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Abstract
This work addresses optimal control problems governed by a linear time-depend-
ent partial differential equation (PDE) as well as integer constraints on the control. 
Moreover, partial observations are assumed in the objective function. The result-
ing problem poses several numerical challenges due to the mixture of combinatorial 
aspects, induced by integer variables, and large scale linear algebra issues, arising 
from the PDE discretization. Since classical solution approaches such as the branch-
and-bound framework are typically overwhelmed by such large-scale problems, this 
work extends an improved penalty algorithm proposed by the authors, to the time-
dependent setting. The main contribution is a novel combination of an interior point 
method, preconditioning, and model order reduction yielding a tailored local opti-
mization solver at the heart of the overall solution procedure. A thorough numerical 
investigation is carried out both for the heat equation as well as a convection-diffu-
sion problem demonstrating the versatility of the approach.
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1 Introduction

Optimal control problems with PDE constraints and additional integer (and possible 
other constraints) are usually referred to as mixed integer PDE-constrained optimi-
zation (MIPDECO) problems. Such problems arise in a variety of real world appli-
cations such as gas networks [1, 2], the placement of tidal and wind turbines [3–5] 
or power networks [6]. Approximating their solution poses significant difficulties as 
being in the intersection of two fields: integer programming and PDEs. While inte-
ger optimization problems have an inherent combinatorial complexity that needs to 
be accounted for, PDE-constrained optimization problems have to deal with large-
scale linear systems resulting from the discretization of the PDE, see, e.g., [7, 8].

A classical solution approach for a MIPDECO problem is to first-discretize-
then-optimize: the PDE and the control are discretized, thus resulting in the con-
tinuous MIPDECO problem being approximated by a large-scale finite-dimensional 
mixed-integer nonlinear programming problem (MINLP). This approach was out-
lined in the previous work by the authors [9], where it was also shown numerically 
that standard techniques such as branch-and-bound, see, e.g., [10] for an overview, 
indeed struggle to solve the resulting MINLP in reasonable time (both the large 
amount of integer variables as well as the large PDE discretization are challenging 
here).

As a remedy, [9] introduced a novel improved penalty algorithm (IPA) that repeat-
edly solves an equivalent continuous penalty reformulation of the original problem 
for an increasing penalty parameter, with the penalty reformulation being obtained 
by relaxing the integer constraints and adding a suitable penalty term to the objec-
tive function to avoid non-integer solutions. The IPA was based on an exact penalty 
(EXP) algorithm [11] that provides a theoretical framework for when to increase the 
penalization and when to search for a better minimizer. The IPA deviated from the 
EXP algorithm by employing a probabilistic search approach to determine a new 
iterate. Such a search was closely connected to basin hopping or iterated local search 
methods, see, e.g., [12, 13]. The upside of this change was that the IPA only relied 
on a local optimization solver, where a suitable interior point method (IPM) utilizing 
a tailored preconditioner for the Newton system was used in [9]. As a result, the IPA 
was able to provide either the global or a high quality local minimum for a Poisson 
problem as well as a convection-diffusion model problem.

This article focuses on extending the IPA developed in [9] to MIPDECO prob-
lems with a linear, time-dependent PDE constraint as well as partial observations in 
the objective function. In this case, the resulting discretized MINLP will definitely 
be of large scale. To overcome the inherent complexity of this problem, we approxi-
mate the PDE constraint using balanced truncation model order reduction (MOR), 
see, e.g., [14], and then develop a suitable IPM for this reduced penalty formulation. 
The IPM is again well-equipped for the problem as it:

– explicitly handles the non-convexity introduced by the penalty term;
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– incorporates a specific preconditioner to handle the linear algebra as well as the sin-
gularity due to the partial observation.

Embedding this IPM into the IPA framework then allows for the solution of large-scale 
MIPDECO problems and the resulting algorithm is numerically investigated, both for 
the heat equation as well as for a convection-diffusion problem.

While the use of MOR is standard in general optimization contexts, see, e.g., 
[15–18], MOR for MIPDECO problems is far less investigated, see [19] for a first 
result. Furthermore, applying preconditioning to a reduced system of equations has 
only been considered once [20], while [21] considers preconditioning during the gener-
ation of reduced models. To the knowledge of the authors, the combination of an IPM, 
MOR, and preconditioning has not been considered so far in the literature to handle 
MIPDECO problems.

Finally, other methods for MIPDECO problems such as Sum-up-Rounding strate-
gies [22, 23], derivative-free approaches [24], and sophisticated rounding techniques 
[25], might become too costly when adapted to tackle the large-scale problems consid-
ered in this article.

The paper is organized as follows: the time-dependent model problem, its discretiza-
tion, as well as the equivalent penalty formulation are presented in Sect. 2. Section 3 
contains the MOR approach, including some theoretical aspects, and the interior point 
method. Section 4 reviews the IPA framework, adapts it to the time-dependent setting, 
and discusses different perturbation strategies for the probabilistic search approach. 
Section 5 contains the numerical investigation of the new algorithm and final conclu-
sions are drawn in Sect. 6.

2  Problem formulation

We begin with the description of the optimal control model problem in function spaces. 
Following the first-discretize-then-optimize approach, we then present the discretized 
model problem, its continuous relaxation, and then move towards the penalty reformu-
lation of the problem.

2.1  Time‑dependent binary optimal control problem

We begin with the description of the PDE in order to formulate the optimal control prob-
lem. Consider a bounded domain 𝛺 ⊂ ℝ

2 with Lipschitz boundary, the time interval 
[0, T] with final time T > 0 , source functions �1,… ,�l ∈ L2(�) , and based on these the 
parabolic PDE: for a given control function u ∶ (0, T) → ℝ

l ∶ t ↦ (u(1)(t),… , u(l)(t))
⊺ 

find the state y ∈ L2(0, T ,H1
0
(�)) solving

(1)
�

�t
y(t, x) − �y(t, x) =

l∑
i=1

u(i)(t)�i(x), (t, x) ∈ (0, T) ×�,

y(0, x) = 0, x ∈ �,



194 D. Garmatter et al.

1 3

where the PDE is to be understood in the weak sense. Existence and uniqueness of 
a solution y ∈ L2(0, T ,H1

0
(�)) of (1) follow from the Lions-Lax-Milgram theorem.

For now, we choose to model the sources �1,… ,�l as Gaussian functions with 
centers x̃1,… , x̃l in the interior of � . Thus, for x ∈ ℝ

2,

with height 𝜅 > 0 and width 𝜔 > 0 , and we will provide further details in Sect. 5. 
Introducing the space of binary control functions in time

the optimal control problem in function spaces then reads: given a desired state 
yd ∈ L2((0, T) ×�) , find a solution pair (y, u) ∈ L2(0, T ,H1

0
(�)) × U of

where 𝛺obs ⊂ 𝛺 is our domain of observation and the inequality constraint in (3) is 
commonly referred to as a knapsack constraint. This problem can be interpreted as 
fitting a desired heating pattern yd over a domain of observation �obs by activating 
up to S ∈ ℕ many sources at each point in time where the sources are distributed 
over � . Clearly, as soon as the control is suitably discretized such that the discre-
tized feasible set only contains finitely many controls (and since for each control 
there is a uniquely determined state y), this discretized problem will in its essence be 
a combinatorial problem such that existence of at least one global minimizer will be 
guaranteed.

2.2  Discretized model problem and continuous relaxation

We begin with a semidiscretization of (1) in space via the well-known method of 
lines. Introducing a conforming mesh over � using N vertices and letting M ∈ ℝ

N×N 
and K ∈ ℝ

N×N denote the mass and stiffness matrices (do note that K and M are 
positive definite and M is symmetric), we end up with the system of ordinary dif-
ferential equations (ODEs)

Here, � ∈ ℝ
N×l contains the finite element coefficients of the source functions in its 

columns, i.e., each column contains the evaluation of the respective source function 
at the N vertices of the grid. Thus, M�u(t) with the vector-valued control function 
u(t) ∶ [0, T] → ℝ

l realizes the semidiscrete right-hand side. Finally, y ∶ [0, T] → ℝ
N 

now contains the FEM-coefficients of the solution.

(2)𝜙i(x) ∶= 𝜅e
−
‖x−x̃i‖22

𝜔 (Gaussian) , i = 1,… , l,

U ∶= {u ∈ L∞((0, T) ×ℝ
l)|u ∶ (0, T) → {0, 1}l},

(3)

min
y ∈ L2(0, T ,H1

0
(�))

u ∈ U

1

2
∫ T

0
∫
�obs

(y − yd)
2 dx dt,

s.t. (y, u) fulfill (1), and
∑l

i=1
ui(t) ≤ S ∈ ℕ, ∀t ∈ (0, T),

(4)M
�

�t
y(t) + Ky(t) = M�u(t), t ∈ (0, T), y(0) = 0.
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The ODE system (4) can now be solved with a time integration method of 
choice and we choose the Crank-Nicholson scheme. Introducing an equidistant 
time-grid with nt ∈ ℕ points and step size �t ∶=

T

nt−1
 and letting yi ≈ y(i�t) ∈ ℝ

N 
as well as ui ≈ u(i�t) ∈ ℝ

l denote the corresponding approximations, the scheme 
reads

for i = 0,… , nt − 1 . Introducing the matrices K1 ∶= M +
�t

2
K and K2 ∶= M −

�t

2
K 

as well as the matrices

we define

where ⊗ denotes the Kronecker product of matrices. Using K̃ and �̃� , equation (5) 
for i = 0,… , nt − 1 can be written as

where from now on y ∶=
(
y
⊺

1
,… , y

⊺

nt

)⊺

∈ ℝ
nt⋅N and u ∶=

(
u
⊺

1
,… , u

⊺

nt

)⊺

∈ ℝ
nt⋅l 

denote the fully space-time discretized state and control vectors.
Assuming that the observation domain �obs is aligned with the FEM grid and 

that it contains p vertices of the grid, Mobs ∈ ℝ
p×p denotes the mass matrix of �obs 

and the matrix C ∈ ℝ
p×N then realizes the evaluation of the state on �obs . Letting 

�l ∶= (1,… , 1)
⊺
∈ ℝ

l denote the l-dimensional unit column vector, we define

where the matrix M̃ is singular as, roughly speaking the observation operator C 
zeros out the contributions to the mass matrix that are not observed. This property 
of M̃ will be taken into account in the construction of the iterative schemes for solv-
ing the linear systems involving M̃ in Sect. 3.2.1. With this notation at hand, we can 
formulate the discretized optimal control problem

(5)(M +
�t

2
K)yi+1 = (M −

�t

2
K)yi +

�t

2
M�ui +

�t

2
M�ui+1,

I1 ∶=

⎡
⎢⎢⎢⎣

1 0 ⋯ 0

0 1 ⋱ ⋮

⋮ ⋱ ⋱ 0

0 ⋯ 0 1

⎤
⎥⎥⎥⎦
∈ ℝ

nt×nt and I2 ∶=

⎡
⎢⎢⎢⎣

0 ⋯ ⋯ 0

1 ⋱ ⋮

0 ⋱ ⋱ ⋮

0 0 1 0

⎤
⎥⎥⎥⎦
∈ ℝ

nt×nt ,

(6)K̃ ∶= I1 ⊗ K1 + I2 ⊗ −K2 ∈ ℝ
nt⋅N×nt⋅N and

(7)�̃� ∶=
𝛿t

2

(
I1 ⊗M𝛷 + I2 ⊗M𝛷

)
ℝ

nt⋅N×nt⋅N ,

(8)K̃y = �̃�u,

(9)
M̃ ∶= I1 ⊗

(
C
⊺
MobsC

)
∈ ℝ

nt⋅N×nt⋅N as well as

Cineq ∶= I1 ⊗ �
⊺

l
∈ ℝ

nt×nt⋅l, and Svec ∶= �nt
S,



196 D. Garmatter et al.

1 3

In (10) and for the remainder of this article, yd represents a finite element coefficient 
vector instead of an actual L2((0, T) ×�)-function. Relaxing the integer constraints 
in (10) yields the continuous relaxation

We reformulate both problems (10) and (11) in a more compact way.

Lemma 1 Introducing for x ∈ ℝ
nt(N+l) the functions

and f ∶ ℝ
nt⋅l → ℝ

nt⋅N ∶ u ↦ K̃−1�̃�u , problems (10) and (11) are equivalent to

and

respectively. Furthermore, W ⊂ ℝ
nt(N+l) is compact and X ⊂ ℝ

nt(N+l) is compact and 
convex such that (Pcont) is a convex problem.

Proof The proof follows the same arguments as [9, Lemma 2.2] and is thus omitted 
here.   ◻

2.3  Penalty reformulation

Starting from the continuous relaxation (11), we add the well-known penalty term

(10)
min

y∈ℝnt ⋅N ,u∈ℝnt ⋅l

1

2
(y − yd)

⊺
M̃(y − yd),

s.t. K̃y = �̃�u, u ∈ {0, 1}nt⋅l,Cinequ ≤ Svec.

(11)
min

y∈ℝnt ⋅N ,u∈ℝnt ⋅l

1

2
(y − yd)

⊺
M̃(y − yd),

s.t. K̃y = �̃�u, u ∈ [0, 1]nt⋅l, Cinequ ≤ Svec.

J̃(x) ∶=
1

2
x
⊺

[
M̃ 0

0 0

]
x − x

⊺

[
M̃yd
0

]
+

1

2
y
⊺

d
M̃yd

(P)

min
x∈W

J̃(x) with the feasible set

W ∶=

{
x = (f (u)

⊺
, u

⊺
)
⊺
∈ ℝ

nt(N+l) ||| u ∈ {0, 1}nt⋅l,Cinequ ≤ Svec

}

(Pcont)

min
x∈X

J̃(x) with the feasible set

X ∶=

{
x = (f (u)

⊺
, u

⊺
)
⊺
∈ ℝ

nt(N+l) ||| u ∈ [0, 1]nt⋅l,Cinequ ≤ Svec

}
,

(12)
1

�

nt⋅l∑
j=1

u(j)(1 − u(j))
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to the objective function. Obviously, this concave penalty term penalizes a non-
binary control, where 𝜀 > 0 determines the amount of penalization. This yields the 
following penalty formulation

Following Lemma 1, (13) can be rewritten as

where Int⋅l ∈ ℝ
nt⋅l×nt⋅l is the identity-matrix.

Proposition 1 There exists an �̃� > 0 such that for all 𝜀 ∈ (0, �̃�] problems (P) and 
(Ppen) have the same global minima (if there exist multiple). In this sense both prob-
lems (P) and (Ppen) are equivalent.

Proof From Lemma 1 we know that W and X are compact and since J̃ is a quadratic 
function, it clearly holds that J̃ ∈ C1(ℝN+l) . Together with the results derived in [26, 
Section 3] all assumptions of [26, Theorem 2.1] are fulfilled such that the desired 
statement follows.   ◻

Proposition 1 holds for a variety of concave penalty terms, see, e.g., [26, Eqs 
19–23] or [27, Eq. 21]. Nevertheless, we chose the penalty term (12) here since it is 
quadratic and thus the combined objective function J remains quadratic.

The repeated solution of the penalty formulation (Ppen) for an increasing value 
of the penalty parameter � will be the core of our solution procedure for the overall 
MIPDECO problem (P). This procedure will be based on the IPA algorithm pro-
posed in [9] and its extension to the time-dependent setting is postponed to Sect. 4. 
In the following section we present the main algorithmic novelty instead, that is the 
suitable combination of the model order reduction and the interior point method for 
the efficient solution of the penalty formulation (Ppen).

3  Model Order Reduction and Interior Point Methods

Solving the overall MIPDECO problem (P) via a penalty approach requires numer-
ous solves of (Ppen). Thus, an efficient method to handle the problem (Ppen) for 
a given � is crucial to an overall effective solution procedure. With this purpose, 
we present two procedures based on interior point methods: the first one, a gener-
alization of the interior point method (IPM) proposed in [9] to the time-dependent 
case, will be denoted full-IPM. The second one, a novel combination of model 
order reduction (MOR) and an IPM, will be denoted MOR-IPM and is the main 

(13)
min

y∈ℝnt ⋅N ,u∈ℝnt ⋅l

1

2
(y − yd)

⊺
M̃(y − yd) +

1

𝜀

∑nt⋅l

j=1
u(j)(1 − u(j)),

s.t. K̃y = �̃�u, u ∈ [0, 1]nt⋅l,Cinequ ≤ Svec.

(Ppen)

min
x∈X

J(x;𝜀), with

J(x;𝜀) ∶=
1

2
x
⊺

[
M̃ 0

0 −
2

𝜀
Int⋅l

]
x − x

⊺

[
M̃yd

−
1

𝜀
�nt⋅l

]
+

1

2
y
⊺

d
M̃yd,
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contribution of this work. Both methods are equipped with a preconditioning tech-
nique that exploits the specific problem structure in (Ppen).

3.1  Model order reduction approach

The central idea is to derive a low-dimensional approximation of the PDE constraint

with suitable K̃red ∈ ℝ
nt⋅r×nt⋅r and �̃�red ∈ ℝ

nt⋅r×nt⋅l such that the reconstruc-
tion Ĉyred ∈ ℝ

nt⋅N , with Ĉ ∈ ℝ
nt⋅N×nt⋅r , is a good approximation to y. It is clear 

that only the dimension of the state is reduced to r ≪ N , where the dimension 
of the control (in fact the control as a whole) remains untouched. Based on this 
approximation, we can then (similarly to Lemma 1) introduce the linear mapping 
fred ∶ ℝ

nt⋅l → ℝ
nt⋅N ∶ u ↦ ĈK̃−1

red
�̃�redu and formulate the reduced version of the pen-

alty formulation

Thus, only the linear map inside the feasible set changes and the better fred approxi-
mates f, the closer X and Xred are. In the same fashion, the reduced mixed-integer 
control problem can be formulated as

Again, the more accurate our approximation of the PDE is, the better fred approxi-
mates f and the closer Wred is to W. Furthermore, the reduced penalty formula-
tion ( Ppenred ) links to the reduced optimal control problem ( Pred ) in the same way 
as (Ppen) links to (P) in Proposition 1, i.e., there exists an �̃� > 0 such that for all 
𝜀 ∈ (0, �̃�] problems ( Pred ) and ( Ppenred ) have the same minimum points.

Before we elaborate on the theoretical justification of this approach, we want to 
actually apply our model order reduction technique of choice, the balanced trunca-
tion, see, e.g., [14], and explicitly derive the unknown quantities inside fred , i.e., Ĉ , 
K̃red and �̃�red.

3.1.1  Balanced truncation and reduced state system

Since the balanced truncation (BT) is a model order reduction technique for linear 
time-invariant (LTI) systems, we have to refer to the semidiscretized ODE-system 
described in (4). We reformulate the system and add an output equation (that cor-
responds to the evaluation of the state on the domain of observation �obs ) to fit the 
formulation within the standard BT literature, that is

K̃y = �̃�u via K̃redyred = �̃�redu,

min
x∈Xred

J(x;�) with the feasible set

Xred ∶=

{
x = (fred(u)

⊺
, u

⊺
)
⊺
∈ ℝ

nt(N+l) ||| u ∈ [0, 1]nt⋅l,Cinequ ≤ Svec

}
.

(Ppenred)

min
x∈Wred

J̃(x) with the feasible set

Wred ∶=

{
x = (fred(u)

⊺
, u

⊺
)
⊺
∈ ℝ

nt(N+l) ||| u ∈ {0, 1}nt⋅l,Cinequ ≤ Svec

}
.

(Pred)
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Note that the addition of the output equation is natural here since only the state val-
ues inside �obs are of interest for the objective function. After the application of the 
BT to this system, one can then apply a time-integration method to the resulting 
reduced system of ODEs to obtain K̃red , �̃�red , and Ĉ and thus fred.

Equation (14) is an LTI system in generalized state-space form, such that we 
apply the generalized BT, see, e.g., [28, 29]. We briefly recapitulate the key steps. 
Our aim is to construct projection matrices T1 ∈ ℝ

r×N and T2 ∈ ℝ
N×r such that

yielding the reduced LTI system. First, we require factorizations P = RR
⊺
∈ ℝ

N×N 
and Q = LL

⊺
∈ ℝ

N×N of the solutions of the following generalized Lyapunov 
equations

It is well-known that P and Q are positive semi-definite, such that these factoriza-
tions exist (R and L are often called "Cholesky" factors of P and Q even if they are 
not Cholesky factors in the strict sense). With these factors at hand, we calculate the 
singular value decomposition (SVD) of L⊺MR = U�V

⊺ and mention that up to now, 
all these steps can be performed in a one-time offline fashion.

Now, we choose a reduced dimension r ≪ N and based on this, we split the SVD 
with respect to this dimension r as

with �1 ∶= diag(�1,… , �r) and �2 ∶= diag(�r+1,… , �N) , where 𝜎r > 𝜎r+1 and 
�j, j = 1,… ,N are the so-called Hankel singular values of the system (4). Based on 
this truncated SVD, we define the projection matrices

such that we obtain the reduced model as in (15). As a result, we obtain the reduced 
LTI system for the reduced state ŷred(t) ∈ ℝ

r

(14)
M

�

�t
y(t) = −Ky(t) +M�u(t), t ∈ (0, T), y(0) = 0,

yout(t) = Cy(t).

(15)
Mred ∶= T1MT2 ∈ ℝ

r×r, Kred ∶= T1KT2 ∈ ℝ
r×r,

�red ∶= T1M� ∈ ℝ
r×l, Cred ∶= CT2 ∈ ℝ

p×r,

(16)
− KPM

⊺
−MPK

⊺
+M��

⊺
M

⊺
= 0,

− K
⊺
QM −M

⊺
QK + C

⊺
C = 0.

(17)L
⊺
MR = U�V

⊺
=
[
U1 U2

] [�1 0

0 �2

] [
V
⊺

1

V
⊺

2

]

T1 ∶= �
−1∕2

1
V
⊺

1
R
⊺

and T2 ∶= LU1�
−1∕2

1

(18)
Mred

𝜕

𝜕t
ŷred(t) = −Kredŷred(t) +𝛷redu(t), t ∈ (0, T), ŷred(0) = 0,

yred,out(t) = Credŷred(t),
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which only depends on the reduced dimension r ≪ N , and note that the control 
dimension remains untouched. Similar to Sect. 2.2, we apply the Crank-Nicholson 
scheme to the state equation of (18), which can then again be written in an all at 
once formulation using Kronecker-product matrices. Letting yi,red ≈ ŷred(i𝛿t) ∈ ℝ

r , 

we collect these approximations in yred ∶=
(
y
⊺

1,red
,… , y

⊺

nt ,red

)⊺

∈ ℝ
nt⋅r and obtain

where

with K1,red ∶= Mred +
�t

2
Kred and K2,red ∶= Mred −

�t

2
Kred . Finally, we define

such that we obtain the reconstruction fred(u) = Ĉyred ∈ ℝ
nt⋅N , which then approxi-

mates f (u) = K̃−1�̃�u . Thus, all quantities in the reduced optimal control problem 
( Ppenred ) are now known and an IPM for the problem can be derived. We note that 
the matrix Cred does not appear here, since Cred = CT2 where the T2 part is integrated 
in Ĉ and the C part is already included in M̃ inside the objective function, see (9). 
We also highlight that the approximation quality of the BT relies on the size of the 
reduced dimension r and the investigation of this parameter will be the subject of the 
next section together with the analysis of further theoretical properties.

3.1.2  Theoretical insights

We present two known theoretical results for BT and relate them to our problem. 
First, a standard result targets the error between the output yout(t) of the LTI system 
(14), and yred,out, the output of the reduced LTI system (18). It requires that the sys-
tem is asymptotically stable, which is the case here since both M and K are positive 
definite. For control functions u ∈ L2(0, T) and if the reduced LTI system (18) was 
obtained via balanced truncation with reduced dimension r ≤ N it holds, see, e.g., 
[14, 30, 31], that

where �r+1 +⋯ + �N is the sum of the truncated Hankel singular values. As a result, 
the approximation quality of the balanced truncation depends on the size of this sum 
and the LTI system (14) can be well-approximated if the Hankel singular values are 
quickly decaying. If the decay in the singular values is very slow, the reduced dimen-
sion has to be chosen comparably large to still ensure a good approximation. But a 
large r negatively impacts the computational time required to solve the reduced sys-
tem (19) (since it is dense) and one might not even gain a speed-up if r is too large. 
We state the second result from the literature, see [31, Corollary 1].

(19)K̃redyred = �̃�redu,

(20)
K̃red ∶= I1 ⊗ K1,red + I2 ⊗ −K2,red ∈ ℝ

nt⋅r×nt⋅r,

�̃�red ∶=
𝛿t

2

(
I1 ⊗𝛷red + I2 ⊗𝛷red

)
ℝ

nt⋅r×nt⋅l,

(21)Ĉ = I1 ⊗ T2

(22)��yout − yred,out
��L2(0,T) ≤ 2‖u‖L2(0,T)

�
�r+1 +⋯ + �N

�
,
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The result gives an error bound for the error between u∗ , the solution of a generic 
quadratic optimal control problem

and û∗ , the solution of a corresponding reduced optimal control problem

where the reduced ODE system was obtained via balanced truncation. The result 
furthermore requires that M is symmetric, positive definite, that there exists an 
𝛼 > 0 such that v⊺Av ≤ −�v

⊺
Mv for all v ∈ ℝ

N , and that the objective function of 
(23) is strictly convex. Then, [31, Corollary 1] yields the bound

where � is a constant associated with the convexity of the objective of (23), 
ẑ∗ = Ĉŷ∗ +Dû∗ − yd with ŷ∗ being the state corresponding to û∗ , and c is a constant 
associated to the ODE system.

This result could be applied to the continuous relaxation (Pcont) with C = C , D = 0 , 
M = M , A = −K , and B = M� . Conversely, a bound similar to (25) cannot be 
expected for the penalty formulation (Ppen) (on which the mixed-integer approach in 
this work is based) as convexity of the objective function is out of reach there.

Nonetheless, we want to stress that the driving term in the bound (25) again is the 
sum of the remaining Hankel singular values. Thus, if this sum is small and the reduced 
system provides a good approximation, one can infer that a solution of ( Ppenred ) is suf-
ficiently close to the corresponding solution of (Ppen). With (22) at hand, the feasible 
sets Xred and X should then be close enough. The solutions of the overall MIPDECO 
problems ( Pred ) and (P) should be close, or even the same, as well.

3.2  The interior point framework

We now briefly describe the main steps of the two interior point methods that will be 
employed to solve the reduced ( Ppenred ) and full (Ppen) formulations, respectively. The 
derivation of the IPMs follows [32] and, more specifically, [9]. We first observe that 
problems ( Ppenred ) and (Ppen) can be rewritten as

(23)
min
u(t)

1

2
∫ T

0
‖‖Cy(t) +Du(t) − yd(t)

‖‖2 dt,
s.t. M

�

�t
y(t) = Ay(t) + Bu(t), t ∈ (0, T), y(0) = y0,

(24)
min
u(t)

1

2
∫ T

0

‖‖‖Ĉŷ(t) +Du(t) − yd(t)
‖‖‖
2

dt,

s.t.
𝜕

𝜕t
ŷ(t) = Âŷ(t) + B̂u(t), t ∈ (0, T), ŷ(0) = ŷ0,

(25)‖‖u∗ − û∗
‖‖L2(0,T) ≤ 2

𝜅

(
c‖‖û∗‖‖L2(0,T) + ‖‖ẑ∗‖‖L2(0,T)

)(
𝜎r+1 +⋯ + 𝜎N

)
,
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and

respectively, where 0 ≤ z ∈ ℝ
nt is a vector of slack variables. We recall that M̃ is 

defined in (9) and handles the observation on the subdomain �obs.
The main idea of an IPM is the elimination of the inequality constraints on 

u and z via the introduction of corresponding logarithmic barrier functions 
weighted by the barrier parameter 𝜇 > 0 that controls the relation between the 
barrier term and the original objectives. Then, first-order optimality conditions 
are derived by applying duality theory resulting in a nonlinear system para-
metrized by � . For problem (26) the nonlinear system takes the form 

 where the Lagrange multipliers �u,0 , �u,1 ∈ ℝ
nt⋅l , and �z,0 ∈ ℝ

nt are defined as

Furthermore, the bound constraints �u,0 ≥ 0 , �u,1 ≥ 0 , and �z,0 ≥ 0 then enforce the 
constraints on u and z. Here p ∈ ℝ

nt⋅r is the reduced Lagrange multiplier (or adjoint 
variable) associated with the reduced state equation and q ∈ ℝ

nt is the Lagrange 
multiplier associated with the equations Cinequ + z − Svec = 0.

The crucial step of deriving the IPM is the application of Newton’s method to 
the above nonlinear system. Letting yred , u, z, p, q, �u,0 , �u,1 , and �z,0 denote the 
most recent Newton iterates, these are then updated in each iteration by comput-
ing the corresponding Newton steps �yred , �u , �z , �p , �q , ��u,0 , ��u,1 , and ��z,0 
through the solution of the Newton system with the following coefficient matrix

(26)

min
yred ∈ ℝ

nt⋅r, u ∈ ℝ
nt⋅l,

z ∈ ℝ
nt

1

2
(Ĉyred − yd)

⊺
M̃(Ĉyred − yd) +

1

𝜀
(�

⊺

nt⋅l
u − u

⊺
u),

s.t. K̃redyred = �̃�redu and Cinequ + z − Svec = 0,

0 ≤ u ≤ 1 and z ≥ 0,

(27)

min
y∈ℝnt ⋅N ,u∈ℝnt ⋅l,z∈ℝnt

1

2
(y − yd)

⊺
M̃(y − yd) +

1

𝜀
(�

⊺

nt⋅l
u − u

⊺
u),

s.t. K̃y = �̃�u and Cinequ + z − Svec = 0,

0 ≤ u ≤ 1 and z ≥ 0,

(28a)ĈTM̃Ĉyred − ĈTM̃yd + K̃
⊺

red
p = 0,

(28b)
1

𝜀
(�nt⋅l − 2u) − �̃�

⊺

red
p + C

⊺

ineq
q − 𝜆u,0 + 𝜆u,1 = 0,

(28c)q − 𝜆z,0 = 0, K̃redyred − �̃�redu = 0, Cinequ + z − Svec = 0,

(�u,0)i ∶=
�

ui
, (�u,1)i ∶=

�

1 − ui
, i = 1,… , nt ⋅ l, and (�z,0)i ∶=

�

zi
, i = 1,… , nt.
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Here, �u ∶= U−1Λu,0 + (Il − U)−1Λu,1 , �z ∶= Z−1Λz,0 , and U,  Z, Λu,0 , Λu,1 , as well 
as Λz,0 are diagonal matrices with the most recent iterates of u, z, �u,0 , �u,1 , and �z,0 
appearing on their diagonal entries. Once the the Newton system is solved, one can 
compute the steps for the Lagrange multipliers via

A general IPM implementation only involves one Newton step per iteration. Thus, 
after choosing suitable step-lengths so that the updated iterates remain feasible, the 
new iterates can be calculated and the barrier parameter � is reduced, thus conclud-
ing one iteration of the IPM. Finally, we report the primal and dual feasibilities

as well as the complementarity gap

where measuring the change in the norms of �p , �d , and �c allows us to monitor the 
convergence of the entire process. This completes the general description of the 
MOR-IPM.

The derivation of the full-IPM for problem (27) is analogous taking into account 
that the adjoint variable p ∈ ℝ

nt⋅N now depends on the full dimension N instead of 
the reduced dimension r (thus, we chose not to introduce extra notation). The coef-
ficient matrix of the resulting Newton system takes the form

where the diagonal matrices �u and �z are defined as for the matrix Nred in (29).
We note that the matrices Nred and N  in (29) and (30) have the same block 

structure. Moreover we observe that M̃ is symmetric as by (9) it inherits the 

(29)Nred =

⎡
⎢⎢⎢⎢⎢⎣

ĈTM̃Ĉ 0 0 K̃
⊺

red
0

0 −
2

𝜀
Int⋅l + 𝛩u 0 − �̃�

⊺

red
C
⊺

ineq

0 0 𝛩z 0 Int
K̃red − �̃�red 0 0 0

0 Cineq Int 0 0

⎤
⎥⎥⎥⎥⎥⎦

.

��u,0 = −�u,0 − U−1(Λu,0�u − ��nt⋅l),

��u,1 = −�u,1 + (Int⋅l − U)−1(Λu,1�u + ��nt⋅l),

��z,0 = −�z,0 − Z−1(Λz,0�z − ��nt ).

𝜉p ∶=

�
K̃redyred − �̃�redu

Cinequ + z − Svec

�
, 𝜉d ∶=

⎡⎢⎢⎣

ĈTM̃Ĉyred − ĈTM̃yd + K̃
⊺

red
p

1

𝜀
(�nt⋅l − 2u) − �̃�

⊺

red
p + C

⊺

ineq
q − 𝜆u,0 + 𝜆u,1

q − 𝜆z,0

⎤⎥⎥⎦

�c ∶=
[
U�u,0 − ��nt⋅l, (Int⋅l − U)�u,1 − ��nt⋅l, ZΛz,0 − ��nt

]⊺
,

(30)N =

⎡
⎢⎢⎢⎢⎢⎣

M̃ 0 0 K̃
⊺

0

0 −
2

𝜀
Int⋅l + 𝛩u 0 − �̃�

⊺
C
⊺

ineq

0 0 𝛩z 0 Int
K̃ − �̃� 0 0 0

0 Cineq Int 0 0

⎤
⎥⎥⎥⎥⎥⎦

,
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symmetry from Mobs , and singular; K̃red and K̃ are not symmetric no matter the 
symmetry of the original stiffness matrix, see definitions (20) and (6) respec-
tively; �u and 𝛩z > 0 , while being positive definite, are typically very ill-condi-
tioned. Moreover, due to the term − 2

�
Int⋅l , the block − 2

�
Int⋅l + �u may be indefinite, 

especially for small values of � . Following suggestions in [33, Chapter 19.3] to 
handle nonconvexities in the objective function by promoting the computation of 
descent directions, we heuristically keep the diagonal matrix − 2

�
Int⋅l + �u posi-

tive definite by setting any negative values to a small positive value 𝛾 > 0 . This 
strategy was already implemented in [9] demonstrating very promising numerical 
performance.

From a computational point of view, the burden of any IPM lies in the solu-
tion of the Newton system at each iteration. Clearly, the developed MOR-IPM is 
expected to be more efficient than the full-IPM since the dominant state dimen-
sion is reduced as depicted in Fig. 1.

We employ the following strategy to handle the linear algebra phase inside the 
IPMs: on the one hand we employ an inexact Krylov strategy for the solution of 
the Newton system and on the other hand we design a suitable preconditioner to 
speed up the convergence of our Krylov method of choice. This strategy allows 
to implement the IPMs in a matrix-free manner so that the matrices defined by 
a Kronecker product need not be explicitly formed as the corresponding prod-
ucts can be performed by suitable multiplication functions using the Kronecker 
factors. Regarding the inexactness strategy, the idea is to increase the accuracy 
in the solution of the Newton equation as � decreases in order to get savings in 
the computational time. Global convergence results to a solution of the first-order 
optimality conditions for inexact IPMs can be found in [34]. Finally, we remark 
that for the MOR-IPM, compared to the full-IPM, the inexactness strategy did not 
play an essential role and in fact in our numerical experiments the linear systems 
will be solved to high accuracy without affecting the overall cpu time.

Fig. 1  Schematic dimension reduction from the Newton equation with N  in (30) to the reduced one with 
N

red
 in (29) obtained via balanced truncation
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3.2.1  Preconditioning

Preconditioning is a crucial tool for accelerating the speed of convergence of any 
Krylov method. We here focus on the Newton scheme relying on the solution of the 
Newton system with coefficient matrix N  given in (30) but the same considerations 
can be applied to linear systems with Nred in (29) and are not reported for the sake 
of conciseness.

Given the partial observation problem, the matrix M̃ is indeed singular while the 
overall saddle point system is invertible but requires a carefully designed precon-
ditioner. For deriving the preconditioner we follow the strategy presented in [35] 
where we consider a permutation of the Newton system. We only do this for the sake 
of deriving a preconditioner as the permuted systems is amenable to standard saddle 
point theory. This permutation results in the saddle point system 

[
A BT

2
;B1 D

]
 with 

blocks

Our preconditioning strategy is now based on creating a preconditioner of block-tri-
angular form 

[
Ã 0;B1 − S̃

]
 where Ã ≈ A and S̃ approximates the Schur-complement 

S. This is achieved via

where in the first approximation we replace the (1, 1)-block by its diagonal and then 
in the second one we ignore the (2, 1)-block of the approximation to obtain a block-
diagonal approximation of the Schur-complement. We embed this into the overall 
preconditioner obtained as

We have now derived a preconditioner for the permuted problem that we do not 
want to form and now translate this theoretical detour back to the original saddle 
point system following [35]. We then obtain the preconditioner for the original prob-
lem as P̃ , given in an efficiently implemented version via

A =

⎡⎢⎢⎣

K̃ − �̃� 0

0 −
2

𝜀
Int⋅l + 𝛩u 0

0 0 𝛩z

⎤⎥⎥⎦
,B1 =

�
M̃ 0 0

0 Cineq Int

�
,B2 =

�
0 − �̃� 0

0 Cineq Int

�
,D =

�
K̃

⊺
0

0 0

�
.

S ≈

�
K̃

⊺
0

0 0

�
−

�
M̃ 0 0

0 Cineq Int

� ⎡
⎢⎢⎣

K̃−1 0 0

0 (−
2

𝜀
Int⋅l + 𝛩u)

−1 0

0 0 𝛩−1
z

⎤
⎥⎥⎦

⎡
⎢⎢⎣

0 0

−�̃�
⊺
C
⊺

ineq

0 Int

⎤⎥⎥⎦

≈

�
K̃

⊺
0

0 − 𝛩−1
z

− Cineq(−
2

𝜀
Int⋅l + 𝛩u)

−1CT
ineq

,

�
,

(31)P =

⎡
⎢⎢⎢⎢⎢⎣

K̃ 0 0 0 0

0 (−
2

𝜀
Int⋅l + 𝛩u) 0 0 0

0 0 𝛩z 0 0

M̃ 0 0 − K̃
⊺

0

0 Cineq 0 0 𝛩−1
z

+ Cineq(−
2

𝜀
Int⋅l + 𝛩u)

−1CT
ineq

⎤
⎥⎥⎥⎥⎥⎦

.
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which clearly shows that we need to solve once with K̃ and once with K̃T . We com-
bine this preconditioner with the GMRES method of [36]. We here focus on the 
highly relevant case of a partial observation domain, which as we already pointed 
out renders the matrix M̃ singular. In case of a full observation, we proposed a pre-
conditioner in [9] that we believe can be easily extended to the time-dependent case, 
see [37] for a preconditioning method for full observation optimization.

4  Time‑dependent Improved Penalty Algorithm (tIPA)

With the IPMs from the previous section at hand, we want to solve the overall MIP-
DECO problem. In order to do so, we adapt the improved penalty algorithm (IPA), 
developed in [9], to this time-dependent setting. Before that, we make the following 
clarifying remark.

Remark 1 

 (i) Applying the (soon described) IPA strategy to the MIPDECO problem (P) 
involves repeated solutions of the penalty formulation (Ppen) where the full-
IPM from Sect. 3.2 can be used.

 (ii) In the same way, the IPA strategy can be applied to the reduced MIPDECO 
problem ( Pred ) which then involves solutions of the reduced penalty formula-
tion ( Ppenred ) where the MOR-IPM from Sect. 3.2 can be used.

 (iii) To avoid confusion, we will describe the IPA based on (P) and (Ppen), but 
want to stress that the MOR version of the algorithm can be easily obtained by 
simply replacing the feasible sets X and W by Xred and Wred as well as replacing 
the linear map f by fred throughout this section.

 (iv) As a result, we will obtain two algorithms: one solving (P) and one solving 
( Pred ), where ( Pred ) approximates (P) and the approximation quality is based 
on the quality of our model order reduction.

We first extend the rounding strategy developed in [9, Definition 3.4] to the time-
dependent setting to again suitably handle the knapsack constraint in X and W. The 
idea is to apply the previously developed strategy in each time step to the time-
dependent control u.

Definition 1 Letting x = [y
⊺
, u

⊺
]
⊺
∈ X and S ∈ ℕ , with S ≤ l , we split up u ∈ ℝ

nt⋅l 
into u = (u

⊺

1
,… , u

⊺

nt
)
⊺ with ui ∈ ℝ

l being the control coefficients representing the i-

P̃
−1

⎡
⎢⎢⎢⎢⎣

w1

w2

w3

w4

w5

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

K̃−1w4

C−1w2

𝛩−1
z
w3

K̃
−T�

−w1 + M̃K̃−1w4

�
(𝛩−1

z
+ Cineq(−

2

𝜀
Int⋅l + 𝛩u)

−1CT
ineq

)−1(CineqC
−1w2 + w5)

⎤
⎥⎥⎥⎥⎥⎦

,
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the time-step. We then apply the smart rounding introduced in [9, Definition 3.4] to 
every ui , that is

– for i = 1,… , nt:

– Let uS,i ∈ ℝ
S denote the S largest components of ui.

– Define 
[
ui
]
SR

 by rounding uS,i component-wise to the closest integer and set 
the remaining components to 0.

– Define [u]SR ∶=
([
u1
]⊺
SR
,… ,

[
unt

]⊺
SR

)⊺

.
– Define [x]SR ∶=

(
f ([u]SR)

⊺
, [u]

⊺

SR

)⊺
∈ W.

We illustrate this rounding concept by the following simple example involving 
only control values. We will see that the smart rounding does, by definition, satisfy 
the knapsack constraint, while the usual rounding to the closest integer may fail to 
do so.

Example 1 Let S = 2 , l = 3 , nt = 2 , and let [⋅] denote the usual rounding to the clos-
est integer. Then, for

it is v1 = (0.8, 0.7, 0.1)
⊺
 and v2 = (0.3, 0.6, 0.9)

⊺
 such that

but with w1 = (0.63, 0.62, 0.61)
⊺
 and w2 = (0.3, 0.6, 0.9)

⊺
 it is

In [9], the starting point for the development of the IPA was an exact penalty 
(EXP) algorithm initially reported in [11]. Such an EXP algorithm can, analogously 
to [9], be formulated for the time-dependent setting presented in this article. Fur-
thermore, the convergence property for this EXP algorithm is analogous to the one 
derived in [9, Prop. 3.6], where the only necessary theoretical update is an equiva-
lent of [9, Prop. 3.5] for the time-dependent setting. This can easily be obtained: 
the first half of the the proof of [9, Prop. 3.5] directly carries over and in the second 
half, when arguing how any z̃ ∈ W can be obtained from z̄ ∈ W , one has to consider 
additional cases due to the fact that, in the time-dependent setting, the knapsack con-
straint might be satisfied as an equality in some timesteps and as an inequality in 
some other timesteps.

Since the IPA slightly deviates from the EXP algorithm (such that the conver-
gence properties do not directly apply to, but rather support the IPA) and to keep the 
manuscript length healthy, we decided to spare the details regarding the EXP algo-
rithm and its convergence property. Instead, we adapt the IPA to the time-dependent 
setting in the following section, review its properties and discuss potential perturba-
tion strategies.

v = (0.8, 0.7, 0.1, 0.3, 0.6, 0.9)
⊺

and w = (0.63, 0.62, 0.61, 0.3, 0.6, 0.9)
⊺

[v]SR = ([v1]
⊺

SR
, [v2]

⊺

SR
)
⊺
= (1, 1, 0, 0, 1, 1)

⊺
= [v],

[w]SR = ([w1]
⊺

SR
, [w2]

⊺

SR
)
⊺
= (1, 1, 0, 0, 1, 1)

⊺
≠ [w] = (1, 1, 1, 0, 1, 1)

⊺
.
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4.1  The algorithm and its details

The key idea of the IPA was to suitably adapt the framework of the EXP algorithm 
reported in [9, Algorithm  3.1] and originally developed in [11]. The EXP algo-
rithm repeatedly solves the penalty formulation (Ppen) and provides a theoretical 
framework that tell us when to increases the amount of penalization in the objective 
function and when to search for a better minimizer. In order to obtain its theoreti-
cal convergence properties, the EXP algorithm, at each iteration, requires the use of 
a global optimization solver. This makes the algorithm impractical in a large-scale 
PDE constrained optimization setting. As a consequence, the IPA employed one 
main change: the next iterate in the IPA only has to reduce the objective function 
(in the EXP algorithm, it had to be a global minimum up to a tolerance � ). This 
next iterate is searched for via an a probabilistic approach combining a tailored local 
search strategy with a perturbation of the current iterate (see Sub-Algorithm  1.a 
below). For the sake of completeness, we report the time-dependent improved pen-
alty algorithm (tIPA), i.e., the combination of Algorithms 1 and 1.a, where the 
time-dependent nature lies in the smart rounding introduced in Definition 1 as well 
as the underlying model problems (P) and (Ppen) with their feasible sets W and X, 
respectively.
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In the following, we list some of the key features that the tIPA inherits from the 
IPA, as they are structurally identical:

– The tIPA terminates via line 11 as soon as the iteration limit pmax is reached 
inside Algorithm  1.a at Step 1. Thus, the choice of pmax and the perturbation 
strategy determine the quality of the solution found by the tIPA. Taking into 
account the scheme of Algorithm 1.a, it is indeed easy to understand that these 
two features influence the ability to explore the feasible set. A large enough num-
ber of iterations should then be used in order to guarantee a proper exploration 
without significantly increasing the overall CPU time. We will discuss our per-
turbation strategies in the second part of this section.

– The tIPA is expected to have a two-phase behavior: in the first phase, the penali-
zation is increased due to line 5 of Algorithm 1 until a feasible integer iterate 
xn+1 ∈ W is found and in this phase the for-loop of Algorithm 1.a should termi-
nate in the first iteration. In the second phase, Algorithm 1.a is then the driving 
force in finding better points that provide further reductions in the objective func-
tion.

– A new iterate is always feasible with xn+1 ∈ X . Thus, xn+1 ∉ W in line 4 of Algo-
rithm 1 can, in a practical implementation, be replaced by 

 with a feasibility tolerance �feas . Thus, it is reasonable to return [xn+1]SR such 
that the control of our output iterate is always integer and satisfies the knapsack 
constraint.

For a more detailed discussion and interpretation of the algorithm as well as an 
explanation for the above key features we refer to [9, Section 3.2].

Inside the tIPA, we use the full-IPM developed in Sect.  3.2 to obtain a (local) 
solution of (P) in Algorithm 1.a. As mentioned in Remark 1, the tIPA can also be 
formulated for the reduced problem ( Pred ), where the MOR-IPM from Sect. 3.2 is 
then used inside Algorithm 1.a to obtain a (local) solution of ( Pred ) and we call the 
resulting algorithm the MOR-tIPA.

‖‖‖u
n+1 − [un+1]SR

‖‖‖∞ > 𝜀feas
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The perturbation performed in line 7 plays an important role in the overall strat-
egy. Some tailored perturbation, depending on the problem one intends to solve, 
might be more beneficial in the end. We hence want to conclude this section with a 
discussion on the perturbation strategies that we will employ inside Algorithm 1.a 
during our numerical investigation in the next section. We present two perturbation 
strategies: the first one being the extension of [9, Algorithm 2.b] to the time-depend-
ent setting, that is we flip � ∈ ℕ many sources in each time step of the control to 
generate the perturbed control. The corresponding state is then calculated afterwards 
and the details are described in Algorithm 1.b.

When Algorithm 1.b is called inside the tIPA, x is equal to the current iterate xn . 
The algorithm then performs nt ⋅ � ∈ ℕ flips to the current control un ( � flips per 
time step of the control), where a flip is one iteration of the inner for-loop of Algo-
rithm 1.b. Before we discuss the second perturbation strategy, we report here our 
definition of adjacency from [9, Definition 3].

Definition 2 Given a collection of points x1,… , xn ∈ � and a radius r > 0 , we 
define for a point xi the set of adjacent indices

As a result, the set of adjacent indices Ir
adj

 in Algorithm 1.b is obtained via Defini-
tion 2 with the centers x̃1,… , x̃l ∈ 𝛺 of our source functions as points. Assuming 
that they are arranged in a uniform m × m grid, a possible radius might be r = 1

m
.

Algorithm 1.b performs � flips per time step, which may be disadvantageous: 
for large nt the total amount of flips may become very large and since flips are 
being made in every time step, the resulting perturbation may be too far away 

Ir
adj

∶= {j ∈ {1,… , n} ∣ j ≠ i,
‖‖‖xi − xj

‖‖‖∞ ≤ r}.
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from the current iterate to yield a productive initial guess for the local solver in 
Algorithm 1.a. As a result, the overall perturbation strategy may be unable to find 
new iterates that improve the objective function. We thus propose a second strat-
egy that simply performs a fixed amount of � ∈ ℕ flips randomly spread out over 
the time steps. The details are found in Algorithm 1.c.

With Algorithm  1.c one has much better control over the amount of flips 
resulting in the perturbation xpert . Thus, the hope is to find a balanced � such that 
the resulting perturbations lie outside the current basin of attraction of the objec-
tive functional and therefore are a qualitative initial guess for the local solver in 
Algorithm  1.a, resulting in a point with a potentially better objective function 
value. We note that with the notion of adjacency from Definition 2 the output of 
Algorithm 1.c does again satisfy the knapsack constraint.

Although the perturbation strategies presented depend on the uniform grid of 
source centers used to determine the index set Ir

adj
 , we want to stress that the 

underlying concept of this flipping does not depend on the chosen modelling as it 
was outlined in [9, Section 4.1] alongside other details of our implementation that 
we do not repeat here.

5  Numerical experiments

In this numerical section, we first investigate the effectiveness of the model order 
reduction as an approximation technique and then we test the tIPA and the MOR-
tIPA also in comparison with cplexmiqp, the branch-and-bound routine of 
CPLEX [38] for quadratic mixed integer problems. Before that, we introduce a 
second model problem based on a convection-diffusion PDE for which most of 
the numerical tests will also be carried out.
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Consider the original optimal control problem (3), but governed by the parabolic 
convection-diffusion PDE

with the constant-in-time wind vector w(x) = (2x2(1 − x2
1
),−2x1(1 − x2

2
))
⊺ and piece-

wise constant source functions �1,… ,�l ∈ L2(�) that have the same height � as 
the Gaussian source functions defined in (2). Using Q1 finite elements, while also 
employing the Streamline Upwind Petrov-Galerkin (SUPG) [39] upwinding scheme 
as implemented in the IFISS software package [40] to discretize (32) and build-
ing the relevant finite element matrices, the semidiscretization in space is achieved. 
Following the approach made in Sect. 2.2, we then obtain the resulting discretized 
optimal control problem, its continuous relaxation and its penalty formulation such 
that experiments can be carried out for this model problem as well.

In the following, we refer to this problem as the convection-diffusion problem, 
while we refer to problem (1) as heat equation problem. The convection-diffusion 
problem typically provides more numerical challenges due to the nonsymmetric 
nature of its discretized stiffness matrix and to the possibly strong convective wind 
w(x).

5.1  Numerical setting and parameter choices

We present the numerical setting for the experiments including default parameter 
choices for the algorithms. If different choices are used, it will be mentioned.

We choose � ∶= [0, 1]2 as our computational domain, �obs ∶= [0.25, 0.5]2 as the 
domain of observation, and [0, 1] as the time horizon. Regarding the source func-
tions, we choose l = 25 sources with centers x̃1,… , x̃l being arranged in a uniform 
5 × 5 grid with step size 1

6
 (resulting in a radius r = 1

5
 for Definition 2). For the piece-

wise constant sources of the convection-diffusion problem the points x̃1,… , x̃l are 
the centers of the squares 𝛺1,… ,𝛺l ⊂ 𝛺 that form a uniform decomposition of � . 
The height of the sources is � = 100 and the width � of the Gaussian sources is 
chosen such that every source takes 5% of its center-value at a neighboring center. 
We mention that this choice of height and width is motivated by [5, Section 4.2]. 
The PDE (1) is discretized using uniform piece-wise linear finite elements in space 
with a step size of 2−6 (unless specified otherwise) resulting in N = 4225 vertices 
(the same step size is used for the aforementioned discretization of (32)). For the 
temporal dimension, we stick to an equidistant grid with nt = 40 timesteps such that 
the overall problem consists of N ⋅ nt = 169000 continuous and l ⋅ nt = 1000 integer 
variables.

Regarding the full-IPM and the MOR-IPM, the outer interior point iteration is 
stopped as soon as either max{

‖‖‖�p
‖‖‖2, ‖‖�d‖‖2, ‖‖�c‖‖2} ≤ 10−6 or the safeguard 

� ≤ 10−15 is triggered. Furthermore, starting from an initial � = 1 we decrease � by 
the factor 0.1 in each outer interior point iteration. The inexactness for the full-IPM 

(32)
�

�t
y(t, x) − �y(t, x) + w(x) ⋅ ∇y(t, x) =

l∑
i=1

ui(t)�i(x), (t, x) ∈ (0, T) ×�,

y(0, x) = 0, x ∈ �,
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is implemented by stopping GMRES when the norm of the unpreconditioned rela-
tive residual is below � = max{min{10−4,�}, 10−10} , while for the MOR-IPM we 
always use � = 10−10 . Finally, the diagonal block − 2

�
Il + �u in either Newton system 

(30) or (29) is kept positive definite by setting any negative values to � = 10−6.
Regarding the balanced truncation introduced in Sect. 3.1.1, we solve the Lyapu-

nov equations (16) via the mess_lyap routine of the M-M.E.S.S. toolbox [41] for 
Matlab, using the default setting. This routine computes low-rank approximations 
R̂R̂T ≈ P and L̂L̂T ≈ Q and we use R̂ and L̂ which approximate the Cholesky factors 
R and L, respectively.

Default parameters for the tIPA and MOR-tIPA are �0 = 106 , � = 0.5 , and the fea-
sibility tolerance �feas = 0.1 . Both algorithms use the respective solution of (Pcont) 
or ( Ppenred ) for �0 as initial guess. Do note that this is not necessary since both prob-
lems, for large enough �0 , are usually still convex such that any initial guess would 
be sufficient.

Regarding cplexmiqp, we use default options except that we set a time limit of 
50 hours and a memory limit of 32000 megabytes for the search tree.

All experiments were conducted on a PC with 32 GB RAM and a QUAD-Core-
Processor INTEL-Core-I7-4770 (4x 3400MHz, 8 MB Cache) utilizing Matlab 
2021a via which CPLEX 12.9.0 was accessed.

5.2  The experiments

First experiment
In this first experiment we determine a good choice of the reduced dimension 

r for both model problems in question. Using the M-M.E.S.S. toolbox, we can 
calculate an approximation to the first (and thus largest) Ñ < N Hankel singular 
values 𝜎1,… , 𝜎Ñ . Due to the theoretical investigations in Section  3.1.2, we are 
interested in the quantity 𝛴(r) ∶= 𝜎r+1 +⋯ + 𝜎Ñ that is the dominant term in the 
balanced truncation error bounds. Figure 2 depicts �(r) over a possible reduced 
dimension r = 1,… , Ñ − 1 for both the heat equation and the convection-diffu-
sion problem. We note that this neglects the singular values 𝜎Ñ+1,… , 𝜎N but as 

Fig. 2  �(r) over r = 1,… , Ñ − 1 for the heat equation (left) and the convection-diffusion (right) problem. 
Red dotted lines indicate the chosen reduced dimensions for the later numerical experiments
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the Hankel singular values are sorted in descending order it becomes clear from 
Fig. 2 that it is indeed justified to neglect them.

Based on these calculations, we choose a reduced dimension r = 100 for the 
heat equation problem and, to keep a similar approximation quality, r = 200 for 
the convection-diffusion problem. We stress that even though the convection-dif-
fusion problem requires a larger reduced dimension, the factor of reduction from 
the full state dimension N = 4225 to the reduced dimension 200 is still notice-
able. As a result, ( Ppenred ) consists of r ⋅ nt = 4000 continuous variables for the 
heat equation and 8000 continuous variables for the convection-diffusion prob-
lem (compared to the 169000 continuous variables of (Ppen)). As already men-
tion in Sect. 3.1.1 the control and thus the amount of integer variables remains 
untouched by the chosen MOR approach.

Second experiment Following up on the first experiment, we are now interested 
in the selection of the reduced dimension r that is required to obtain the approxi-
mation quality of �(r) ≤ 10−5 if the FEM step size is changing. This is then an 
indicator on how robust our MOR approach is. We thus calculate the value of r 
for which �(r) ≤ 10−5 for a decreasing FEM step size of h = 2−4, 2−5, 2−6, 2−7 
for both the heat equation and the convection-diffusion problem and the result is 
depicted in Table 1.

Clearly, the reduced dimension r required for the desired accuracy of the 
reduced model is robust w.r.t. the FEM step size for the heat equation prob-
lem. For the convection-diffusion problem the required reduced dimension does 
increase. Internal tests showed that this is not due to the convection term (the con-
vection would become more and more challenging for the MOR the smaller the 
diffusion coefficient would be) but rather due to the piece-wise constant source 
functions. Since we are still satisfied with the factor of reduction that is achieved, 
we did not further investigate this matter.

Third experiment We carry out a first comparison of the tIPA and the MOR-
tIPA, where we have two aims:

– Observing that both algorithms yield pretty much the same solution. Clearly, 
there might be slight differences due to the probabilistic nature of the IPA frame-
work, but we want to notice that the MOR approach does not negatively influ-
ence the quality of the solution found.

– Investigating the behaviour of the preconditioner inside the full-IPM as well as 
the MOR-IPM during a tIPA iteration.

Table 1  Results of the second 
experiment

Reduced dimension r such that �(r) ≤ 10−5 over a changing FEM 
step size h for both model problems

h 2−4 2−5 2−6 2−7

Heat Eq. 87 93 93 97
Conv-Diff 102 146 172 190
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To this end, we construct a single problem instance in the following way: we gen-
erate a desired state yd as a solution of (the discretized version of) (1) with S = 3 
active sources in the right-hand side and the centers of these sources are randomly 
distributed over [0.1, 0.9]2 , where the height and width of these sources coincides 
with the values presented in Sect. 5.1. In the same fashion, a problem instance is 
drawn for the convection-diffusion problem.

We now solve each problem instance with the tIPA as well as the MOR-tIPA, 
where we always use Algorithm 1.b for the perturbation strategy, perturbing � = 1 
source per timestep and limiting the overall perturbation cycle inside Algorithm 1.a 
to pmax = 1000 iterations. We are interested in the number of nonlinear (outer) itera-
tions (NLI) required by IPM and the average number of preconditioned GMRES 
iterations (aGMRES) for each value of � visited during the two versions of the IPA 
algorithm. The result is depicted in Fig. 3.

We have, for the solutions xtIPA and xMOR-tIPA of the heat equation problem, the 
objective function values

For the convection-diffusion problem, we have

J̃(xtIPA) ≈ 0.00496, J̃(xMOR-tIPA) ≈ 0.00495, and

‖‖J̃(xtIPA) − J̃(xMOR-tIPA)
‖‖∕‖‖J̃(xtIPA)‖‖ ≈ 0.00131.

Fig. 3  Number of outer IPM iterations (right y-axis) and average GMRES iterations (left y-axis) during 
the tIPA for the heat equation (A) and convection-diffusion (B) problem as well as the MOR-tIPA for the 
heat equation (C) and convection-diffusion (D) problem
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Clearly, the obtained solutions for these problem instances are of high quality and 
the solutions obtained using the MOR-tIPA are even slightly better than the ones 
obtained with the tIPA.

Regarding the solution time, the tIPA required 55.57 hours for the heat equa-
tion and 46.84 hours for the convection-diffusion problem, where the MOR-tIPA 
only required 3.33 and 11.73 hours, respectively. The increased time in the MOR-
tIPA for the convection-diffusion problem is due to the larger dimension of the 
reduced problem. The results illustrate the efficiency of the MOR approach. Pos-
sible improvements made to the preconditioner would lead to a further reduc-
tion of the computing time, especially noticeable for the full tIPA. This is backed 
up by the average GMRES iterations depicted in Fig.  3: while they may be in 
a reasonable range for smaller values of � (multiple blue circles for a singular 
value of � are due to the perturbation step), a still large amount of GMRES itera-
tions is required in the first iterations of both tIPA and MOR-tIPA. The deteriora-
tion of the preconditioner is likely due to the Schur-complement approximation 
ignoring several terms. We believe that an improved approximation of the Schur-
complement part of the preconditioner will cause a reduced number of GMRES 
iterations.

Fourth experiment The perturbation strategy significantly impacts the quality 
of the overall algorithm. Therefore, we want to determine a qualitative strategy 
in this experiment. To keep the manuscript length as well as the computational 
times healthy, this comparison is only carried out using the MOR-tIPA applied to 
the heat equation problem. We distinguish the following four variants:

– Variant 1 (V1): the perturbation strategy from Algorithm  1.b is used with 
� = 1 perturbation per timestep.

– Variants 2-4 (V2-V4): the perturbation strategy from Algorithm  1.c is used 
with a total of � ∈ {⌈ nt⋅S

20
⌉, ⌈ nt⋅S

10
⌉, ⌈ nt⋅S

5
⌉} many perturbations. Thus, a total 

amount of 5%, 10%, 20% of the active sources is perturbed.

In each variant, we select pmax = 1000 to keep a reasonable balance between 
computational cost of the overall algorithm and the solution quality (of course, a 
larger pmax will on average always improve the solution quality due to the proba-
bilistic search approach). For the comparison, we construct a test set of 10 prob-
lem instances per value of S ∈ {1, 2, 3, 4, 5} (we described in the previous experi-
ment how such a problem instance is created) and it is clear that with an increased 
S the combinatorial complexity and thus the difficulty of the MIPDECO problem 
increases.

We then solve this test set with the algorithms under analysis (the variants of 
the MOR-tIPA) and compare the results with respect to solution time and quality. 
For the solution time, we report ’t_av’ the average solution time and for the solu-
tion quality, we choose the following two criteria.

J̃(xtIPA) ≈ 0.0571, J̃(xMOR-tIPA) ≈ 0.0556, and

‖‖J̃(xtIPA) − J̃(xMOR-tIPA)
‖‖∕‖‖J̃(xtIPA)‖‖ ≈ 0.0263.
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– ’min_count’: for each desired state, we check which algorithm achieved the 
smallest objective function value. This algorithm is then awarded a score. Surely, 
multiple algorithms can be awarded a score in the same run (when multiple algo-
rithms find the same ’best’ solution).

– ’rel_err_av’: for each desired state, we store for each algorithm the relative error 
between the objective function value achieved by that algorithm and the smallest 
objective function value in that run (the one that was awarded a ’min_count’-
score). Only runs resulting in a non-zero relative error are taken into account 
when computing this average relative error.

Since the global minimum of the tackled optimization problem is not known ana-
lytically, the ’min_count’-value tells us how often an algorithm performed best com-
pared to the other algorithms and the average relative error is an additional measure 
of quality. Furthermore, we collect ’av_subsolvercalls’ the average amount of calls 
of the local solver to understand how good the perturbation strategy is (the closer 
this value is to pmax = 1000 , the less effective the perturbation strategy is). The 
results of this experiment can be found in Table 2.

The major takeaway from Table 2 is that the second variant (using Algorithm 1.c 
perturbing a total amount of 5% active sources) is vastly superior to the other vari-
ants. Not only is it the fastest variant, but it also has the best solution quality: it has 
the largest or a very large min_count score and very small average relative error 
in the instances were it does not produce the best minimizer. Going more into the 
details, it is very interesting to inspect the last part of Table 2, i.e., av_subsolver-
calls. We observe that for both variants 1 and 4 the respective strategy is not actively 
finding better iterates since the number of calls to the local solver are close to the 
pmax = 1000 iterations of Algorithm  1.a that are required to terminate the overall 
MOR-tIPA. This strengthens the intuition we already mentioned in Sect.  4.1 that 
these strategies are flipping too many sources such that the resulting perturbations 
are useless initial guesses for the local solver (in the sense that they do not lead to 
better iterates of the overall MIPDECO problem). With strategies V3 and V2 it can 
then be seen that more subsolvercalls are made on average indicating that the per-
turbation strategy is actively finding better iterates inside the MOR-tIPA leading to 
better overall solutions of the MIPDECO problem.

Finally, to put the results of this experiment into a better perspective, Fig. 4 con-
tains, for each part of the test set, a Box-Plot related to the objective function of 
the final solutions attained by each algorithm (i.e., for each value of S the test set 
contains 10 instances, such that for each algorithm a Box-Plot is created for the 10 
objective function values related to the solutions we found). A Box-Plot consists of 
several parts: the lower and upper end of box represent the 25th and the 75th percen-
tile of the data vector represented in the respective Box-Plot, the red line inside the 
box depicts the median of the data and the black dashed lines extending the box are 
the so called whiskers which represent the remaining data points that are not consid-
ered outliers. The outliers are then depicted as red crosses.

Besides showing the absolute values and thus the quality of the points 
obtained with the MOR-tIPA, the results of Fig.  4 further strengthen the 
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observations made in Table 2: variant 2 either achieves the smallest median (for 
S = 2 , S = 3 , and S = 5 ) or found significantly better solutions lying in the lower 
whiskers than the other variants (for S = 1 and S = 4).

Fifth experiment In our final experiment, we want to compare the MOR-tIPA, 
the tIPA, and cplexmiqp, the branch-and-bound routine of CPLEX to verify 
that the MOR-tIPA is indeed the best algorithm for the MIPDECO problems 
tackled in this article. The experiment is carried out for the heat equation as 
well as the convection-diffusion problem. We create one problem instance for 
each S ∈ {1, 2, 3, 4, 5} (where we described in the third experiment how such a 
problem instance is created) and solve it with cplexmiqp given a time limit of 
50 hours, as well as the tIPA and the MOR-tIPA, where both algorithms use the 
perturbation strategy used in variant 2 from the previous experiment. Concern-
ing the computational times of the tIPA, we employ a timelimit of 50 hours to 
keep a fair comparison with cplexmiqp.

Regarding the solution quality, the algorithm with the lowest objective func-
tion value is indicated with ‘ min ’ in Table 3 and for each other algorithm the 
relative error with respect to this objective function value is then displayed. 
Furthermore, Table 3 contains the running times in hours for each algorithm in 
each instance, where ‘TL’ indicates that the time limit was reached by the given 
algorithm.

Focusing on this test, we may conclude that the MOR-tIPA and the tIPA do 
find equally good solutions and the MOR approach does not severely deteriorate 
the solution quality. Moreover, the MOR-tIPA definitely outperforms the tIPA in 
terms of computational time. Finally, results clearly show that cplexmiqp is 
not able to find a good solution to the large-scale problems tackled in this article 
in the prescribed (although large) amount of time.

Fig. 4  Results of the fourth experiment: for each part of the test set, a Box-Plot related to the objective 
function of the final solutions obtained by each algorithm is depicted
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6  Conclusion and outlook

A standard MIPDECO problem with a linear time-dependent PDE constraint and 
a modelled control was presented and discretized. An improved penalty algorithm 
(IPA), developed by the authors in a previous work, was suitably adapted to the 
time-dependent setting, where the core of the IPA is an efficient local optimiza-
tion solver paired with a probabilistic basin hopping strategy as well as an updat-
ing tool for the penalty parameter. In order to handle the large-scale context of the 
time-dependent PDE constraint, we introduced a combination of an interior point 
method (IPM), model order reduction (MOR), and preconditioning resulting in 
the MOR-IPM. Integrating the MOR-IPM in the time-dependent IPA framework 
yielded the MOR-tIPA for the solution of the overall MIPDECO problem, which 
represents the main novelty of this work.

A thorough numerical investigation, dealing with a heat equation as well as a 
convection-diffusion problem, showed the efficiency of the model order reduc-
tion, revealed a promising perturbation strategy inside the IPA framework, and 
highlighted how efficiently the MOR-tIPA provides significant solutions for the 
difficult MIPDECO problems considered in this article (and how much cplexm-
iqp, the branch-and-bound routine of CPLEX, struggles).

On the contrary, the numerical investigation also revealed that the developed 
preconditioner leaves room for improvement and this will have to be considered 
in future work. Besides this, the next step is the development of an IPA frame-
work (and especially an efficient local solver) for time-dependent nonlinear prob-
lems, where devising an effective model order reduction will certainly be a chal-
lenging task.
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