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A B S T R A C T

The design of spatial truss networks for fabrication using Wire-and-Arc Additive Manufacturing (WAAM) is
addressed, combining funicular analysis and optimization. At first, a characterization of the structural behavior
of the printed bars is provided based on available experimental tests. Interpolation laws are given both for the
yielding stress and the critical stress in compression, depending on the printing direction. Then, dealing with
networks with fixed plan projection, a minimization problem is formulated in terms of any independent subset
of the force densities and of the height of the restrained nodes. The maximum value of the ratio of the axial
force in each branch of the network to the relevant yielding/critical force is adopted as objective function.
Local enforcements are prescribed to set lower and upper bounds for the vertical coordinates of the nodes and
to control the overhang angle with respect to the vertical direction in the AM process. Gridshells retrieved
by the proposed approach are presented and compared to those found when seeking for spatial networks
with minimum horizontal reactions, disregarding or considering overhang constraints. Peculiar features of the
achieved layouts are pointed out.
. Introduction

The integration of new digital technologies in construction could
ead to more efficient structures. One example is provided by the use
f Additive Manufacturing (AM) techniques, which have proved to
upport the Circular Economy, see e.g. [1], and increase work safety,
ee e.g. [2,3]. Among various metal AM techniques, Wire-and-Arc
dditive Manufacturing (WAAM) results the most suitable to realize

arge-scale structural components [4–7]. By making use of standard
elding equipment mounted on top of robotic arms, elements up to

ew meters span can be manufactured. Recent research also proved
hat a severe reduction in CO2 emission could be reached with WAAM
echnology, see e.g. [8]. Two alternative printing processes are used
n WAAM: (i) the so-called ‘‘continuous’’ printing, which consists in

traditional layer-by-layer deposition and is suitable for planar and
hell-like geometries; (ii) the so-called ‘‘dot-by-dot’’ printing, consisting
n a spot-like deposition of the welded material to build metal bars
or gridshells (double-curvature elements constructed from a grid) and
attice components. Although the application of WAAM in civil engi-
eering was firstly investigated concerning the continuous technique,
ee e.g. [9–13], a lot of attention is being directed to the potential
ffered by the dot-by-dot strategy, see e.g. [14–17]. The environmental
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impact of the construction industry can be further reduced by coupling
the AM process with breakthrough design tools for modern architec-
ture, see in particular the methods of computational design [18–20].
The use in recent decades of computational design technologies re-
sulted in the development of new structures with formal freedom and
high complexity. However, the current building production still does
not allow for such a freedom. Hence, accounting for manufacturing
constraints is of paramount importance when aiming at structural
efficiency. Lots of effort are being made to leverage the full potential
of the combined use of AM and optimization techniques [21]. This
is the case of topology optimization [22], which can be tailored to
account for peculiar features and limitations related to the adopted
manufacturing process, see [23,24]. To give just a few examples, the
generation of optimal distributions of material (to maximize a target
structural performance) can be coupled to the anisotropic modeling of
the printed material, see e.g. [25–27], or endowed with constraints
to govern the maximum overhang in layer-by-layer manufacturing to
avoid additional supports, see e.g. [28–30].

Form-finding of gridshells is addressed in this work, presenting
formulations of optimal design that account for features peculiar to the
dot-by-dot WAAM process and to the printed alloy, as derived from
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recent experimental investigations. Networks in which loads cause pure
axial stresses all over the structural component are considered, aiming
at ‘‘funicular’’ shapes. Among the approaches to design spatial truss net-
works, see e.g. [31–39], a strategy combining the force density method
(FDM) [40] and an algorithm of sequential convex programming [21] is
implemented for gridshells having fixed projection onto the horizontal
plane. Upon introduction of the ratio force to length in each branch of
the network, i.e. the element force densities, the equations governing
the equilibrium of the nodes may be linearized in terms of their
coordinates. For networks with fixed plan projection, i.e. gridshells in
which the horizontal coordinates of each node are given and fixed,
the equilibrium in the horizontal directions is such that a dependent
set of force densities may be identified. This was firstly exploited in
the assessment of masonry vaults, using approaches of limit analysis.
Independent set of force densities were used in [41] as main unknowns
of a best-fit problem. The aim was generating anti-funicular networks
matching the mid surface of the arcuated structure to be analyzed, see
also [42]. Independent force densities were also used in conjunction
with evolutionary algorithms and a hessian-based minimizer in [43],
dealing with the design of networks for prescribed horizontal projec-
tion and coplanar fixed boundary vertices, see also [44]. In [45], an
optimization problem was formulated, using as minimization unknowns
not only any set of independent force densities, but also the vertical
coordinates of the restrained nodes. Spatial networks of minimum
thrust, i.e. minimum horizontal reactions, were sought accounting for
local enforcements on the height of the nodes. The analytical form
of the problem is such that sequential convex programming, which
was originally conceived for problems of size optimization of elastic
trusses, may be used to solve efficiently the arising multi-constrained
problem. The algorithm is herein extended, testing an alternative objec-
tive function and accounting for an additional set of constraints, both
actions inspired by some recent experimental results on WAAM-printed
bars [46,47].

An experimental investigation was carried out in [47] to charac-
terize the structural behavior of bars produced through dot-by-dot
WAAM, under tensile loading. A decay of the elastic modulus and,
generally, of the yielding strength was observed for increasing value of
the build angle. This is a measure of the orientation of the axis of the
printed bar with respect to the vertical direction. Lack-of-straightness
was evaluated for two sets of bars, at 0◦ and 45◦, at the ends of the
investigated range of build angles. Collapse in compression for dot-by-
dot WAAM bars printed along the vertical direction was investigated
in [46], for slenderness in the range 30–150.

This contribution aims at introducing formulations of structural
ptimization that are conceived for the design of gridshells to be
abricated using WAAM. Manufacturing constraints are included in
he design process to generate spatial networks that fulfill overhang
imitations. The stress regime is evaluated/controlled in each one of the
ranches by defining capacity laws, both in tension and in compression,
hich are derived from the analysis of the available experimental data
n WAAM-printed bars.

More in detail, the formulation used in [45] is endowed with
verhang constraints to enforce a maximum build angle equal to 45◦.
he interval 0◦–45◦ is that investigated in the referenced experimental
ests, as commonly used in practice when employing dot-by-dot WAAM.
wo objective functions are considered. As an alternative to the design
or minimum thrust, a stress-based design is investigated by minimizing
he maximum ratio of the value of the axial force acting in each
lement to the relevant yielding and critical forces, both depending
n the build angle of the bar. To this goal, a smooth approximation is
mployed to interpolate experimental yielding forces, whereas the use
f the Perry–Robertson capacity formula [48] is assessed for vertically
rinted bars, and then extended to the case of varying build an-
le. Numerical simulations show that the considered multi-constrained
2

roblem can be effectively solved through the Methods of Moving
symptotes (MMA) [49]. Gridshells retrieved by the proposed stress-
ased approach are presented and compared to those found when
eeking for spatial networks with minimum horizontal reaction, with or
ithout overhang constraints. Peculiar features of the achieved optimal

olutions are discussed.
In the remainder of this paper, Section 2 is concerned with the

aterial characterization of the bars printed by dot-by-dot WAAM,
ection 3 recalls fundamentals of the linear force density method,
ocusing on networks with prescribed horizontal projection, Section 4
ntroduces the considered optimization problems, Section 5 reports the
umerical simulations, with focus on mechanical and manufacturing
ssues. Section 6 concludes the paper, summarizing the main results of
his work.

. Dot-by-dot WAAM: material characterization

.1. Elastic modulus, yielding stress, and lack-of-straightness

An extended experimental investigation was performed in [47] on
ot-by-dot wire-and-arc additively manufactured 304L stainless steel
ars, pointing out that the printing direction affects the yielding stress
nd the Young’s modulus of the built alloy. In general, both diminish
hen diverging from the vertical deposition of material. Three sets of
ars were tested in tension, considering the cases 𝛼 = 0◦, 10◦, and 45◦,
eing 𝛼 the build angle, i.e. the orientation of the printing direction
ith respect to the vertical axis, see Fig. 1(a). Larger overhangs are
ot common in dot-by-dot WAAM, due to issues affecting the printing
rocess and reliability of the printed component.

The mechanical response in tension was evaluated in terms of
ey effective mechanical parameters from the volume-equivalent uni-
orm cylinder, for a total of 29 specimens. The diameter 𝑑 of the

(nearly)-circular effective cross-section of the bars was found equal to
6 mm.

Based on the available data, the following interpolation laws are
proposed for the elastic modulus 𝐸 and the yielding stress 𝜎𝑌 , respec-
tively, in the range 0◦ ≤ 𝛼 ≤ 45◦:

𝐸(𝛼) = 98 + 35 exp(−8 tan 𝛼), (GPa), (1a)

𝜎𝑌 (𝛼) = 208 + 35 exp(−8 tan 𝛼), (MPa), (1b)

see Fig. 2. Eq. (1a) fits well the observed decrease in terms of average
values of the elastic modulus. To be on the safe side, the same decay
rate is adopted for 𝜎𝑌 in Eq. (1b).

During the experimental investigation, the lack-of-straightness of
the printed specimens was measured for the cases 𝛼 = 0◦ and 𝛼 = 45◦.
The eccentricity between the real axis, locus of centroids of the printed
cross-sections, and an ideal straight axis, see Fig. 1(d), was evaluated
for a few specimens. An average value over the length of the bar was
computed for each one of the two cases. This value was found equal
to 0.0022𝑙 and 0.0028𝑙, for 𝛼 = 0◦ and 𝛼 = 45◦ respectively, being
𝑙 the length of the bar. The following interpolation is used to deal
with the eccentricity of the axis of the bar 𝑒 depending on the printing
inclination 0◦ ≤ 𝛼 ≤ 45◦:

𝑒(𝛼) =
(

0.00315 − 0.00095 exp(− tan 𝛼)
)

𝑙. (2)

2.2. Critical stress in compression

Accounting for Eqs. (1) and (2) in the Perry–Robertson capacity
formula [48], the collapse behavior of WAAM bars in compression can
be predicted in a significant range of slenderness. The rationale of this
criterion is that a strut undergoes an initial deflection represented by
the eccentricity parameter 𝑒, whereas collapse occurs when the ultimate

stress 𝜎𝑌 is reached in the most loaded cross-section. Accordingly,
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Fig. 1. Dot-by-dot WAAM specimens tested in [47]: orientation of the axis of the printed bars with respect to the vertical direction during the AM process, schematic adapted
from [47] (a); close-up of a bar printed with 𝛼 = 0◦ (b); close-up of a bar printed with 𝛼 = 45◦ (c); schematic of the lack-of-straightness (d).
Fig. 2. Material laws for WAAM bars in the range 𝛼 = 0◦–45◦ vs. experimental results: 𝐸 − tan 𝛼 (a); 𝜎𝑌 − tan 𝛼 (b).
denoting by 𝑙𝑒 the effective length of the strut, the slenderness 𝜆 and
the relative slenderness 𝜆𝑟 of the bar are defined as:

𝜆 =
𝑙𝑒
𝑟𝑧
, 𝜆𝑟(𝛼) =

𝜆
𝜋

√

𝜎𝑌 (𝛼)
𝐸(𝛼)

, (3)

where 𝑟𝑧 is the radius of gyration of the cross-section, which equals
𝑑∕4 for the herein considered circular section. Denoting by 𝑃 the
compressive force exerted on the strut, by 𝐴 the area of the cross-
section (herein 𝜋∕4𝑑2) and by 𝑘𝑧 its kernel radius (herein 𝑑∕8), the
critical stress 𝜎𝑐 (𝛼) = 𝑃∕𝐴 that causes failure in compression may be
recovered by solving the following quadratic equation, see [50]:

𝜆2𝑟 (𝛼)
(

𝜎𝑐 (𝛼)
𝜎𝑌 (𝛼)

)2
−
(

𝜆2𝑟 (𝛼) + 1 +
𝑒(𝛼)
𝑘𝑧

)

𝜎𝑐 (𝛼)
𝜎𝑌 (𝛼)

+ 1 = 0. (4)

The solution may be written explicitly as:

𝜎𝑐 (𝛼)
𝜎𝑌 (𝛼)

= 𝑐𝛼 −

√

𝑐2𝛼 −
1

𝜆2𝑟 (𝛼)
, where 𝑐𝛼 = 1

2𝜆2𝑟 (𝛼)

(

𝜆2𝑟 (𝛼) + 1 +
𝑒(𝛼)
𝑘𝑧

)

.

(5)

As reported in [46], compression tests were performed on dot-by-
dot wire-and-arc additively manufactured 304L stainless steel bars for
𝛼 = 0◦ only, with different lengths. The aim of these tests was evaluat-
ing the mechanical response of the bars for different slenderness values,
3

from stub to very slender specimens. Compression tests were performed
in displacement control with an initial velocity of 0.2 mm/min, op-
erating an unloading after 6-mm displacement at 0.4 mm/min, and
reloading at 0.2 mm/min until 12-mm displacement. The bars were
restrained in order to obtain a hinge-clamped configuration, that means
𝑙𝑒 = 0.9𝑙.

For 𝛼 = 0◦, the critical stress 𝜎𝑐 predicted by Eq. (5) is represented
in Fig. 3(a) as a function of the slenderness 𝜆. The aforementioned
experimental data are reported in the same graph, for comparison. A
very good agreement of the capacity formula and the experimental
results is found, with the only exception of a short bar for which the
implemented criterion underestimates the capacity (thus remaining on
the safe side).

In Fig. 3(b) a few curves 𝜎𝑐 (𝛼), 𝐹𝑐 (𝛼) vs. 𝜆 are sketched to highlight
the effect of the printing orientation on the critical stress over a
significant range of slenderness values (0◦ ≤ 𝛼 ≤ 45◦).

The same type of bars will be addressed in Section 5, with the
assumption 𝑙𝑒 = 𝑙.

3. Force density method for networks with fixed plan projection

A cartesian reference system with axes 𝑥, 𝑦, and 𝑧 is considered. The
force density method is used to handle the equations governing the
equilibrium of truss spatial networks. Following the original notation
used in [40], the net is made of 𝑚 elements connecting 𝑛 nodes.
𝑠
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Fig. 3. Capacity formula for WAAM bars: Perry–Robertson and ideal 𝜎𝑐 (𝐹𝑐 )-𝜆 curves for 𝛼 = 0◦ vs. experimental results (a); Perry–Robertson 𝜎𝑐 (𝐹𝑐 )-𝜆 curves in the range 𝛼 = 0◦–45◦
b).
c
a

hen external loads are applied at the 𝑛 unrestrained nodes, branches
ndergo axial forces only, while reactions arise at the 𝑛𝑓 restrained ones
𝑛𝑠 = 𝑛+ 𝑛𝑓 ). The vectors 𝐮, 𝐯, 𝐰 store the coordinate difference of the
onnected points along the axis 𝑥, 𝑦, 𝑧, respectively, i.e.:

= 𝐂𝑠𝐱𝑠 = 𝐂𝐱+𝐂𝑓 𝐱𝑓 , 𝐯 = 𝐂𝑠𝐲𝑠 = 𝐂𝐲+𝐂𝑓 𝐲𝑓 , 𝐰 = 𝐂𝑠𝐳𝑠 = 𝐂𝐳+𝐂𝑓 𝐳𝑓 ,

(6)

here 𝐂𝑠 is the connectivity matrix depending on the topology of the
rid, and 𝐱𝑠, 𝐲𝑠, 𝐳𝑠 are vectors that gather the coordinates of the nodes.
ubsets 𝐂 and 𝐂𝑓 refer to the unrestrained and restrained nodes, whose
oordinates are respectively stored in 𝐱, 𝐲, 𝐳, and 𝐱𝑓 , 𝐲𝑓 , 𝐳𝑓 . Introducing
= diag(𝐮), 𝐕 = diag(𝐯) and 𝐖 = diag(𝐰), the equilibrium equations

ead:
𝐂𝑇𝐔𝐋−1

𝐂𝑇𝐕𝐋−1

𝐂𝑇𝐖𝐋−1

⎤

⎥

⎥

⎦

𝐬 =
⎡

⎢

⎢

⎣

𝐩𝑥
𝐩𝑦
𝐩𝑧

⎤

⎥

⎥

⎦

, (7)

here 𝐬 gathers the forces in the 𝑚 branches and 𝐩𝑥, 𝐩𝑦, 𝐩𝑧 are the com-
ponents along the cartesian axes of the point loads at the unrestrained
nodes. 𝐋 = diag(𝐥) is a square matrix that collects, along its diagonal,
he length of the branches of the net, being 𝑙𝑖 =

√

𝑢2𝑖 + 𝑣2𝑖 +𝑤2
𝑖 . The

efinition of the force densities vector 𝐪 = 𝐋−1𝐬 allows re-writing the
quilibrium of the unrestrained nodes of the spatial network as:

𝐂𝑇𝐔
𝐂𝑇𝐕
𝐂𝑇𝐖

⎤

⎥

⎥

⎦

𝐪 =
⎡

⎢

⎢

⎣

𝐩𝑥
𝐩𝑦
𝐩𝑧

⎤

⎥

⎥

⎦

, (8)

.e. a system of linear equations that are uncoupled in the three carte-
ian directions.

In case of networks with fixed plan projection, see in particular [41–
4,51], the horizontal equilibrium of the unrestrained nodes may be
athered in the following system of equations:

𝐂𝑇 diag(𝐂𝑠𝐱𝑠0)
𝐂𝑇 diag(𝐂𝑠𝐲𝑠0)

]

𝐪 =
[

𝐩𝑥
𝐩𝑦

]

, (9)

here the vector 𝐱𝑠0 and 𝐲𝑠0 store the prescribed and fixed 𝑥 and 𝑦
oordinate of the nodes, respectively. If the rank of the coefficient
atrix is equal to that of the augmented matrix, the network is suitable

o withstand 𝐩𝑥 and 𝐩𝑦. By applying Gauss–Jordan elimination [52] to
q. (9), a set of 𝑚 − 𝑟 independent force densities 𝐪 can be detected,

being 𝑟 the rank. The 𝑟 dependent force densities in 𝐪 may be re-written
in terms of the independent ones as:

𝐪 = 𝐁𝐪 + 𝐝, (10)

where 𝐁 and 𝐝 are matrices whose constant entries only depend on
the topology of the network and on the prescribed horizontal load, if
any. Upon introduction of 𝐐 = diag(𝐪), the vertical coordinates of the
4

t

unrestrained nodes can be computed by solving the equilibrium along
the 𝑧 axis, i.e.:

𝐂𝑇𝐐𝐂𝐳 + 𝐂𝑇𝐐𝐂𝑓 𝐳𝑓 = 𝐩𝑧. (11)

As observed e.g. in [53], it is not straightforward to control the
coordinates of the nodes using the force density method. In the fol-
lowing section, an optimization approach is formulated that enforces
limitations on the height of the nodes, and on the related orientation
of the connecting branches, through local constraints.

4. Form-finding of spatial networks for WAAM

Based on the outcome of Sections 2 and 3, a problem of opti-
mal design of WAAM spatial networks with fixed plan projection is
formulated. A multi-constrained minimization is stated in terms of
any reduced set of independent force densities 𝐪 and of the vertical
coordinates of the restrained nodes 𝐳𝑓 . It reads:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

min
𝐪, 𝐳𝑓

𝑓 (a)

s.t. 𝐪 = 𝐁𝐪 + 𝐝, (b)
𝐂𝑇𝐐𝐂𝐳 + 𝐂𝑇𝐐𝐂𝑓 𝐳𝑓 = 𝐩𝑧, (c)
(

tan 𝛼𝑖
tan 𝛼𝑚𝑎𝑥

)2
≤ 1 for 𝑖 = 1,… , 𝑚, (d)

𝑧𝑗 (𝐪, 𝐳𝑓 ) ≥ 𝑧𝑚𝑖𝑛𝑗 for 𝑗 = 1,… , 𝑛, (e)

𝑧𝑗 (𝐪, 𝐳𝑓 ) ≤ 𝑧𝑚𝑎𝑥𝑗 for 𝑗 = 1,… , 𝑛, (f)

𝑧𝑚𝑖𝑛𝑓 ℎ ≤ 𝑧𝑓 ℎ ≤ 𝑧𝑚𝑎𝑥𝑓 ℎ for ℎ = 1,… , 𝑛𝑓 , (g)

(12)

where tan 𝛼𝑖, which is the tangent of the angle between the vertical
direction and the printing direction for the 𝑖th bar, may be computed
as:

tan 𝛼𝑖 𝑥 =

(

𝑣2𝑖 +𝑤2
𝑖

𝑢2𝑖

)
1
2

, or tan 𝛼𝑖 𝑦 =

(

𝑢2𝑖 +𝑤2
𝑖

𝑣2𝑖

)
1
2

,

or tan 𝛼𝑖 𝑧 =

(

𝑢2𝑖 + 𝑣2𝑖
𝑤2

𝑖

)
1
2

, (13)

if the vertical direction, during AM, is aligned with the 𝑥, 𝑦, or 𝑧 axis,
respectively; 𝛼𝑚𝑎𝑥 is the maximum allowed value of the build angle,
i.e. the maximum admissible overhang.

In the above formulation, Eq. (12b) allows recovering the depen-
dent force densities 𝐪 from the independent set 𝐪. Eq. (12c) is the
equilibrium of the unrestrained nodes in the vertical direction, to
compute 𝐳 from the minimization unknowns 𝐪 and 𝐳𝑓 . General loading
onditions can be addressed through the proposed formulation, see
lso [45]. Under the assumption of networks with fixed plan projection,
he horizontal components of the nodal forces (𝐩 and 𝐩 ) affect the
𝑥 𝑦
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result of the Gauss–Jordan elimination performed on Eq. (9), i.e. the
sets of dependent and independent force densities and the relationship
that links the former to the latter. Design-dependent loads, such as
self-weight, can be straightforwardly accounted for through a contin-
uation approach. The optimization problem in Eq. (12) must be solved
repeatedly, updating the load vector at the end of each run.

Eq. (12d) enforces the overhang constraints, prescribing the max-
imum value of the deviation of the printing direction of each branch
of the network from the vertical one. The coordinate difference of the
connected points given in Eq. (6) are used to enforce this geometrical
constraint. Dealing with grids having fixed plan geometry, 𝐮 and 𝐯 do
not depend on the minimization unknowns, whereas it is recalled that
𝐰(𝐪, 𝐳𝑓 ). According to Section 2, the assumption 𝛼𝑚𝑎𝑥 = 45◦ is used in
he numerical studies that follow.

Eqs. (12e)–(12f) are two sets of inequalities that prescribe lower
nd upper limits for 𝐳. The design domain is such that each one of
he 𝑛 coordinates 𝑧𝑗 should be bounded from below by 𝑧𝑚𝑖𝑛𝑗 and from
bove by 𝑧𝑚𝑎𝑥𝑗 . Finally, Eq. (12g) deals with side constraints for the
inimization unknowns 𝑧𝑓 ℎ, enforcing lower and upper limits for the

estrained nodes.
Different objective functions can be considered in the formulation

f Eq. (12). The horizontal reactions of the network can be minimized
y adopting:

= 𝑓𝑟 =
𝑛𝑓
∑

ℎ

(

𝑅2
𝑥ℎ + 𝑅2

𝑦 ℎ

)

, (14)

here the vector storing the components of the reactions along the
and 𝑦 direction, 𝐑𝑥 and 𝐑𝑦 respectively, can be computed as 𝐑𝑥 =
𝑇
𝑓 diag(𝐂𝑠𝐱𝑠0)𝐪 and 𝐑𝑦 = 𝐂𝑇

𝑓 diag(𝐂𝑠𝐲𝑠0)𝐪, see e.g. [45].
Alternatively, a stress-based design of the spatial network may be

chieved by implementing:

= 𝑓𝑠 = max
(

𝑠𝑖
𝑠𝑌 𝑖

,−
𝑠𝑖
𝑠𝑐 𝑖

, … ,
𝑠𝑚
𝑠𝑌 𝑚

,−
𝑠𝑚
𝑠𝑐 𝑚

)

, (15)

where:

• 𝑠𝑌 𝑖 = 𝐴𝜎𝑌 (𝛼𝑖) is the maximum value of the axial force that the 𝑖th
of the 𝑚 branches of the network can undergo prior to yielding,
depending on the printing orientation, see Eq. (1b);

• 𝑠𝑐 𝑖 = 𝐴𝜎𝑐 (𝛼𝑖) is the critical force in compression which is a
function of the printing orientation, see the capacity formula of
Eq. (5).

It is remarked that the force vector reads 𝐬 = 𝐋𝐪, meaning that 𝑓𝑠
depends on both sets of minimization unknowns 𝐪 and 𝐳𝑓 .

Objective functions from truss design could be implemented as
further alternatives. Reference is made in particular to [43,54], min-
imizing the so-called load-path function in order to find the lightest
design for a given stress in all the branches of the truss.

Due to its peculiar form, the multi-constrained optimization prob-
lem in Eq. (12) can be efficiently solved through techniques of se-
quential convex programming that were originally conceived to handle
multi-constrained problems of size optimization, see [45]. The Method
of Moving Asymptotes (MMA) [49] is a first order method that imple-
ments approximations for the objective functions and constraints in the
direct or the inverse variable depending on the sign of the gradient.
It is extensively used in topology optimization, see e.g. [55]. It must
be remarked that the max function in Eq. (15) can make the problem
non-smooth (i.e. non-differentiable), which is troublesome for gradient-
based optimization. However, this problem is addressed in the present
work by using a min–max formulation. MMA may handle both the
minimization problem arising for 𝑓 = 𝑓𝑟, and the min–max problem
ormulated for 𝑓 = 𝑓 . In the latter case, an equivalent formulation is
5

𝑠

olved by MMA, see [56]. It reads:

min
𝐪, 𝐳𝑓

𝑐 (a)

s.t. 𝐪 = 𝐁𝐪 + 𝐝, (b)
𝐂𝑇𝐐𝐂𝐳 + 𝐂𝑇𝐐𝐂𝑓 𝐳𝑓 = 𝐩𝑧, (c)
𝑐 ≥ 𝑠𝑖

𝑠𝑌 𝑖
for 𝑖 = 1,… , 𝑚, (d)

𝑐 ≥ − 𝑠𝑖
𝑠𝑐 𝑖

for 𝑖 = 1,… , 𝑚, (e)

𝑐 ≥ 0, (f)
(

tan 𝛼𝑖
tan 𝛼𝑚𝑎𝑥

)2
≤ 1 for 𝑖 = 1,… , 𝑚, (g)

𝑧𝑗 (𝐪, 𝐳𝑓 ) ≥ 𝑧𝑚𝑖𝑛𝑗 for 𝑗 = 1,… , 𝑛, (h)

𝑧𝑗 (𝐪, 𝐳𝑓 ) ≤ 𝑧𝑚𝑎𝑥𝑗 for 𝑗 = 1,… , 𝑛, (i)

𝑧𝑚𝑖𝑛𝑓 ℎ ≤ 𝑧𝑓 ℎ ≤ 𝑧𝑚𝑎𝑥𝑓 ℎ for ℎ = 1,… , 𝑛𝑓 . (j)

(16)

In Section 5, Eqs. (12) and (16) are solved by handling the whole
set of local constraints. It must be remarked that the computational cost
of such an approach increases rapidly with the size of the application.
The augmented Lagrangian method could be conveniently adopted as
an efficient alternative, replacing the original multi-constrained opti-
mization problem by a sequence of bound constrained optimization
subproblems. This method has proven successful in handling very
large scale problems of stress-constrained topology optimization, with
a similar form as Eqs. (12) and (16), but, generally, a much larger
number of minimization unknowns. Reference is made to discussions
and applications in [57,58].

The computation of the gradient of the objective function and of
the constraints is required to run MMA. This is a straightforward task,
once the sensitivity of 𝐪 and 𝐳 with respect to both sets of minimization
unknowns 𝐪 and 𝐳𝑓 is available.

The sensitivity of 𝐪 with respect to the 𝑘th component of the
vector 𝐪 is found by differentiation of Eq. (10). According to the same
equation, the derivative of 𝐪 with respect to any component of 𝐳𝑓 is
equal to zero. The sensitivity of 𝐳 may be computed looking at Eq. (11).
Under the assumption of design-independent loads, the derivative of 𝐳
with respect to the 𝑘th component of the vector 𝐪 is:

𝜕𝐳
𝜕𝑞𝑘

= (𝐂𝑇𝐐𝐂)−1
[

−𝐂𝑇 𝜕𝐐
𝜕𝑞𝑘

𝐂𝐳 − 𝐂𝑇 𝜕𝐐
𝜕𝑞𝑘

𝐂𝑓 𝐳𝑓
]

, (17)

here 𝜕𝐐∕𝜕𝑞𝑘 is computed remembering that 𝐐 = diag(𝐪). Similarly,
the derivative of 𝐳 with respect to the ℎth component of the vector 𝐳𝑓
is:
𝜕𝐳

𝜕𝑧𝑓 ℎ
= (𝐂𝑇𝐐𝐂)−1

[

−𝐂𝑇𝐐𝐂𝑓
𝜕𝐳𝐟
𝜕𝑧𝑓 ℎ

]

, (18)

where 𝜕𝐳𝐟∕𝜕𝑧𝑓 ℎ is the null vector except for a unitary entry at the ℎth
position.

The sensitivity of the objective function 𝑓𝑟 calls for 𝜕𝐪∕𝜕𝑞𝑘 only, see
also [51].

The sensitivity of tan 𝛼𝑖 can be computed by differentiation of
Eqs. (13), depending on the selected printing orientation. Due to the
assumption of networks with fixed plan projection, only the term 𝑤𝑖
is a function of the minimization unknowns. The relevant derivatives
may be computed by differentiation of Eq. (6). They read:

𝜕𝐰
𝜕𝑞𝑘

= 𝐂 𝜕𝐳
𝜕𝑞𝑘

, 𝜕𝐰
𝜕𝑧𝑓 ℎ

= 𝐂 𝜕𝐳
𝜕𝑧𝑓 ℎ

+ 𝐂𝑓
𝜕𝐳𝐟
𝜕𝑧𝑓 ℎ

. (19)

It must be remarked that the derivatives of tan 𝛼𝑖 with respect to the
inimization unknowns are required not only to compute the sensitiv-

ty of the overhang constraints, but also to evaluate the derivatives of
he yielding force, 𝑠𝑌 𝑖, and of the critical force in compression, 𝑠𝑐 𝑖, in
𝑓𝑠. Both quantities depend on tan 𝛼𝑖, see Eqs. (5) and (1b), respectively.

Recalling that 𝑠𝑖 =
√

𝑢2𝑖 + 𝑣2𝑖 +𝑤2
𝑖 𝑞𝑖, the sensitivity of the element

forces 𝐬 with respect to the minimization unknowns 𝐪 and 𝐳𝑓 can be
written in terms of the derivatives of 𝐰 and 𝐪.
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Fig. 4. Example 1. Fixed plan geometry for the generation of optimal spatial networks.
Independent branches are marked in red. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

5. Numerical simulations

Numerical simulations are presented to assess the proposed ap-
proach. Section 5.1 addresses preliminary simulations concerning anti-
funicular networks, Section 5.2 deals with funicular ones, while Sec-
tion 5.3 is concerned with gridshells having a saddle-like shape. Sec-
tion 5.4 addresses a network with repetitive structure. The problems
presented in Section 4 are implemented, providing comparisons among
the achieved layouts.

Diamond-like gridshells are considered in the present study. In
the (fixed) projection onto the horizontal plane, branches have length
𝑙𝑥𝑦 = 0.15m, if not differently specified, with a reciprocal angle of 60◦

r 120◦. A reference load is addressed, if not differently specified. It
onsists of nodal forces equal to 1N acting along the 𝑧 axis all over
he network. This may be also regarded as a rough approximation
by excess) of the weight of the dot-by-dot WAAM network, the latter
eading 2.2 N/m.

At first, the minimum thrust design (with 𝑓 = 𝑓𝑟) is investigated,
ocusing on the sensitivity of the solution to the enforcement of the
verhang constraints. Then, stress-based layouts are generated (for
= 𝑓𝑠) and compared to those found through the minimization

f the horizontal reactions. The same starting guess has been used
o initialize all the formulations tested when dealing with the same
xample. Two starting points have been investigated in Section 5.1
o address convergence features of the proposed approach. In all the
ictures representing funicular networks, the symbols + and ◦ stand
or points where the nodes of the network touch the extrados and
he intrados of the prescribed design region, respectively. Maps of the
orces computed in the branches of the network under the reference
oad are provided.

.1. Example 1

A rectangular bay with overall size 𝑑𝑥 = 5.50m × 𝑑𝑦 = 3.62m is ad-
dressed. Exploiting symmetry, only one fourth of the bay is considered
in this preliminary investigation. Fig. 4 shows the fixed plan geometry
used in the generation of the optimal spatial networks. The nodes lying
at 𝑥 = 0m and those at 𝑦 = 0m are fully restrained. Restraints along the
𝑥 axis are enforced at 𝑥 = 2.25m, whereas restraints along the 𝑦 axis
are prescribed at 𝑦 = 1.81m. By applying Gauss–Jordan elimination to
the system governing the horizontal equilibrium, see Eq. (9), it is found
that 𝑟 = 370 dependent force densities exist, out of 𝑚 = 391 branches.
The elements marked in red in the picture are those belonging to the set
of 𝑚 − 𝑟 = 21 independent force densities employed in the simulations.
Indeed, the optimization problem of Eq. (12) is set up in terms of 43
parameters (21 force densities and 22 vertical coordinates of the nodes
that are restrained along the 𝑧 axis). The lower bound and the upper
bound of the height of the unrestrained nodes read 𝑧𝑚𝑖𝑛 = 2.5m and
6

𝑧𝑚𝑎𝑥 = 3.5m, respectively. This set of conditions is enforced through
2 ⋅ 𝑛 = 390 local constraints, see Eqs. (12e)–(12f). Side constraints are
such that the same variation in height is allowed to the nodes along the
fully restrained edges, i.e. 𝑧𝑚𝑖𝑛𝑓 = 2.5m and 𝑧𝑚𝑎𝑥𝑓 = 3.5m ∀ℎ in Eq. (12g).

Aiming at designing anti-funicular networks, side constraints 𝑞𝑘 ≤ 0
are implemented ∀𝑘. The starting guess for the minimization algorithm
is 𝑞𝑘 = −50N/m ∀𝑘, in conjunction with 𝑧𝑓 ℎ = (𝑧𝑚𝑖𝑛𝑓 ℎ + 𝑧𝑚𝑎𝑥𝑓 ℎ )∕2 = 3m
ℎ.

At first, a problem of minimum thrust is investigated, adopting
s objective function 𝑓𝑟 of Eq. (14), while disregarding the overhang
onstraints of Eq. (12d). The optimal gridshell, along with a map of the
orces acting in the branches, is represented in Fig. 5(a). All the fully
estrained nodes have height equal to the prescribed lower bound 𝑧𝑚𝑖𝑛𝑓 ,
hereas a few nodes in the middle of the bay have the 𝑧 coordinate

qual to 𝑧𝑚𝑎𝑥. This allows maximizing the slope of the members along
he perimeter of the bay, thus minimizing the horizontal component
f the reactions. Looking at the forces in the branches, the maximum
ompressive force among all 𝑠𝑖 reads −11.05N, whereas the maximum
alue of the ratio −𝑠𝑖∕𝑠𝑐 𝑖 (force to critical compressive force in each
ranch) is 9.4 ⋅ 10−3.

In Wire-and-Arc Additive Manufacturing, it is quite frequent to build
omplex shapes by printing a few parts separately and, then, assembling
he components into the final structure. A favorable setting to produce
he designed quarter gridshell consists in orienting the part, during the
M process, such that the 𝑦 axis is aligned to the vertical direction.

n this configuration, the overhang angles are much lower than those
ound when building with the vertical axis aligned to the 𝑧 (or 𝑥) axis.
he four parts may be subsequently oriented and assembled to create
he final layout of the gridshell, the one in which the vertical direction
atches the 𝑧 axis. In Fig. 5(b), a map of the element values of the

quared ratio (tan 𝛼𝑖 𝑦∕ tan 𝛼𝑚𝑎𝑥)2 is given. Notwithstanding the adoption
f the 𝑦 axis as the vertical direction during the manufacturing process,
he build angle of most bars exceeds the allowed limit tan 𝛼𝑚𝑎𝑥 = 1 by
ar. The first row in Table 1 provides a summary of the above data,
ncluding the value of the objective function 𝑓𝑟 at convergence and the
otal length of the members constituting the spatial networks.

A further optimization run is performed including the set of the
verhang constraints, i.e. considering the whole problem in Eq. (12)
ith 𝑓 = 𝑓𝑟 and local control of the element build angles 𝛼𝑖 𝑦. This calls

or additional 𝑚 = 391 enforcements. The achieved optimal design is
epicted in Fig. 6(a), along with a map of the element forces. Values
f the squared ratio (tan 𝛼𝑖 𝑦∕ tan 𝛼𝑚𝑎𝑥)2, i.e. of the left hand side of the
et of inequality constraints in Eq. (12d), are given in Fig. 6(b) for all
he branches of the network. A layout that is fully feasible with respect
o the overhang limitations is found, at the cost of an increase in the
bjective function, see second row in Table 1. In comparison with the
ptimal solution of Fig. 5(a), most of the nodes along the perimeter
ave a larger height, such that the network is shallower. This is needed
o meet the requirement on the admissible build angle (especially for
he outer bars of the network), but is detrimental for the magnitude of
he horizontal component of the reactions. A minor increase in terms
f maximum compressive force is reported with respect to the previous
ase. However, the maximum value of the ratio −𝑠𝑖∕𝑠𝑐𝑖 is smaller.

A final investigation is performed addressing a stress-based design,
hich includes accounting for the overhang constraints on the ele-
ent angles 𝛼𝑖 𝑦. Indeed, the whole problem in Eq. (12) is considered

dopting 𝑓 = 𝑓𝑠, which means minimizing the maximum value of the
atio −𝑠𝑖∕𝑠𝑐 𝑖 over the anti-funicular network, i.e. solving Eq. (16). The
inal layout with the map of the element forces is given in Fig. 7(a),
hereas feasibility of the build angles may be checked in Fig. 7(b).
s expected, the achieved layout exhibits the minimum value of 𝑓𝑠
mong the presented networks, see third row in Table 1. This comes
ith the highest value of the maximum compressive force read in the
ars. Indeed, in each branch, the critical force in compression primarily
epends on the slenderness of the element (herein the length, because
f the given cross-section) and, to a lesser extent, on the build angle, see
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Fig. 5. Example 1. Optimal design using as objective function 𝑓𝑟, disregarding overhang constraints: spatial network and element forces in 𝑁 (a); orientation during AM with
map of tan 𝛼𝑖 𝑦 squared (b).
Fig. 6. Example 1. Optimal design using as objective function 𝑓𝑟, with overhang constraints: optimal spatial network and element forces in 𝑁 (a); feasibility with respect to
overhang constraints (b).
Fig. 7. Example 1. Optimal design using as objective function 𝑓𝑠, with overhang constraints: optimal spatial network and element forces in 𝑁 (a); feasibility with respect to
overhang constraints (b).
Fig. 3(b). This means that, for the same value of −𝑠𝑖∕𝑠𝑐 𝑖, larger forces
can be reached in shorter bars. While both networks of minimum thrust
are characterized by high variability in the magnitude of the forces,
7

a smaller range is reported for the stress-based solution in Fig. 7(a).
This affects the shape of the optimal solution, as well as the overall
length, i.e. the weight, since the stress-based solution is the lightest
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Fig. 8. Example 1. Funicular networks and reactions, using as objective function: 𝑓𝑟, without overhang constraints (a); 𝑓𝑟, with overhang constraints (b); 𝑓𝑠, with overhang
constraints (c).
Fig. 9. Example 1. History plot of the objective function and of the feasibility of the constraints, for: 𝑓𝑟, with overhang constraints (a); 𝑓𝑠, with overhang constraints (b).
Initialization with 𝑞𝑘 = −50N/m ∀𝑘, and 𝑧𝑓 ℎ = 3m ∀ℎ.
Fig. 10. Example 1. History plot of the objective function and of the feasibility of the constraints, for: 𝑓𝑟, with overhang constraints (a); 𝑓𝑠, with overhang constraints (b).
Initialization with 𝑞𝑘 = (𝑘 − 50)N/m, for 𝑘 = 1,… , 𝑚 − 𝑟, and 𝑧𝑓 ℎ = (3.5 − ℎ∕𝑛ℎ)m, for ℎ = 1,… , 𝑛ℎ.
one. According to the evaluation of 𝑓𝑟 at convergence, an increase in
the value of the horizontal components of the reactions is found.

Lateral views of the three networks are presented in Fig. 8, along
with vectorial plots of the reactions. Figs. 8(a) and (b) refer to minimum
thrust solutions, without and with overhang constraints, respectively.
In Fig. 8(c), the stress-based layout (with overhang constraints) is rep-
resented. Comparing overhang-constrained layouts, major differences
arise in the vicinity of the fully restrained corner.
8

The fourth row in Table 1 refers to the solution of a design problem
in which the dependence of the critical stress in compression on the
printing direction is disregarded. This means that 𝑠𝑐 𝑖 has the same
value in each bar, as evaluated for 𝛼𝑖 𝑦 = 0◦, see Eq. (5). With respect
to the design achieved taking into full account the variability of 𝑠𝑐 𝑖
with the printing direction, a negligible variation may be reported in
terms of shape. As expected, the maximum value of the ratio −𝑠𝑖∕𝑠𝑐 𝑖
remarkably decreases (−25%). Minor variations are reported in terms of
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Fig. 11. Example 2 and 3. Fixed plan geometry for the generation of optimal spatial
networks. Independent branches are marked in red. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Data summary for Example 1. The symbol (*) refers to a design problem in which it
is assumed that 𝑠𝑐 𝑖 = 𝑠𝑐 𝑖(𝛼𝑖 𝑦 = 0◦) ∀𝑖.

Fig. O.f. 𝑓𝑟 𝑓𝑠 min 𝑠𝑖 Overhang Length

type (N2) max
(

− 𝑠𝑖
𝑠𝑐 𝑖

)

(N) max
(

tan 𝛼𝑖
tan 𝛼𝑚𝑎𝑥

)2
(m)

5 𝑓𝑟 3759 9.4 10−3 −11.05 1.98 72.46
6 𝑓𝑟 6483 8.1 10−3 −11.49 1.00 68.19
7 𝑓𝑠 8630 7.0 10−3 −13.81 1.00 67.36

𝑓𝑠(*) 8465 5.2 10−3 −13.51 1.00 67.41

the maximum compressive force and of the value of 𝑓𝑟 at convergence
(less than 3%).

Fig. 9 shows history plots of the objective function and of the fea-
sibility of the local enforcements for the optimization of the overhang-
constrained layouts in Figs. 6 and 7. The latter quantity accounts
both for the ratios 𝑧𝑗∕𝑧𝑚𝑖𝑛𝑗 and 𝑧𝑗∕𝑧𝑚𝑎𝑥𝑗 and for the left hand side of
the enforcements in Eq. (12)d. In the very first steps the algorithm
has to reach the feasible design domain starting from an unfeasible
point. Indeed, the selected starting point is such that some constraints
are violated (being the feasibility larger than one). In the subsequent
iterations, optimal values of the minimization unknowns are smoothly
derived. Both the minimum thrust solution and the stress-based design
require less than 30 iterations to meet convergence with the expected
tolerance (less than 10−3 in terms of relative variation between the
value of each parameter in two subsequent iterations).

The problems in Eqs. (12) and (16) are highly non-convex, implying
that convergence to a global optimum cannot be guaranteed [21].
Different initial guesses may be conveniently adopted to investigate
more on the optimality of the achieved layouts. In Fig. 10, history plots
refer to the solution of the overhang-constrained problems, using the
starting guess 𝑞𝑘 = (𝑘 − 50)N/m, for 𝑘 = 1,… , 𝑚 − 𝑟, with 𝑧𝑓 ℎ =
(3.5 − ℎ∕𝑛ℎ)m, for ℎ = 1,… , 𝑛ℎ. The optimal shapes and the values
of the objective function at convergence are those previously retrieved.
However, this does not exclude the arising of a better solution. Smooth
convergence is observed, notwithstanding the larger variations reported
both in terms of objective function and of the feasibility of the local
enforcements.

5.2. Example 2

A rectangular bay with size 𝑑𝑥 = 2.25m × 𝑑𝑦 = 3.90m is addressed,
see Fig. 11. The nodes located along the perimeter are restrained in the
9

Table 2
Data summary for Example 2. The symbol (*) refers to a design problem in which it
is assumed that 𝑠𝑌 𝑖 = 𝑠𝑌 𝑖(𝛼𝑖 𝑦 = 0◦) ∀𝑖.

Fig. O.f. 𝑓𝑟 𝑓𝑠 max 𝑠𝑖 Overhang Length

type (N2) max
(

𝑠𝑖
𝑠𝑌 𝑖

)

(N) max
(

tan 𝛼𝑖
tan 𝛼𝑚𝑎𝑥

)2
(m)

12(a) 𝑓𝑟 2997 2.4 10−3 14.39 4.43 153.31
12(b) 𝑓𝑟 5367 2.7 10−3 15.80 1.00 143.50
13 𝑓𝑠 7556 1.6 10−3 9.29 1.00 143.39

𝑓𝑠(*) 7551 1.4 10−3 9.28 1.00 143.40

three directions (𝑛𝑓 = 60). According to the Gauss–Jordan elimination
performed on the system of equations governing the equilibrium in
the 𝑥 and 𝑦 axes, the dependent force densities are 𝑟 = 840, out of
𝑚 = 896 branches. The branches corresponding to the set of 𝑚 − 𝑟 = 56
independent force densities used in the simulations are depicted in
red in the picture. Hence, the optimization problem is formulated in
terms of 116 optimization unknowns (56 force densities and 60 vertical
coordinates of the restrained nodes). A set of 2 ⋅ 𝑛 = 840 constraints is
used to enforce the feasible bounds for the height of the unrestrained
nodes. As in the previous example, the lower limit is set to 𝑧𝑚𝑖𝑛 = 2.5m,
whereas the upper one reads 𝑧𝑚𝑎𝑥 = 3.5m, respectively. Side constraints
governing the height of the fully restrained edge enforce the following
upper and lower bounds (in m):

𝑧𝑚𝑖𝑛𝑓 ℎ = max
(

2.5, 2.75 − 2(𝑥∕𝑑𝑥 − 1∕2)(𝑦∕𝑑𝑦 − 1∕2)
)

,

𝑧𝑚𝑎𝑥𝑓 ℎ = min
(

3.5, 3.25 − 2(𝑥∕𝑑𝑥 − 1∕2)(𝑦∕𝑑𝑦 − 1∕2)
)

.

Optimal funicular networks are sought implementing side con-
straints 𝑞𝑘 ≥ 0 ∀𝑘. The minimization algorithm is initialized with
𝑞𝑘 = 50N/m ∀𝑘, and 𝑧𝑓 ℎ = (𝑧𝑚𝑖𝑛𝑓 ℎ + 𝑧𝑚𝑎𝑥𝑓 ℎ )∕2 ∀ℎ.

The solution achieved when seeking for minimum thrust networks
while disregarding the overhang constraints of Eq. (12d) is represented
in Fig. 12(a). All the nodes along the perimeter have height equal to
the upper bound of the admissible interval, whereas nodes along the
diagonal connecting the lower corners of the spatial networks match
the minimum height allowed. The largest tensile forces are found along
the members connecting the higher corners of the spatial networks.
Ties parallel to this direction undergo forces that decrease rapidly with
distance from the diagonal of the bay. Forces are much lower in the
branches having different orientation in the diamond pattern. A data
summary is reported in the first row of Table 2. The maximum tensile
force among all 𝑠𝑖 reads 14.39 N, whereas the maximum value of the
ratio 𝑠𝑖∕𝑠𝑌 𝑖 (force to yielding force in each branch) is 2.4 ⋅ 10−3. Again,
the most favorable setting to build the designed gridshell (by parts or
as a whole) consists in aligning the 𝑦 axis with the vertical direction
during the AM process. However, the maximum value of the squared
ratio (tan 𝛼𝑖 𝑦∕ tan 𝛼𝑚𝑎𝑥)2 reads 4.43 for this layout. Indeed, the build
angle of many bars, especially those located around the lower corners
of the bay, exceed the prescribed limit 𝛼𝑚𝑎𝑥 = 45◦ by far.

To control build angles 𝛼𝑖 𝑦, an optimization run is performed search-
ing for networks of minimum thrust and accounting for the overhang
constraints in Eq. (12d). An additional set of 𝑚 = 896 local enforcements
is handled within the multi-constrained formulation. The optimal result
is represented in Fig. 12(b), see second row of Table 2 for some relevant
data. Full feasibility with respect to overhang constraints is recovered
at the cost of an increase in the value of the objective function 𝑓𝑟 at
convergence, and a minor growth in the maximum tensile force read
in the branches of the network. In the achieved spatial network, only
a few nodes have height equal to the upper bound or the lower one.
The network is shallower than the previous one and tensile forces are
generally higher also in the direction parallel to the diagonal of the bay
connecting its lower corners.

A further investigation is performed using the stress-based ap-
proach, with objective function 𝑓 = 𝑓 and overhang constraints for
𝑠
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Fig. 12. Example 2. Optimal spatial networks and element forces in N, using as objective function: 𝑓𝑟, disregarding overhang constraints (a); 𝑓𝑟, with overhang constraints (b).
Fig. 13. Example 2. Optimal spatial network and element forces in N, using as
objective function 𝑓𝑠, with overhang constraints.

the build angles 𝛼𝑖 𝑦. This means minimizing the maximum value of
the ratio 𝑠𝑖∕𝑠𝑌 𝑖 over the branches constituting the spatial network. The
optimal result is represented in Fig. 13, whereas some relevant data
may be retrieved in the third row of Table 2. Full feasibility with respect
to the overhang constraints is achieved. As already seen for the optimal
solution in Fig. 12(b), only a few nodes have their 𝑧 coordinate that
equals the allowed lower or upper bound. When reviewing the stress-
based anti-funicular design in Fig. 7(a), the limited range of variation
of the compressive forces in the members of the network was pointed
point. A peculiar feature of the stress-based funicular solution of Fig. 13
is the almost homogeneous distribution of the tensile forces in the
branches. Indeed, the stress-based design outperforms the layouts of
minimum thrust both in terms of maximum value of 𝑠𝑖∕𝑠𝑌 𝑖, with 𝑠𝑌 𝑖(𝛼),
and in terms of largest 𝑠𝑖. With respect to the design for minimum
thrust with overhang constraints, the decrease is around 40% for both
quantities, with a similar increase for 𝑓𝑟 evaluated at convergence. The
length (weight) of the stress-based solution is almost equivalent to that
reported for the minimum thrust solution with overhang constraints.

The fourth row in Table 2 refers to the solution of a design problem
in which the dependence of the yielding stress on the printing angle is
disregarded, assuming 𝑠𝑌 𝑖 = 𝑠𝑌 𝑖(𝛼𝑖 𝑦 = 0◦) for all the branches in the
network. With respect to the solution achieved taking into full account
the dependence of 𝑠𝑌 𝑖 on the printing direction, the only difference is
that affecting the maximum value of the ratio 𝑠𝑖∕𝑠𝑌 𝑖. Indeed, both the
shape and the force distribution in the optimal network are the same
as those represented in Fig. 13.
10
5.3. Example 3

The grid already considered in the previous example, see Fig. 11, is
addressed. The same boundary conditions apply. With the aim of gen-
erating a saddle-like shape with members in tension and compression,
the restrained node along the perimeter of the bay have a fixed height
according to the following equation (in m):

𝑧𝑓 ℎ = 3 − 2(𝑥∕𝑑𝑥 − 1∕2)(𝑦∕𝑑𝑦 − 1∕2).

A variation of ±0.25m is allowed to the unrestrained nodes, with
respect to the above hyperbolic paraboloid, that means (in m):

𝑧𝑚𝑖𝑛𝑗 = 2.75 − 2(𝑥∕𝑑𝑥 − 1∕2)(𝑦∕𝑑𝑦 − 1∕2),

𝑧𝑚𝑎𝑥𝑗 = 3.25 − 2(𝑥∕𝑑𝑥 − 1∕2)(𝑦∕𝑑𝑦 − 1∕2).

All the optimizations problems in this section are formulated in terms
of the set of the independent force densities only, which are the same
used in the previous example.

At first, minimum thrust layouts are investigated. In Fig. 14(a), the
design without overhang constraints is reported, whereas Fig. 14(b)
concerns the one accounting for limitations on the build angle 𝛼𝑖 𝑦.
Relevant data are presented in the first and second row of Table 3,
respectively. In both cases, a few points in the network have height
equal to the allowed minimum value, whereas no node is located at
the upper bound. The maximum value of the tensile forces 𝑠𝑖 is almost
the same in the two cases, as well as the largest value of the element
ratio 𝑠𝑖∕𝑠𝑌 𝑖, where it is remarked that the yielding force 𝑠𝑌 𝑖 depends
on the build angle. Overhang constraints have a major effect on the
orientation of the compressive members located next to the lower
corners of the spatial network. For the overhang-constrained solution,
a decrease of around 20% is reported in terms of the maximum value of
the compressive force in the network, whereas the largest value of the
element ratio −𝑠𝑖∕𝑠𝑐 𝑖 is 60% less. It must be remarked that the critical
compressive force 𝑠𝑐 𝑖 increases when reducing the build angle of the re-
oriented members. This is mainly due to the reduced length of the bars,
but also to the larger value of 𝜎𝑌 (𝛼𝑖 𝑦) and smaller lack-of-straightness
𝑒(𝛼𝑖 𝑦), see Eq. (5). It is finally pointed out that the increase in the value
of the objective function 𝑓𝑟 read at convergence is quite low, compared
to the solution without overhang constraint.

The optimal stress-based layout found using 𝑓 = 𝑓𝑠 (with overhang
constraints) is reported in Fig. 15(a). Some relevant data are given
in the third row of Table 3. The shape of the network is remarkably
different from the layouts found when seeking for minimum thrust. A
peculiar feature of the stress-based layout is that it exhibits the same
maximum value among the element ratios −𝑠𝑖∕𝑠𝑐 𝑖 and 𝑠𝑖∕𝑠𝑌 𝑖. Compared
to the overhang-constrained network of Fig. 14(b), a decrease of around
20% is reported both in the magnitude of the maximum force (in
tension) and in the magnitude of the minimum force (in compression)
read in the branches of the spatial network. Due to the slenderness of
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Fig. 14. Example 3. Optimal spatial networks and element forces in N, using as objective function: 𝑓𝑟, disregarding overhang constraints (a); 𝑓𝑟, with overhang constraints (b).
Fig. 15. Example 3. Optimal spatial networks and element forces in N, using as objective function 𝑓𝑠, with overhang constraints: considering the dependence of 𝑠𝑐 𝑖 and 𝑠𝑌 𝑖 on
the build angle (a); assuming 𝑠𝑐 𝑖 = 𝑠𝑐 𝑖(𝛼𝑖 𝑦 = 0◦) and 𝑠𝑌 𝑖 = 𝑠𝑌 𝑖(𝛼𝑖 𝑦 = 0◦), ∀𝑖 (b).
the bars, which range from 100 to 123 in the stress-based solution, the
ratio |max 𝑠𝑖∕min 𝑠𝑖| is around 3, see also Fig. 3(b).

The optimal solution of the overhang-constrained stress-based prob-
lem, when assuming that 𝑠𝑐 𝑖 and 𝑠𝑌 𝑖 are those computed for 𝛼𝑖 𝑦 =
0◦ in all the branches of the network, is given in Fig. 15(b). With
respect to the optimal network represented in Fig. 15(a), there are
some differences in the orientation of the bars that are located around
the lower corners of the bay. Disregarding the dependence of the
mechanical parameters on the printing angle, the maximum value of
the ratio −𝑠𝑖∕𝑠𝑐 𝑖, which is still equal to that of 𝑠𝑖∕𝑠𝑌 𝑖, is 18% lower.
In this case, a 10% increase is reported in the magnitude of the
maximum compressive force, whereas only a minor variation (less than
3%) affects the maximum tensile force, see the fourth row in Table 3.
When −𝑠𝑖∕𝑠𝑐 𝑖 and 𝑠𝑖∕𝑠𝑌 𝑖 are evaluated considering the forces 𝑠𝑖 in the
network of Fig. 15(b), along with 𝑠𝑐 𝑖 and 𝑠𝑌 𝑖 computed for the relevant
distribution of 𝛼𝑖 𝑦, their maximum value reads 3.78 ⋅10−3 and 2.8 ⋅10−3,
respectively. Hence, disregarding the dependence of 𝑠𝑐 𝑖 and 𝑠𝑌 𝑖 on 𝛼𝑖 𝑦
in the optimization, costs around 10% in terms of 𝑓𝑠.

A further set of numerical simulations is performed considering
diamond-like gridshells having bars whose length, measured in the
(fixed) projection onto the horizontal plane, is halved, i.e. 𝑙𝑥𝑦 =
0.15∕2 = 0.075m. The reference load (roughly approximating the self-
weight) is scaled by the same factor, meaning that nodal forces equal
to 0.5 N are applied along the 𝑧 axis all over the network. The whole
geometry is reduced by one-half, affecting 𝑑𝑥, 𝑑𝑦, 𝑧𝑓 ℎ, 𝑧𝑚𝑖𝑛𝑗 and 𝑧𝑚𝑎𝑥𝑗 . As
expected, the overhang-constrained optimization for minimum thrust
provides the same shape represented in Fig. 14(b), see Fig. 16(a). The
only difference stands in the magnitude of the forces, which is halved,
see also the fifth row in Table 3. In Fig. 16(b), the optimal stress-based
layout (considering the dependence of the mechanical parameters on
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the printing angle) is depicted, whereas relevant data are reported in
the last row of the table. Again, the maximum value of the element
ratios −𝑠𝑖∕𝑠𝑐 𝑖 matches that of 𝑠𝑖∕𝑠𝑌 𝑖. However, the optimal shape is
quite different with respect to that represented in Fig. 15(a), and the
ratio |max 𝑠𝑖∕min 𝑠𝑖| is around 1.5. Indeed, the slenderness of the bars
ranges, in this case, from 50 to 62.

Since the slenderness of the bars is mainly related to the value of
𝑙𝑥𝑦, it must be remarked that the spacing of the adopted grid has a
noticeable impact on the optimal solution when designing networks
with element in tension and compression and accounting for stress
considerations.

5.4. Example 4

In this example, a spatial network with repetitive structure is ad-
dressed. The gridshell, for instance a lightweight roof, has vertical
supports which are located in a diamond pattern with side 𝑑𝑙 =
√

𝑑2𝑥 + 𝑑2𝑦 = 4.50m, being 𝑑𝑥 = 2.25m and 𝑑𝑦 = 3.90m, see Fig. 17(a).
The grid in Fig. 17(b) is the fixed plan projection of the representative
portion of the network. The length of the bars, measured in the hori-
zontal plane, is 0.15 m or 0.075 m. The seven nodes of the grid which
are closest to the corner with coordinates 𝑥 = 𝑑𝑥 = 2.25m, 𝑦 = 0m
are fully restrained, as well as the seven nodes nearest to the corner at
𝑥 = 0m, 𝑦 = 𝑑𝑦 = 3.90m. For the former set of nodes, the height is equal
to 2.5 m. For the latter, the elevation may vary between 𝑧𝑚𝑖𝑛𝑓 ℎ = 3.75m
and 𝑧𝑚𝑎𝑥𝑓 ℎ = 4.25m. Symmetry boundary conditions are enforced all over
the perimeter: nodes lying along sides of the rectangular bay which are
parallel to the 𝑥 axis are restrained in the 𝑦 direction, whereas nodes on
sides parallel to the 𝑦 axis are restrained in the 𝑥 direction. A minimum
slope of 4% is enforced by prescribing (in m):

𝑧𝑚𝑖𝑛 = 2.5 + 0.04𝑑 (1 − 𝑥∕𝑑 + 𝑦∕𝑑 ),
𝑗 𝑦 𝑥 𝑦
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Table 3
Data summary for Example 3. The symbol (*) refers to a design problem in which it is assumed that 𝑠𝑐 𝑖 = 𝑠𝑐 𝑖(𝛼𝑖 𝑦 = 0◦) and
𝑠𝑌 𝑖 = 𝑠𝑌 𝑖(𝛼𝑖 𝑦 = 0◦), ∀𝑖.

Fig. O.f. 𝑓𝑟 𝑓𝑠 min 𝑠𝑖 max 𝑠𝑖 Overhang Length

type (N2) max
(

−𝑠𝑖
𝑠𝑐 𝑖

)

max
(

𝑠𝑖
𝑠𝑌 𝑖

)

(N) (N) max
(

tan 𝛼𝑖
tan 𝛼𝑚𝑎𝑥

)2
(m)

14(a) 𝑓𝑟 8987 11.4 10−3 4.1 10−3 −10.20 24.02 4.25 142.62
14(b) 𝑓𝑟 9322 4.5 10−3 4.1 10−3 −8.30 24.20 1.00 140.07
15(a) 𝑓𝑠 12405 3.4 10−3 3.4 10−3 −6.57 19.68 1.00 139.62
15(b) 𝑓𝑠(*) 12220 2.8 10−3 2.8 10−3 −7.29 19.24 1.00 139.52

16(a) 𝑓𝑟 2331 1.0 10−3 2.1 10−3 −4.15 12.10 1.00 70.04
16(b) 𝑓𝑠 4891 1.5 10−3 1.5 10−3 −6.38 9.06 1.00 69.07
Fig. 16. Example 3. Optimal spatial networks and element forces in 𝑁 for 𝑙𝑥𝑦 = 0.075m, using as objective function: 𝑓𝑟, with overhang constraints (a); 𝑓𝑠, with overhang constraints
(b).
Fig. 17. Example 4. Generation of optimal spatial networks with repetitive structure: general plan (a); fixed plan geometry of a representative portion, with independent branches
marked in red (b). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
whereas 𝑧𝑚𝑎𝑥𝑗 = 4.25m for all the unrestrained nodes. A distributed
load with magnitude 1.35 kN/m2 is addressed, consisting of nodal
forces acting along the 𝑧 axis. The intensity takes values in the range
13.15–26.30N, depending on the tributary area of each node. In this
example, the number of dependent force densities is 𝑟 = 1027 (out of
𝑚 = 1047 branches). Hence, the number of minimization unknowns
reads 𝑚−𝑟+𝑛𝑓 = 27. Optimal funicular networks are sought implement-
ing side constraints 𝑞𝑘 ≥ 0 ∀𝑘. The minimization algorithm is initialized
with 𝑞𝑘 = 50 kN/m ∀𝑘, and 𝑧𝑓 ℎ = (𝑧𝑚𝑖𝑛𝑓 ℎ + 𝑧𝑚𝑎𝑥𝑓 ℎ )∕2 ∀ℎ.

In the optimal design, limitations on the build angle 𝛼𝑖 𝑦 are ac-
counted for. The minimum thrust layout is represented in Fig. 18(a).
12
Due to overhang constraints, the top nodes of the network are located
below the maximum allowed height. Only for a few nodes, the elevation
is equal to the minimum allowed value. The branches located along
the diagonal lines that connect the two sets of vertical supports are
those subjected to the largest stresses. Relevant data are given in the
first row of Table 4. The maximum value among the tensile forces is
3.77 kN, corresponding to a ratio 𝑠𝑖∕𝑠𝑌 𝑖 equal to 0.64. A shallower
spatial network is found when using 𝑓𝑠 as objective function, see
Fig. 18(b). Two of the top nodes of the network are located at the
minimum allowed height, as well as a few nodes next to the lower
support region. In this design, highly-stressed branches are found along
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Fig. 18. Example 4. Optimal spatial networks and element forces in kN, using as objective function: 𝑓𝑟, with overhang constraints (a); 𝑓𝑠, with overhang constraints (b).
Fig. 19. Example 4. Element forces in kN computed for the assemblage of four gridshells of the type in Fig. 18(a) using finite element analysis.
both diagonals of the rectangular bay. Relevant data are reported in the
second row of Table 4. A 18% decrease in terms of maximum tensile
force, corresponding to a ratio 𝑠𝑖∕𝑠𝑌 𝑖 equal to 0.53, is found. This has
the cost of a remarkable increase in terms of horizontal reactions, see
𝑓𝑟.

It must be remarked that the proposed design approach is based on
equilibrium only, meaning that the elastic response of the bars is not
accounted for within the optimization procedure. A linear finite ele-
ment analysis of the assemblage of four repetitive gridshells of the type
in Fig. 18(a) has been performed, using a commercial software [59].
Beam elements have been used, adopting the same elastic modulus
for all the bars, i.e. the value found in Eq. (1a) for 𝛼𝑖 𝑦 = 45◦. The
investigated portion of the network spans an area with size 4.50 m
× 𝑑𝑦 = 7.80m, including five vertically supported regions. Symmetry
boundary conditions are enforced all over the perimeter. A map of the
axial forces computed in the branches of the network for the load case
addressed in the design phase is given in Fig. 19. The maximum value
of the forces is only 3% less than that read in the results of the force
density method reported in Fig. 18(a). Negligible values of the bending
moment are found (< 10−4 kNm), thus confirming the achievement of
a funicular solution. The maximum value of the nodal displacements in
the vertical direction is less than 1.5 cm.

6. Conclusions and future research

In this contribution, multi-constrained formulations for the optimal
design of Wire-and-Arc Additive Manufactured gridshells have been
13
Table 4
Data summary for Example 4.

Fig. O.f. 𝑓𝑟 𝑓𝑠 max 𝑠𝑖 overhang Length

type (kN2) max
(

𝑠𝑖
𝑠𝑌 𝑖

)

(kN) max
(

tan 𝛼𝑖
tan 𝛼𝑚𝑎𝑥

)2
(m)

18(a) 𝑓𝑟 144 0.64 3.77 1.00 150.86
18(b) 𝑓𝑠 348 0.53 3.10 1.00 149.16

dealt with. Relying upon experimental data concerning bars built using
dot-by-dot WAAM with 304L stainless steel, a material characterization
has been preliminary performed. This in view of the formulation of op-
timization problems accounting for features peculiar to the considered
metal printing technique.

The orientation of the bar growth with respect to the vertical
direction, i.e. the build angle, affects the mechanical properties of the
printed bars. Smooth interpolations have been proposed to approximate
the values of the elastic modulus and of the yielding stress of the printed
material, along with the lack-of-straightness of the bars, depending on
the build angle. The Perry–Robertson capacity formula has been used to
predict failure in compression, interpolating between yielding of very
stud bars to elastic buckling of very slender ones, while taking into
account the effect of the measured eccentricity. A good agreement has
been found between the computed critical stress and the experimental
results for bars with different slenderness, printed with build angle
equal to zero. An extension of this formula has been proposed for build
angles in the range 0◦–45◦.
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Spatial networks acted upon by axial forces only have been inves-
tigated, using the force density method to handle the equilibrium of
the nodes. Gridshells with fixed plan projection have been dealt with,
formulating optimization problems whose unknowns are any set of
independent force densities, along with the height of the nodes having
restraints in the vertical direction. Local constraints have been used to
prescribe an upper and a lower bound to the height of each node in
the spatial network, and to control the build angle of each element. A
maximum overhang of 45◦ has been enforced, in agreement with the
utcome of the experimental investigations. Two objective functions
ave been considered, seeking for networks of minimum thrust, either
mplementing a stress-based design. In the latter case, the maximum
alue of the ratio axial force to yielding/critical force over the elements
as been adopted as objective function.

Numerical simulations have been performed considering anti-funi-
ular networks, funicular ones, and gridshells with a saddle-like shape.
n all the cases, full feasibility of the enforced sets of constraints is re-
orted. Dealing with networks of minimum thrust, overhang constraints
ave been found to impact both the optimal shape of the structure
nd the magnitude of the horizontal reactions. A more homogeneous
istribution of the forces has been observed in stress-based layouts,
haracterized by smaller ranges of variation of tensile and compressive
orces. This implies a slight reduction in terms of the overall weight, but
omes with an increase in the magnitude of the horizontal reactions.
hen dealing with saddle-like gridshells, the same maximum value has

een found, in stress-based layouts, for the ratios tensile force/yielding
orce and compressive force/critical force. Due to the dependence of
he critical force on the bar slenderness, the size of the grid remarkably
ffects the results, both in terms of optimal layout and stress regime.

The proposed approach may be used to investigate the optimal
orm of patterns of WAAM-printed bars addressing different applica-
ions. These include: (i) self-supporting gridshells which are mainly
reated for architectural purposes and may be printed as a whole,
hile respecting overhang constraints; (ii) loaded spatial networks in
hich the assemblage of smaller parts is implemented to overcome
anufacturing limitations. Following the implementation for ribbed

patial networks presented in [51], gridshells made of multiple layers
ould be conveniently handled. Reference is also made to the extension
f the proposed methodology to the optimal design of other structural
omponents made of WAAM-printed bars, see in particular the diagrid
olumn in [17].

In its current version, the method is limited to equilibrium consider-
tions. A linear finite element analysis has been preliminary performed
n one of the optimal layouts, finding good agreement with results
rom the considered funicular solution. The achieved layouts should
e assessed using geometric non-linear analyses up to the applied
oad. Especially in the case of anti-funicular networks, it must be
emarked that global stability has not been considered, at this stage,
n the implemented design procedure. The ongoing research is mainly
evoted to the extension of the proposed approach to account for global
uckling. Reference is made in particular to the work by [60], where
tability is discussed within the framework of truss layout optimization.
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