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Abstract
In this paper we address the problem of automatically selecting the regulariza-
tion parameter in variational models for the restoration of images corrupted by
Poisson noise. More specifically, we first review relevant existing unmasked
selection criteria which fully exploit the acquired data by considering all pixels
in the selection procedure. Then, based on an idea originally proposed by
Carlavan and Blanc-Feraud to effectively deal with dark backgrounds and/or
low photon-counting regimes, we introduce and discuss themasked versions—
some of them already existing—of the considered unmasked selection prin-
ciples formulated by simply discarding the pixels measuring zero photons.
However, we prove that such a blind masking strategy yields a bias in the res-
ulting principles that can be overcome by introducing a novel positive Poisson
distribution correctly modeling the statistical properties of the undiscarded
noisy data. Such distribution is at the core of newly proposed masked unbiased
counterparts of the discussed strategies. All the unmasked, masked biased and
masked unbiased principles are extensively compared on the restoration of
different images in a wide range of photon-counting regimes. Our tests allow
to conclude that the novel masked unbiased selection strategies, on average,
compare favorably with unmasked and masked biased counterparts.
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1. Introduction

Poisson noise is a very pervasive noise statistics in imaging problems, as it arises whenever the
acquired data is formed by counting the number of photons irradiated by a source and hitting
the image domain [3]. Typical applications where the Poisson noise removal is a particularly
relevant problem are astronomical and microscopy imaging; both scenarios are characterized
by a low-light condition, which is intrinsically related to the acquisition set-up in the former
case [22], while in the latter it is somehow preferable so as to preserve the specimen of interest
[18]. However, the weaker the light intensity, the stronger the degradation in the acquired
images.

The image formation model under Poisson noise corruption can be formulated in vectorized
form as follows

y = poiss
(
λ̄
)
, λ̄=Hx̄+ b , (1)

where y ∈ Nn, x̄ ∈ Rn
+ and b ∈ Rn

+—with N and R+ denoting the sets of natural numbers
including zero and of non-negative real numbers, respectively—are vectorized forms of the
n1 × n2 observed degraded image, unknown uncorrupted image and (typically) known back-
ground emission image, respectively, with n := n1n2. The blurring matrix H ∈ Rn×n models
the action of a known linear blurring operator, which typically arises in the context of astro-
nomical and microscopy image processing. Finally, poiss(λ̄) :=

(
poiss(λ̄1), . . . ,poiss(λ̄n)

)T
,

with poiss(λ̄i) indicating the realization of a Poisson-distributed random variable with para-
meter (mean) λ̄i. Hence λ̄ ∈ Rn

+—as all entries of H are non-negative—is the vectorized form
of the n1 × n2 noise-free degraded image.

The problem of recovering x̄ starting from the knowledge of the observation y and of the
acquisition model in (1) is typically ill-posed, so that one rather seeks for an estimate x̂ of
the target image x̄ which solves a well-posed problem as close as possible to the original
one. In the variational framework, the estimate x̂ is obtained as a global minimizer of a cost
(or energy) functional J : Rn → R typically taking the form

x̂(µ) ∈ argmin
x∈Rn

+

{J (x;µ) =R(x)+µF(λ;y)} , λ=Hx+ b , (2)

whereR andF are the so-called regularization and data fidelity term, respectively, whileµ> 0
is the regularization parameter balancing the action of F and R in the overall functional.

The data fidelity termF(λ;y)measures the distance betweenλ and ywith a metric induced
by the noise statistics. In presence of Poisson noise, based on the maximum likelihood estim-
ation approach (see, e.g. [5]), the fidelity term is typically set as the generalized Kullback–
Leibler (KL) divergence between λ and y, that is

F(λ;y) = KL(λ;y) :=
∑
i∈I

F(λi;yi) , (3)

where

F(λi;yi) =

{
λi− yi lnλi+ yi lnyi− yi if i ∈ I+
λi if i ∈ I0 := I \ I+

, (4)

with I, I+, I0 the sets of pixel indices defined by
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I := {1, . . . ,n} , I+ := {i ∈ I | yi > 0} , I0 := I \ I+ = {i ∈ I | yi = 0} .

On the other hand, the regularization term R(x) encodes information or beliefs that may be
available a priori on the target image x, such as smoothness or sparsity properties. One of
the most popular regularizers in image processing is the total variation (TV) semi-norm [19],
which reads

R(x) = TV(x) :=
∑
i∈I

∥(∇x)i∥2 , (5)

where (∇x)i ∈ R2 represents the discrete gradient of image x computed at pixel i. The TV
term, which induces sparsity of gradient magnitudes, is known to be particularly effective
for the restoration of piece-wise constant images; however, it is also well-established that the
TV regularizer tends to promote edges thus producing the so-called staircasing effect on the
smooth parts of the image. As a way to overcome the classical drawbacks of TV, one can
employ the TV2 regularizer [17] defined by

R(x) = TV2(x) :=
∑
i∈I

∥(∇2x)i∥F , (6)

with (∇2x)i ∈ R2×2 indicating the discrete Hessian of image x at pixel i and ∥ · ∥F denoting
the Frobenius norm. The TV2 regularizer promotes piecewise-affine structures in the image,
however its ability to recover sharp edges is less than TV.

A particularly flexible regularization term that couples the benefits of the TV and of the
TV2 regularizers while mitigating their shortcomings is the popular total generalized variation
(TGV) [14], in particular its second-order version which reads

R(x) = TGV2(x) := min
w∈R2n

{
α0

∑
i∈I

∥(∇x)i−wi∥2 +α1

∑
i∈I

∥(Ew)i∥F

}
, (7)

where w= (w1;w2) with w1,w2 ∈ Rn, wi := (w1,i;w2,i) ∈ R2 and (Ew)i ∈ R2×2 denotes the
discrete symmetric Jacobian of vector field w at pixel i, with α0,α1 being positive parameters.

Besides the choice of suitable data and regularization terms, the selection of the regulariza-
tion parameter µ can highly influence the quality of the output restoration. Generally speaking,
a criterion for the selection of µ in variational models of the form (2) can be formulated as fol-
lows

Select µ= µ̂ such that C(x̂(µ̂)) is satisfied ,

where x̂(µ) : R++ → Rn, with R++ = R+ \ {0}, is the image restoration function introduced
in (2) and C(·) is some selection criterion or principle.

Historically, the criteria proposed for the µ-selection under Poisson noise corruption have
been designed so as to extend the particularly wide literature for the parameter selection in
presence of additive white Gaussian noise. In this perspective, some attempts have been made
in order to modify the generalized cross validation function, originally proposed in [10], so
as to be applied to the case of Poisson noise [13, 24]. Nonetheless, such strategies have never
been significantly employed in imaging problems.
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A particularly successful strategy, proposed by Bertero and co-authors in the seminal works
[4, 26, 27], extends the popular discrepancy principle (DP) to Poisson noise scenarios. Ulti-
mately, one requires that the KL fidelity term, evaluated at x̂(µ) and regarded as a function of
µ, equals a given discrepancy value. In [4, 26, 27] this value is obtained by approximating the
expected value of the KL term now interpreted as a function of the Poisson-distributed random
vector Y, of which the observed image y has to be considered a realization. This instance of
the DP is easy to implement and relies on pleasant theoretical guarantees—see, e.g. [21, 23,
28]. However, it is also well established that it does not yield a good selection in low photon-
counting situations. This has been ascribed to the approximation of the original underlying
expected value, that several strategies tried to overcome [5, 7].

Different methods rely on transforming the noise statistics. More specifically, in [2]
the authors consider a Gaussian approximation of the noise and then employ the popular
Morozov DP. More recently, a criterion based on the whiteness property of a standardized
Poisson distribution has been proposed [6].

In [9], the authors raise the possibility that the sub-optimal results obtained via the DPs
in [2, 26] can be explained in light of the fact that the pixels corresponding to zero-entries
in the data should not be considered when solving the corresponding non-linear equations.
Nonetheless, such modified principles still rely on modeling the corrupting noise as a Poisson
distribution that does not explicitly encode the discarding of the zero-pixels, thus introducing
a bias in the final formulation of the strategies.

1.1. Contribution

In this paper, we review, discuss and compare experimentally all the existing state-of-the-art
principles and five new ones for the automatic selection of the regularization parameter µ in
the class of so-calledR-KL variational models for image restoration,

x̂(µ) ∈ argmin
x∈Rn

+

{R(x) + µKL(λ;y)} , λ=Hx+ b , (8)

with R being a general closed, proper and convex regularization term such as, e.g. (5)–(7).
More specifically, our contribution can be summarized as follows.

(a) We provide a detailed and organic review of the most popular and effective existing
unmasked principles (including the two very recent ones proposed in [5, 6]), which fully
exploit the information in the data without discarding any pixel.

(b) Inspired by the idea originally proposed in [9] to deal with low photon-counting scenarios,
we introduce and discuss themasked biased versions of the previously reviewed unmasked
principles, some of them already proposed in [9] and other new. These approaches come
from simply discarding the zero-pixels in the acquired image when applying the principles
while, at the same time, keeping the (Poisson) distribution of undiscarded data unchanged.

(c) As the main contribution of this work, we propose a whole new class of masked unbiased
selection criteria based on the introduction of a novel positive Poisson distribution which
suitably models the data statistics after discarding the zero-photon pixels. A theoretical
analysis of the biases eliminated by using the new unbiased principles is also carried out.

(d) As a final contribution, we extensively and reliably test the three categories of principles—
i.e. the unmasked, masked biased and novel masked unbiased strategies—on the res-
toration of different images, using different regularizers and in a wide range of differ-
ent photon-counting scenarios, from very low to high counting situations. The computed
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examples strongly indicate that, on average, the proposed masked unbiased criteria out-
perform both their unmasked and their masked biased counterparts, especially in the low-
counting regime.

The paper is organized as follows. In section 2we review and discuss themost relevant exist-
ing unmasked principles, while the associated masked biased criteria are outlined in section 3.
The novel positive Poisson distribution as well as the resulting masked unbiased approaches
are illustrated in detail in section 4. Numerical solution of the class ofR-KL variational models
by the alternating direction method of multipliers (ADMM) is dealt with in section 5. Extens-
ive numerical tests assessing the performance of the considered principles are carried out in
section 6. Section 7 concludes our work with some final considerations and outlook for future
research.

2. Unmasked principles

In this section, we recall and outline the four most relevant unmasked parameter selection
principles for Poisson noise proposed in literature so far, namely those principles which fully
exploit the information encoded in the observed image y without discarding the zero-photon
pixels. To this aim, first we introduce the µ-dependent image

λ̂(µ) :=Hx̂(µ)+ b ∈ Rn, (9)

which represents, for each selected µ value, an estimate of the unknown true noise-free image
λ defined in (1), obtained by solving the R−KL variational model in (8). We also introduce
the true and estimated standardized images

z :=
y−λ√

λ
∈ Rn, ẑ(µ) :=

y− λ̂(µ)√
λ̂(µ)

∈ Rn. (10)

where all operations in the above definitions have to be intended component-wise.
It can be proved—see Proposition 1 in [6]—that the original matrix (or image) form of

vector z above is the realization of a 2D white (i.e. uncorrelated) random field. In particular,
each entry zi of z is the realization of a scalar random variable with zero mean and unitary
variance.

2.1. The approximate DP

The abstract form of the DP applied to selecting the regularization parameter µ in the class of
R−KL variational models defined in (8) is as follows:

Select µ= µ̂ ∈ R++ such that D (µ̂;y) = ∆ , (11)

where the last equality and the scalar ∆ ∈ R+ in (11) are commonly referred to as the dis-
crepancy equation and the discrepancy value, respectively, while the discrepancy function
D( · ;y) : R++ → R+ is defined by

D (µ;y) := KL
(
λ̂(µ);y

)
=
∑
i∈I

(
Di (µ;yi) := F

(
λ̂i(µ);yi

))
, (12)

with the functionF and the estimated noise-free image λ̂(µ) defined in (4) and (9), respectively.

5
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The DP formalizes a simple idea: choose a value µ̂ of the regularization parameter µ in the
R−KL variational model in (8) such that the value of the KL data fidelity term associated with
the solution x̂(µ̂) is equal to a prescribed discrepancy value∆.

The direct extension of the Morozov DP—originally designed for additive white Gaussian
noise—to the case of Poisson corruption consists in selecting∆ as the expected value of the KL
fidelity term in (3) regarded as a function of the n-variate Poisson-distributed random vectorY
(of which the deterministic measure y ∈ Nn is a realization). This version of the DP for Poisson
noise, that we refer to as the exact or expected value DP (EDP), can be formalized as follows

Select µ= µ̂ ∈ R++ such that D (µ̂;y) = ∆(E) (µ̂) ,

with ∆(E)(µ) :=
∑
i∈I

(
δ(E)(λ̂i(µ)) := E

[
F
(
λ̂i(µ);Yi

)])
, (13)

where E
[
F
(
λ̂i(µ);Yi

)]
denotes the expected value of F

(
λ̂i(µ);Yi

)
regarded as a function of

the Poisson-distributed scalar random variable Yi. Nonetheless, unlike the Gaussian case, the
discrepancy value is not a constant but is a function ∆(E)(µ) of the regularization parameter
µ, and deriving its analytic expression is a very hard task.

A popular and widespread strategy, originally proposed in [26] for denoising purposes
and extended in [4] to the image restoration task, replaces the exact expected value function
∆(E)(µ) with a constant approximation coming from truncating its Taylor series expansion.
We refer to this DP version as approximate DP (ADP). It reads:

Select µ= µ̂ ∈ R++ such that D (µ̂;y) = ∆(A) ,

with ∆(A) :=
∑
i∈I

(
δ(A) :=

1
2

)
=
n
2
.

(14)

The popularity of the ADP mainly relies on the strong theoretical guarantees that it brings
along: in fact, existence and uniqueness of the solution of the discrepancy equation in (14)
can be proven under very mild conditions. However, it is well-established (see, e.g. [5]) that
the ADP tends to return either over-smoothed or under-smoothed restorations in low photon-
counting scenarios.

2.2. The quadratic DP

In the volume where the ADP has been originally proposed, a different selection criterion
also inspired by the Morozov DP has been published. Instead of approximating the expected
value of the KL fidelity term, in [2] the authors propose to directly approximate (quadratically)
the KL term in such a way that the expected value of the approximate term admits a simple
closed-form expression. The approximation reads

KL(λ;y) :=
∑
i∈I

F(λi;yi) ≈ KL(Q)(λ;y) :=
∑
i∈I

F(Q) (λi;yi) ,

with the introduced function F(Q) (approximating the function F in (4)) defined by

F(Q)(λi;yi) =

(
yi−λi√

λi

)2

. (15)

6
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The quadratically approximated version D(Q) of the exact discrepancy function D defined
in (12) and used in the ADP in (14) thus reads

D(Q) (µ;y) := KL(Q)
(
λ̂(µ);y

)
=
∑
i∈I

(
D(Q)
i (µ;yi) := F(Q)

(
λ̂i(µ);yi

))
. (16)

By regarding F(Q) in (15) as a function of the Poisson-distributed random variable Yi with
mean λi , it is immediate to prove that [12]

δ(Q) := E
[
F(Q)(λi;Yi)

]
= 1 .

Hence, the DP version proposed in [2], referred to as quadratic DP (QDP), reads

Select µ= µ̂ ∈ R++ such that D(Q) (µ̂;y) = ∆(Q) ,

with ∆(Q) :=
∑
i∈I

(
δ(Q) = 1

)
= n . (17)

2.3. The nearly exact DP

The two aforementioned strategies perform an approximation either on the discrepancy func-
tion or on its expected value. As anticipated, the latter scenario is known to return poor quality
results especially in low counting regimes when the considered approximation becomes par-
ticularly rough. This issue has been first commented in [4], where the authors state (in remark
3) that the choice of the constant value δ(A) = 1/2 in the ADP in (14) may not be ‘optimal’ and
suggest to replace it with 1/2+ ε, where ε is a generic small positive or negative real number.
Later, in [7] the authors proposed to introduce a non-constant ε, which is function ε(µ) of µ
and that is set as the sum of the second to tenth terms of the same Taylor expansion used in
[26]. However, such expansion converges only for λ approaching +∞—see [5]—and cannot
aspire to improve the performance of ADP in low-count regimes.

Recently, in [5] the authors proposed a novel and more accurate approximation of the dis-
crepancy value∆(E) in the EDP in (13) based onMonte Carlo simulation and nonlinear fitting.
More specifically, on a fine grid of selected λi , a very large number of pseudo-random real-
izations of random quantity F(λi;Yi) are generated. By computing the sample mean of such
realizations for each λi one gets back estimates for E [F(λi;Yi)]. A weighted least square fitting
is then employed to infer a nearly-exact estimate δ(NE)(λ) of the exact expected value function
δ(E)(λ) used in (13), namely

δ(NE)(λ) := δ(A) + ϵ(λ) =
1
2
+

λ2 + 2.5792λ− 1.5205
12λ3 − 5.6244λ2 + 17.9347λ+ 3.0410

. (18)

Based on (18), the novel DP version proposed in [5], referred to by the authors as the nearly
exact DP (NEDP), takes the form

Select µ= µ̂ ∈ R++ such that D (µ̂;y) = ∆(NE) (µ̂) ,

with ∆(NE)(µ)=
∑
i∈I

(
δ(NE)(λ̂i(µ))

)
=
n
2
+
∑
i∈I

ϵ(λ̂i(µ)) .
(19)

2.4. The whiteness principle

The popularity of the DPwhen the underlying noise is Gaussian has motivated the introduction
of the three unmasked selection principles described above for Poisson noise. Besides the
DP, a successful selection strategy in the Gaussian noise case consists in choosing µ so as to
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maximize the whiteness of the residual image or, equivalently, minimize the cross-correlation
between its entries [1, 15].

In the recent paper [6], the authors extended the above principle, referred to as the whiteness
principle (WP), to the case of Poisson noise. In this scenario, the WP can be applied thanks to
the introduction of the standardized images z and ẑ(µ) defined in (10). In fact, it can be proved
[6] that z is the realization of a white random field and, hence, it makes sense to seek for µ
maximizing the whiteness of the estimate ẑ(µ).

The WP for Poisson noise thus reads:

Select µ= µ̂∈ argmin
µ∈R++

{W(µ) := W (̂z(µ))}, with W(z) := ∥S(z)∥22 , (20)

where S(z) denotes the 2D normalized auto-correlation of image z (see [6] for details).

3. Masked biased principles

After noting that the ADP and QDP principles defined in (14) and (17) can yield sub-optimal
results in case of many zero-photon pixels, in [9] the authors proposed masked versions of
those principles based on simply discarding all pixels measuring zero photons—i.e. pixels for
which yi = 0. We refer to these masked principles as biased since they do not consider that by
carrying out a selection of pixels based on the value of the noise realization should require to
change the statistics of the selected pixels, as it will be illustrated in section 4.

The masked versions of the exact discrepancy functionD in (12) used in the ADP (14) and
of the quadratically approximated discrepancy function D(Q) in (16) used in the QDP (17)—
indicated by D+ and D(Q)

+ , respectively—take clearly the following forms

D+ (µ;y) :=
∑
i∈I+

F
(
λ̂i(µ);yi

)
, D(Q)

+ (µ;y) :=
∑
i∈I+

F(Q)
(
λ̂i(µ);yi

)
, (21)

with functionsF andF(Q) defined in (4) and (15), respectively. Hence, based on their unmasked
versions in (14) and (17), the ADP and QDP masked biased principles proposed in [9]—that
we shortly refer to as ADP-MB and QDP-MB, respectively—can be formulated as follows:

Select µ= µ̂ ∈ R++ such that D+ (µ̂;y) = ∆
(A)
+ ,

with ∆
(A)
+ :=

∑
i∈I+

(
δ(A) =

1
2

)
=
n+
2
,

(22)

Select µ= µ̂ ∈ R++ such that D(Q)
+ (µ̂;y) = ∆

(Q)
+ ,

with ∆
(Q)
+ :=

∑
i∈I+

(
δ(Q) = 1

)
= n+,

(23)

where n+ indicates the cardinality of set I+, namely the number of non-zero pixels.
Also the NEDP in (19), which was proposed after [9], admits a masked biased version

(NEDP-MB), which clearly reads:

Select µ= µ̂ ∈ R+ such that D+ (µ̂;y) = ∆
(NE)
+ (µ) ,

with ∆
(NE)
+ (µ) :=

∑
i∈I+

(
δ(NE)(λ̂i(µ))

)
=
n+
2

+
∑
i∈I+

ϵ(λ̂i(µ)) .
(24)

8
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Finally, by introducing the masked versions of the standardized image ẑ(µ) in (10), namely

ẑ+(µ) = (̂z+,1(µ), . . . , ẑ+,n(µ))
T with ẑ+,i(µ) =

{
ẑi(µ) if i ∈ I+
0 otherwise

, (25)

the masked biased version of the WP (WP-MB) can be formulated as follows

Select µ= µ̂∈ argmin
µ∈R++

{W+(µ) := W (̂z+(µ))}, (26)

with functionW(z) defined as in (20).

4. The proposed masked unbiased principles

In the next subsection we introduce and analyze a novel scalar discrete distribution, called pos-
itive Poisson distribution, which correctly models the statistics of non-zero pixels considered
in the masked selection principles. Based on such distribution, in subsections 4.2–4.5 we intro-
duce the novel masked unbiased principles.

4.1. Positive Poisson distribution

In the following definition 4.1 we recall the Poisson distribution and introduce the positive
Poisson distribution, then in proposition 4.2 we outline some important properties of positive
Poisson-distributed random variables.

Definition 4.1 (Poisson and positive Poisson random variables). A discrete random vari-
able Y is said to be Poisson-distributed with parameter λ∈R++, denoted by Y∼P(λ), if its
probability mass function reads

PY(y) =
λy exp(−λ)

y !
, y ∈ N .

The expected value, variance and second-order raw moment of Y are given by

E[Y] = Var[Y] = λ, E[Y2] = λ(λ+ 1) . (27)

The discrete random variable Y+ defined by

Y+ := Y if Y> 0 (28)

is said to be positive Poisson-distributed with parameter λ and denoted by Y+ ∼P+(λ).

Proposition 4.2. Let Y∼P(λ) and Y+ ∼P+(λ), with λ ∈ R++, and let T,V : R++ → R be
the functions defined by

T(λ) =
1

1− exp(−λ)
, V(λ) =

1− (1+λ) exp(−λ)

(1− exp(−λ))
2 . (29)

Then, the probability mass function, expected value, second-order raw moment and variance
of the positive Poisson-distributed random variable Y+ read

PY+(y) = T(λ)PY(y) =
1

exp(λ)− 1
λy

y !
, y ∈ N0 := N \ {0} , (30)

E[Y+] = T(λ)E[Y] =
λ

1− exp(−λ)
, (31)

E[Y2+] = T(λ)E[Y2] =
λ(1+λ)

1− exp(−λ)
, (32)

9
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Var[Y+] = V(λ)Var[Y] =
λ

(1− exp(−λ))
2

(
1− 1+λ

exp(λ)

)
. (33)

For any λ ∈ R++, PY+ , E[Y+], E[Y
2
+] and Var[Y+] in (30)–(33) satisfy

PY+(y)> PY(y) ∀y∈N0, E[Y+]> E[Y], E[Y2+]> E[Y2], Var[Y+]< Var[Y]. (34)

Moreover, for λ tending to 0 and λ tending to +∞, we have

lim
λ→0

PY+(y) =

{
1 for y= 1,
0 for y> 1

, lim
λ→+∞

PY+(y) = PY(y) ∀y ∈ N0 , (35)

lim
λ→0

E[Y+] = 1 , lim
λ→+∞

E[Y+] = E[Y] , (36)

lim
λ→0

E[Y2+] = 1 , lim
λ→+∞

E[Y2+] = E[Y2] , (37)

lim
λ→0

Var[Y+] = 0 , lim
λ→+∞

Var[Y+] = Var[Y] . (38)

Proof. It easily follows from definition (28) that, for any λ ∈ R++, the probability mass func-
tion PY+(y) of Y+ ∼ P+(λ) is a (positively) scaled version of the probability mass function
PY(y) of Y∼ P(λ) for y ∈ N0. In formula,

∀λ ∈ R++, ∃α(λ) ∈ R++ : PY+(y) = α(λ)PY(y) ∀y ∈ N0 . (39)

By imposing that the probability mass function PY+ sums to one, it is easy to prove that α(λ)
in (39) coincides with function T(λ) in (29), thus demonstrating (30):

∞∑
y=1

PY+(y) = 1 ⇐⇒ α(λ)
∞∑
y=1

PY(y) = 1 ⇐⇒ α(λ) =
1

∞∑
z=0

PY(y)−PY(0)

⇐⇒ α(λ) =
1

1− exp(−λ)
= T(λ) . (40)

Then, it easily follows from (30) that the mth order raw moments of Y+ are given by

E[Ym+] =
∞∑
y=1

ymPY+(y) = T(λ)
∞∑
y=1

ymPY(y) = T(λ)
∞∑
y=0

ymPY(y) = T(λ)E[Ym],

for any m ∈ N. By specifying the above formula for m= 1 and m= 2, one gets (31) and (32),
respectively. It follows from (31)–(32) that

Var[Z] = E
[
(Y+ −E[Y+])

2
]
= E

[
Y2+
]
− (E[Y+])

2
= T(λ)E

[
Y2
]
− (T(λ)E[Y])2

= T(λ)
(
λ(1+λ)−T(λ)λ2

)
= T(λ)(1+λ−λT(λ)) λ

= V(λ)Var[Y] , (41)

where the last equality in (41) comes from the definition of functions T and V in (29) and from
recalling that Var[Y] = λ.

Then, the inequalities in (34) and the four asymptotic properties (for λ→+∞) in (35)–(38)
come from (30)–(33) and the following easily provable—see the plots in figure 1—properties
of functions T and V defined in (29):

T(λ)> 1 ∀λ ∈ R++, V(λ)< 1 ∀λ ∈ R++, lim
λ→+∞

T(λ) = lim
λ→+∞

V(λ) = 1 .

10
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Figure 1. Plots of functions T(λ), V(λ) defined in (29) (left) and comparison between
the expected values (center) and the variances (right) of Y∼ P(λ) and Y+ ∼ P+(λ)
given in (27) and in (31), (33), respectively, for varying λ. The magenta dots repres-
ent the sample means m[Y+] (center) and the sample variances v[Y+] (right) of very
large numbers of realizations of the random variable Y+, for 50 different values of the
parameter λ, namely λ ∈ {0.1,0.2, . . . ,4.9,5}.

Finally, the four asymptotic properties (for λ→ 0) in (35)–(38) comes directly from taking the
limits as λ approaches 0 of the four functions defined in (30)–(33).

In figure 1 we give a graphical representation of some of the quantities introduced in pro-
position 4.2. In particular, the sample means m[Y+] and sample variances v[Y+] (indicated
by magenta dots and obtained by a simple Monte Carlo simulation) provide an experimental
validation of the theoretically derived formulas for the expected value E[Y+] in (31) and the
variance Var[Y+] in (33).

It is now clear that the Poisson and the positive Poisson random variables are characterized
by significantly different statistical properties, especially for small values of the parameter
λ. In this perspective, proposition 4.2 already warns on the approximations that the masked
formulations of the principles given in section 3 bring along. An analysis of the introduced
biases will be carried out in subsection 4.6.

In the next subsections, we are going to show how the newly introduced positive Poisson
distribution can be adopted so as to formulate masked unbiased versions of the original prin-
ciples reviewed here.

4.2. Masked unbiased approximate DP

As previously outlined, the approximate discrepancy value δ(A) = 1/2 used in the ADP relies
on truncating at the first order the Taylor expansion of E [F(λ;Y)], with Y a Poisson-distributed
random variable with mean λ. It can be proved that, in the masked unbiased case (where Y is
replaced by Y+), the expected value E [F(λ;Y+)] admits a Taylor expansion which also coin-
cides with 1/2 when truncated at the first order. Hence, masked biased and masked unbiased
versions of the ADP coincide; in what follows, they will be indistinctly referred to as ADP-M.

4.3. Masked unbiased quadratic DP

In light of statements (31) and (33) in proposition 4.2, we introduce the function

F(QU)(λi;yi) =

(
yi−λiT(λi)√

λiV(λi)

)2

, yi ∈ N0 .

11
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Relying on the properties of the novel positive Poisson distribution, it is easy to observe that

δ(QU) := E
[
F(QU)(λi;Y+,i)

]
= 1.

After introducing the unbiased version of the masked quadratically approximated discrepancy
function D(Q)

+ defined in (21) and used in the QDP-MB (23), namely

D(QU)
+ (µ;y) :=

∑
i∈I+

F(QU)
(
λ̂i(µ);yi

)
,

we get the following formulation for the masked unbiased QDP, referred to as QDP-MU,

Select µ= µ̂ ∈ R++ such that D(QU)
+ (µ̂;y) = ∆

(QU)
+ ,

with ∆
(QU)
+ :=

∑
i∈I+

(
δ(QU) = 1

)
= n+.

(42)

4.4. Masked unbiased nearly exact DP

The masked unbiased version of NEDP (NEDP-MU) is obtained—analogously to the
unmasked NEDP illustrated in [5]—by applying the weighted least squares fitting method
to approximate the behavior of the sample means of large numbers of realizations of random
quantity F(λi;Y+,i), with F defined in (4). We thus get:

Select µ= µ̂ ∈ R++ such that D+ (µ̂;y) =
n+
2

+
∑
i∈I+

ϵ(U)(λ̂i(µ)) , (43)

with

ϵ(U)(λ) =
λ3 + 30.7436λ2 − 2.2968λ+ 1.0827

12λ4 + 90.1921λ3 − 1.8872λ2 + 6.1778λ
. (44)

4.5. Masked unbiased whiteness principle

We start noticing that the standardized image ẑ+(µ) in (25), which comes from a blindmasking
of the original ẑ(µ) cannot be considered a realization of a white random process. Therefore,
we introduce the novel standardized image

ẑ(U)(µ) =
y− λ̂T(λ̂(µ))√
λ̂(µ)V(λ̂(µ))

∈ Rn ,

where T(λ) := (T(λ1), . . . ,T(λn))
T and V(λ) := (V(λ1), . . . ,V(λn))

T, with functions T and V
defined in (29). The masked vector ẑ(U)+ ∈ Rn corresponding to the new standardization reads

ẑ(U)+ (µ) =
(
ẑ(U)+,1(µ), . . . , ẑ

(U)
+,n(µ)

)T
with ẑ(U)+,i (µ) =

{
ẑ(U)i (µ) if i ∈ I+

0 otherwise
.

One can clearly observe that, in light of the results summarized in proposition 4.2, ẑ(U)+ is
a realization of a white random process, thus suggesting the following formulation for the
masked unbiased version of the WP (WP-MU)

Select µ= µ̂∈ argmin
µ∈R++

{
W(U)

+ (µ) := W
(
ẑ(U)+ (µ)

)}
, (45)

with functionW(z) defined as in (20).

12
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4.6. Analysis of bias

In light of the introduced unbiasedmasked principles, in this sectionwe carry out some analysis
of the pixel-wise biases of themasked biased principles illustrated in section 3. To this purpose,
first we give the following result.

Proposition. Let Y∼P(λ) and Y+ ∼P+(λ), with λ ∈ R++, and let Z
(B)
+ and Z(U)+ be the

biased and unbiased standardized positive Poisson random variables defined by

Z(B)+ =
Y+ −E [Y]√

Var [Y]
, Z(U)+ =

Y+ −E [Y+]√
Var [Y+]

.

Then, it holds true that

E
[
Z(B)+

]
=

√
λ (T(λ)− 1) , E

[(
Z(B)+

)2]
= T(λ)−λ(T(λ)− 1) , (46)

Var
[
Z(B)+

]
= T(λ)(1−λ(T(λ)− 1)) , (47)

E
[
Z(U)+

]
= 0 , E

[(
Z(U)+

)2]
= Var

[
Z(U)+

]
= 1 . (48)

Proof. First, the fact that Z(U)+ has zero mean and unitary second-order raw moment and vari-
ance comes in a straightforward manner from its definition.

Then, for what concern Z(B)+ , after recalling that E[Y] = Var[Y] = λ, it holds true that

E
[
Z(B)+

]
= E

[
Y+ −E[Y]√

Var[Y]

]
= E

[
Y+ −λ√

λ

]
=

1√
λ
E [Y+ −λ]

=
1√
λ
(E [Y+]−λ) =

√
λ (T(λ)− 1) , (49)

where the last equality in (49) comes from replacing the expression of E[Y+] given in (31).
Then, by recalling also the expression of E

[
Y2+
]
in (32), we have that

E

[(
Z(B)+

)2]
= E

[
(Y+ −E[Y])2

Var[Y]

]
= E

[
(Y+ −λ)2

λ

]
=

1
λ
E
[
Y2+ − 2λY+ +λ2

]
=

1
λ

(
E
[
Y2+
]
− 2λE[Y+] +λ2

)
=

1
λ

(
T(λ)

(
λ+λ2

)
− 2λ2T(λ)+λ2

)
=

1
λ

(
λT(λ)−λ2T(λ)+λ2

)
= λ+T(λ)−λT(λ)

= T(λ)−λ(T(λ)− 1) . (50)

Finally, based on (49) and (50), the variance in (47) can be computed as follows

Var
[
Z(B)+

]
= E

[(
Z(B)+

)2]
−
(
E
[
Z(B)+

])2
= T(λ)−λ(T(λ)− 1)−λ (T(λ)− 1)2

= T(λ)−λT(λ)+λ−λT2(λ)+ 2λT(λ)−λ

= T(λ)+λT(λ)−λT2(λ) = T(λ)(1+λ−λT(λ))

= T(λ)(1−λ(T(λ)− 1)) . (51)

13
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In what follows, we compare the masked biased and masked unbiased versions of the QDP,
NEDP andWP in terms of some pixel-based bias functions. We recall that for the ADP the bias
has to be considered constantly zero as the masked biased and the masked unbiased versions
coincide.

As the definition of the QDP, in its unmasked, masked biased and masked unbiased version,
is related to the behavior of the sample variance of the noise realization vector approximated
by the residual image, we introduce the following bias function βQDP : R++ → R to measure
the inaccuracy introduced by the QDP-MB at each pixel

βQDP(λ) = E

[(
Z(B)+

)2]
−E

[(
Z(U)+

)2]
= T(λ)−λ(T(λ)− 1)− 1 . (52)

In the case of NEDP, the bias can be measured in terms of the difference between the building
functions used to approximate the behavior of the exact expected value δ(E)(λ) arising in the
EDP (13). We thus introduce the pixel-based bias function βNEDP : R++ → Rwhich is defined
as

βNEDP(λ) = ϵ(λ)− ϵU(λ) (53)

with ϵ(λ), ϵU(λ) given in (18), (44), respectively.
Finally, for what concerns theWP, we point out that measuring the bias in terms of the auto-

correlation of the normalized random variables Z(B)+ , Z(U)+ —that would be the most natural

choice in this scenario—is unfeasible; hence we rather measure how far is Z(B)+ from being
a zero-mean random variable with constant (unitary) standard deviation. In other words, we
introduce the two pixel-based bias functions βWP,η,βWP,σ : R++ → R defined as

βWP,η(λ) = E
[
Z(B)+

]
−E

[
Z(U)+

]
=
√
λ (T(λ)− 1) ,

βWP,σ(λ) =

√
Var

(
Z(B)+

)
−
√
Var

(
Z(U)+

)
=
√
T(λ)(1−λ(T(λ)− 1))− 1 .

(54)

In figure 2, we show the behavior of the pixel-based bias functions in (52)–(54) for three
different ranges of λ, namely (0,0.1], (0.1,5], (5,200]. Notice that the bias is particularly
relevant for very small values of λ, while it tends to 0 as λ increases. Such behavior reflects
the theoretical results given in proposition 4, whence we have that the statistical properties of
Z(B)+ , Z(U)+ coincide as λ→+∞.

5. Numerical methods for application of the selection principles

The application of all previously reviewed and newly proposed selection criteria rely on numer-
ically solving the R−KL variational model in (8) which, we remark, is convex under the
assumption that the regularization term R is convex (this is the case of (5)–(7) regularizers).
Efficient solvers based on the ADMM [8] for the R-KL model when R is the TV, TV2 or
TGV2 regularizer—that is, for the so-called TV-KL, TV2-KL and TGV2-KL models—have
been proposed, e.g. in [6, 16, 20], respectively. However, for the sake of completeness of the
presentation as well as of reproducibility of the results that we will present in the next section,
in this section we recall the main concepts and computational steps of the ADMM applied to
the three models. In particular, we are going to show how the TV-KL, TV2-KL and TGV2-KL
models can all be equivalently reformulated as two-blocks separable optimization problems
with linear constraints, which can be solved by standard two-blocks ADMM schemes with
guaranteed convergence.
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Figure 2. From top to bottom: plot of the pixel-based bias functions modeling the
approximation introduced by the masked biased version of the QDP, NEDP and WP
on different λ intervals in the range (0,200].

Recalling the definitions of the R−KL model in (8) and of the TV, TV2 and TGV2 regu-
larizers in (5)–(7), and by introducing the three matrices

D1 =

(
Dh

Dv

)
∈R2n×n, D2 =


Dhh

Dvv

Dhv

Dvh

∈R4n×n, DS=


Dh 0
0 Dv

1
2Dv

1
2Dh

1
2Dv

1
2Dh

∈R4n×2n,

with Dh,Dv,Dhh,Dvv,Dhv,Dvh ∈ Rn×n finite difference matrices discretizing the first-order
partial derivatives of the vectorized n1 × n2 image x in the horizontal and vertical direction and
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the second-order partial derivatives of image x in the horizontal, vertical, mixed horizontal-
vertical and mixed vertical-horizontal directions (with Dvh = Dhv), respectively, the TV-KL,
TV2-KL and TGV2-KL models can be equivalently written as

x̂(µ) ∈ argmin
x∈Rn

{
ιRn

+
(x)+µKL(Hx+ b;y) +

∑
i∈I

∥∥(D1x)i
∥∥
2

}
, (55)

x̂(µ) ∈ argmin
x∈Rn

{
ιRn

+
(x)+µKL(Hx+ b;y) +

∑
i∈I

∥∥(D2x)i
∥∥
2

}
, (56)

{
x̂(µ), ŵ(µ)

}
∈ argmin

x∈Rn,

w ∈R2n

{
ιRn

+
(x)+µKL(Hx+ b;y)

+α0

∑
i∈I

∥∥(D1x)i−wi
∥∥
2
+α1

∑
i∈I

∥∥(DSw)i
∥∥
2

}
, (57)

respectively, where ιRn
+
(x) denotes the indicator function of the non-negative orthant Rn

+ and

where, with a little abuse of notation, we indicate by (D1x)i :=
(
(Dhx)i ; (Dvx)i

)
∈ R2 and

by (D2x)i :=
(
(Dhhx)i ; (Dvvx)i ; (Dhvx)i ; (Dvhx)i

)
∈ R4 the discrete gradient and the vector-

ized discrete Hessian of image x at pixel i, respectively. Moreover, we denote by (DSw)i :=(
(Dhw1)i ; (Dvw2)i ; (1/2)(Dvw1)i+(1/2)(Dhw2)i ; (1/2)(Dvw1)i+(1/2)(Dhw2)i

)
∈R4 the

vectorized discrete symmetric Jacobian of vector field w= (w1;w2) at pixel i.
Then, by introducing for the models in (55)–(57) the auxiliary variable u defined in the

three cases, respectively, by

u=

 u1
u2
u3

 =

 x
H x
D1x

 , u=

 u1
u2
u3

 =

 x
H x
D2x

 , u=


u1
u2
u3
u4

 =


x

H x
D1x−w

DSw

 ,

and setting t= x for TV-KL and TV2-KL, t= (x;w) for TGV2-KL, it is easy to verify that
all the three models can be equivalently reformulated as the following standard two-blocks
(additively) separable minimization problem with linear constraints:{̂

t(µ), û(µ)
}
∈ argmin

t,u
{C1(t)+C2(u;µ)} subject to: M1t+M2u= 0. (58)

In particular, for TV-KL, TV2-KL and TGV2-KL models, functions C1,C2 read, respectively,

C1(t) = 0, C2(u;µ) = ιR+
(u1)+µKL(u2+b;y)+

∑
i∈I

∥u3,i∥2 , (59)

C1(t) = 0, C2(u;µ) = ιR+
(u1)+µKL(u2+b;y)+

∑
i∈I

∥u3,i∥2 , (60)

C1(t) = 0, C2(u;µ) = ιR+
(u1)+µKL(u2+b;y)+α0

∑
i∈I

∥u3,i∥2+α1

∑
i∈I

∥u4,i∥2 , (61)
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and matricesM1, M2 take the form, respectively,

M1=

 I
H
D1

, M2=− I, M1=

 I
H
D2

, M2=− I, M1=


I 0
H 0
D1 −I
0 DS

, M2=− I. (62)

The Lagrangian function L and augmented Lagrangian function Lγ associated with prob-
lem (58) read

L(t,u,ρ;µ) = C1(t)+C2(u;µ)+ρT (M1t+M2u) , (63)

Lγ(t,u,ρ;µ) = L(t,u,ρ;µ)+ γ

2
∥M1t+M2u∥22 , (64)

where ρ is the vector of Lagrange multipliers associated to the system of linear constraints
in (58) and γ ∈ R++ is a penalty parameter.

Solving problem (58) amounts to seek the saddle point(s) {t∗(µ),u∗(µ),ρ∗(µ)} of the aug-
mented Lagrangian Lγ in (64) which, according to the standard two-blocks ADMM [8], can
be computed as the limit point of the following iterative procedure:

t(k+1) = argmin
t

Lγ

(
t,u(k),ρ(k);µ

)
= argmin

t

{
C1(t)+

γ

2

∥∥∥∥M1t+M2u(k) +
1
γ
ρ(k)

∥∥∥∥2
2

}
, (65)

u(k+1) = argmin
u

Lγ

(
t(k+1),u,ρ(k);µ

)
= argmin

u

{
C2(u)+

γ

2

∥∥∥∥M2u+M1t(k+1) +
1
γ
ρ(k)

∥∥∥∥2
2

}
, (66)

ρ(k+1) = ρ(k) + γ
(
M1t(k+1) +M2u(k+1)

)
. (67)

After recalling from (59)–(62) that C1(t) = 0 and M2 =−I , it is immediate to prove that
for the three models the t-update step in (65) takes the same following form

t(k+1) =
(
MT

1M1
)−1

MT
1q

(k), q(k) = u(k) − 1
γ
ρ(k), (68)

that is, t(k+1) is obtained by solving a linear system with coefficient matrixMT
1M1. This matrix

is symmetric and positive definite—hence, non-singular—in all the three cases and, by assum-
ing periodic boundary conditions for all the involved finite difference matrices, the linear sys-
tem can be solved very efficiently based on the 2D discrete Fourier transform, implemented
by 2D fast Fourier transform (see, e.g. [6, 16, 20]). We note that t(k+1) = x(k+1) for TV-KL
and TV2-KL, t(k+1) = (x(k+1);w(k+1)) for TGV2-KL.

For what regards the u-update in (66), it is easy to verify that it takes the form

u(k+1) = argmin
u


m∑
j=1

Uj (uj)

 ⇐⇒ u(k+1)
j = argmin

uj
Uj (uj) , j= 1, . . . ,m,

with m= 3 for TV-KL and TV2-KL models, m= 4 for TGV2-KL. This means that (66) is
equivalent to 3 or 4 independent minimization subproblems each giving the updated value of
one of the solution subvectors uj. In order to outline the solution of all the m subproblems
for the three models, it is useful to introduce a partition of the vector of Lagrange multipliers
ρ(k) into m subvectors ρ(k)

j having the same size of the corresponding solution subvectors uj.
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Hence, for TV-KL and TV2-KL we define ρ(k) =
(
ρ
(k)
1 ;ρ

(k)
2 ;ρ

(k)
3

)
, whereas for TGV2-KL we

set ρ(k) =
(
ρ
(k)
1 ;ρ

(k)
2 ;ρ

(k)
3 ;ρ

(k)
4

)
.

For all the three models the two subproblems for variables u1,u2 ∈ Rn admit the same
pixel-wise close-form solutions which, after introducing the two vectors

q(k)1 = x(k+1) +
1
γ
ρ
(k)
1 , q(k)2 =Hx(k+1) +

1
γ
ρ
(k)
2 ,

and setting τ = µ/γ , read, respectively,

u(k+1)
1,i = max

{
q(k)1,i , 0

}
, (69)

u(k+1)
2,i =

1
2

(
−(τ + bi− q2,i)+

√
(τ + bi− q2,i)

2
+ 4(biq2,i+ τ(yi− bi))

)
, (70)

for i= 1, . . . ,n.
Also the third subproblem for variable u3, after introducing the vector

q(k)3 =


D1x(k+1)+ 1

γ ρ
(k)
3 ∈ R2n for TV−KL model ,

D2x(k+1)+ 1
γ ρ

(k)
3 ∈ R4n for TV2 −KL model ,

D1x(k+1)+ 1
γ ρ

(k)
3 −w(k+1) ∈ R2n for TGV2 −KL model ,

admits a pixel-wise explicit solution (proximal map of ℓ2-norm function) reading

u(k+1)
3,i = max

1− 1

γ
∥∥∥q(k)3,i

∥∥∥
2

, 0

 q(k)3,i ,

for i= 1, . . . ,n, where max{1− 1/0 , 0}= 0 is assumed and where u(k+1)
3,i , q(k)3,i ∈ R2 for TV-

KL and TGV2-KL models, u(k+1)
3,i , q(k)3,i ∈ R4 for TV2-KL.

Finally, for the TGV2-KL model, the fourth subproblem for variable u4 ∈ R4n can also be
solved in pixel-wise closed-form based on the ℓ2-norm proximal map; in formula,

u(k+1)
4,i = max

1− 1

γ
∥∥∥q(k)4,i

∥∥∥
2

, 0

 q(k)4,i , q(k)4 = DSw(k+1)+
1
γ
ρ(k), (71)

for i= 1, . . . ,n, with u(k+1)
4,i ,q(k)4,i ∈ R4.

To conclude, in the following proposition 5.1 we apply to the three ADMM schemes out-
lined above (solving the TV-KL, TV2-KL and TGV2-KL models) a general and classical
convergence result for the two-blocks ADMM given in the seminal paper by Eckstein and
Bertsekas [11].

Proposition 5.1. Let L, Lγ be the Lagrangian and the augmented Lagrangian functions
in (63) and (64) with functions C1, C2 and matricesM1,M2 defined as in (59)–(62), depending
on the regularizer (TV, TV2 or TGV2) considered. Then, if a saddle point {t∗(µ),u∗(µ),ρ∗(µ)}
ofL exists, the ADMM scheme in (65)–(67) with (65) and (66) solved as in (68)–(71) converges
to {t∗(µ),u∗(µ),ρ∗(µ)} for any µ,γ ∈ R++, with t∗(µ) equal to a solution x̂(µ) of model (55)
or model (56), or to a solution {x̂(µ), ŵ(µ)} of model (57). If a saddle point ofL does not exist,
then at least one of the two sequences of ADMM iterates {u(k)} or {ρ(k)} is unbounded.

Proof. For the TV-KL, TV2-KL and TGV2-KL variational models considered, for any µ ∈
R++ the functions C1, C2 defined in (59)–(61) are all clearly proper, closed and convex and
the matrices M1, M2 defined in (62) are such that M2 is the negative identity and M1 has full
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(column) rank. Moreover, the two ADMMminimization subproblems for the primal variables
t,u in (65) and (66) are solved exactly by formulas in (68)–(71). Hence, by applying the clas-
sical convergence result for the two-blocks ADMM given in [11] (Theorem 8), the proof of
the statement follows easily.

6. Computed examples

In this section, we perform a reliable quantitative experimental comparison among the per-
formance of the eleven different parameter selection criteria outlined in section 2 (unmasked),
section 3 (masked biased) and section 4 (masked unbiased), namely the four unmasked prin-
ciples ADP in (14), QDP in (17), NEDP in (19), WP in (20) proposed in [2, 5, 6, 26], respect-
ively, the two masked biased criteria ADP-MB in (22), QDP-MB in (23) presented in [9],
the two newly proposed masked biased principles NEDP-MB in (24), WP-MB in (26) and
the three novel masked unbiased criteria QDP-MU in (42), NEDP-MU in (43) and WP-MU
in (45).

In order to make the results of the comparison as solid as possible, we act in three directions.
First, we consider the three test images satellite, stem and cells shown in figure 3—
with the associated experiments reported in sections 6.3, 6.4 and 6.5, respectively—which are
characterized by different properties and thus allow to test the eleven selection criteria for the
three (55–57) image restoration models. Second, for each test image/model we simulate differ-
ent photon-counting scenarios, ranging from very low- to high-counting ones. Third, for each
image/model and each photon-counting level, we consider a number of different (independent)
Poisson noise realizations and collect statistics (minimums, maximums and averages) of the
quantitative accuracy results achieved by the principles. In particular, we measure the qual-
ity of the restored images x̂(µ) (with respect to the target uncorrupted image x̄) obtained by
applying the different criteria by means of two accuracy metrics, namely the structural simil-
arity index measure (SSIM) defined in [25] and computed by the Matlab routine ssim and the
improved-signal-to-noise-ratio (ISNR) defined by

ISNR(x̂(µ), x̄,y) = SNR(x̂(µ), x̄)−SNR(y, x̄),

SNR(z, x̄) = 20log10
||x̄−mx̄||2
||x̄− z||2

,

measured in decibel and with mx̄ denoting the mean value of the target image x̄.
All tests have been performed in Matlab R2022b, on a Windows 10 Platform. The code is

available at https://github.com/MonicaPragliola/MU-principles.

6.1. Data generation

For each of the three test images, in order to simulate different photon-counting scenarios,
first we (affinely) scale the image in the range [0,1] and denote by x̄norm the obtained normal-
ized image. Then, nine uncorrupted images x̄κ for nine different photon-counting levels are
simulated by multiplying x̄norm by as many photon-level factors κ ∈ R++, in particular:

x̄κ = κ x̄norm, κ ∈ {1,3,5,10,20,50,100,500,1000} . (72)

The photon-scaled images x̄κ are then corrupted by space-invariant Gaussian blur, with blur
kernel generated by the Matlab routine fspecial, which is characterized by two parameters:
the band parameter, representing the side length (in pixels) of the square support of the kernel,
and sigma, that is the standard deviation (in pixels) of the isotropic bivariate Gaussian distri-
bution defining the kernel in the continuous setting. In all our tests, we set band = 5, sigma =
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Figure 3. From left to right: original satellite (256× 256 pixels), stem (453×
592 pixels) and cells (236× 236 pixels) test images considered in the numerical
experiments.

Figure 4. Test image satellite corrupted by blur and, from left to right, by decreasing
levels of Poisson noise yielded by increasing values of the photon-level factor κ in (72).
In the right-most graph, SNR value of the noisy observation yκ as a function of factor κ.

1. Then, a constant background emission image b is added to the blurred images, so as to get
the nine noise-free degraded images λ̄

κ
=Hx̄(k) + b. Finally, for each noise-free image λ̄

κ
,

ten different noisy observations

yκ( j), j= 1, . . . ,10 , (73)

are generated by sampling as many independent realizations from an n-variate Poisson random
process with mean λ̄

κ
, using the Matlab routine poissrnd.

We remark that the factor κ in (72) represents the maximum number of photons that, on
average, can hit any pixel of the image domain if no blur degradation (H= I) and a null emis-
sion background (b= 0) are considered. In fact, in this case the noise-free image λ̄

κ
—which,

we notice, contains the mean values of the Poisson noise distributions at all pixels—is given
by λ̄

κ
=Hx̄κ + b= x̄κ, hence max{λ̄κ}=max{x̄κ}= κ. In general, for any given blur cor-

ruption and emission background, the factor κ is positively related to the photon-range of the
experiment and, recalling that for a scalar Poisson random variable with parameter λ̄κ = κλ̄
the ratio between its mean (true signal) and its standard deviation (noise level) is equal to

λ̄κ/
√

λ
κ
=
√
κ
√
λ, also to the signal-to-noise ratio of the observed degraded image yκ to

restore. To highlight clearly the effect of κ on the noise-level in the observation yκ and, hence,
on the difficulty of the restoration process, in figure 4 we show the test image satellite
corrupted by Gaussian blur and by a realization of Poisson noise for four different values of
κ as well as, on the right, the graph of the SNR value of the observation yκ as a function of
the factor κ. This graph justifies the non-uniform grid of κ-values considered in (72) (the grid
is finer for small κ-values where the SNR changes more rapidly) as well as the maximum
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value k= 1000 considered (the SNR curve stabilizes, hence taking κ> 1000 does not change
significantly the results of the criteria comparison).

6.2. Analysis

For each of the three test images and each of the nine photon-level factors κ in (72), the ten
generated degraded images yκ( j) are processed as follows. For each yκ( j), we compute the
solution of the R-KL variational model for a very fine grid of different µ-values and then,
based on the obtained µ-dependent restorations, we apply the eleven different criteria to get
the selected regularization parameter values

µ̂κ
C(j), C ∈ C := {ADP,QDP,NEDP,WP,ADP-M,QDP-MB,NEDP-MB,

WP-MB,QDP-MU,NEDP-MU,WP-MU},

and the corresponding restored images x̂
(
µ̂κ
C( j)

)
. We then compute and record the associated

ISNR and SSIM values denoted by ικC( j) and σκ
C( j), respectively, as well as the optimal (i.e.

maximum) ISNR and SSIM values achieved on the fine grid of µ-values considered, denoted
by ικOPT( j) and σκ

OPT( j), respectively.
After processing the ten degraded observations yκ( j), we thus get the following sets of

quantitavive results:

IκC := {ικC(1), . . . , ικC(10)}, SκC := {σκ
C(1), . . . ,σ

κ
C(10)}, C ∈ C,

IκOPT := {ικOPT(1), . . . , ικOPT(10)}, SκOPT := {σκ
OPT(1), . . . ,σ

κ
OPT(10)}.

Then, for each ικC( j) ∈ IκC and each σκ
C( j) ∈ SκC we compute the percentage difference with

respect to the corresponding optimal values ικOPT( j) and σ
κ
OPT( j), respectively,

ϵIκC (j) := 100× ικOPT(j)− ικC(j)
ικOPT(j)

, ϵSκC (j) := 100× σκ
OPT(j)−σκ

C(j)
σκ
OPT(j)

.

The behavior of each selection criterion for a given photon-counting level is thus synthesized
by the expected values (or, better, sample means) of the ISNR and SSIM percentage errors
achieved for the ten different noise realizations,

ηIκC :=
1
10

10∑
j=1

ϵIκC ( j) , ηSκC :=
1
10

10∑
j=1

ϵSκC ( j) . (74)

Moreover, to monitor the variability of the performance of each criterion with respect to dif-
ferent noise realizations, we also compute

ϵIκC =max
j

ϵIκC ( j) , ϵSκC =max
j

ϵSκC ( j) , ϵIκC =min
j
ϵIκC ( j) , ϵSκC =min

j
ϵSκC ( j) . (75)

We remark that, for all the experiments, restoration is performed by means of the R-KL
variational model—in particular, TV-KL model for satellite image, TV2-KL for stem
and TGV2-KL for cells—solved numerically by the iterative ADMM schemes outlined in
section 5. In all the tests, the ADMM iterations are stopped as soon as the relative change
between two subsequent x-iterates satisfies

∥x(k+1) − x(k)∥2
∥x(k)∥2

< 10−6 ,

while the ADMM penalty parameter γ is set manually so as to fasten the convergence of
the alternating scheme. More specifically, the numerical tests indicated the range γ ∈ [1,10]
as a good choice.
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Figure 5. Test image satellite. Expected values and confidence intervals for the
ISNR values achieved in different photon-counting regimes.

6.3. Test image satellite: parameter selection in the TV-KL model (55)

We consider the restoration of the test image satellite. In this first example, we set b≡
2× 10−3 and, in light of the dominant piece-wise constant features present in the image, we
employ the TV regularization term in (5).

We start analyzing the behavior of the expected and limiting values defined in (74) and (75),
respectively, within the four classes of ADP-, QDP-, NEDP- andWP-based criteria. In figure 5
for each class we plot the sample means ηIκC corresponding to the different photon-counting
regimesκ expressed in log10-scale, and also the confidence intervals determined by the limiting
values ϵIκC , ϵIκC .

For what concerns the ADP-based strategies, we recall that the MB and MU versions of the
principle coincide. Notice that the masked criterion achieves significantly better results as the
red band stays below the 30% regardless of the counting regime, while the unmasked method
stays above the 80%

In the case of QDP-based approaches, one can immediately observe that the percentage
differences achieved by the unmasked principle are particularly large for every κ. In the lower
counting regimes, i.e. κ⩽ 5, the MB version returns very poor results, while its performance
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Figure 6. Test image satellite. Expected values and confidence intervals for the
SSIM values achieved in different photon-counting regimes.

improves and stays below the 20% for κ⩾ 20. On the other hand, we highlight that the MU
principle presents a very robust behavior along the whole range of counting factors, as the
corresponding percentage differences are always below the 30% and approach 0 for the smal-
ler κs.

When analyzing the NEDP-based approaches, one can notice that the MB method returns
the poorer results in the low counting regimes while, in expectation, it outperforms the
unmasked version in the mid- and high-counting regimes. On the other hand, the MU prin-
ciple achieves the larger INSR values for all the considered regimes.

Finally, for the WP-based principles we notice that the MB criterion performs poorly in
the low- and mid- counting regimes, while the green band stays below the 30% for κ⩾ 50.
One can also observe that the unmasked and the masked unbiased principles present a robust
behavior with respect to the considered κ-values, with the unmasked approaching 0 for κ⩽ 3
and the masked unbiased outperforming the competitors for κ> 3.

Figure 6 shows, for each class of methods, the sample means ηSκC and the confidence inter-
vals related to the computed ϵSκC , ϵSκC , i.e. the performances of the considered principles in terms
of the SSIM. One can easily notice that the SSIM bands present the same behavior of the ISNR
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Figure 7. Test image satellite. Zoom of the expected values ηIκC (top row) and ηSκC
(bottom row) for the ISNR and SSIM values achieved in different photon-counting
regimes.

bands shown in figure 5, so that similar conclusions on the performances of the unmasked, MB
and MU criteria can be drawn.

To analyze the results from a different point of view, in figures 7(a)–(c) we show the sample
means ηIκC of the unmasked, masked biased and masked unbiased principles, respectively, in
the range [0%,25%], so as to visualize the best performances. In the unmasked category, NEDP
andWP are the only principles staying below the 25% forκ⩾ 20, withWP obtaining better res-
ults than the others for the low- and mid- counting regimes. Among the MB principles, QDP-
MB and WP-MB stay in the interval of interest only in correspondence of the high-counting
regimes, while ADP-M and NEDP-MB stay between 10% and 25% for each κ. Finally, in the
MU class, all methods are in the visible range, withWP-MU being the best for κ> 3, followed
by QDP-MU which reaches the highest ISNR for κ⩽ 3.

Figures 7(d)–(f) show the sample means ηSκC of the unmasked, MB and MU principles,
respectively, in the range up to [0%,5%]. The three plots confirm the considerations done for
the ISNR about the best method within each group.

6.4. Test image stem : parameter selection in the TV2-KL model (56)

For the second example, we consider the restoration of the test image stem, with constant
background emission b≡ 2× 10−3, this time using the TV2 regularization term defined in (6)
due to the target image resembling a piece-wise linear functionmore than a piece-wise constant
one.
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Figure 8. Test image stem. Expected values and confidence intervals for the ISNR val-
ues achieved in different photon-counting regimes.

In figure 8 we plot the sample means ηIκC and the confidence intervals corresponding to
the different counting regimes κ for the four classes of ADP-, QDP-, NEDP-, and WP-based
criteria.

For the ADP-based approaches, one can notice that the masked criterion reaches worse
results than the unmasked one, which stays below the 40% for every counting regime.

For what concerns the QDP-based strategies, we can immediately notice that, as for the
previous image, the biased masked version returns poor results for lower counting regimes,
but it improves for κ⩾ 50. On the other hand, both the unmasked and the unbiased masked
achieve good and similar results, as they return percentage differences that are always below
20% for all factors κ.

In the case of the NEDP-based approaches one can notice a similar behavior to the QDP-
based strategies, where the unmasked and unbiased masked achieve analogue results (except
a little more variably across the different realization for the unmasked one) staying below the
20% for all κ and the biased masked strategy works poorly for κ⩽ 50.
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Figure 9. Test image stem. Expected values and confidence intervals for the SSIM val-
ues achieved in different photon-counting regimes.

Finally, for the WP-based principles, all of them return percentage differences less than
25%, with the biased masked working better for the mid- and high-count range, but worst for
κ⩽ 5. On the other hand, the unbiased masked reaches good results in the low- and mid-count
range, with the exception of κ= 1 where the sample mean and the variability across the noise
realization are higher than the one obtained with the unmasked strategy.

The same observations can be done by analyzing the SSIM results plotted in figure 9.
In figure 10 we show the expected values ηIκC (top row) and ηSκC (bottom row), in the

range [0%,25%] and [0%,5%] respectively, divided by the type of principle: unmasked, biased
masked and unbiased masked. Looking at both the ISNR and SSIM graphs we can note that, in
the unmasked category, the best result is achieved by the WP in all the range of κ. Among the
biased masked strategies, the WP-MB seems the best as it achieves the highest value of ISNR
for κ= 10,20, but the behavior for κ⩽ 5 is poorer when compared to the other plots (but is
the best in its category). Finally, for the unbiased masked principles, the QDP-MU obtains the
best result in terms of ISNR for the low-count regime (even among all the methods), while the
WP-MU works well for the mid- and high-range.
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Figure 10. Test image stem. Zoom of the expected values ηIκC (top row) and ηSκC
(bottom row) for the ISNR and SSIM values achieved in different photon-counting
regimes.

6.5. Test image cells: parameter selection in the TGV2-KL model (57)

In this third example, we consider the restoration of the test image cells by employing the
TGV2 regularization term to effectively deal with the composite nature of the specimen. For the
TGV2, we set α0 = 0.8,α1 = 0.3 so as to maximize the ISNR for the highest counting regime
considered here, i.e. κ= 1000. Moreover, we set a constant background emission b≡ 10−1.

In figure 11 we show the ISNR bands achieved by the ADP-, QDP-, NEDP- and WP-based
principles. As for the test image stem, the ADP-M strategy performs poorly in the lowest
counting regimes, while it outperforms the unmasked version for κ⩾ 20. On the other hand,
the remaining three classes of methods present the same behavior: theMB versions of the prin-
ciples achieve very low ISNR values in low- andmid-counting regimes, whereas the unmasked
and MU principles present a very robust behavior with the latter achieving the best results.

Similar considerations can be drawn by looking at the SSIM bands reported in figure 12.
Finally, in figure 13 we show a close-up on the expected values ηIκC , ηSκC in the range

[0%,25%] dividing the principles into unmasked, MB and MU. It is easy to conclude that
the MU versions of the QDP, NEDP andWP return the best results both in terms of robustness
and of quality measures achieved.
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Figure 11. Test image cells. Expected values and confidence intervals for the ISNR
values achieved in different photon-counting regimes.

6.6. Discussion

The detailed analysis carried out so far allows us to conclude that neglecting the zero-pixels in
the acquired images as proposed in [9] can lead to particularly robust and successful parameter
selection strategies provided that the proposed positive Poisson distribution is employed to
model the undiscarded data. Generally speaking, in terms of quality measures the QDP-MU
achieves the best results for κ⩽ 3, while the WP-MU returns higher quality restorations when
κ> 3. Moreover, in accordance with the theoretical results given in proposition 4.2, in the
higher counting regimes the performed criteria show similar behaviors.
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Figure 12. Test image cells. Expected values and confidence intervals for the SSIM
values achieved in different photon-counting regimes.

We highlight that the improvements yielded by employing the proposedMU principles with
respect to their unmasked versions are particularly relevant in the first example, that is for the
test image satellite. To highlight a possible reason behind this phenomenon, in table 1 we
report the average percentages of zero-pixels in the acquired images for the counting regimes
considered. Such values are clearly influenced by the gray-level statistics of the underlying
test images as well as by the selected background emissions. It is immediate to observe that
for the test image satellite the number of zero pixels is very large for all the κ-values. As
a consequence, masking the data in this scenario is particularly effective.
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Figure 13. Test image cells. Zoom of the expected values ηIκC (top row), and ηSκC (bot-
tom row) for the ISNR and SSIM values achieved in different photon-counting regimes.

Table 1. Average percentages of zero-pixels in the observed images for the different
photon-counting regimes considered in the tests.

κ 1 3 5 10 20 50 100 500 1000

satellite 90% 83% 80% 78% 76% 75% 74% 73 % 72%
stem 86% 66% 51% 28% 10% 1% 0.1% 0% 0%
cells 72% 49% 36% 22% 15% 11% 9% 6% 5%

7. Conclusions

In the present work, we addressed the parameter selection problem in the general R−KL
image restoration variational model under Poisson noise corruption. After recalling the clas-
sical unmasked principles typically used for setting the parameter, we discussed the idea of
masking the observed data, as originally proposed in [9] to effectively deal with low photon–
counting regimes. Nonetheless, we proved that neglecting the zero-pixels in the observed data
without modifying the distribution of undiscarded pixels introduces a bias in the resulting prin-
ciples. Hence, after defining the novel positive Poisson distribution, we proposed the masked
unbiased versions of the original criteria. The unmasked, masked biased and masked unbiased
strategies have been extensively tested on different images, with different regularization terms
and for a wide range of counting regimes. The masked unbiased principles have been proven
to outperform, on average, the corresponding unmasked and masked biased counterparts. As
a future work, we plan to employ the proposed masked unbiased strategies so as to deal with
different imaging problems such as computed tomography reconstruction and image super-
resolution. Moreover, inspired by [28], we believe that the design of procedures faster than the
grid-search employed here for the selection of µ based on the proposed principles is a matter
that deserves further investigations.
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