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Abstract—A fast and reliable estimation of building energy
need is essential in agricultural building design, nonetheless,
a large number of simulations is required to obtain better
energy saving solutions. The aim of this work is to understand
if machine learning can substitute numerical simulations and
speed up the building design process and assess the incidence of
specific architectural elements. Supervised regression models has
been trained and tested in a data-set of thousands simulations
performed on a case-study agricultural building. Among the
algorithms, the tree-based Extreme Gradient Boosting showed
the best performance. A study on model explainability has been
carried out using SHAP and features importance, which is
fundamental to help academics and professionals devise better
design strategies for both new constructions and retrofitting
interventions.

Index Terms—machine learning, building energy simulation,
energy saving, ML explainability, food storage buildings

I. INTRODUCTION

Europe, as most of worldwide regions, is facing a period
of strong uncertainties related to the energy supply and costs.
Building heating and cooling is one of the most energy con-
suming activity [1], [2]. Currently, several states are asking to
change the indoor temperature sets reducing the consumption
but, at the same time, the comfort. This solution can drive to
remarkable results in the short period but must be considered
as a temporary solution. In fact, an energy saving that reduces
comfort cannot be considered as a real energy saving, in
particular since it can bring to other problems related to the
health of the building users, such as people or animals in

livestock barns [3], and, in food storage buildings, to the food
quality and safety.

Under this light, the process that will lead to more en-
ergy efficient buildings, both new and retrofitted, must be
accelerated, made more systematic and cannot be limited to
residential spaces or offices. The energy efficiency approach
must be indeed extended also to buildings where indoor
temperature plays a fundamental role even though the human
presence is limited, such as greenhouse, food storage and
ageing buildings [4], [5] and/or when nature based solutions
are involved [6]. Since, in the latter, the preset temperatures
are needed throughout the whole year, the indoor environment
must be often controlled in both hot and cold seasons, adding
a further variable to the design, considering that often the
heating and cooling are performed by two different systems
and several European standards in architecture are designed
for cold seasons only.

In the last years, the use of computer energy simulations has
helped to boost, optimise and fine-tune the energy efficiency
in building design. Peculiar buildings - such as food storage
buildings - take advantage of this approach since they can
easily adopt active and passive solutions created for con-
structions with indoor environment requirements definitively
different, such as residential spaces and offices [7]–[9]. During
the design phase, computer software such as EnergyPlus [10]
can simulate the whole building thermal behaviour and return
the energy need, or energy consumption when a HVAC is
installed. According to the details of model, the input variable,



the complexity of the building, the process capacity of the
computer and many other aspects, the simulations can take
from seconds to minutes to run completely. This is definitely
a short time if compared to the whole design and construction
phase, on the other hand the modelling procedure requires
a huge time and a single building can ask for dozen of
simulations each of which needs modelling, analysing and
adapting the model to the results of previous simulation results.
Namely, a huge qualified human labour is required for a single
building design [11]–[13].

Different approaches can be coupled to computer simula-
tions to reduce the human labour, keeping or even improving
the reliability of results. In fact, using codes to manage
modelling and simulations (created by MatLab [14], Python
and more) allows to add automation [15], [16], optimisation
algorithms [17] and machine learning [18]. This approach
drive to reduce drastically the required labour and even com-
putational time, allowing to investigate and explore a countless
number of building configurations and scenarios.

In this work, the Authors aim at testing a recent machine
learning approach to a food storage building to assess the
influence of architectural variables in both cold and hot
seasons.

II. MATERIALS AND METHODS

A. Energy Simulations
The tested approach is applied to a case study building

located in the countryside of Bologna. The case study building
(see Fig. 1) belongs to a wine-growing and wine-making
farm and hosts both the wine-making phase and storage. The
building is chosen as case study since can be considered repre-
sentative of food storage building both for usage, dimensions
and construction in central Italy. The building is symmetric on
the two main axes and its measure are approximately 20m x
30m x 5−7m. The structure is made by precast elements, the
envelope does not respect any energy saving standard since the
building was built decades ago. External walls are made with
hollow concrete blocks, the floor is a 30-cm thick reinforced
concrete slab, the rood is made by concrete and hollow bricks.
Windows are single glazed and air permeability ensures a huge
air infiltration.

Fig. 1. Case study building

To run the energy simulations, the software EnergyPlus was
selected. The building has been modelled in OpenStudio and

EnergyPlus and calibrated and validated in a previous work
[19] and later updated to EnergyPlus 9.2 version. To assess
different configurations and scenarios, the case study model
has been modified using a MatLab code that automatised
the building modelling, the energy simulations, and the result
collection.

The architectural variables analysed in this work are visible
in the Tab. I and their values are selected to investigate a wide
range of building configurations. To ease the modelling phase,
the input of the variables does not include materials but just
theoretical values as better explained in a previous work [16].
The building orientation is inserted as one of the variables
even though cannot be modified in retrofit interventions but
can be a cost-less variable for new buildings. In the all models,
the indoor temperature is set to be within 12◦ and 18◦. The
weather data have been collected on site in different years and
reported in a weather file for the simulations to increase the
accuracy of the study.

Fig. 2. Thermal zones of the case study model. The zone number 3 is the
food storage area and is taken as reference for this study

At the end of the modelling process, the tested approach
created more than 5000 models and the related EnergyPlus
simulation returned nineteen results. Among those, the positive
and negative energy loads to keep the temperature within the
preset range are calculated. Those are respectively the heating
and cooling energy need.

B. Models training and validation

The features and models selection procedure has been
described in a previous work [18]. In this case, the dataset is
divided in predictions for cooling and heating energy needs,
which corresponds to hot and cold seasons. Two models—
both eXtreme Gradient Boosting (XGB)—were trained and
tested in predicting the total energy use of the same building
configuration in the two seasons. Each model has been trained
on a “train” set composed of 80% of data (4120 configurations)
and validated on the remaining 20% (1030 configurations).
For clarity, the 11 features chosen as input for the models are
reported in Table I.

The distributions of energy use are shown in Figure 3.
The plot shows that the energy used for cooling is much
higher in general. This is due to the temperature range of
the simulations and the effect of the sun which is positive for



TABLE I
LIST OF FEATURES USED BY EnergyPLUS. THE FIRST COLUMN REPORTS

THE NAME OF THE VARIABLES, THE SECOND COLUMN SHOWS THE
VARIABLE ABBREVIATIONS (USED HEREINAFTER), THE THIRD COLUMN

SPECIFIES IF THE VARIABLE IS INSERTED BY THE USER (U) OR
CALCULATED BY THE SOFTWARE (S), THE FOURTH COLUMN PROVIDES

THE VARIABLE UNIT. THE FIFTH COLUMN SPECIFY IF THE FEATURE HAS
BEEN SELECTED AS INPUT FOR MODEL REGRESSION.

Name Abbr U/S Unit Selected
wall resistance wR U mK/W ✓
wall conductivity wc U W/mK x
wall density wd U kg/m3 ✓
wall specific heat wsh U J/(kgK) ✓
wall transmittance Uw S W/(m2K) x
wall superficial mass wsm S kg/m2 x
wall attenuation wa S - x
wall thermal lag wtl S hours ✓
roof resistance rR U mK/W ✓
roof conductivity wc U W/mK x
roof density rd U kg/m3 ✓
roof specific heat rsh U J/(kgK) ✓
roof transmittance Ur S W/(m2K) x
roof superficial mass rsm S kg/m2 x
roof attenuation ra S - x
roof thermal lag rtl S hours ✓
orientation o U degree ✓
air infiltration ai U ACHa ✓
glaze transmittance Ug U W/(m2K) ✓
aAir Changes per Hour

heating and negative for cooling. It is also worth noting that
the models have a lower density of data points to learn from
for high-consuming configurations, which could worsen model
performances.
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Fig. 3. Energy use distribution in the two data set. In blue, the distribution
for the cold season and in red the distribution for the hot season

C. SHAP explainability

The impact of each feature on model output has been
estimated using the python library SHAP (SHapley Additive
exPlanations) [20]. SHAP is a game theoretic approach to
interpret model output based on Shapley Values [21]. Shapley
values are a system to distribute a reward in an n-persons
game. Let’s call ν(S) the characteristic function that maps
subset of players into real numbers ν : 2n −→ R. If S is a
coalition of players, ν(S) is the total worth (or payoff) the

coalition can obtain by collaboration. A Shapley value is the
fair reward based of the contribution of each player to the
coalition. The reward ϕi for player i can be computed as:

ϕi(ν) =
1

n!

∑
S⊆N\{i}

|S|!(n−|S|−1)!(ν(S∪{i})−ν(S)) (1)

where N is a set of n players and the sum extends for each
subset S of N which doesn’t contains player i. SHAP provide
a model agnostic framework to compute features impact based
on their contributions on the model output. SHAP values has
been computed using the TreeExplainer for XGB [22] for each
observation in the data set. When used to interpret model
output, SHAP can provide features importance’s for single
observations and how features interact with each other. SHAP
values has been computed for every configuration of the two
datasets.

III. RESULTS

A. Model Selection

Figure 4 shows the results of the nested cross-validation on
the four regression models tested. The XGB model outper-
forms the others in all metrics, except for computational time
where a Linear Regression is faster. Considering the results,
the XGB algorithm was selected and its predictions further
explored through SHAP.
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Fig. 4. (a) Average MAE; (b) average MSE; (c) average coefficient of
determination R2 and (d) average prediction time for the models, computed
on each fold of the outer cross-validation.

In Figure 5 the fit diagrams between true and predicted value
computed in the test set are shown.
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Fig. 5. Predicted vs True energy values for (a) Heating consume and (b)
Cooling consume.

The model validation shows the high accuracy achieved
by the regression predictions. As expected, a slight reduction



of precision can be seen for high-energy-need configurations,
probably due to the limited number of training data with high
energy needs. Besides, considering the aim of most of the
studies is to identify low-energy-need solutions, this reduction
of the precision can be considered of minor importance for
practical purposes. Figure 6 shows the influence of each
feature on the model outputs, divided in heating and cooling.
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Fig. 6. SHAP values of each feature computed for each observations in the
data set. On the top are shown the values for the heating model, on the bottom
for the heating model. Every point represents a building configuration. The
colours indicates the feature value qualitatively.

The variables are ranked on the basis of their average
absolute SHAP values. In general, the two models judge roof
resistance, wall resistance and air infiltration as the most
influential features. The plots also show trends between the
feature values and their corresponding impact: lower values
of roof resistance and wall resistance have a positive impact
(higher energy need) while high values have a negative impact
(lower energy need). On the other hand, air infiltration has an
opposite trend. It is worth noting that wall and roof resistance
have a maximum negative impact on the energy needs about
equal to −1MWh (represented by the higher concentration of
points around that value).

The first difference between the two models can be seen in
the rankings of the variables. During heating, roof resistance is
the first ranked feature, probably due to the effect of the sun.
With the same reasoning, the reverse trend in SHAP values
for orientation can be explained. Indeed, for heating energy,

higher values of orientation correspond to a positive impact
and lower values to negative impact instead. We observed
the opposite behaviour for cooling energy. Another remark-
able finding concerns the possibility to rank the investigated
features according to their importance in the building energy
need. SHAP can easily shows how much any feature affects
the final result, allowing the personnel involved in the building
design to focus more on the most important characteristics.
Considering the rank can easily change even in the same
building when some external factors change, e.g. weather data
and/or thermostat settings, see [23], this result definitely helps
to better drive the building design.

Under this light, a prediction model based on ML can be a
useful tool to have fast and precise energy need predictions,
eliminating the operator waiting time and avoiding energy
simulation software. This method can be strongly needed when
many feature configurations must be tested in a short amount
of time.

IV. CONCLUSIONS

Today, accurate and fast prediction of the building energy
need is a crucial matter in the path towards low-energy or near-
zero-energy buildings. This work proved that an important ad-
vancement could come from the application of ML models. In
fact, starting from the outcomes of several energy simulations
on a case study building, three ML algorithms—SVR, RF, and
XGB—were tested for the assessment of the energy need of
the building under several configurations. The works confirm
some findings of the previous paper [18]:

1) Fast computational time for predictions, much lower
than what is required for an exact simulation;

2) Model validation shows a very high accuracy for XGB;
Moreover, it expands on results in model interpretation:
1) The models for cooling and heating change their SHAP

values according to reasonable physical explanation,
meaning that the models obtained information on en-
vironmental parameters from the data available.

2) The relative impact of each feature is also changed.
3) The method can be applied to both new and existing

buildings. For the latter, the study of features importance
can provide useful information for retrofit interventions.

This work demonstrated the efficacy of the proposed method
that proved to be a valid alternative to the simulations and
an additional tool that can integrate optimisation algorithms.
We believe that it is possible to extend the results also
for more complex buildings’ configurations, including also
geometrical characteristics. To achieve good precision, the
proposed method needs an high number of simulations that are
run anyway by the optimisation algorithms. Future works will
consider an in-depth study of the amount of data necessary to
achieve an acceptable regression. Further developments will
investigate the application of ML models to different case
studies and with the addition of more building features in order
to test the ability of the models on a larger set of buildings and
scenarios. Moreover, a more in-depth study on feature impact
is planned.
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