‖F‖L≤1

ν(F) − μσ (F)

= sup
‖F‖L≤1

μσ ((g − 1)(F − 1))

≤ sup
‖F‖L≤1

‖g − 1‖L2(μσ )‖F − 1‖L2(μσ )

= sup
‖F‖L≤1

(Varμσ (g) Varμσ (F))1/2

≤ √
C|V| Varμσ (g).

The proof of Eq. (E2) is standard [44]. Respectively denote
by νA and νB the probability measures

νA(C) := μσ (A ∩ C)

μσ (A)
, νB(C) := μσ (B ∩ C)

μσ (B)
. (E6)

Then, by the dual formulation of the Wasserstein distance
in terms of couplings, we have

dH (A, B) ≤ W1(νA, νB)

≤ W1(νA, μσ ) + W1(νB, μσ )

≤
√

C|V|(Varμσ (dνA/dμσ )1/2

+ Varμσ (dνB/dμσ )1/2)

=
√

C |V|(μσ (A)−1/2 + μσ (B)−1/2),

where the last line follows from bounding the variance

Varμσ (dνA/dμσ ) =
∫ (

dνA

dμσ

)2

dμσ − 1

=
∫

1A(x)
μσ (A)2 dμσ (x) − 1 ≤ 1

μσ (A)
,

(E7)

and similarly for Varμσ (dνB/dμσ ).
Statement (iii) is a direct consequence of the (2, ∞)-

Poincaré inequality and Chebyshev’s inequality. �

APPENDIX F: CONTROLLING THE LIPSCHITZ
CONSTANT

In this appendix, we derive the bounds on the Lips-
chitz constant of observables evolving according to a local
continuous- and discrete-time evolution, namely Propo-
sition III.1, Proposition III.2, and Proposition III.3. We
start by proving the (2, ∞)-Poincaré inequality for prod-
uct states. In fact, we prove a slight refinement of it. Let us
start by defining, for any O ∈ OV and any v ∈ V,

∂vO := 2 min{‖O − Iv ⊗ Ovc‖∞ : Ovc ∈ Ovc}.
By definition, we hence have ‖O‖L = maxv∈V ∂vO.
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Lemma F.1. For any product state ρ ∈ SV and all O ∈
OV,

Varρ(O) ≤
∑

v∈V

(∂vO)2 ≤ |V|‖O‖2
L.

Proof. We fix an arbitrary ordering {1, . . . , n} of the ver-
tices V. For any i ∈ [n], let Oic ∈ Oic satisfy

∂iO = 2‖O − Ii ⊗ Oic‖∞.

Given a subregion A ⊆ V, we define 〈O〉ρA := trA[ρAO] ⊗
IA. Then, by a telescopic sum argument,

Varρ(O) = tr
[

ρ

( n∑

i=1

〈O〉ρ1···i−1 − 〈O〉ρ1···i

)2]

=
n∑

i,j =1

tr[ρ(〈O〉ρ1···i−1 − 〈O〉ρ1···i)

× (〈O〉ρ1···j −1 − 〈O〉ρ1···j )]

(1)=
n∑

i=1

tr
[
ρ (〈O〉ρ1···i−1 − 〈O〉ρ1···i)

2]

=
n∑

i=1

tr[ρ(〈O − Ii ⊗ Oic〉ρ1···i−1 − 〈O

− Ii ⊗ Oic〉ρ1···i)
2]

≤
n∑

i=1

‖〈O − Ii ⊗ Oic〉ρ1···i−1

− 〈O − Ii ⊗ Oic〉ρ1···i‖2
∞

≤ 4
n∑

i=1

‖O − Ii ⊗ Oic‖2
∞

=
n∑

i=1

(∂iO)2.

In equality (1) above, we used the orthogonality relation
that, for any i 	= j ,

tr[ρ(〈O〉ρ1···i−1 − 〈O〉ρ1···i)(〈O〉ρ1···j −1 − 〈O〉ρ1···j )] = 0,
(F1)

since ρ ≡ ⊗
v∈V ρv is assumed to be a tensor product. �

We need the following technical result in what follows.

Proposition F.1. Let v ∈ V, and let Iv be the future light
cone of v with respect to the quantum channel NV on SV.
Then, for any O ∈ Ov,

∂vN †
V (O) ≤ 2

∑

w∈Iv

∂wO ≤ 2|Iv|‖O‖L.

Proof. For any w ∈ V, let Owc ∈ Owc such that

∂wO = 2‖O − Iw ⊗ Owc‖∞.

Let |Iv| = k, and let us label with {1, . . . , k} the elements
of Iv . The observable N †(IIv ⊗ trIv O/d|Iv |) does not act on
v; therefore,

∂vN †(O) ≤ 2
∥
∥
∥
∥N

†
(

O − IIv ⊗ trIv O
d|Iv |

)∥
∥
∥
∥

∞

≤ 2
∥
∥
∥
∥O − IIv ⊗ trIv O

d|Iv |

∥
∥
∥
∥

∞

≤ 2
k∑

i=1

∥
∥
∥
∥I1...i−1 ⊗ 1

di−1 tr1...i−1O

− I1...i ⊗ 1
di tr1...iO

∥
∥
∥
∥

∞

= 2
k∑

i=1

∥
∥
∥
∥I1...i−1 ⊗ 1

di−1 tr1...i−1[O − Ii ⊗ Oic]

− I1...i ⊗ 1
di tr1...i[O − Ii ⊗ Oic]

∥
∥
∥
∥

∞

≤ 4
k∑

i=1

‖O − Ii ⊗ Oic‖∞

= 2
k∑

i=1

∂iO.

This completes the proof. �
Next, we consider the noisy circuit introduced in Eq. (9).

For any noisy gate N�,e, we denote by σ�,e′ the environment
state of copy e′ of set e, and by U�,{e,e′} the unitary dilation
of N�,e acting on set e and its copy e′, so that

N�,e(ρ) = tre′(U�,{e,e′}(ρ ⊗ σ�,e′)).

We also denote by UVA the composition of the tensor prod-
ucts of dilations U�,{e,e′}, where system A represents the
total environment resulting from all the dilations previ-
ously defined. In other words, defining σA := ⊗

�,e σ�,e′ , we
have

NV(ρ) = trA[UVA(ρ ⊗ σA)] ≡ ρout.

We denote by IUVA the light cone of UVA with respect to the
decomposition

HV ⊗ HA ≡
⊗

v∈V

Hv ⊗
⊗

�,e

H�,e′ . (F2)
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Proposition F.2. For any O ∈ OV and any product state
ρ ∈ SV with ρout := NV(ρ),

Varρout(O) ≤ 4 ‖O‖2
L

×
(

|V|I 2
NV

+ max
�

|E�|
L∑

�=1

max
e∈E�

I(e, L − �)2
)

,

where, given a set e ∈ E� and m ∈ N, I(e, L − �) denotes
the set of all vertices in V in the light cone of set e for the
circuit constituted of the last L − � layers of NV.

Remark F.1: In the noiseless setting where there are no
ancilla systems, by a closer look into the proof below, we
can get rid of the sum over layers and hence recover the
bound in Proposition III.2.

Proof of Proposition F.2. Given the tensor product input
state ρ and for any O ∈ OV, we consider the variance

Varρout(O) = tr[NV(ρ) (O − tr[NV(ρ)O] I)2]

= tr[(ρ ⊗ σA)U†
VA(O − tr[(ρ ⊗ σA)U†

VA(O)]I)2]

= Varρ⊗σA[U†
VA(O)].

Next, we consider the Lipschitz constant ‖ · ‖(VA)
L cor-

responding to decomposition (F2). In particular, system
HV ⊗ HA is constituted of at most |V|(1 + L/2

)
parti-

cles. Since state ρ ⊗ σA is a tensor product state with
respect to the above decomposition, we have the following
(2, ∞)-Poincaré inequality from Lemma F.1:

Varρout(O) ≤
∑

ω∈VA

(∂ωU†
VA(O))2 =

∑

v∈V

(∂vU†
VA(O))2

+
∑

a∈A

(∂aU†
VA(O))2.

For the first sum, we obtain, using Proposition F.1,

∑

v∈V

(∂vU†
VA(O))2 ≤ 4

∑

v∈V

( ∑

ω∈I
UVA
v

∂ωO
)2

= 4
∑

v∈V

( ∑

ω∈I
UVA
v \A

∂ωO
)2

≤ 4|V| max
v∈V

|IUVA
v \A|2‖O‖2

L

= 4|V| max
v∈V

|INV
v |2‖O‖2

L

= 4|V| I 2
NV

‖O‖2
L.

The second sum on the other hand can be controlled as
follows. First, for any layer ancilla a, denote by �a the layer

at which a is brought, and decompose the dilation UVA as

UVA = U [�a,L]
VA ◦ U [1,�a−1]

VA ,

where the first subcircuit U [1,�a−1]
VA corresponds to the first

�a − 1 layers, and the second subcircuit U [�a,L]
VA corresponds

to the other layers. Then,

∂aU†
VA(O) = 2 min

Oac
‖(U [1,�a−1]

VA )† ◦ (U [�a,L]
VA )†(O)

− Oac ⊗ Ia‖∞ ≤ ∂a (U [�a,L]
VA )†(O),

where the inequality arises by choosing Oac = (U [1,�a−1]
VA )†

(Õac) with Õac the optimizer of ∂a(U [�a,L]
VA )†(O). Therefore,

∑

a∈A

(∂aU†
VA(O))2 ≤

∑

a∈A

((U [�a,L]
VA )†(O))2

≤ 4
∑

a∈A

( ∑

ω∈I
U[�a ,L]

VA
a \A

∂ωO
)2

≤ 4‖O‖2
L

∑

a∈A

|IU
[�a ,L]
VA

a \A|2

≤ 4‖O‖2
L max

�
|E�|

L∑

�=1

max
e∈E�

I(e, L − �)2,

where the second inequality again follows from Proposi-
tion F.1. �

APPENDIX G: CONTROLLING THE LIPSCHITZ
CONSTANT FOR HAMILTONIAN DYNAMICS

In this appendix, we prove Eq. (17) (see Ref. [45,
Proposition B.2.] for a similar statement). We first recall
the following equivalent formulation of the Wasserstein
distance due to Palma et al. [29]:

W1(ρ, σ) = 1
2

min
{ n∑

i=1

‖X (i)‖1 : ρ − σ

=
n∑

i=1

X (i), X (i) ∈ OT
V, tri[X (i)] = 0

}

. (G1)

Here we recall that OT
V denotes the set of self-adjoint,

traceless observables.

Proposition G.1. Assume that the continuous-time evo-
lution {UV(t)}t≥0 defined on the graph G = (V, E) with
|V| = n satisfies the bound in Theorem III.2. Then, for any
H ∈ OV,
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‖UV(t)†(H)‖L ≤
(

2(i0 − 1) + 4M
2D − 1

n∑

i=i0

d(i)δ−1 evt−d(i)
)

‖H‖L, (G2)

where dist({1}, {i, . . . , n}) ≡ d(i), and i0 stands for the first vertex such that d(i0) ≥ 2δ − 1.

Proof. From Ref. [29], the Wasserstein distance W1 arises from a norm ‖ · ‖W1 , i.e., W1(ρ, σ) = ‖ρ − σ‖W1 . Moreover,
the norm ‖ · ‖W1 is uniquely determined by its unit ball, which in turn is the convex hull of the set of differences between
couples of neighboring quantum states:

Nn =
⋃

i∈V

N (i)
n , N (i)

n = {ρ − σ : ρ, σ ∈ SV, tri(ρ) = tri(σ )}.

Now, by convexity, the contraction coefficient for this norm is equal to

‖UV(t)‖W1→W1 = max{‖UV(t)(X )‖W1 : X ∈ OT
V, ‖X ‖W1 ≤ 1} = max

X ∈Nn
‖UV(t)(X )‖W1 .

Now let X ∈ Nn. By expression (G1), and choosing without loss of generality an ordering of the vertices such that
tr1(X ) = 0, we have

‖UV(t)(X )‖W1 ≤ 1
2

n∑

i=1

∥
∥
∥
∥

I
di−1 ⊗ tr1···i−1 ◦UV(t)(X ) − I

di ⊗ tr1···i ◦UV(t)(X )

∥
∥
∥
∥

1

= 1
2

n∑

i=1

∥
∥
∥
∥

∫

dμ(Ui) tr1···i−1 ◦(UV(t)(X ) − UiUV(t)(X )U†
i )

∥
∥
∥
∥

1

≤ 1
2

n∑

i=1

∫

dμ(Ui)‖[Ui, tr1···i−1 ◦UV(t)(X )]‖1

≤
n∑

i=1

‖ tr1···i−1 ◦UV(t)(X )‖1

(1)=
n∑

i=1

‖ tr1···i−1 ◦ (UV(t) − U{i−k,...,n}(t))(X )‖1, (G3)

where μ denotes the Haar measure on one qudit, and where equality (1) follows from the fact that tr1(X ) = 0, with
U{i−k,...,n}(t) defined as in Theorem III.2 with k < i − 1. Next, by the variational formulation of the trace distance and
Theorem III.2, we have, for i ≥ i0,

‖ tr1···i−1 ◦ (UV(t) − U{i−k,...,n}(t))(X )‖1 = max
‖Oi···n‖∞≤1

| tr[X (UV(t)†−U{i−k,...,n}(t)†)(Oi···n)]|

≤ max
‖Oi···n‖∞≤1

‖(UV(t)†−U{i−k,...,n}(t)†)(Oi···n)‖∞‖X ‖1

≤ 2M
2D − 1

dδ−1
i,k evt−di,k‖X ‖1

(2)≤ 4M
2D − 1

dδ−1
i,k evt−di,k‖X ‖W1 ,

where di,k := dist({i · · · n}, {1 · · · i − k − 1}) and inequality (2) follows from Ref. [29, Proposition 6]. By picking k =
i − 2 and inserting this estimate into Eq. (G3) for i ≥ i0 and the trivial estimate ‖ tr1···i−1 ◦ (UV(t) − U{i−k,...,n}(t))(X )‖1 ≤
2‖X ‖1 for i ≤ i0 − 1, we obtain Eq. (G2) by duality. �

010309-26



LIMITATIONS OF VARIATIONAL QUANTUM ALGORITHMS. . . PRX QUANTUM 4, 010309 (2023)

APPENDIX H: PROPERTIES OF HIGH-ENERGY
STATES OF THE MAX-CUT HAMILTONIAN

Proposition H.1. Under the same hypotheses as Theorem
VI.1, let xopt achieve the maximum cut of G, and let
X be the random outcome obtained measuring ρ in the
computational basis. Then,

P

(

dH (X , xopt) ≤ n
3

)

= P

(

dH (X , x̄opt) ≤ n
3

)

≥ 1
4

,

(H1)

where x̄ denotes the bitwise negation of x.

Proof. The proof follows the same lines as the proof of
Theorem 1 of Ref. [16]. Since G is regular and bipartite,
we have 2|E| = Dn and Cmax = |E|, and Eq. (40) becomes

tr[ρH ] ≥ |E| − hn
6

. (H2)

We have

tr[ρH ] = EC(X ), (H3)

and Markov’s inequality implies that

P

(

C(X ) ≥ |E| − h n
3

)

≥ 1
2

. (H4)

Since G is bipartite, we have, for any x ∈ {0, 1}n,

C(x) + C(xopt ⊕ x) = |E|, (H5)

where “⊕” denotes the sum modulo 2. Equations (H4) and
(H5) imply that

P

(

C(xopt ⊕ X ) ≤ hn
3

)

≥ 1
2

. (H6)

Hypotheses (38) and (H6) imply that

P

(

dH (X , xopt) ≤ n
3

)

+ P

(

dH (X , x̄opt) ≤ n
3

)

≥ 1
2

,

(H7)

where we have used the fact that, for any x, y ∈ {0, 1}n,

|x ⊕ y| = dH (x, y), dH (x, y) + dH (x̄, y) = n. (H8)

Since ρ commutes with σ⊗n
x , the probability distribution of

X is invariant with respect to the negation of all the bits;
therefore,

P

(

dH (X , xopt) ≤ n
3

)

= P

(

dH (X , x̄opt) ≤ n
3

)

. (H9)

The claim follows. �

APPENDIX I: CONCENTRATION FOR ERROR
MITIGATION

In this section we prove Theorem V.1, which we restate
for the reader’s convenience.

Theorem I.1. For an error-mitigation observable X ,

X :=
∑

s∈S
f (s)trA(IS ⊗ |0〉 〈0|⊗k Ms), (I1)

assume that, for a given state σ ,

Pσ⊗m(‖s − Eσ⊗m(s)‖�∞ ≥ rn) ≤ K(m) exp
(

− cr2n
�2

0

)

holds for some function K(m). Furthermore, assume that,
for r, ε > 0, given that, for all 1 ≤ i ≤ m, D2(Ei(ρ)‖σ) =
c(r − ε)n/ml0 and f is Lf Lipschitz with respect to the �∞
norm, then, for ρout = ⊗m

i=1 Ei(ρ), we have

Pρout(|X − f (Eσ⊗m(s))I| > rLf n) ≤ exp
(

− cεn
�2

0

)

.

(I2)

Proof. It follows from the additivity of the Rényi diver-
gence and our assumption on D2(Ei(ρ)‖σ) that

D2

( m⊗

i=1

Ei(ρ)

∥
∥
∥
∥σ⊗m

)

=
∑

i

D2(Ei(ρ)‖σ) ≤ c(r2 − ε)

l20
.

(I3)

From Lemma B.1 and the concentration inequality in Eq.
(I2) we obtain

Pρout(‖s − Eσ⊗m(s)‖�∞ ≥ rn) ≤ K(m)exp
(

− cε
�2

0

)

.

By our assumption on function f being Lipschitz, we have

Pρout(|X − f (Eσ⊗m(s))I| ≤ rLf n)

≥ Pρout(‖s − Eσ⊗m(s)‖�∞ ≤ rn),

and the claim follows. �
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